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Abstract

We study a class of three dimensional continuous phase steage models, and
show that, under different symmetry assumptions on thenfiatethe large-scale
behaviour of such models near a bifurcation point is desdritly the dynamicab’
models forp € {2,3,4}. This result is specific to space dimensipand does not
hold in dimensiorg.
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1 Introduction

The aim of this article is to study the large scale behavibphase coexistence models
of the type R
Ou = Au — eV (u) + §¢ (1.2)

in three spatial dimensions, whevg denotes a potential depending on some param-
eterd ande, 0 are two small parameters. Throughout this arti¢les assumed to be

a continuous space-time Gaussian random field modellintptaé fluctuations, with
covariance having compact support and integrating tbhe potential {, v) — Vj(u)

is a sufficiently regular function (depending on the regimve,will actually assume
that it is polynomial in:). Regarding the two parameterandd, we will consider two
extremal regimes: either= o(1), 0 ~ 1, which we call the weakly nonlinear regime,
ord = o(1), e = 1, which we call the weak noise regime. However, our resultsld/o
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easily carry over to intermediate regimes as well. Also giatial domain of the pro-
cessu is a large three dimensional torus whose size depend¢see Remark 112 for
more details).

For the sake of the present discussion, consider the weaklynear regime, i.e.
setd = 1in (LI). Itis then natural to consider scalings of the typét,z) =
A2 (tA "2, 22~ 1) which leave invariant the stochastic heat equation, soufssat-
isfies

Dythee = Attea — €722V 2 00) + o (1.2)
where¢; denotes a suitable rescalinggocfvhich approximates space-time white noise
at scales larger than

Remark 1.1. Since the processin (L.1) itself depends of one should really write
u o for the rescaled process in_(IL.2) to avoid ambiguity. Howewe still write the
ambiguous one.. here in order to keep the notations simple.

The form [1.2) suggests that if we stdrt (1.1) with an initiahdition located at
a local minimum ofV/, then at scales of order'/? (i.e. settingar = % in (1.2))
solutions should be well approximated by solutions to ars@in-Uhlenbeck process
of the type

ov=A7Av—cv+¢, (1.3)

for somec > 0 and¢ a space-time white noise. As we will see in Theofem 5.2
below, this is in general false, unlegsis harmonic to start with. Instead, one should

compute froml/, an effective potentialV;) in the following way. Consider the space-

time stationary solutio to the linearised equation

O = AW + £ . (1.4)

Since we are in dimensidh such a solution exists and is Gaussian with finite variance
Cy. We then set

V) (&) = / Vol + y)uldy),

wherep = N (0, Cp). In other words (V) is the effective potential obtained by aver-
agingV against the stationary measurelafWe show in Theoremn 5.2 that if we start
with an initial condition located at a local minimum @gfy), then it is indeed the case

that the behaviour at scales of ordet/? is described by[(113).

These considerations suggest that more interesting reamliscaling limits can
arise in regimes where — (V5) undergoes a bifurcation, and this is the main object
of study of this article. In particular, ifV,) is symmetric and undergoes a pitchfork
bifurcation at somé& = 6,, then one would expect the large-scale behaviour to be
described neat, by the dynamica®i model built in [Hail4b] and further investigated
in [CC13, Kup15]. Similarly, near a saddle-node bifurcatione would expect the
large-scale behaviour to be described by the dynani@#éainodel built in [EJSI3]
using the techniques developed|in [DPDO02, DPDO03].

Recall that, at least formally, the dynamid&](a) model is given by the family of
equations

0P = A® — a1 + NP3 4 €, (1.5)
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where¢ is the space-time white noise, and the spatial variablenigsl®o the three-
dimensional torud3. In this article, we will only ever consider € {3,4}, with
p = 2 corresponding to the Ornstein-Uhlenbeck procéss (1.3)tfimn there is no
term involving\). Also, the constant in front of ®~! can be set td by a formal
scaling

O(t,z) — v 20(t/v, x/v) with 128 = q, (1.6)

since the transformatiof(t, z) — u—%g(t/zﬂ, x/v) leaves the white noise invariant.
The equation[(1]5) witihh = 1 is the standard dynamic&!; model. In this article, we
will however keepz in the equation since it is convenient for the scalings later

Forp € {3,4}, the interpretation of_(115) is not clear a priori since $olus are
distribution-valued so that the terd?—! lacks a canonical interpretation. However,
they can be constructed as limits of solutions to

0,7 = A®Y — a(@) ™ + (Ce + (@Y + & 1.7)

for a regularisatiort, of space-time white noise and a suitable diverging sequence
of constants’,. In the casep = 3, this turns the termb? into the Wick product

:®2:. with respect to the Gaussian structure induced by the satjcsolution to the
corresponding linearised equation (see [EJS13] for motaildg In the case =

4, the situation is more delicate and additional logarithdiiergences arise due to
higher order effects, see [GJ73, Fel74, Hai14b].

At this stage, it is important to note that the notationl(1€¥en when interpreted
as limit of processes of the tyge (IL.7), is really an abuseotdtion: since one could
always change the value 6f in (1.7) by a finite quantity, it is not clear which process
should be associated to any fixed value\pfand it is only the whole family of pro-
cesses, indexed by that finite quantity, which has a canlomieaning. We call the re-
sulting family of solutions th&*(a) family. Henceforth, when we say that a sequence
of processe¥? “converges to thebt(a) family indexed by\”, we mean that there
exists a choice of’, (independent of\) such thatim, ,o ¥ = lim._,, ®} =: ®* in
law, for every\. The precise notion of convergence appearing here sliglefhends
on p since the®3 process may explode in finite time, while tkg¢ process doesn't
[HM15, MW16]. This will be clarified in[(5.6) below. Let us pati out that, without
the presence of the diverging counter-teffn the sequence, for p = 4 would con-
verge ta) in a sufficiently weak topology depending on the dimensi¢see [HRW12]
for more detalils).

Formally, the equilibrium measure of the dynamlcs](1.5)fet 4 is the measure
on Schwartz distributions associated to Bosonic Euclidgemtum field theory. This
can also be justified rigorously, see [HM15]. The constarcof this measure was a
major achievement of constructive field theory; see thelagi[EO71, Fel74, FO76,
GJ73/ Gli68] and references therein. In two spatial dinmmsithe equatiofn_(1.5) was
treated in[[AR91], DPD03, MW15]. Faf > 4, one does not expect to be able to obtain
any non-trivial scaling limit, seé [Fro82, Aiz82, BBS14].

Another reason why the dynamic@} is interesting is that it is expected to de-
scribe the3D Ising model with Glauber dynamics and Kac interactions reeigical
temperature (as conjectured in [GLP99]). In fact, the omeetisional version of this



INTRODUCTION 4

result was shown in [BPRS93] at the critical temperaturee o dimensional case
is more difficult, as the equation itself requires renorsstion. It was shown recently
in [MW14] that the2D Kac-Ising model does rescale 4§ near critical temperature,
and the renormalisation constant has a nice interpretasahe shift of critical tem-

perature from its mean field value. See also the arficle [((BRARh however required

a two-step procedure to obtair} from an Ising model.

We now turn back to the rescaled procdss](1.2). As suggestédebform of
renormalisation in[(1]7), it is reasonable to expect thatlibhaviour ofu. at scale
a = 1 and# at (or near) a pitchfork bifurcation should be well approated by
the dynamicatbi model. However, it turns out that this it true in full generality.
The main result of this article is that, althoughconverges tab3 for all symmetric
polynomial potentials, for generic non-symmetric potaistiafter proper re-centering
and rescaling, the large scale behaviour of the system lwidlyss be described either
by ®3 or by the O.U. process of the tyge(11.3). One way to undergtdads that, as is
well-known from dynamical systems, pitchfork bifurcatsoare structurally unstable:
small generic perturbations tend to turn them into a saddbe bifurcation taking
place very close to a local minimum. One can then argue &lgsite clear in Wilson’s
renormalisation group picture which has recently beenia@pb the construction of
the dynamicalbj model in [Kup15]) that the effective potential experiendsdthe
process at large scale is nNdf) but some small perturbation thereof, thus reconciling
our results with intuition.

1.1 Weakly nonlinear regime
We start with the weakly nonlinear regime given by

B = Au — eVy(u) + &, (1.8)

where we assume th&} is apolynomialwhose coefficients depend smoothly @&n
Defining (Vj) as above, we thus write

(Vi) = Zaj(e)u ,

for some smooth functions;. For notational simplicity, we let;, a’; anda; denote
the value and first two derivatives @f(f) at0. We will always assume thdi/) has
a critical point at the origin (which could easily be enfatd®y just translating:), so
thatao = 0.

Remark 1.2. From now on, we will always assume thiat (1.8) is considered peri-
odic domain of the relevant size. In particular, we defipedirectly as the solution to
(1.2) on a domain of siz€(1) (the precise size is irrelevant, but it should be bounded
and no longer depend ai). Ideally, one would like to extend the convergence results
of this article to all ofR?, which would be much more canonical, but this requires
some control at infinity which is lacking at present.

Remark 1.3. In principle, the noiséappearing in((1)8) also dependsqmsince it is
defined on a torus of size * for somea > 0 depending on the regime we consider.
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However, since we assume that its correlation function iedfigndependent of)
and has compact support, the noises on domains of diffeized agree in law when
considered on an identical patch, as long as a suitablenfiatf@f that patch remains
simply connected.

In the simplest case when # 0, itis not very difficult to show that at scate= %
u. converges in probability to the O.U. process. Interestingnmmena occur when
(0, 0) is a bifurcation point foVj), which gives the necessary bifurcation condition

The saddle-node bifurcation further requires @jat 0 anda, # 0, and in this case
one should choose = % so that as long a8 = O(eg), the macroscopic process
u. converges tob? family. In fact, the terms in/;(e*/?u..) in (L2) are Hermite
polynomials inu.. whose coefficients are precisely(#)’s with corresponding powers
of e. Thus, the Wick renormalisation is already taken accouyrdmd this is the reason
why the bifurcation assumption naturally appears(ign but notV,.

The most interesting case arises wherj] is a pitchfork bifurcation point ofVj)
so that in addition td_(119), one has

~

ay=0, @, <0, @=0, a3>0. (1.10)
As mentioned above, fromi (1.7), it is natural to expect thatalea = 1, and with a
suitable choice of, the processes. should converge to the solution of tfé¢ model.
As already alluded to earlier, this turn out to be true if antyaf the quantity

A= [ Pe) BVOVE )z (1.11)

vanishes, wher@ is the heat kernel; denotes the space time variablex), and the
expectation is taken with respect to the stationary measiude as defined in[(114).
For general/, this integral diverges since the heat kerRak not integrable at large
scales. It turns out however that this expression is finibiged that

~

CLQal 262:0,

which is certainly the case wheivy) has a pitchfork bifurcation at the origin. The
quantity A can be written in terms of the coefficients(@f) as

m—1
A= "0+ D! d5a,10, (1.12)
7=3

where theC; (to be defined in Sectidd 4 below) are explicit constants deipg only
on the covariance . Itis clear from this expression thdtvanishes ifl” is symmet-
ric.

If A # 0, then in order to obtain a nontrivial limit, it is necessawystightly shift
the potential from the origin, so we set

Uea(t, ) = €2 (u(t/e*, z/e*) — h) (1.13)
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for some smalh,.. The process.. above then satisfies the equation
Oytic = Attea — €722V % tee + he) + Eca (1.14)

From now on, in both weakly nonlinear and weak noise regimeswill useu.. to
denote the re-centred process, and the proceBs in (1.2pé&cmbcase of (1.14) when
h = 0. We also assume the rescaled initial conditiopg0, -) converge to a function
up(-) in some sense (essentially in some low regularity Holdemat large scales
and some high regularity Holder norm at small scales — thlisob@ made precise in
Definition[3.3 and Sectioln] 5 below, the same is true for thersgtric cased = 0),
and we identify the limit of the solution sequenge.. } for appropriate choices of
andh,.

If one then take$ ~ ¢° for somep < § then there are three different choices of
h.'s such that the shifted process. converges to O.U. forr = #. As expected,
two of the possible limiting O.U. processes are stable, Apdhird one is unstatfle
If  ~ ¢° for someps > % on the other hand, then there is a unique choick.&uch
that at scalex = % the process.. converges to a stable O.U. process.

At the critical cas# = ce3, there is a constant such that for > ¢* ande < ¢*,
at scalex = % u. either converges to three O.U.’s or just one O.U., respelgtiAt
¢ = ¢*, there are two possible choices/af One of them again yields a stable O.U.
process at scal%in the limit, but the other one yieldB; at scalex = % Note that this
scale is much larger than the sclat which one obtain®3 in the case of a simple
saddle-node bifurcation. We summarise them in the follgwthreorem. The precise
statements can be found in Theoréms 5.1[and 5.2.

Theorem 1.4. Let (V) have a pitchfork bifurcation at the origin, and let. be the
solution to(T.2)on [0, 7] x T3.

If the quantity A given by(L.11)is 0, then there exists. < 0 such that at the
distance to criticality

0 = el loge| + Ae + O(e?),

scalea = 1 andh = 0, the process:. converges to th@3(a;) family indexed by,
whereas is the coefficient of the cubic term {i¥;), the derivative of the averaged
potential atd = 0.

If A # 0, then the large scale behaviour @f. depends on the value

6 =pe . p>0.

In fact, there existp* > 0 such thatifg < 2, orif 5 = 2 andp > p*, then there exist
three choices of.’'s such that at scalex = %, two of the resulting processes.
converge to a stable O.U. process, and the other convergas tmstable one.

If 5 > % orif g = § andp < p*, then there exists a choice bf such that at scale

a = % the process.. converges to a stable O.U. process.

lUsually, the O.U. process is defined as the solutiof_ol (1n8) for ¢ > 0. But for the sake of
simplicity of the presentation here, we call solutiondt@)kn O.U. process for everyc R. We call
it a stable O.U. ifc > 0, and unstable i€ < 0.



INTRODUCTION 7

At the critical values = % andp = p*, there exist two choices éf such that one
of the resulting processes converges to a stable O.U. psamiescalen = % and the
other converges t®; at scaleo = 5.

The intuitive explanation why this is so is thdt) is really only a0-th order ap-
proximation to the “real” effective potential felt by thessgm at large scales. Since
pitchfork bifurcations are structurally unstable, one Wdndeed expect higher-order
corrections tqV') to turn this into a saddle-node bifurcation for generic sgmmetric
potentials.

The following picture illustrates our results, with theligshaded curve represent-
ing the symmetric case and the black curve representingeherig case whefl/)
undergoes a pitchfork bifurcation. Here, the fidlds represented on the horizon-

tal axis and the bifurcation parameteon the vertical axis (with positive direction
pointing downwards).

