
ar
X

iv
:1

50
1.

00
69

2v
2 

 [
m

at
h.

PR
] 

 2
2 

M
ay

 2
01

7

A simple construction of the continuum

parabolic Anderson model on R2

May 23, 2017

Martin Hairer1 and Cyril Labbé2
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Abstract

We propose a simple construction of the solution to the continuum parabolic Ander-

son model on R2 which does not rely on any elaborate arguments and makes exten-

sive use of the linearity of the equation. A logarithmic renormalisation is required

to counterbalance the divergent product appearing in the equation. Furthermore, we

use time-dependent weights in our spaces of distributions in order to construct the

solution on the unbounded space R2.

1 Introduction

The goal of this note is to construct solutions to the continuous parabolic Anderson

model:

∂tu = ∆u+ u · ξ , u(0, x) = u0(x) . (PAM)

Here, u is a function of t ≥ 0 and x ∈ R2, while ξ is a white noise on R2. Notice that

ξ is constant in time, so this is quite different from the model studied for example in

[CM94, CJK13]. The difficulty of this problem is twofold. First, the product u·ξ is not

classically well-defined since the sum of the Hölder regularities of u and ξ is slightly

below 0. Second, our space variable x lies in the unbounded space R2 so that one

needs to incorporate weights in the Hölder spaces at stake; this causes some difficulty

in obtaining the fixed point argument, since one would a priori require a larger weight

for u · ξ than for u itself.

The first issue is handled thanks to a renormalisation procedure which, informally,

consists in subtracting an infinite linear term from the original equation. The main

trick that spares us from using elaborate renormalisation theories is to introduce the

“stationary” solution Y of the (additive) stochastic heat equation and to solve the PDE

associated to v = ueY instead of u. This is analogous to what was done for exam-

ple in [DPD02, HPP13]. The second issue is dealt with by choosing an appropriate

time-increasing weight for the solution u. Roughly speaking, if ξ is weighted by the
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polynomial function pa(x) = (1 + |x|)a with a small, and us is weighted by the ex-

ponential function es(x) = es(1+|x|), then
∫ t
0
Pt−s ∗ (us · ξ)(x) ds requires a weight of

order
∫ t
0

pa(x)es(x) ds, which is smaller than et(x). This argument already appears in

[HPP13], and probably also elsewhere in the PDE literature.

The solution to the (generalised) parabolic Anderson model has already been con-

structed independently by Gubinelli, Imkeller and Perkowski [GIP12] and by Hairer

[Hai14] in dimension 2 and, to some extent, by Hairer and Pardoux [HP14] in di-

mension 3. (The latter actually considers the case of dimension 1 with space-time

white noise, but the case of dimension 3 with spatial noise has exactly the same scal-

ing behaviour, so the proof given there carries through mutatis mutandis. The main

difference is that some of the renormalisation constants that converge to finite limits

in [HP14] may diverge logarithmically.) However, in all of these results the space

variable is restricted to a torus, which is the constraint that we lift in this note. The

construction that we propose here is very specific to (PAM) in dimension 2: in particu-

lar, as it stands, it unfortunately applies neither to the generalised parabolic Anderson

model considered in [GIP12, Hai14], nor to the case of dimension 3. Let us also men-

tion the work of Hu [Hu02] who considers a different equation: the usual product u · ξ
in (PAM) is replaced by the Wick product.

Let us now present the