0 ~ —¢|loge| + O(e)

N

) 0= c*e% + 0(6%)

\}

!
1
1
1
1
1
1
1
1

The reason why, in the symmetric case, we see the bifurcatibn: —¢| log €| rather
than® ~ ¢ is due to the additional mass renormalisation appearingiin In the
generic case wherg/) is asymmetric (and the quantity defined in [(1.111) is non-
zero), we can see that the asymmetry separates one locahummirom two other
critical points, and creates a saddle-node bifurcatioturits out that this bifurcation

then occurs afl = c*e5 + (’)(e%) for an explicitly given constant®. All these results
will be formulated precisely in Section 5 below.

Remark 1.5. The coefficient of the Wick termwu? in the critical ®3 case is pro-
portional toAs. If A = 0, then the process becomes a free field, and one can then
further enlarge the scale 19 and adjust andh to get®i. Also, the coefficient of the
term®?~! in the limiting equation depends on various coefficient§l@f, but we can
rescale them while leaving invariant the white noise suel ey all becomé.

Remark 1.6. In the non-symmetric casel(# 0), one can actually expard#ito the
second order such that in the branch containing the saddé ploe scale increases
continuously from0 up to% with respect t& (see Remark 5l5). Similar results also
hold in the symmetric case, but this is not important herays@mit the details.
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1.2 Weak noise regime

There is another regime of microscopic models in which thdinear dynamics dom-
inates the noise. The local mean field fluctuation is giverhieyetquation

B = Au — V)(u) + €28, (1.15)

whereVj is a potential with sufficient regularity, not necessarilgaynomial. More
precisely, we assumié : 0§ — V;(-) is a smooth function in the space@f functions.
Thus, we can Taylor exparid aroundz = 0 as

6
Vi) = a;(0)s’ + Fy(a), (1.16)
7=0

wherea;’s are smooth functions ifi, and|Fy(z)| < |z|” uniformly over|f| < 1 and
lz| < 1.

Since the noise now has strength of orelerthe large scale behaviour 6F(1115) is
determined by the behaviour bf itself near the origin, and not by that of an effective
potential. Again, in order to observe an interesting linme assume thalt’ has a
pitchfork bifurcation at({, 0), namely one has

ap=a,=a; = as =0, a; <0, az > 0, (1.17)

where thea;(¢) are the coefficients of the Taylor serieslgfi¢) aroundy = 0. For
e > 0, we set similarly to before

Uea(t, ) = e’HTa(u(t/eza, x/e) — he),
whereh, is a small parameter as before. We see that this timsolves the PDE
atuea = A'U,Ea — E_(%—F%)‘/HI(E%—F%UEQ —+ he) + fea . (118)

While this appears to be identical o (1.2) modulo the stltgdn o« — « + 1, it
genuinely differs from it in that the driving noise still hegrrelation lengthk® and not
€1, In order foru.. to converge tab:, it then seems natural to choase= 1, thus
guaranteeing that the coefficient of the cubic term in thddragxpansion of/; is of
orderl. But this creates the divergences in both linear and constems on the right
hand side of the equation. Sineg= a; = 0, and we have two parametérandh to
tune, it looks like that we could kill the divergences by cbing the proper values of
6 andh and getd? in the limit.

Unfortunately, this turns out to be impossible. When turtingits correct value to
kill the linear divergence, the terms involving the leadarder ofh will be precisely
be canceled out so thatcould only have a second order effect, which is far from
enough to kill the divergence in the constant term. Thus,cammot make both linear
and constant terms convergent unless the coefficieritsitself are balanced. It turns
out that similar to before, whether converges t@; depends on the quantity

3a’a?  alas
B :a4+ 03 2

2 /
2ay aj
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Indeed, what happens here is essentially the same as théywemailinear regime
except that the critical valugat which one sees a bifurcation is different. Similar as
above, we also require the convergence of the initial dat@, -). The main result can
be loosely stated as follows, and the precise statemeniis @leeorems$ 5)8 arid 5.9.

Theorem 1.7.Assumé’ : § — Vj(-) is a smooth function in the space®ffunctions,
and exhibits a pitchfork bifurcation at the origi#, ) = (0,0). Letu. solves the

PDE (1.18)
If B =0, then there exist choices 6fand i of the form

0 = ae + be* log e + O(€?) | h = pie + poe®

such thatu.. converges t@3(az) family at scalen = 1B.
If B # 0, then there exist; > 0 for j = 1,2, 3 such that if

0 = 0" = ple+ piet + pled + O(e™),

then there exist two choices/afsuch that one of the resulting processgsconverges
to @3 at scalea = g and the other one converges to a stable OU process:at%.

If & > 0% (resp.f < 0*), then there exist three (resp. one) choicesipsuch
that the resulting:.. converge to OU processes. In the former case, two of the OU
processes are stable and the last one is unstable; in therlattse the OU process is
stable.

Remark 1.8. Similar to the weakly nonlinear case, the coefficient of thieRferm

for @3 is proportional toB3. A symmetric potential” will give B = 0, but it is not
clear whether the quantit§ has a probabilistic meaning as in the caseddfl.11).
Also, as explained just before_(1.6), one could rescale dhéisn leaving invariant
the white noise such that all the limits are of the form](1.8hw = 1.

The precise statement will be given in Theoréms$ 5.8[and 5.9.

1.3 Some remarks and structure of the article

Before describing the structure of this article, we disduss possible natural gener-
alisations of our results.

1. We expect that analogous results still hold when the n@i'senot assumed
to be Gaussian, but still satisfies good enough integralfaifid mixing condi-
tions. The techniques developed|in [HS15] should apply bereell. Indeed,
in [SX16], the authors showed convergence of the weaklyineat regime to
®2 under symmetry assumption on both the potential and thenblste how-
ever that if the noise is non-symmetric, then we do not exfested: at large
scales generically, evenl, is symmetric.

2In order to get convergence &, one needs to choogg depending on the coefficient of tlaé
term ing; otherwise one will get a shiftedl} of the form

Ou = Au — az(u® — oou) + £ +C

with an additional constarit. This constant can be killed by a proper choiceff
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2. The assumption that, is a polynomial can probably be relaxed (see [GP16]
for a result similar to those of [HQ15] in the context of the KBquation). It
is however not clear at all at this stage how the methods gdtticle could be
carried over to handle this case.

It turns out that, as in [HQ15], the weak noise regime can é&té¢d as a perturba-
tion of the weakly nonlinear regime, so we will mainly focus the latter case. The
main strategy to prove the above results is the recentlyloped theory of regularity
structures ([Hail4b]), combined with the results of ((HQ)1&here results analogous
to ours are obtained for the KPZ equation. The idea is totift solve [(1.R) in an ab-
stract regularity structure space that is purposed builtfis equation, and then pull
the solution back to the usual distribution spaces afteablé renormalisation.

The article is organised as follows. In Sectidn 2, we comstihe regularity struc-
ture as well as the renormalisation maps that allow us to tiheaequations of the form
(1.2). Sectiom3 is devoted to construction of the solutmthe abstract equation. In
SectioriL4, we prove the convergence of the renormalised imdeieally, in Section b,
we collect all the previous results to identify the limit btrenormalised solutions.

Acknowledgements
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2 Construction of the regularity structure

In this section, we build a regularity structure that is uigfntly rich to solve the fixed
point problem for the equation

Oyue = A, — € 2V (e2u) + &, (2.1)

in the abstract space of modelled distributions. Hérés a mollified version of the
space-time white noisé at scalee, andVj is a polynomial of degree:. Note that
(2.1) corresponds to the weakly nonlinear regime with seate 1, and we do not
restrictV’ to be symmetric here. Since this is the largest scale weak ht, all other
situations (including the weak noise regime) will followaperturbation of the above
equation.

The construction of the regularity structure mainly folbthe methodologies and
set up in[Hail4b] and [HQ15, Sec. 3], with some slight modifilcns to accommo-
date the particular form of the equatign (2.1). We will retiethe precise statements
in those two papers when we state a result from there withaatfpMore gentle in-
troductions to regularity structures can be found in [Hall{Hail5b], [Hail4a] and
[CW15].

2.1 The (extended) regularity structure

Recall that a regularity structure is a pdir,G), whereT = @ ., 7. is a vector
space that is graded by some (bounded below, locally finedeAsC R of homo-
geneities, and is a group of linear transformations @f such that, for every' € G,
I’ — id is strictly upper triangular with respect to the gradeddtice.
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For the purpose of this article, we build basis vectbigmilarly to [HQ15, Sec. 3.1]
as a collection of formal expressions built from the symHlpIs, {X;}3_, and opera-
torsZ and&” for half integerss > 0. As usual, we assume that all symbols and sub-
expressions commute and thas neutral for the product, so we identify for example
Z(ZX,)= and=1Z(X, =Z). Given a multi-indext = (ko, - - - , k3), we also writeX* as
a shorthand foX[° - - - X¥* (with the conventionX? = 1), and|k| = 2k, + 30, k;
for its parabolic degree.

With these notations, we define two séteind) of such expressions as the small-
est sets such that* € U, = € V, and such that for every € {1,...,m — 3},

{7-17 e 7Tk} cu = {7-17—27—3 ) 8%(7'1 o 'Tk+3)} cV ;
Tey = Z(r) e U .

We then sel?V = U UV and we associate to each elementf homogeneity in the
following way. We set

(2.2)

_ )
E=—s -k XY=k,

wherer is a small positive number to be fixed later, and we extenddhesery formal
expression iny by

7 =1l + 17, IO =l +2, €9 =B+ (2.3)

We then writeT,, for the free vector space generated{byc W : || = a}. In this
article, we will only ever use basis vectors with homogenkeiss thar2, we therefore
take for7 the space of all finite linear combinations of elementg\obf homogeneity
less thare, i.e. 7 = P, _, Ta-

The main reason for introducing’® as in [2.2) rather than treatingas a fixed
real number is the following crucial fact. It reflects tHatl{Ris subcritical under the
scaling reflected by our regularity structure.

Lemma 2.1.1f x < g, then for everyy > 0, the set{T € W : |7| < ~} is finite.

As in [HQ15], it will be convenient to considel’ as a linear map such théf :
7 — EP(1). The problem is that the produet - - - 7, 3 appearing in[(2]2) does in
general not belong tg". Just as in|[[HQ15, Sec. 3.3], one way to circumvent this
problem is to introduce the extended regularity strucflikegiven by the linear span
of

WeX:WU{Tl“‘Tm:Tj GZ/[}

In this way, we can viewf” as a linear map defined on (a subspacerg()
We now start to describe the structure gr@ufor 7.« For this, we introduce the
following three sets of formal symbols:

.Flz{l,X}, fzz{/g(T)I TEW\{Xk}, |T‘+2>€},

k k 2.4
Fa= {6 maa): meU S m>1z Y Inl. GY
J J
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We then let]T, be the commutative algebra generated by the elemetfisuinF,; U F;3
and we define alinearmap : 7 — 7 ® 7, in the same way as in [HQL5, Sec. 3.1].
For any linear functionay : 7. — R, one obtains a linear mdp, : 7 — 7 by
I'y7 = (id®g)AT. Denoting byG. the set of multiplicative linear functionatson

7., we then set

Gr={9eT]: gr7)=g(n)g(7), V1,7 €T},

and we defing/ by
g - {Fg °g € g+} . (25)

It is straightforward to verify thatj has the desired properties, including the fact
that its elements respect the product structurg af the sense thdt(r7) = I'r - I'7.
Furthermoreg preserves not onl¥ey, but alsd7, so that it also serves as the structure
group for7.

2.2 Admissible models

We now start to introduce a class of admissible models foregularity structure. As
in [Hail4b], we fix a truncatiori’ of the heat kernel which coincides with it near the
origin and annihilates polynomials of degree u@torhe existence of such a kernel
K is easy to show, and can be found, for example, in [Hail4b, Sé&g

We equipR!*? the parabolic metric so that

3
2l = 1t ) = [¢]2 + Y |- (2.6)
j=1

We letD’ denote the space of Schwartz distributiondR3n® and £(7, D’) the space
of linear maps fronf/” to D’. Furthermore, for any test function : R!™® — R,
anyz € R and)\ € RT, we useyp?) to denotep(z') = A\ Pp((t' — A2, (2 —
r)A~1). We also write3 for the set of smooth functions: R* — R that are compactly
supported in{|z| < 1} whose derivatives up to order three (including the valudef t
function) are uniformly bounded by

Recall that a model forf(, G) consists of a pairl(, F) of functions

I1: R — L(T,D) F:R'" ¢
z+— 11, z— F,

satisfying the identity
ILF Y =TLF Vz, Z, (2.7)

as well as the bounds
L)) S AT Teer], S|z — 270 (2.8)

uniformly over allp € B, all space-time points, z in compact domains and every
T € W, where we used the shorthafid, = F_ ! o F}, and the proportionality
constant depends on the compact don@inVe will write f, for the element irg,.
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such thatr’, = I'y_. We will give explicit expressions fof,, and will write the notation
(I, f) for a model frequently. We also write |, for the norm of the component of
7 in 7, (the precise choice of norm does not matter since these spaeall finite-
dimensional). We define the norm of a mod®l= (II, f) to be the smallest constant
that makes both bounds in_(2.8) to hold, and denote j{Bif|z. Since in most of the
situations,F' is completely determined by, we sometimes also writgll|| instead

of ||92t]|, and we omit the domaik wherever no confusion may arise. With these
notations, we can define what we mean byadmissiblenodel.

Definition 2.2. A model(T1, f) is admissible if for every multi-indéx one has
(LXME) =G -2)" LX) =(2) (2.9)
and for everyr € W with Z(7) € T, one has

ujmz—/D%u—ammua 0] < |7] +2

Y (2.10)
-

ILI(r)(2) = (K * IL7)(Z) + )
l

Here, we setZ,7 = 0if || > |7| + 2, so the sum is always finite.

See[[Hail4b, Rem. 5.10] for the correct way of interpretimgse identities in case
I1, contains distributions that are not functions.

2.3 Canonical lift to 7oy

Given anysmoothspace-time functiglg and any real numbe, there is a canonical
way to build an admissible modé&f, (¢) = (114, f€) for the regularity structurefgy, G)
as follows. We first set

(D)) = £(2),

independent of and the base point We then definélr recursively for other € W
by (2.10) as well as the identities

(Is77)(2) = (IE7)(2) - (TIS7)(2) (2.11)
and
f(&'r) = - (D"(IIL7)(2),

(ILET)(E) = M) + >
V4

-2
17

(2.12)

fUET).

Here, we again adopt the conventié’ﬁ(r) = 0if |[¢| > B + |7|. This construction
makes sense only whai. 7 is sufficiently regular, and this is indeed the casg¢ i
smooth. We then have the following fact, the proof of which ba found in[[HQ15,
Sec. 3.6].
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Proposition 2.3. Letgbe a smooth space-time function, ang 0. Then, the canon-
ical model.Z.(&) = (II¢, f¢) defined via the identitie@.9) — (2.12)is an admissible
model.

Later on, we will consider the situation Whefr& &, a regularised version of the
space-time white noisg so we are led to the canonical mod#l(£.). However, it
is important to note that at this stage nothing forces thaesbf the twa’s to be
identical: it is perfectly legitimate to consider the modé€l&;) for any pair of €, 9).

Also, one would like the linear mag’ to represent the multiplication by. This
is however not quite true in view of (2.12), and it suggest the should introduce
a new magt”? on theD” space of modelled distributions (see Sdn.[Hail4h] for a
definition) by ,

E0E) = V() ~ Y T G UE). (2.13)
)4
Then, as long as the model is admissible and satigfies (Zhﬁmapfﬁ does indeed
represent multiplication by’ in the sense thaR&°U = ¢#RU for R the reconstruc-
tion operator.

2.4 Renormalisation

The aim of this section is to build a gro¥ of transformations that we can use to
“renormalise” our models. It is crucial for our purpose tkath a renormalisation
procedure satisfies the following three properties:

1. R acts on the space? of admissiblemodels.

2. R is sufficiently rich so that one can find elements € R such thatM,..Z.(£.)
converges to a limit inZ, where %, denotes the “canonical lift” of the regu-
larised nois&..

3. Solving the fixed point problend (3.1) for a model of the typeZ,.(n) for a
smooth space-time functionand M < ‘R leads to the solution of a modified
PDE.

The transformationd/ € R we consider here will be composed by two linear
mapsM, and MY on Te. The mapM™* encodes “Wick renormalisation”, while
M, has the interpretation as mass renormalisation in the goaheéld theory. From
now on, we will use the shorthandl = Z(=). We start with the standard Wick renor-
malisation map\/“ on Te. Define the generatar" by

LWick: _ LWickxk: o 0 LWiCk\I]k o <k:) \I[kf2
- - Y - 2 )

and extend this to the whole gy by

LY (rZ(7)) = L"()I(7) + TZ(L"7) |
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for 7 £ =, as well as
LWickI(T) _ I(LWiCkT)’ LWick(gBT) — Sﬂ(LWickT)’ LWick(XkT) — Xk‘LWickT )
The mapM™™ : Tex — Tex IS then defined by
M"Y = exp(—C L") . (2.14)

The definition of L ensures thad/V commutes withX* as well as with the ab-
stract integration magsand&”. MY has the interpretation as Wick renormalisation
in the sense that

MWick\I/k‘ — Clng(\Il/ /CY) =: Hk(\p; Cl) , (2.15)

where H,(+) is the k-th Hermite polynomial whose leading order coefficient is-no
malised tol. For example, we have

H\(V;Ch) =0, Hy(¥;Cy) = U2 — C, Hs(¥; Cy) = 0P — 3C 0.
Note that although we will always consider the case wligre> 0, the above expres-
sion H,(¥; C) actually does not requir€; to be positive.

We now describe the effect df/* on the canonical modell; f). Following
[Hail4db, Sec. 8.1] and [HQ15, Sec. 5.2], for the mdy defined above, there is a
unique pair of linear maps

A" o= T ® Ty, M™ T T,
satisfying
]/W\Wick /E _ M(/g ® id)AWick’
]/\Zwick@@gﬁ _ M(@pf ® id)AWick7
(id @M)(A ® id)AWick _ (Mwick ® ]/\Zwick)A’

J/\Zwick(TlTQ) _ (j/w\wicle)(MWickTQ)’ j/\ZWicka _ Xk,
whereM : T, — T, denotes the multiplication in the Hopf algebffa. As in [HQ15,
Sec. 5.2], one can verify that boii*'* and A" have the relevant triangular structure,
so that if, given an admissible modél (f), we define [I", ") by

M = (I ® L)A7,  f(0) = f.(M"*0) (2.17)

then (I, /") is again an admissible model. Furthermore, as a conseguénice
second identity in[(2.16) and the fact thet"* commutes with€?, if (II, f) satisfies
(2.12) for some, then so doed ", ),

We now turn to describing the mag,. Forn > 2, we define linear maps,, and
L] on7e by setting

(2.16)

Ly,:  E2NU"Z(E27'UM) s n! -1,
E2HUL(E2TI UMY s (n+ 1)! - T,
EF(V'I(E:20™) s nl-1, n >3,

Er 2 (UTIZ(ET 20" s (n+ 1! - U, n >3,

L EFNUI(ER U)ol 1, n >3,
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(we use the conventiof’ = id) and L, = 0, L/, = 0 for any other basis vector
T € W. Given these maps, we then consider map§gQiof the form

My —exp( ZC’L ZC’;L;)

n>2 n>2

As we will see in[(3.15), at the level of abstract equatibfy,has the simple effect of
adding a linear term to the right hand side of the equationudty, 1, is equivalently
given by

My=id=> CyL, =Y CiL, .
n>2 n>2

Furthermore, it commutes wi in the sense that/,I'r = I'M,7 for anyr € 7 and
I' € G. As a consequence, given an admissible modef{, if we set

ﬁinT = I, My, fZMOJ = fz(a) , (2.18)

then (1™, f™o) is also an admissible model. Givéd = (M,, M“*) with M, and
MY as above, we then define the renormalised mdd#l,(f*') by

MYr = (IL ® LA (M,r),  fM(0) = f2(M™).  (2.19)

Remark 2.4. Note that although in many cases one Ha¥ ¢)(z) = (IL. M7)(z), this
is in general not true. For example, for= £¥%, we have (1M 7)(2) = €(£%(z) —
6C1E%(2) + 3C?), while (IT, MT7)(2) = €(&4(2) — 6C1€2(2)).

3 Abstract fixed point problem

In this section, we translaté (1.2) into a fixed point problena suitable space of
modelled distributions. It is natural to consider the fixeihp problem

3
v-pL (= Z)\ QT Q@) - YA, Qu(®)) + Pus, @1
=0

whereQ, denote the projection onto the subsp&ge., 75 in Tex, Puy is the canon-
ical lift of the solution to the deterministic heat equatwith initial datau, to the
regularity structure, an® denotes the operator given by

P =K+ RR,

wherek is the abstract integration operator defined from the trigtcheat kernek’
asin[Hail4b, Sec. 41k is the reconstruction operator, aRd is the Taylor expansion
of the smooth function® — K) x v up to ordery.

To solve such a fixed point problem, at first glance, it seerasdhe can simply
follow the procedure in[Hail4b, Sec. 7] to obtain a uniquietson to (3.1) in a space
D" as in [Haildb, Sec. 6] for suitabteandr. Unfortunately, as in [HQ15, Sec. 4],
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this argument only works for sufficiently regular initialtda(it needs to be “almost
continuous” for large values of.). Since the dynamicabj model only has regularity
C" for n < —1, this would prevent us from using a continuation argumeriatrol
the convergence of our models on any fixed time interval. bhtawh, such a continu-
ation argument also requires one to be able to evaluate ¢tbastucted solutio®R ®

in a suitable space of distributions at any fixed time. Howea® one can easily see,
the solution to[(3]1) contains the tenin = Z(Z) which has negative homogeneity,
and a priori there is no clear way to give meaning@ at any fixed time.. The
second issue is not a serious problem here since, for theahatwdel constructed
from space-time white nois®& ¥ can indeed be regarded as a continuous function (in
time) in a suitable space of distributions. (See for exarfi#l4b, EJS13].)

To resolve the first issue, we introducdependent norms to enforce suitable con-
trol on both our admissible models and the initial condita®a — 0. In a way, this
allows us to “trade” the singularities neia&= 0 and at small scales for powersof

In what comes below, we will mainly follow [HQ15, Sec. 4] toilsbsuch weighted
spaces. It turns out that the algebraic structure of themeesmare essentially the same
as those in introduced in [HQ[L5], except that the valueg andr are different. We
will therefore mostly give statements and refer{to [HQ15]detailed proofs.

3.1 Thee-dependent spaces and models

Below, we usep to denote a space-time test function belongin§ te to denote such
a test function that furthermore integratesitcand+ to denote a test function that
annihilates affine functions of the spatial variables.

Recall that our definition of an admissible model in the presgisection does not
specify any relationship between its actionsraand&”(r). In order to formulate the
cancellation of the singularity in time by the small paraenetin the limiting process
e — 0, we introduce the space of mode#s,. which consists of aladmissible models
(I1, f) with the further restriction that

1fAEPN| S P s ew, (3.2)

6
(ILr g SXC-e™76 rel, (=<

Here, all the bounds are to hold uniformly over all spacestpuints:z in compact sets,
all A € (0,¢) and all test functiong) € B that annihilate affine functions. We also
require that, for some sufficiently large< —% (to be fixed below),

sup || oW(t, -)||en < +o00.
te[0,1]

We will verify later in Section 5 that the models consideredhis article do indeed
belong to.#. with uniform controls ag — 0.

We let||TI||. denote the smallest proportionality constant for both laisun (3.2),
and define a “norm” oo/, by

1Ll == ITI)] + [|TI][e + sup [[TToW(E, )lcn,
t€0,1]
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where||I1]| is the usual “norm” on admissible models introduced in &f&.2. Again,
these norms all depend on the compactsethere the supremum afis taken over,
which we have omitted for notational simplicity.

Remark 3.1. This is of course an abuse of notation sifi€H| and||I1||. both depend
not only onII but also onF', and F' can in general not be recovered uniquely from
IT and the knowledge that the model is admissible (unlike irsthations considered
in [Hail4b]). We chose to nevertheless keep this notatiothie sake of conciseness.
Also, the norm||TI||. depends not only oabut also o). Since we will fix the value

n < —3 below, we omit; in the notation.

We compare two models in7, by
JITE; T2l = [IT5 T + |10 — TI + S Mo (t, -) — oW (t, -)en-
We also denote by#, the class of admissible models such tjfig(téaf(r)) =0. ltis
natural to compare two elemeni$(, ') € ., and (I,T) € .#, by
[T T o = 1 T + ([T, + Sup W, ) = oW, -)len-
Note that 7, and.#.. consists of exactly the same class of models for each> 0,

but with different scales on their norms. The point heread te will consider models
with ||T19; IT|| ., — 0 for some limiting modell. We first give a useful lemma.

Lemma 3.2. There existg' > 0 such that, fodl € .#Z. andr € U, we have
(L7, @2)| < Cflee™, [(TL7, ¢2)] < O[Tl A" (3.3)

uniformly over allA < ¢ < 1, all space-time points in compact sets and all test
functionsy, ¢ € B with the further restriction thad integrates ta.

Proof. We first prove the second bound. Lgbe a test function integrating g let
A € (0, 1], and letN be the integer such that

A2V <e < XN (3.4)

We then writep) as a telescope sum by

N-1 N-1
D D A R B SR S IR SR
k=0 k=0

For eachk appearing in this sunag}* is localised at scalg-2* < ¢ and integrates to
since the function does. Furthermore, the factdr® is chosen such that the integral
of 2-¥¢*2" against linear functions does not depend:pro thati¢)* annihilates all
affine functions. Thus, we can use the second bouridih (3dddace that for each
we have

|(IL7, 6¢)F) | < C|IT[| 275 (A2F)C - €ll=¢ .
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Summing overk from 0 to N — 1, and using the fact that > 1 and\ - 2V ~ &,
we conclude thaE (I T, 56 "“} < C||T1||Ael"I=1. The same bound holds for the
term2=N . X 2" as a dlrect consequence bf (2.8), so we obtain the secondloun

B.3).

To prove the first one, fix a test functign and write it as

N-1
ok ok+1 oN
02 =) (@ =l + ) (3.5)
k=0

This time, each function in the parenthesis integrategs 40 we can use the second
bound just proved above, and the first one follows easily. O

We now turn to dealing with the irregularity of the initialtda At this point, our
definitions start to differ from those in [HQL5] in order tocexle the regularities of
terms in[(3.1). We first introduce a new space for the initoaddition .

Definition 3.3. Lety € (1,2),n < 0 ande > 0. The space" consists oiC”
functionsf: R®* — R with norm

DfE(x) — DFf©
e = [ en + €M oo + €77 sup ?) / (y)|_
1 lle = 15l + € fOloe + 7 sup 2@ = DI
|lx—y|<e |.T - y‘V

(3.6)
Furthermore, we sef;"” = C". The distance between two elemeffts € €7 and
f € C"is defined by

| D) = DFO(y)|

y[r !

||f(€)§ f”%n;e = ||f(€)_f||6’”+€7n||f(€)||oo+€’yin sup

lz—y|<e |z —

. @37)

The reason we do not include a bound|dnf||., on the right hand side is that
such a bound follows the bounds @i, and||D | c--1. More precisely, one
has

Lemma 3.4. There exists a constant such that, for every© < C” one has
1D oo < CNF Qe - € (3.8)
Proof. The proof is straightforward and we leave it as an exercise. O

One should think of functions )7 as behaving like elements 6f' at large
scales, while being of clag¥ at small scales, witlh determining where the cutoff
between “small” and “large” lies. The reason why orfl§ appears in the last two
terms of [[3.7) is that these two quantities are not even ffaitgeneralf  C".

Following [HQ15, Sec. 3.5], we definP"" space to be the set of functiobs
taking values iri/” with norm

| (Z)|T
||U||’YT7 _Sup Sup |U(Z)|T + Sup Sup (77 |TD/\O
z o |r|<y z i<y /]t

!
+ sup sup |U(Z) z,z’U(z )|T

e/ 1< 2 = 2P AT




ABSTRACT FIXED POINT PROBLEM 20

where|z — Z/| is measured in the parabolic distance defined.in (2.6). Nwtethis
definition is slightly different from the original one in [Higdb] in the sense that it
allows U(z) to have components i&-,. We now introduce the weighted spades”
that are suitable for our fixed point problem.

Definition 3.5. For eache, v, n, and each moddl1, I') € .., the spacé)" consists
of modelled distribution&” with norm given by
‘U(z)|‘r ‘U(z) - Fz,z’U(z,)‘T

Ully e = I|U +supsup ———— + su su
11k = U PR e T e A s = Zp e

Here, the supremum is taken over all space-time pdgints) € D,, defined by

D.={(z,7): |z = 2| <e ANVI|t| N|t']},
wherez = (t,z), 2 = (¢',2'), and]| - ||, is the norm of the usuaD"" spaces
introduced in [Hail4b, Sec. 6].

In short, the above definition says that modelled distrdngU in D" satisfy the
bounds

UG S (e + V/]eho 1m0,
U() = Toa U S 1z =27 e+ VIt A ).

Note thatD}" is a linear space once the model is fixed, and so the distaneede
two elements can be simply compared |dy — U||, ... Also, in all the cases we
consider belowy is always smaller than the regularity of the sector in cogrsition.
Thus, we will haven < |7|, and can simply replace)(— |7|) A 0 by n — |7| in all
the situations below. Similar as before, we compare two etgst/© € D7 and
U € D7 by

()
. TCY U9
[U5 Ullye = U5 Ul + Slip Slip A0

|U(€)(Z) - 1—‘Z,Z’U(e)(zl)|

|Z — Z’|’Y_‘T|€77—’Y

+ sup sup
(2,2)€De |T|<y

The reason why only/(© appears on the latter two terms on the right hand side above
is the same as before: these quantities are in general rtetffanl/ € D", The main
motivation for the introduction of thesedependent spaces is that they contain the
solution to the heat equation with initial condition@", with bounds independent
of e. This is the content of the following proposition, the pradfwhich is identical
to that of [HQ15, Prop. 4.7], so we do not repeat the details.he

Proposition 3.6. Letn < 0, v € (1,2), € € (0,1], andu € C". Let Pu denote
the canonical lift of the harmonic extensiomof¥ia its truncated Taylor expansion of
order~. Then,Pu € D}" and one has

[Pl e < Cllwllyme.
Furthermore, ifu® € C2" andu € C", then one has

”PU(E)SPUH%n;e < C”u(e)QuH%n;e'
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The following proposition will be needed later when we coo# local solutions
up to their (potential) explosion time. It says that theialitdata of the restarted
solution still belongs to thé&?"" space with norms uniform ia

Proposition 3.7. Lety € (1,%) andn € (—524, —3). Let(Il5, ) € ... Let
U be a sector of the regularity structure as defined@d). If R¢ is the associated
reconstruction map foD?"({) and U© € Dr"(l) is the abstract solution t@3.1),

then for every > 0, u{? := R<UW(¢, -) belongs taC>" with
e < CHTO e ITIOY.

If (I, f) is another such model with reconstruction operairandU € D" solves
(3.1) based orl, thenu, := RU(t, -) belongs taC” and one has

s el e S WU Ul e L+ ) + N1 Weo (U e + U] -

Proof. We first prove the first claim of the proposition. For that, veeibd separately
the three terms appearing in the definitibn(3.6) of the spdté. We first notice that
any solution/® to (3.1) is necessarily of the form

U9(2) = U + V() .

Since the structure group acts trivially dn the constant functiod belongs to all
spacesD)", so that ifU© ¢ D)™, then so doe¥ ©. Since, in the above decompo-
sition, V() belongs to the linear span §1} U {7 : |7| > 0}, the desired bound
for ||R<V'(t, -)||c» follows from [Hail4b, Prop. 3.28]. Regarding the tedmone has
R¥ = II§ ¥ so that, by the definition of#Z., we have

sup [[(RU)(¢, )len < CJII,
te[0,1]

and the required bound fdju{?||c thus follows.

For the remaining two terms on the right hand side[of](3.6),wile prove a
stronger bound by showing® = R<U is a space-time function with desired regu-
larity, rather just being a function in space for fixed time.

For the second term, since the lowest homogeneity is —; — «, an application
of the reconstruction theorem together with Lenima 3.2 gives

_1_
sup supsup [(u, p2)| < CUO |,y T - €277,
A<e z @€eB

On the other hand, it follows directly from the definition ofrendel that

1
supsup sup A2 (w9, 02)| < CIUO| e J 117
A>e 2z p€eB

Combining the above two bounds and using the fact ghiatarbitrarily small so that
n < —1 — k, we conclude that(® is a continuous function with

€M < Ce 375 U, T
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We now turn to the third term on the right hand side[of](3.6)oraer to showDu(© €
C'~!, we test it against test functions that integrate tdJsing the definition of the
distributional derivative and then the triangle inequakite get

ATTDU, 67| < AU (), (D9)2)| + A7 |(ul) — TEUO(z), (D))

It follows from the reconstruction theorem that the secarchton the right hand side
above is uniformly bounded by a constant. For the first teingesthe assumption
that ¢ integrates td) implies D¢ annihilates affine functions, we can use the second
bound in3.2) to obtain

AU (2), (DO < CNUO e ITIE . - ASYem25¢

where we again used the fact that the lowest homogeneMy'sm—% — k. The desired
bound then follows immediately.

For the second claim, the only problematic ternﬁLd&; w|¢n, but again the de-
sired bound for this term follows in the same way|a&’||c». O

Before we proceed to further properties of theé" spaces, we first make a few
remarks about these spaces and our notation.

e The setD, in Definition[3.5 is taken to b§|z — 2/| < e A \/|t| A |'|}. Thisis
sufficient since for the pairg(z’) such that < |z — 2/| < +/|t| A |t'|, we have
e+ /|t| A ] < 24/[t] A|t'], so the bound on the last term in Definitionl3.5
follows automatically from the bound ap- ||, ,,.

e We use the notatiof ' — F||, .. to compare two functions in theameD)""
space with thesameunderlying model. On the other hand, whenever we write
| F'; F||.e it should be understood that we are comparinge D" with
F ¢ D", typically based on a different model. As we will never comgpa
two functions belonging t®?"" spaces with the sameout different underlying

models, these notations are sufficient.

It turns out that these spaces behave as expected undeplioatton and action
of £ andP. We state a few of the properties we will be using later; adlphoofs can
be found in[[HQ15, Sec. 4.3].

Proposition 3.8. LetU; € DYV ®) for i = 1,2, whereV® and V@ are sectors of
respective regularitiea; andas. If

7=+ a) A (2 + ), n=(m + o) A(n2+ a1) A (1 + ),
then their pointwise produdi = U, U, is in D" with
||U||%n;6 < CHUl||71,m;5||U2||72,n2;6-

Furthermore, ifU; € Dy, thenU = U,U, € D" with the same), v as above, and
we have

U Ullyare < CUIUL; Utllye + 1025 Uallyae + 17 = T),
whereC is proportional to>_,(||U:|| + |U:]]) + |7 + [T
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Proposition 3.9. LetU € D" withn < . If a > ~, thenQ-,U € D" with
HQSaUH%n;E 5 HUH%H;G'
Proposition 3.10. LetU € D" with~ € (—3,1 — 8). ThenEPU € DY with
Y =+ B)A inf (7 - 70, 0 =n+8
and we have the bound
IEPU |l e < CQA A+ [T | e
In addition, ifU € D" with modelll € .#,, we have
IEPU; EPU |y e < CQ A T YU Ul e + 1L Tl 0)
with the same’ andr'.
Proposition 3.11. LetU € DX"(V), whereV is a sector of regularityx with —2 <
n < v A a. Then, provided that and» are not integers, we haveU € DJ-7 with
¥ =~ 4+ 2andn = n + 2, and we have the bound
IPUl5.e < ClIU e
Furthermore, ifU € D]"", then we also have
IPU; PU 5 < CUIU U llyase + ITLII]).
3.2 Solution to the fixed point problem and convergence

We now have all the ingredients in place to build our solutiath uniform (in €)
bounds in suitabl®?-" spaces. The equation we consider is of a general form that
it sufficiently flexible to cover all the concrete cases to basidered later. We first
show the existence and unigueness of local solutions.

Theorem 3.12.Letm > 1,7 € (1,%), 1 € ( — s2t4, —3), andx > 0 be sufficiently

small. Letp, € C", and consider the equation
m i—3 . 3 . ~
d=P1, (E =) N0QwE T (Quo®) = ) ng(cbﬂ)) + Pe,. (3.9)
j=4 §=0

Then, for every sufficiently smalland every model inZ., there existsd” > 0 such
that the equatiorf3.9) has a unique solution i) up to timeT". Moreover,T’ can be
chosen uniformly over any fixed bounded set of initial dat@ii, any bounded set of
models in#., any bounded set of parameteN%), and all sufficiently smakh.

Let 4 be a sequence of elementsdn” such that|¢{; ¢o||,... — 0 for some
¢y € C1,1I° € M., 11 € 4, be models such th3flI; IT||., — 0, and letA!) — ),
for eachj. If ® € D" solves the fixed point problef@.9)with modelll, initial data
¢o and coefficients\; up to timeT’, then for all small enougl, there is a unique
solution®®© e Dy to BZ)with II°, ¢’ and A" up to the same tim&, and we have

lim | ®||,,,.c =0, lim sup [[(RODO)(, ) — (R®)E, )|, =0.
e—0 e—0 te[0,T7]
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Proof. We first prove that the fixed point probleimn (3.9) can be solve®}" with
local existence time uniform ia Let M) denote the map

m i—3 . 3 . ~
MP(@) =P1, (E >N Q<0€7 (Qep®’) — >N QSO(@)) + Pgy , (3.10)
j=4 Jj=0

whereT denotes the length of the time interval on which the argunderst defined.
Note that although the terms in(3110) does not explicitlpete onT’, their domains
of definition and normg§ - ||, ,,.. do depend on it. We will show that, far sufficiently
small,/\/lgf) is a contraction mapping a centered ballift"” of a large enough radius
A into a ball of radius%. In what follows, we will omit the subscrigt’ and simply
denote this map a1,

We first show thatM(©) mapsD? into itself. By Proposition 316, we ha\IAéngge) €
DY, In addition, the noise term?1. = also belongs t@?". As for the non-linearity,
if 5 < 3, itis straightforward to see tha’ € D% for some positive). We can
choosej small enough so that there is no basis vector with homogehbetiveen)
and2d, and Propositiof 319 then implies th@to(®7) = Q<o5(P7) € D3, As an
immediate application of Proposition 3111, one sees tteairtap

2
d — P11, < >N QSO(@))
j=0

is locally Lipschitz fromD?" into D’*231+2, By the assumption on the range of
andn, we have
042> 7, N+2>n,

so we have the natural embeddifg™2*1+2 — D7, and hence the map is locally
Lipschitz from D27 into itself. Moreover, since the kernel is non-anticipativby
[Hail4b, Thm7.1, Lem. 7.3] and the definition of thP)" space, we know the local
Lipschitz constant is bounded by (+ ¢)’ for some positivéd. More precisely, there
existsC', 6 > 0 such that

3
=0

We now turn to the nonlinear terVPllJr(QSOf% Q<o(®%)) for j > 4. Let

j—1 . . N
=yt —U=De =0 mp=gnt

<C(T + 6)9||(I)||%n;6-

Vs75€

Then by Propositioris 3.8 ahd B.9, we ha@¥g,(®7) € D" with
1Q<0(@))l5mye < PRI e

The assumption > 1 impliesy; > —% if xis sufficiently small, so applying Propo-
sition[3.10 with3 = 452, we know that there exists > 0 such that’s" Q<o(P) €
DX with

1€72 Q<o(P/)[[55,e < CL+ [ITL]|)[| P12

Y,m5€”
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Similar as before, we can again chodse be small enough so th@@f% Q<o(P?) =
QSQ(;E% Q<0(®’) also belongs t@>" with the same bound. Sineg > —2, an ap-
plication of Proposition 3.11 implies that there exiéts 0 such that

IPLET (Qeo( @)l e < C(T + €)°(1 + |[TT]|) | @192

YsM€”

This showsM© indeed mapD?+" into itself. In particular, ifA is big enough with
. A
||(I)||%n;6 <A, ||UE))||%77;E < ok

then we can choosE small enough depending dn ||T1]|. and>\§.€)’s only such that

A

X

In order to showM € is also a contraction for smdll, we first note that since there is

only one model concerned i, we can simply compare the differendd©(®) —
MO(®) for two elementsp, & € D). In fact, we have

M@, <

" j_l j—3 ~ . ~
MO@) — MO@) = -3 S APLQET Quy (@ — BB/ 1)
j=4 k=0

— Qp(® — DY N3(D? + DD + D?) + \y(D + D) + \y).

By linearity, ® — & € D}, so all the bounds obtained above also applyf¢f(®) —
M (D) except that one power ¢fb||, .. is replaced byj® — @/, ... Thus, we get

IMO@) = M), e
< CT +)'|® = Py el + T + [Pl e + 1Pl

Again, if we restrict ourselves to centered balls with radiun D27, then as soon as

we choose .

C(L+ I + 2A)m=

the mapm© = M;) is a contraction and there is a unique solutiorifol(3.9). Ehis
possible for all smal¢. In addition, it is clear that if the coefficientée)'s, the norms
11| and|[u{]|.,... are uniformly bounded as— 0, then this short existence tine
could be chosen independentegfrovidede is small enough.

We now turn to the second part of the theorem, namely the cgexee of local
solutions®( to @ up to the timel’ when® is defined. By the arguments above, there
exists atimeS < T such that[(319) has a fixed point soluti®f? in D27 up to timesS
for all smalle. We first show the convergence ®f) to ® up to timeS, and iterate the
relative bounds to get existence and convergence tofime

Let M© : D" — D2 denote the map

(T +€) <

(3.11)

m 3

M:d—P1, (E — Z )\E-E)Qg()g%(ggo(@j)) - Z Af)ng(@j)) + 13<Z>(0€)-

j=4 7=0
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up to timesS, and M : D" — D" pe the map of the same form except thjﬁ)c and

(ZD(OE) are replaced by, and¢,. Following the same line of argument as in the proof for
the first half, we have

||M(e)(q>(5))§ M(©)H%n;€
< (S + IR @l e+ sup [N = X + [T T + 165 ol e
J
where the proportionality constant depends on the normefélevant models, the
size of the ball ifD?-7, the initial data and the coefficients. For small enoSghsing

the knowledge thad© and® are the fixed points i7" and D] respectively, we
easily get

[99; @l e < sup N = A+ I g + s ol e (312)
J
This gives the desired convergence|@; ||, .. to 0 up to timeS. We now need to
extend the solutions to tinig, up to when the solutioft to (3.9) is defined with model
I1 € .#,. It suffices to have bounds f®©®O(¢, -) andREOPO(¢, ) — (RP)(¢,-) in
C)" so that we can restart the solution from timen fact, these are precisely what

we obtained in Propositidn 3.7. Thus, one could itefate2)3up to timeT’, and this
completes the proof. O

3.3 Renormalised equation
We now turn to studying the effect of the renormalisation sxdgfined in Section 2.4

on the solutions to the fixed point probleim (3.9). For simpliave write
Fi=Y NETW,
j=3
and, forn > 1, we define thex-th ‘derivative’ of F to be

FO =350 ~1) (- n+ DNET W
7j=3

If (I1, f) is an admissible model ang € (1, ), then the solution to the fixed point
problem [(3.9) inD?" necessarily has the form
P=Utp-1-I(F) = NI —¢ - I(F)+ ¢ - X =V + U, (3.13)

whereU denotes the part that contains all basis vectors exepherefore, the right
hand side ofl(319) (including all terms with homogeneitipga0) can be written as

HE) ==Y NEZ BT - N (3.14)
j=4 j=0

1
=E-F -0 —p - F - §g02 cF" = (M1 4 2000)V + F'I(F)
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1
+ )\QF’_’Z(\IIQ) 4 © - .F,I(F,) + ©- .F”I(.F) + 2)\2\111(.;) _ QOI.F,X - 6()03 . Fl/l

+ ()\0 A+ dp + D i (i ) ST(E (\I/j_”U(z)"))) 1

j>4 n=4

We then have the following theorem, the proof of which is atialy the same as that
in [HQ15, Sec. 5], so we omit the details here.

Theorem 3.13.Let ¢y € CH e >0, andgbe a smooth space-time function. Let
(IL, f) = (&) be_the canonical model as in Section ¥, = (M,, M), and
(1M, M) = M Z.(€) be the renormalised model described in Sedtioh 2.&.4f D7+

is the local solution to the fixed point probleg@9) for the model(I1, fM), then the
functionu = R @ is the classical solution to the PDE

m 3
Ou=Au—Y_ Ne' Hy(u; Cr)— > AjH;(u; C)—(Cut C'+6XsAsCo)+E (3.15)

j=4 7=0

with initial data ¢,, and the constant§' andC’ are given by

m—1 m—2
C= Z(n + 1)2n' ’ )‘iJrlCn + Z(n + 2)‘ : )\n)\n+2Cn )

e n=3 (3.16)
C'=> (41D MM Gl

n=3

4 Convergence of the renormalised models

In this section, we will show how to choose the correct camstao that the action of
the renormalisation maps built in Section]2.4 on the caradmimdel yields conver-
gence to a limit, and we will also identify the limiting moddlhe identification of the
limiting equation will be given in Sectidn 5.

4.1 Main statement and convergence criterion

Let ¢ denote space-time white noise Bnx T3. Fix a smooth compactly supported
functionp : R'*3 — R integrating tol, and set

pet,x) = € °p(t/e,xfe), & = pex, (4.1)

where %’ denotes space-time convolution. Then, the correlatiof) of
Efe(sv x)ge(ta y) = / / pe(s —Uu,r — Z)pe(t - U,y — Z)dZdu'
RJT3

If the noisegis obtained from the convolution of the space time white aaisfined
onR x (¢71T)3 with the mollifier p, then we actually have

£t 2) 2 3E(t)E, x)e).
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From now on, we will always assume that the ndgiseelates tcf by (4.1). When we
consider scale: < 1 later, we simply replaceby ¢ in that expression. We also let

K. ::]{>*f%7 (;e:: }<5*-B;7

whereK coincides the heat kernel fnz| < 1}, has compact support, and annihilates
polynomials up to degreg as introduced at the beginning of Section 2.2. A crucial
ingredient in proving the correct behaviour of various btgtic objects arising from
the equation are the following bounds for the kern€lsandG.. The proof can be
found in [Hail4b, Lemmao.14].

Proposition 4.1. We have
D'E(2) S (|2l +97 7 Gd) S (12l +7",
uniformly over alle < 1 and space-time pointswith |z| < 1.

Remark 4.2. Here, ¢ = (ly, (1,5, (3) is a multi-index, and/| = 2¢, + Zi’zl l;
reflects the parabolic scaling. In what follows, we will ajigause the notatioh- |

to denote the parabolic degree of such indices. Also notewiado not require
bounds on the derivatives 6f., since none of the appearances of this kernel carries
any renormalisation (in the sense that will become clear)at

The main theorem of this section is the following.

Theorem 4.3. Let M, € R denote the renormalisation map

M. = (exp ( - Z Cr(ze)Ln - Z C?”L(E)L/n)7 exp ( - Cie)L1)>a

n>2 n>3

with L,, and L/, as in Section 2]4. Le¥.(¢.) be canonical lift of¢, to the regularity
structure7 as in Sectiof 2]3, and consider the sequence of models

M, .= M. Z.(&) .

Then, there exists a choice of constafifs, €9, and a random modél € .#, such
that
[t 9Mfe0 — 0

in probability ase — 0. Furthermore, the limiting modéit = (ﬁ, f) satisfiedl, 7 =
0 for everyz and every basis vectar that contains an occurrence & for some
g > 0.

The readers may have already realised that with proper eba@tC? and C{?,
the action of the modeDt, on basis vectors without an appearancé€ a exactly as
those in the regularisedl; equation (see [Hail4b, Section 10] for details). Thus, the
action of the limiting modefJt on those basis vectors is precisely the same as that of
the limiting ®3 model.

However, the effect of the model®, on symbols that contaifi’s is more compli-
cated. In order to prove Theordm ¥.3, we first give a useftggon for the conver-
gence of models inZ.. The proof of this criterion is essentially the same as Psbpo
tions 6.2 and 6.3 in [HQ15], so we only give the statementeutiproofs.
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Proposition 4.4.Let(T, G) be the regularity structure given in Sectidn 2, and consider
a family of random modeldI<, f€) in .#.. Assume there exisés> 0 such that for
every test functiop € B, everyr € W with |7| < 0, every space-time pointand
every\ € (0, 1), there exists a random variab(ﬁzf)(goi) such that

E[Mn) @) S X Bl — L)) S A (4.2)
Assume furthermore that for evefy(r) € W with 3 + |7| > 0, one has
E|D' fi(&r)| S e (4.3)

for some positivé, and that for anyr € U/, one has the bound

~ 6
E(Tr)@2)] S AT, (=2, (4.4)
for all test functions) € B that annihilate affine functions, uniformly overe (0, €).
Then, there exists a random mod@El f) € .#, such thaf|II¢, II| .., — 0 in probabil-

ity ase — 0.

Remark 4.5. Later, we will consider]ﬁf, fe) = M.%.(&) as in Theorenl 413 with
proper renormalisation COI‘IStaI’ﬂf§€)’S defined in the next subsection. It is straight-
forward to see that they indeed belong.#.. For the limiting modebt, its action
on basis vectors without any appearance& o exactly the same as in the standard
®3 equation (in fact, these are precisely the terms that appedr;). Its action on
terms containing a factor &t will yield 0. Thus, in addition td(4]13)[(4.4), it suffices
to prove the second bound In_(#.2) forcontaining at least one factor 6f and with
I, =0.

4.2 Graphical notations and preliminary bounds

The remainder of this section is devoted to the proof thatdahdom model3/..Z. (&)
as in Theoreni_4]3 do indeed satisfy the convergence critexfoProposition_44.
Since we are in a translation invariant setting, it sufficesria the random variables
(IT57)(¢y) for various basis vectors. All these random variables belong to some fi-
nite order Wiener chaos. Following [HE14, HQ15], we use gkical notation to
represent the kernels for homogeneous Wiener chaos of dirdez. Each node in the
graph represents a space-time variabR'in®: the special green nosaepresents the
origin, which is fixed, the nodesrepresent the arguments in the kernel representation
for homogeneous Wiener chaos, and the remaining nodgsesent variables to be
integrated out.

Each plain arrom—— represents the kernél (2’ — z), wherez andz’ are starting
and ending points of the arrow. A dotted arrew-- represents the kernél, with
the same orientation as before, and a bold green arews represents a generic
test function inB rescaled by a factak. In addition, we use the barred arrow—
to represent a factoK (' — z) — K(—=z), where as before and 2z’ denote starting
and ending points of the arrow. Finally, a double barredvarre+— represents the
factor K(2' — 2) — K(—z2) — 2/ - DK(—=2), wherez = (t,z), 2/ = (¢, 2'), and the
differentiationD K is with respect to space variable only.
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With these notations, it follows for example that for= WZ(¥3) and the canonical
modelllc = .Z.(¢.), we have the expression

(@)

O\
GWIE))(pp) =

/O O\ /O hAEREN
Yot 3 L E 3 LY
L” ik/’. %&”

o ci—o<— -

Sl

(4.5)
Here, the first term represents the component in the fourtioigeneous Wiener chaos
(see [Nua06, Ch.1.1.2]), the next two terms represent thgpoaent in the second
homogeneous chaos, and the last term is the component iretbén homogeneous
chaos. The variance of the first two terms above, for exanguke bounded (up to
some constant multiple) by
o{—::o—:—}- 7°:: 3,

; T N (4.6)

NS N/

4 ®
To bound this and similar quantities, it is convenient teelahe edges of the graph to
reflect the singularity of the corresponding kernel, andite @ bound of the whole
object in terms of simple power counting of the labels. Fag flurpose, and in order
to be able to use the bounds obtained|in [HQ15], we introdabelled graphsto
represent bounds for quantities liE&TI57)(¢))|>

LetG = (V,€) be a labelled graph, when¢ is the set of vertices, anfl is the
set edges (which are labelled and directed). More precisabh edge = (z,_, .. )
in the graph has the direction,_ <+ z,,, and is associated with a pair of numbers
(a.,7.) € RT x Z, and the orientation of the edge really matters only,if> 0. As
before, edges are associated to kernels, with a. measuring the singularity of the
kernel in question in the sense that we assume that.£asttompactly supported and
satisfies a bound of the type

|D*Jo(2)] S [z M (4.7)

for every multiindext. The precise factor represented by each edge then furthermo
depends on the value. If r. = 0, then the corresponding edge simply represents a
factor Jo(z,_, x,,) = Je(@y, —x,_). We simply writea, instead of ¢., 0) in this case.

If r. > 0, then the corresponding edge represents a factor

k
~ Ly
Je($v7,$y+) = Je(xzur - xvf) - E k; DkJe(_xvf)' (48)

[kls<|rel
On the other hand, if. < 0, then the edge corresponds to a facfg(m)f,xu) =
(ZJ.)(x,, — x,_), whereZ.J. denotes theenormaliseddistribution

k
@) = [ L@@~ 3 Te)de (4.9)

ks <[re]
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In other words, a positive, corresponds to the re-centering from subtracting lower
order Taylor polynomials (or maybe called “positive renafisation”), andr. < 0
corresponds to “negative renormalisation”. Also, sincewilé always consider sit-
uations where no two edges with < 0 meet and allJ, are smooth functions, the
meaning of the factor® J.)(z,, — z,_) is unambiguous.

Unlike in [HQ15], each labelled graph does in our case reprea sequence of
multiple integrals depending on a parametee (0,1]. To keep track of some of
that dependency, we consider graphs with both ‘plain’ amdtédi’ edges. If an edge
is plain, then the corresponding kerngl is allowed to depend on (to make that
dependency clear we will also sometimes wrife), but the bound$(4.7) are assumed
to hold uniformly ine € (0, 1]. If an edge is dotted however, then the corresponding
kernel J&) is assumed to satisfy the bound

DRI S (2] + 7

uniformly in e € (0,1]. There are two additional edges (in boldface) connecting t
the origin that represent a factpt (x,, 0). The origin is denoted by0} C V, and we
denote by, ; andv, ; the two vertices that connect@idoy the edges representing test
functions. Finally, we set

V* = {0, U*,la U*72}, VO = V \ {0}
Thus, as a consequence of Propositiofh 4.1, the quantity6i) ¢an be represented by

With all these notations at hand, for a labelled grgpand the collection of kernels
J., we Iet[f denote the number

Iy = / I17.@_ e, )de, (4.10)
(R4)V0 eef

where4 reflects the space-time dimension. In order to determineighéscale of the
quantity /¥, we introduce some additional notations. For any subsetV, we let

E'W)={ec&:enV=c_r. >0}
EW)={ec&:enV=cy,r.>0};
EV)={e€e&:enV =c¢};
EWV)={ec&:enV # ¢}

In other words£7(V) is the set of outgoing edges fromwith r. > 0, EX(V) is the
set of incoming edges B with 7. > 0, £ (V) is the set of edges with both vertices in
Y, and&(V) is the set of edges with at least one verte¥inNote that the definition
of £1(V) and&+(V) only considers edges with > 0.

Now, consider a labelled gragh= (V, £) satisfying the following properties.
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Assumption 4.6. The labelled graplyy = (V, £) satisfies the following properties.
1. Forevery edge € &, one hasi, + (r. A 0) < 5;

2. For every subsé? C V of cardinality at leasB, one has

> ae <5(V] - 1);

e€&(V)

3. For every subséf C V containing0 and of cardinality at leas®, one has

Z ae + Z (a'e+re_1)_ Z re<5(|v|_1)7

e€&o(V) ecET(V) ecEL(Y)

4. For every non-empty subsétc V' \ V,, one has

Z Qe + Z - Z (re — 1) > 5|V|.

e€EWN\EH(V) ecET(V)  ec&H(V)

Note that the numbeérin the above assumptions indicates the parabolic degreeeof t
space-time dimension is

It turns out that this assumption on the grapis sufficient to guarantee that the
quantity I has the correct scaling behavior for small This is the content of the
following theorem, proved in [HQ15].

Theorem 4.7.Let G be a graph that satisfies Assumption 4.6, and its edges remires
kernels that satisfy the definitions and bound@ir), (4.8) and (4.9). If I{ denotes
the quantity defined i¢d.10) then one has

7 <A\ (4.11)

uniformly overX € (0,1), wherea = 5|V \ V,| — > .. a., and the proportionality
constant depends on the graph and magnitudes of norms obtresponding kernels.

Remark 4.8. The proportionality constantin(4.111) is a constant migtgf [ |_ || Tellaw e
for suitable valueg, depending on the structure of the graph, where

1T llap = sup  |o|*"|DYI()),

|2|<1,le|<p

where we assumed that the kernels are supported in the fianatioball. Since these
guantities are finite, we will simply omit them in all the balsbelow.

Before we prove the bounds in Proposition 4.4, we first cheasges of the con-
stantsC© and C" that appear in the statement of Theorleni 4.3. With the graphic
notations, the constant is given by

/.\

056):/ / KXto)dedt =CG0)= { % =P (412)

A _ &
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It is easy to see that, for this definition 6£7 and the renormalised modBF, the
expressionlf[gllfI(\If?’))(@S) only contains the first two terms in (4.5), and its variance
is indeed bounded bj/ (4.6).

Forn > 2, we defineC© andC"® by

(© _ n-2 n _ (2 >
CY =e /K(z)G6 (2)dz =€ s e M2 2, (4.13)
C"9 = s /K(z)G?(z)dz = e_%C'?(f), n>3.

It is not hard to check that

C{e) _ @ +01), Cy= /(P * p)Q(Z)dZ,
€
C8) = ¢y loge] + O(1)

for some universal constaat > 0. Forn > 3, we have
CY=C,+0@), C,= / P(2)(P, * P,)"(2)dz,

whereP, = P x p. C, is finite forn > 3 since the integrand decays likg~"*3 for
largez.

4.3 First order renormalisation bounds

We are now ready to prove Theoréml4.3. In view of Proposltigh # suffices to
check the bound_ (4.2) for all terms that appear in the rightrsde of[(3.14), and the
bounds((4.8) and (4.4) for relevant terms with positive hgemeities.

We first prove the bound(4.2) for terms frafi™ for n = 0,1, 2, 3. These basis
vectors are of the form

k _
T =gk,

The casé: = 0 has been treated for the case of the standgrdnodel in [Hail4b,
Sec. 10.5], so we only need to consider 1. For the canonical modé&l¢, we have

T = 2 (IIST)H3, (4.14)

If we choose{® according to[{Z.112), then the effect of our renormalisaimtedure
is precisely to turn the products in(4114) into Wick prodyeio that

k+3—n

/_/H
O\... /O

N
L]
[

k
2

([57)(@)) = €
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The right hand side belongs to the homogeneous Wiener ctiaodear & + 3 — n),
and as a consequence, we can bound its second moment by

~ o k+3—n--0 o—3 —n+did—e
EMnE < N\ ¢ N\ /-
() ()
which satisfies (4]2) since

2lT|=n—-3-2k+3—-nrk<n—3-90,

if 4 is small enough. The bound f&r: (\I/’”?)X follows in exactly the same way. We
have thus proved the bourld (4.2) for= €% (¥*+3-7) andr = £ (UF+2)X.

4.4 Second order renormalisation bounds

We now turn to basis vectors coming from the ter®g(F), F'Z(F') and F"Z(F).
All these basis elements have the form

T = EYTFT(ELTM)),

with the precise values af andb depending on the element. For edclandn, the
element

(57 (%))
can be decomposed into homogeneous Wiener chaoses of orders
k+n— 20, (=0,1,--- ,kAn.

By examining the homogeneities, we notice that all ff&s appearing in these ele-
ments play the role of multiplication by’ both under the canonical model and the
Wick renormalised model. Thus, for the Wick mod&*(}), its component in the
(k + n — 2¢)-th homogeneous chaos is given by

0, SN 0
k n a+b ’ : \‘4:/ -~ \4.;’, : 0
0! i i <€ n- . A N . - . (415)
o / o)
[ )

Note that the above expression is for the Wick renormalisedety and does not
include effect of the map/, defined in Sectioh 214. We now discuss the convergence
for these basis elements for different value& of and/.

Remark 4.9. (4.15) suggests that the bounds below will in general irelathbelled
graph introduced above as well as a factor of a positive p@fier With an abuse
use of notation, in what follows, we will uggto denote a labelled graph multiplied a
certain power of (see for examplé (4.16) below).
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441 k+n—-20>2

We show below that in this case, there is no need for renosatédn beyond Wick
ordering. For simplicity, we focus on the elements from thent7'Z(F), and the
bounds for other basis vectors follow in essentially theesaray. Such basis elements
have the form and homogeneity

(SIS

n—3 1
T = &€ *1(\Ika(€T vmy), | Thn| = 5~ (k + n)k.
If £ +n—2¢ > 2, then as a consequence of the expression|(4.15), the seamdrmh
of the component ofi(§ 7. ,.)(#3) in the +n—2¢)-th homogeneous chaos is bounded
by the graph

Goebtns (4.16)

Here, the upper and lower edges both haye= 0, so we simply omit it and just
write the “singularity”a, for edges that does not contain either positive or negative
renormalisations. According tb (4.2) and the homogendity,g,|, we need to bound
the graph by

IJ] <N (4.17)

for some small positivé. The assumption that there is a positive appearancg of
gives the condition

k>2 n>3, k+n>6.

In order to get the bound (4.117), we need to assign power’s td different edges of
the graph to reduce the singularity of each edge to make tlodevgraph integrable.
The assignments are different for various values,of and/.

For /¢ = 0, we can assign{— 3) powers ofe to the upper edge and - 2 — ¢)
powers to the lower edge, so we obtain the bound

G<eE b L b (4.18)

and we need to check that this graph satisfies AssumptiboiWe&heck for example

the third item forV that consists o and the two lower vertices in the “rectangle”.
For this, & (V) is the lower edge in the “rectangle” with = 2+ 5 £1(V) is empty,
and&4(V) consists of the left and right edges, both with= 1. One can then easily
verify item 3 for thisV, and the rest of Assumptidn 4.6 can be checked in the same
way, so that we obtaif (4.117) dfis sufficiently small.

SRigorously speaking, the two green edges representinguestions also belong t&,(V), but
since we assume their degrees@rso it does not matter.
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For/¢ = 1, we still assign# — 3) powers ofe to the upper edge and 2 — §)
powers to the lower one, but this time the graph is reduced to

) ) Ry )
G<E b s <@ b (4.19)
\./ \./

Again, one can check that the conditions in Assumpiioh 4eGadirsatisfied for this
graph.

We now turn to the situation wheh> 2. By assigning{ — 2 + §) powers ofe to
both the leftmost and the rightmost edge with weighwe reduce the graph to

PRI no— s °

5—94 5—6

G S tn=2-1=20 Ly (4.20)

()
and the assumptioh+ n — 2¢ > 2 guarantees there is still a positive powek déft.
If ¢ = n, then we assignk(— n — 1 — 39) powers to the lower edge, and we assign
(k —n + 1 — 30) powers to the lower edge ff= n — 1. The graphs we get in these
cases becomes

§ o @i

5

|
g 5 56 554-6» 1+36»--£
\. / §
In both cases, one can easily verify Assumplion 4.6 and cdedhe desired bounds.
Also, the first graph above does not contain the upper edge sirthis casel(= n)
that edge is a bounded continuous function, and we can siompiyyedges withu, =
0.
We finally turn ton — ¢ > 2. In this case, we assign powers«s in the following
way:
1. (n — ¢ — 2) powers to the upper edge;
2. (1 — 36) powers to the left edge;

3. and ¢ — /) powers to the lower edge.

The conditionn — ¢ > 2 guarantees that all the powers assigned above are positive,
and there is still @ power ofe left. In fact, we get the reduced graph

@ iiinns Qe °

|
N e (4.21)
\

Again, it is straightforward to check the Assumptién {4.6) this graph, and thus
the bound[(4.17) is satisfied for small enoughThis finishes the proof of the case
k +n — 2¢ > 2 for elements from#'Z(F). The case for the elements from the terms
F'IZ(F')andF"Z(F) can be treated in essentially the same way, and we do naitrepe
the details here.
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442 k=n=1{
The basis elements in this category includes the followypgs:
EF-NUMI(EETIYM), £ (VI(E" YY), EFNUMIE T TY)).

The homogeneities are just beldwor the first two elements, and just belo\f\é for
the third one. Fo¥ = n, the0-th chaos component of the modelled distribution on
these elements are just constants.

We first treat the first two elements. For both of them, the r@oution to the0-th
chaos of IIOT)(go ) is given by

/ ’I’L N J n s
n' en 2 .{»/.\} _ nl C(e) T — _nl En 2 .i/i:;____;. , (4 22)
o
o °

where the equality comes from the definition of the kesrel-. as well asC® in
(4.13). Since there is a strictly positive powercpby assignings — 2 — §) powers to
the dotted line in the above graph, we deduce that this obgatbe bounded by the
graph

2406

RN / (4.23)

It is then clear that one hd§ < €2X79, which satisfies the boun@ (4]17). We now
turn to the third elemeng : —' (U™ Z(€ " \If”)) The expression of thé-th chaos is
essentially the same as the previous two, except that onacese™ 2 by "3, as
well as the renormalisation constaiff) by C’©). Noting from [4.13) that

C/9 = 200, (4.24)

we obtain the expression of theth chaos component of the elemeﬁg(-)(cpg) (upto
the sign) as

AR o344

_ ’ : \ AN
"'GH“\/; ~ \/

where the above bound follows from assigning- 2 — § powers ofe to the kernels
represented by the dotted lines. This expression is boubdet\—z~?, and corre-
sponds to the correct homogeneity (bele\é/) if 9 is sufficiently small. We have thus
proved the bound (4.17) for the calse- n = /.

443 k=n+1,0=n

We now deal with the case = n + 1 and/ = n, which belongs to the first order
homogeneous chaos. There are two situations in this casérghone includes basis
vectors of the form

7;1 (\IIn—’—lI(g"

_ 1
23\1’”)), |7| = 5 2n + k.

T =
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The 1-st chaos component o]flgr)(go ) is given by
AT o A
(n+1)! <e”—2 A 0w ) — (41 .»:.fff-:‘.)l , (4.25)
I ! -

where we have used the expression(df? in (£.13). The second moment of this
expression is then bounded (up to a constant multiple) bgtaeh

_ 2nd n\ / 20 2+\ /+5 (4.26)

e —3—@—3—>e e —3—@—3—>e

which clearly satisfies the bound
1';\_;' < 625}\71725.

The exponent on will be bigger than twice the homogeneity ofor small enough.
Thus, the bound {4.17) holds for the elemé&fit (U HZ(£"2 ¥™)).

The second situation fdr = n + 1 includes the basis elements

T=E"T (VMHIZ(EETIUM) or r=EF(UMII(E T U)).
In both cases, we have| = —(2n + 1)k, just below0. Since there is no renormalisa-

tion beyond Wick ordering on these elements, itks# chaos component o]ﬁgf)(goé)
(for both of them) is given by

/.\ (I)
(4 1) -3 ﬂi e (4.27)
I
The second moment of this expression is bounded by the graph
o I A i
n 3,1 3,1:n 2-6:3,1 3,1:2-4
G= "3 ot S (S A & ,  (4.28)
\. P N\

which immediately gives
I§ <N,

Since the homogeneities for these twe are below), we thus conclude the bound
(4.17) for this case.
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444 n=k+1,0=k

We now turn to this last case. To keep notations consistengwitchn ton + 1 and
write the symbols ag* (V" Z(£°¥" 1)) and¢ = n. The symbols in this category that
need a mass renormalisation are of the form

n n ].
T=E N (U(E:TUMY), || = 5~ @n+ 1)k, n>3.

The component in thé-st Wiener chaos of the objedTIgr)(goé) is given by

.
A o A

. ! 7N
[N
7 n
[

\G

— (4D o n . (4.29)

VARRAN
4 \
’ n \

(n + 1)! (w—? Loty — O

]

©) [ ]

The second moment of the last term above is relatively etsi@rtreat. In fact, it is
bounded by the graph

_ n—2 n.\313/.n < 26 2+5.\313/.2+5 4.30
G=e"" " N/ " S N (4.30)

0—>e<----0
N——

which clearly gives the desired bourd§ < ¢*)\~'~%. For the two terms in the
parenthesis, by the definition 69, their difference can be expressed by the graph

T : (4.31)
[

wherewwwe denotes the renormalised distribution/ketl GT'), which has degree
n + 3. Thus, the second moment of this object is bounded by

o ... Toeenns . L IEERER Toeenns .

€2n—4 n+3,71§ §n+3,71 < 626 5+5,71§ §5+5¢71 ) (432)

~

\\. / \\. /
Again, one can verify that Assumptibn 4.6 is satisfied, and thne has
]’ﬁ\_}' < 625}\71725

which vanishes at the right homogeneitie§ i§ sufficiently small.
We now turn to the other two terms in this category, which dithe forms

EFNUNIETUY), £ (VI(ETN),

and both have homogeneities just below For both symbols, the components of
(IT57)()) in the 1-st chaos can be expressed by

°
7N\
VAR
’ \
/ n \

(1) e 3 st (4.33)

\

<X
[
[

A
1
1
1
|
@)
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whose second moment is bounded by the graph

I
L < 6 B v . (4.34)

Again, this object vanishes at the correct homogeneitys Thincludes the proof of
the bound[(4.17) for all symbols with negative homogendist tontains a strictly
positive appearance @f.

4.5 The bounds(4.3)and (4.4)

We first deal with the bound(4.3) off. By inspection of the formal right hand side
of the abstract equation, we need to prdvel(4.3)fet % and formal symbols of
the form

7= W (T PR (T(E T U)X, n>4, at+b+ce<n

Sincef; = f¥* and that the Wick renormalised mod&l'{*, /*'*) satisfies the rela-
tion (2.12), we have

~ Ji—

j—1 i—1 . . )
Fi&F 1) = —e'7 (W) (I 0)(2),
whereo is the basis vector as indicated above. Since the homogefeitis strictly
positive, the expression aboveigf any of the factors ot has a positive power. Thus,

~ j—1 .
the only situation we need to consider for the bound'd@;, > 7)isT = ¥/ > and
as a consequence, we get

~ i—1 . j—1 ) .
D& ™ (W92) = '3 (DI 027 o)

By the definition of[I"*, the right hand side above can be expressed as a Hermite
polynomial, each term being proportional to

MDD = ) Y (DY) (D).
> lail=lel
where we have writte@, = I, = K x & for simplicity. Now, taking expectation

on the right hand side above, using generalised Holdegguality, and the fact that
Cf ~ e 1, we get

o~ j—1 . i—1 . 1
E| D! ¢ T (PIt2y)| < 5=k E| D%, J+2-n—2k\ Tr3—n—aF
D fE(& 7 ( NS, _max e > IEDm )
2 2 lail=lel @
(4.35)
By equivalence of moments in Wiener chaos, each of the alamterfis equivalent to
E|(D%W¥,)(2)|, which could be bounded by

E|(D%W,)(2)| S (E[(D“T)()P)F S e 3l (4.36)
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where we have usd|(D% K * £.)|? < e '~2%l, Combining [4.35) and(4.36), we get

j—=1

EID'J(& 2 (W2 ™) S e -

j+2—
2oy
Y

where we used the fact that there are totghy2 — n — 2k factors in the product, and
> |a;| = |¢]. Since|r| < —2=2, this establishes the bourid (4.3). 3

We now turn to the bound(4.4) for € U, which includesVU, Z(£z ¥it2),
I(E'= ¥, 1 and X. The bound is trivial forl and X, and is also straightforward
for . The treatment for the rest two basis elements are simihat,vee only give

details forr = I(S%\Iﬂ'“). Since the test functiogh annihilates affine functions,
we have

0
o~ j—1 /’/:
(HZT)(w?) =€ 2 .—)o(—H—o: . j+2 - (437)
\\(')
It then follows that we have the bound
Jj+2 3+ 2|7 —2¢
| | | |
R ) 3,2 3,2 3,2 3,2
E|(n@)P < bo<oam-o | L (a38)

N

Since2(¢ € (2,3) and2|r| = 1 — 2(j + 2)x, the conditions for Assumptidn 4.6 can be
verified straightforwardly, and thus one obtains

E|(ﬁ§7)(zp§)\2 < AL2A71H2¢ 2171=2(¢] 26+ 2I7|-2(¢]

for some positivé). The bound forr = I(E% Ui+l follows in essentially the same
way.

5 ldentification of the limits

We are now ready to address the main theme of the articletifgieg the large scale
limits of microscopic models under various assumptiond’oms mentioned in the
introduction, we will see that, in both the weakly nonlinead weak noise regime,
the large scale limit of these near-critical models are ilesd by @3 as long ad/ is
symmetric, but described by eith@: or OU processes when asymmetry is present.
The only difference is that the criticélat which one sees a a pitchfork or saddle-node
bifurcation is different.

We will formulate precisely and prove these results beltavtimg with the weakly
nonlinear regime.

5.1 Weakly nonlinear regime
Let ¢ be a process on a large torus satisfying

Oyt = Aii — €V)(1) + &,



IDENTIFICATION OF THE LIMITS 42

and the re-centered and rescaled proegs$o be
Uee = €2 (Ut )2, 2/€*) — D),

wherea is the scale, and is a small parameter depending grboth to be chosen
later. By setting) = €2, it is easy to see that; satisfies the equation

Byus = Aug — 623V (82us + h) + 6 3E(t/82, 2/6).

Note that the noise term is equivalent in lawgte ps for some mollifierp rescaled at
sized, expandind/, with respect to Hermite polynomials, we get

Opus = Aug — 0 ZA"L’(@) 0% Hj(ugs; C) + &, (5.)

7=0

where

al(9) = zm:( )ak(ﬁ) hEd,

k=j

We now fixy € (1,2), n € (=%, 3), and we shall lift the above equation to the

2m

abstractD)" space associated to the moti®} = M;.%5(¢s) as in Theorerh 4]3. We
also let¢!? € ;" such that|¢®; ¢o||,..s — 0 for someg, € C7. The corresponding
abstract fixed point equation then has the form

>0 = 7’1+< 3 ADQE O (@) ZA(‘”Q @«»y)) + Py,
j=4
(5.2)

Comparing the right hand sides 6f (3.15) and|(5.1), we shoudise the coefficients
As to be

AV —getale), =3,

A9 = 5oz . 0);

AP = 572a{0(0) — 5+ Cg

A = 55l - 51, - AP,

where
m—1 m—2
Cson =Y (n+1)n!- @",(0)*- O +> (n+2)!-aP0) a5, 0) - 9
n=2 n=3
= 18a35¢,|log 0] + O(1);
m—1

Cion=> (+1)-a00) 81 (O)CY = A+ 03,0, h),
n=3
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Here, the quantity is given by

m—1

A=Y (n+ D Gulinia O, (5.3)

n=3

andC,,’s are the limits olC?)’s (recall that they do converge to a finite limit for> 3).
It is then clear that the reconstructed solutign= R°®® exactly solves[{5]1) with
initial condition ¢g‘”. Here, we have used the notati®ta, b) to denoteD(a V b).

By Theoreni 4.3, there exists a limiting mod@l € ./, such that|9ts; M||s.0 —
0. 1f A converges to somg; € R for eachj, then by Theorerh 3.12, we will have
|@©; ®|.,..s — 0, where® € D" associated to the mod®k solves the fixed point
equation

m . _ 3 _ .
d =P, (E - Q€7 (Qeo(®7)) — >N Qso(flﬂ)) + Pdo.  (5.4)
j=4 Jj=0

The continuity of the reconstruction operator thus impligs— u = RO in C".
In what follows, we will choose the small parameteas well as the scale in a
proper way such that the coefficieritg)’s do converge to the desired limiting values
under various assumptions &h Once these limiting values;’s are known, we can
immediately derive the limiting equation thatsolves. We will also always assume
thatu, solves[(5.1) on([, 7] x T2 with initial condition¢®.

We now assume thdl;) satisfies a pitchfork bifurcation ab,(0). Then, by the
conditions [IB) and(1.10), the coefficier@$’(f) on the right hand side of (5.1)
satisfy

aM@) =a; + 0@, h), j=>3;
al(0) = 3a3h + O, h?);
al(0) = 3ash® +@,0 + O(6°, 6h, 1°); (5.5)

I

amm:@M+a%+%Lw+oWﬁﬁma

As already mentioned in the introduction, whether one calithin @3 in the large
scale limit depends on whether the quantitgefined in[(5.B) i%). In the cased = 0,
we have the following theorem.

Theorem 5.1.Let A = 0. Ifwe sete = 1, h = 0, and
. 185%02

0 = 0(e) = = ¢| log €| + Ae + o(e),
1

then, for any fixed” > 0, u. converges in probability iG([0, 7], C"(T?)) to the®;(as3)
family of solutions indexed bywith initial condition ¢.

Proof. Sincea = 1, we actually have = 6. From [5.5), we immediately deduce that

A —a, =3
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Sinceh = 0, we havei,(h) ~ €loge, which givesAY ~ ez loge — 0. For A\, we
have

a0(0) ~ €*log? e, PYE O(e% log €),

so the only problematic term {5/ ,. But note thatd = 0, this term also vanishes, so

we also have® — 0.

We now turn to\(?. Note that botti; (6) - ¢ andC. » diverge logarithmically, but
the prefactor of the tern log €| in § guarantees that these two divergent terms cancel
each other, sd(f) converges to some finite quantity, depending on the choicein
front of thee term in@d. This implies that when restricted to basis vectors withaut
appearance &, the formal right hand side of(3.4) is identical as tha®gfas) with
a proper linear term.

Since the action of the mod&lt on basis vectors without an appearancefof
are precisely the same as the limiting modedify and its action on symbols witf
yieldso0, it then follows that: = RO for the limiting equation does coincide with the
d3(a3) family indexed by\. Recall that we assumed thdt;) undergoes a pitchfork
bifurcation and that, in particular, this implies by (1.1Bata; > 0. It then follows
from the results in [HM15, MW16] that, for any initial coniih in C7(T?), this limit
almost surely admits solutions globally in time. We can é¢fiere apply Theoremn 3.12,
which yields the desired convergence, thus completing tbefp 0

We now turn to the non-symmetric case where# 0. Since changing to —u
andh, to —h, has the effect of simply turningl into — A, we can assume without
loss of generality thatl > 0. Before stating our result in this case, we introduce
a way of comparing trajectories up to a possible explosioreti Consider the set
X" = C,(R,,C"(T?)) of pairs @, T,) whereT, > 0 and® € C([0,T}),C"(T?)). We
introduce a family of “distances” (which however fail to bgnsmetric!) indexed by
K, T > 0in the following way. ForK, T > 0 and elements&, 7.), (®, T,) € X", we
set

=T ANinf{t € [0,T}) : || 2@, > K},
7=TAinf{t €[0,T%) : |®)|, > K +1}.

We then set

(@, 1), (2, 1) = |t = (T AT)| + Sup |2(t) — @), - (5.6)

<TAT

The reason for this somewhat asymmetric definition is thatreset to consider®, T;,)
as being “close to” ¢, T,) even in situation wher@ explodes at timel},, but ¢
merely gets very large at that time and then explodes at sound mater time. On
the other hand, welo notwant to allow the converse situation. Given a sequence
of random elements®(©, 7)) € X7, we say that it converges in law to a (ran-
dom) limit (®,7,) € X" if, for every K,T > 0 and everyé > 0, there exists
€ > 0 and a coupling between these random variables such that,<o€, one has
P(dST (@9, T9), (@, T.)) > §) < 4.

The main statement is the following.
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Theorem 5.2.Let A > 0, and assumé = pc” near the origin p > 0).

1. If 3 < 2, then there exists three distinct choide® < r® < h{® such that

at scalea = 22, bothuf” andu$’ converges in probability ta while u’
converges in probability te, whereu andv solves the equations

Ou = Au = 2[ay[pu+§, 0w = Av+a v+,
respectively, both with initial data,.

2. If 8 > 2, then there exists a unique choiag such that at scaler = 2, the

processus converges in probability to the solutianof the equation
Ou = Au — 3(53A2)%u +&
with initial data ¢,.

3. If =2 andd = pes , then there exists a critical value

N d
P ~(a3A) (5.7)

4

such that forp < p* (and resp. p > p*) there exist one (and three, resp.)
choices ofh, such that at scalee = 2, u.. converges to one or three distinct

6!
O.U. processes.

For p = p*, there exist two distinct choicés$? < r{? such that forh = bV, at

scalea = £, u.. converges to the solutianof the equation

24N\
atu:Au+3(a37) w? 4 €,

while forh = h®, u.. still converges to O.U. at scate = 2.

All the convergences above are convergences in la¥<rwith T, (resp. 7)) given
by the explosion times of the respective processés.in

Remark 5.3. The situation forg = % andp < p* (or p > p*) are similar to that of
B> 2 (or 8 < 2), except that the coefficients in the limiting equationsdifterent.
The other difference is that in the cage> p*, the three choices of gives three
different limiting O.U. processes, unlike when< § two of the threeh’s gives the
same limiting equation. Also note that the limiting equati®; does not have a global
solution even in the case when the highest poweérdfas a positive coefficient.

We will give the proof of the above theorem for the most inséiregy cases = %
and the proof for the other two situations are essentiaklysiime but only simpler.
We will make use of the following elementary lemma.
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Lemma 5.4.Let A > 0. Foranyp > 0, let f,(r) = azr® + pajr — A. Letp* be
the same as ig. 7). Then, the equatioyi,(r) = 0 has one, two, or three distinct real
roots forp < p*, p = p* andp > p*, respectively. In particular, fop = p*, the two

rootsr; < ro satisfy
1 1
A3 A\3
=== , > =] -
& <2a3) "2 (2&3)

Proof. If f,(r) = 0 has exactly two distinct roots, then sinde> 0, the smaller one
must also be a local maximum fgj,. The value ofp* and that root could then be
computed directly, and all other assertions follow. O

Proof of Theorem[5.2.

We only give details to the case whén= § sof = peg. Forp = p*, letr; < ry
be the two roots to the equatigp-(r) = 0, and set

N[

3
= —, 0~ p*d{, hgl) =rd; = rle%;

g =

| Cro|

4 2
, 0~ p*os, hgz) =190 = rge%,

For the choice ofd;, h(Y), we deduce from the properties@f’(¢)'s thatA®” — 0
for all j # 2, while

1
A0y 3 a?,,_A 3.
2 2
The claim then follows immediately. For the choiee (h®), we have!™ — 0 for

all j # 1 and\ converges to some positive real number. Thus, the limithoggss
in this case is O.U..

Forp < p* andp > p*, one should note that there exist one (or three, respeg}ivel
distinct real solutions to the equation

fo(r) =0.

By settinga = % andh; = ré: = res with the rootsr, one can show that all
Ag‘”’s vanish in the limit excep)l\(f) which converges to a finite quantity. The form of
the limiting equation then follows immediately. The coe#fitt of the drift term can
be found by computing the roots () = 0, but this is not important here. This
completes the proof.

Remark 5.5. One can also adjustto the second order. In fact, for

0 = pleﬁl +p2€62
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with 5, = % andp, = p*, itis not difficult to show that if3; < % andp, > 0, then one
still gets three OU’s, but two of them are observed at largates tharg. If 5, > g
then one can geb3. This can be illustrated by the following figure.

B1< 2 B> 2

ol

B1 =

W

p1 > p* p1 < p*

[ ]
ol

p1=p"
°

B2 < & B2 > & /
\.

[
(e[S}

VA VJ

win

3+

),
1
:

©loo

=8 =8
B2 =g B2 =g

/ N

[} )
8 5
9 6

Here, each represents a stable OU process (the one with two arrowsipgitd
it indicates that the two limiting OU processes have the saoedficient), each
represents an unstable OU process, and the greenenmefgesents &3 equation.
The difference between the two green dots are that the lepressented by the one at
the bottom representsig family parametrised by the coefficient, while the one on
the right has the canonical Wick product meaning. Finaflig numbers next to each
node indicates the scale

Note that for the branch containing the saddle-node bifionathe scale increases
from % to % continuously with respect to the exponents, (3;). One can also obtain
such a complete description for the symmetric case, but wietbhestatement of the
details for conciseness. Also, the reason that the threesaadh the right of the figure
all exhibit scaleg is that we only include the case when> 0. In fact, one can also
recover the scales fromto 2 continuously by considering, < 2 andp; < 0.

Remark 5.6. We now very briefly discuss the case wh@r) has a stable extreme
point or a saddle-node bifurcation near the origin. The fr@oe much simpler than
the pitchfork bifurcation case, so we do not give detailsshdn both cases, no re-
centering is needed o= 0.

If (V') has a stable extreme point at the origin, thes# 0. In this case, we choose
a = 1 (s0é = 7). Since we always assurig = 0, then as long a8 = o(c), all \’s
vanish in the limit excepr!” — @,. Thus, the process; converges in probability to
the limit

Ou = Au —aju+&.

In the case of saddle-node bifurcation whgn= a; = 0 buta, # 0, the correct scale
here should be: = 2. Then, as long a8 = o(J) = o), all \) — 0 except forAY)
which converges ta,. This gives the limiting equation

3tu = Au —ZL\Q I’U,Q: +€
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If & = O(e2), then the resulting limit is @3 family. Note that in the above two
cases, no further renormalisation is needed beyond the \Wak ordering, so they
can actually be treated using the methods developed in [BP&® [EJS13].

5.2 Weak noise regime

We now consider the weak noise regime. Here, we asdumé — Vj(-) is smooth
in C® functions so that it can be expanded neas 0 as in [1.16). We also assume
thatV has a pitchfork bifurcation near the origin in the sensé df{L Letu be the
process satisfying

Oyt = Aii — V(i) + €2,
and defina.. to be
U = € 2 (UL, 2/€) — h).
By settingd = ¢, we see that,; satisfies the equation

6
Ous = Dus — Y a0 T uf — 5w R (0% ) + & (5.8)

J=0

for certain functionFy ;, satisfying|Fy ()| < |z|” uniformly over|6|, |A|, |z] < 1,
and the coefficients!’s satisfy

6
af(0) = ;ak@ @ BT O(RT), 0<j <6 (5.9)

Similar as before, we always assuriel(5.8) starts with Irdtitas”’ € ;" such that
1667 @0l — 0 for somen, € C™.

We still letdt; = M;.Z5(¢5) be the renormalised model as befafg;” andR? be
the associated space and reconstruction operator, anideptige abstract fixed point
equation

6 . ‘ 3 ‘
o0 —P1, (: — > M98 Qo ((@VY) = > AP Qo ((#VY)
j=4 j=0 (5.10)

5 IR (0h RS . 1) 1 Po.
Here, we allow the parameteffsand to depend o, which is indeed the case we

consider later. The following statement is an analogy toofem[3.12. It will be
crucial to proving the convergence @f to corresponding limits in various situations.

Theorem 5.7. Let Ms € .45 andN € .# be as before, and let < 1. Suppose
|Fon(x)] < 2|7 near the origin uniformly ovefd|, |h| < 1, and suppose for each
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there exists\; € R such that>\§.‘” — );. Then, there exists a short existence tifhe
such that there is a unique fixed point solutibre D" to the equation

6 i—3 . 3 . ~
d=P1, (E - 2 0<0E7 (Qep(®)) — > )\jQSO(CI)J)) + Py
j=4 Jj=0

Furthermore, for every small enoughthere also exists a fixed point soluti®f) ¢
D" to (5.10)up to the same tim& such that

. (). _ : (QFAQ] ) — . =
}glg%llfb @y s =0, (lsgrg]tg[tolglll(R PN, ) — (RP)(E, )|, =0.

Proof. In view of Theoreni_3.12, it suffices to prove that the map (updme fixed
time 5) o Lo
PO 1 5723 PL (Fy (03 T2 ROP) - 1) (5.11)

is locally Lipschitz fromD]"" to itself with a Lipschitz constant bounded by for
some positiver, uniformly overd and h. We need this uniformity because of the
dependence af andh oné in (5.10).

To see[(5.111), we first note thatdf solves the fixed point equation (5110), then it
necessarily has the form

=0+ U(),

whereU takes value in a subspace’bfspanned byl and elements with strictly posi-
tive homogeneities. As a consequence, we have

(ROU)2) = (U(2), 1) < (0 + VDU |-

It is also straightforward to show that
(RU))| = |(K % &)()] S 6737|195

Thus, combining the above two bounds together with the aggamof the behavior
of F" around0, we deduce that the map

OO 1y 5723 Fy (020 T2 RIPY) - 1

is locally Lipschitz continuous frorf?)"" to the space of continuous functiofisvith
uniform topology, and that the local Lipschitz constantrggortional toé? for some
o > 0 (independent off andh). The additional operation b1, (up to time.sS)
makes the may (5.111) locally Lipschitz frofy"" to itself, and the Lipschitz constant
is bounded by £6)°.

The rest of the proof follows in the same line as that in Thedgel2. O

Suppose we have now chosaf’s such thatR*®® exactly solves[(5l8). By
the assumptions on the models and initial conditions, Térad.T guarantees that as
long as we can show that the);s@’s converge to the desired limiting values, then the
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convergence ofis to the limiting process with follow automatically as in theepious
section.

Inspecting the right hand side 6f{3]15), we see that in ofuleR’®® to solve
(5.8), we need to set”’s in the following way:
A = a(0) -5 2D =al(0) - 5o
A = 057 (a(0) + 150§ (0)Cy - 57 );
A = 5574 (0 (6) + 10a§2(0)Co - 67);
(‘” = 5%—5( "(0) + 6a{?(0)Cy - 6 + 45a(O)C2 - 5%):
A(‘” ( "M (9) + 3a{(O)Cy - 6 + 15aP(0)C2 - 55) — Cy;
AD = 57573 (a1(0) + al?(0)C - 6= + 3a(O)C2 - 55 + 15a{(O)CE - 6
- - AP,

Qw

(5.12)

where the constants; andCj are given by
5 4
Cs =Y (n+1)%!- A )2CD +> (n+2)! - AN,

5
Cy=06"2Y (n+1)- X0\, 0O

The additional ternf , - 1in (5.10) does not affect the choice as it precisely gives the
corresponding term if_(5.8) when hit with the reconstructiperator. The following
statement gives the situation where we can obséfve

Theorem 5.8. Suppose

", 2 /
agaz  ayas

B:a'4+ 2a/2 - (1,/
1 1

=0. (5.13)

Then, there exists

3&300 et 18a302

1 ay

b(e) = €’|loge| + Ae?, h(€) = pre + pac’,

such that at scale: = 1, the solution., to (5.8)with initial condition¢{’ converges in
probability inC([0, 7], C"(T?)) for everyT > 0 to the®3(a3) family (with initial data
¢o) indexed by\. Here, p,; depends o’y and the coefficients;’s, and p, is chosen
depending on\.

Proof. At « = 1, we have) = e. It is easy to see that B = 0, then with the above
choice of¢, all \'”’s converge to a finite limit. In particular, we have

3&2&300

NY—0@G=4), A —a, AP o= + 3agp; + 6a4Co.

ay
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Sinceas # 0, we can choosg; such that\, = 0. For)\g), it is straightforward to
show that it converges to a finite limiting, whose value depends drnandp,. Since
p2 1S multiplied byas which is non-zero, one can then chogseo make), vanish.
The assertion then follows fromn [HM15, MW16], Theoréml|5.ddhne continuity of
the reconstruction operators. O

In the case wherB # 0, we need to look at a different scale to observe a non-
trivial limit. The value off at which one sees a saddle-node bifurcation turns out to
be

* * x 4 % 2 16
0%(e) = pie + pres + pies + O(e9)
with
1
pl |a’1 ) p2 (12)1/3|a/1|(a’3 O) ) p3 0 |a/1|a3 ( )
We then have the following theorem.

Theorem 5.9. Supposé/y is smooth (ir) in the space of® functions, and exhibits
pitchfork bifurcation at the origin. Suppose algb+# 0. Letu.. be the solution to the
PDE (5.8) with initial data ¢, and letd = 6(c) be of the form

0 = pre”™ + pae® + pse™® + pye

with0 < 8 < B, < B3 < B4 andp; > 0. Letpj’s be as in(5.14) Then, we have the
following (with all the limiting processes starting withitiial data ¢,):

B <1 B >1
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Here, the notations are the same as in Renjark 5.5: eaepresents a stable OU
process, eachrepresents an unstable OU process, and each green eicgf@esents
a ®3. Each black node with two arrows pointing to it indicates that the two limigin
OU processes, obtained by shifting the field to the left anteaight, have the same
coefficients. The numbers next to each dot indicates the aatlwhich one observes
the corresponding limit.

All the convergences above are convergences in lawinwith T, (resp. 7))
given by the explosion times of the respective process&s(in the same sense as in
Theoren 5.12).

Proof. The key in the proof is to show the convergence\if's as defined in(5.12)
to the desired limiting values at various choicesxaind.. In particular, for theb3
limit, the coefficient of the quadratic Wick term is proporial to B3. The details
of the proof are very similar to those in Theoreml 5.2, andraigihtforward by the
expression of thegh)'s in (5.9), so we do not repeat them here. O

Remark 5.10. If any of the p;’s is negative, it will maked further away from the
effective critical valug* (but close td), and one could only see one stable OU in the
limit. In fact, by including negative;’s, one will fill in the jump of the scale (from

% to %) on the right of the figure, and obtain a complete descripfiorierms of the
continuous change of the scale) as the left side of the figure.

References

[Aiz82] M. AIZENMAN. Geometric analysis ap* fields and Ising models. I, IIComm.
Math. Phys86, no. 1, (1982), 1-48.

[AR91] S. ALBEVERIO and M. ROCKNER. Stochastic differential equations in infinite
dimensions: solutions via Dirichlet formBrobab. Theory Related Fiel@$, no. 3,
(1991), 347-386http://dx.doi.org/10.1007/BF01198791.

[BBS14] R. BAUERSCHMIDT, D. BRYDGES, and G. $SADE. Scaling limits and critical
behaviour of thet-dimensionaln-componeni$|* spin model.J. Stat. Phys157,
no. 4-5, (2014), 692-742.

[BPRS93] L. BERTINI, E. PRESUTT, B. RUDIGER, and E. @ADA. Dynamical fluctuations
at the critical point: convergence to a nonlinear stochd@DE. Teor. Veroyatnost.
i Primenen.38, no. 4, (1993), 689-741.

[CC13] R. QaTELLIER and K. CHouk. Paracontrolled Distributions and the 3-
dimensional Stochastic Quantization EquatigkrXiv e-prints(2013). http://
arxiv.org/abs/1310.68609.

[CW15] A. CHANDRA and H. WEBER. Stochastic pdes, regularity structures, and inter-
acting particle systemsArXiv e-prints(2015). http://arxiv.org/abs/1508.
03616.

[DPDO02] G. Da PrATO and A. DEBUSSCHE Two-dimensional Navier-Stokes equations
driven by a space-time white noisd. Funct. Anal.196 no. 1, (2002), 180-210.
http://dx.doi.org/10.1006/jfan.2002.3919.


doi:10.1007/BF01198791
arXiv:1310.6869
arXiv:1310.6869
arXiv:1508.03616
arXiv:1508.03616
doi:10.1006/jfan.2002.3919

IDENTIFICATION OF THE LIMITS 53

[DPDO03] G.Da PrRATOand A. DEBUSSCHE Strong solutions to the stochastic quantization

[EJS13]

[EOT71]

[Fel74]

[FO76]

[Fro82]

[GJT73]

[Gli68]

[GLP9Y]

[GP16]

[GS73]

[Hail4a]

[Hail4b]

[Hail5a]

[Hai15b]

[HM15]

[HP14]

equations Ann. Probab31, no. 4, (2003), 1900-1916.

W. E, A. &NTzEN, and H. $1IEN. Renormalized powers of Ornstein-Uhlenbeck
processes and well-posedness of stochastic Ginzburgauaaduations. ArXiv
e-prints(2013).http://arxiv.org/abs/1302.5930.

J.-P. EKMANN and K. GSTERWALDER On the uniqueness of the hamiltonian
and of the representation of the CCR for the quartic Bosograation in three
dimensionsHelv. Phys. Acta4, no. 7, (1971), 884—909.

J. FELDMAN. The X ¢34 field theory in a finite volume.Comm. Math. Phys37,
no. 2, (1974), 93-120.

J. FELDMAN and K. OSTERWALDER The wightman axioms and the mass gap
for weakly coupled ¢*); quantum field theoriesAnn. Phys97, no. 1, (1976),
80-135.

J. ROHLICH. On the triviality of)upfl theories and the approach to the critical
pointind > 4 dimensionsNuclear Phys. R0Q, no. 2, (1982), 281-2%ttp://
dx.doi.org/10.1016/0550-3213(82)90088-8.

J. GiMM and A. AFFE. Positivity of thegs hamiltonian. Fortschr. Physik21,
(1973), 327-376.

J. GLIMM . Boson fields with the:®*: interaction in three dimensions€Comm.
Math. Phys10, no. 1, (1968), 1-47.

G. GACOMIN, J. L. LEBowITZ, and E. RESUTTI Deterministic and stochas-
tic hydrodynamic equations arising from simple microscamiodel systems. In

Stochastic partial differential equations: six perspee vol. 64 ofMath. Surveys

Monogr, 107-152. Amer. Math. Soc., Providence, RIl, 1999.

M. GUBINELLI and N. RERKOwsKI. The Hairer-Quastel universality result in
equilibrium. ArXiv e-prints(2016).http: //arxiv.org/abs/1602.02428.

R. QRIFFITHS and B. SMON. The ¢3 field theory as a classical Ising model.
Comm. Math. Phys33, no. 2, (1973), 145-164.

M. HAIRER. Singular stochastic PDE#rXiv e-prints(2014). http://arxiv.
org/abs/1403.6353.

M. HAIRER. A theory of regularity structureslnvent. Math.198 no. 2, (2014),
269-504. http://arxiv.org/abs/1303.5113. http://dx.doi.org/10.
1007/s00222-014-0505-4.

M. HAIRER. Introduction to regularity structure8raz. J. Probab. Sta9, no. 2,
(2015), 175-210nttp://dx.doi.org/10.1214/14-BJPS241.

M. HAIRER. Regularity structures and the dynamidgi model. ArXiv e-prints
(2015).http://arxiv.org/abs/1508.05261.

M. HAIRER and K. MATETSKI. Discretisations of rough stochastic PDEgXiv
e-prints(2015). http://arxiv.org/abs/1511.06937.

M. HAIRER andE. PARDOUX. A Wong-Zakai theorem for stochastic PDBsXiv
e-prints(2014). http://arxiv.org/abs/1409.3138.


arXiv:1302.5930
doi:10.1016/0550-3213(82)90088-8
doi:10.1016/0550-3213(82)90088-8
arXiv:1602.02428
arXiv:1403.6353
arXiv:1403.6353
arXiv:1303.5113
doi:10.1007/s00222-014-0505-4
doi:10.1007/s00222-014-0505-4
doi:10.1214/14-BJPS241
arXiv:1508.05261
arXiv:1511.06937
arXiv:1409.3138

IDENTIFICATION OF THE LIMITS 54

[HQ15]

[HRW12]

[HS15]

[Kup15]

[MW14]

[MW15]

[MW16]

[Nua06]

[SX16]

M. HAIRER and J. QUASTEL. A class of growth models rescaling to KPErXiv
e-prints(2015). http://arxiv.org/abs/1512.07845.

M. HAIRER, M. D. RYSER, and H. WEBER. Triviality of the 2D stochastic Allen-
Cahn equationElectron. J. Probabl7, (2012), no. 39, 14.

M. HAIRER and H. $HEN. A central limit theorem for the KPZ equatiorrXiv
e-prints(2015). http://arxiv.org/abs/1507.01237.

A. KUPIAINEN. Renormalization group and stochastic PDE&nnales Henri
Poincae 1-39. http://arxiv.org/abs/1410.3094. http://dx.doi.org/
10.1007/s00023-015-0408-y.

J.-C. MoURRAT and H. WEBER. Convergence of the two-dimensional dynamic
Ising-Kac model tops. ArXiv e-prints(2014). http://arxiv.org/abs/1410.
1179.

J.-C. MouRRATand H. WEBER. Global well-posedness of the dynandi¢ model
in the plane ArXiv e-prints(2015).http://arxiv.org/abs/1501.06191.

J.-C. MoURRAT and H. WEBER. Global well-posedness of the dynamit model
on the torus ArXiv e-prints(2016). http://arxiv.org/abs/1601.01234.

D. NUALART. The Malliavin calculus and related topicsProbability and its
Applications (New York). Springer-Verlag, Berlin, secoed., 2006.

H. SHEN and W. Xu. Weak universality of dynamicapi: non-Gaussian noise.
ArXiv e-prints(2016).http://arxiv.org/abs/1601.05724.


arXiv:1512.07845
arXiv:1507.01237
arXiv:1410.3094
doi:10.1007/s00023-015-0408-y
doi:10.1007/s00023-015-0408-y
arXiv:1410.1179
arXiv:1410.1179
arXiv:1501.06191
arXiv:1601.01234
arXiv:1601.05724

	1 Introduction
	2 Construction of the regularity structure
	3 Abstract fixed point problem
	4 Convergence of the renormalised models
	5 Identification of the limits

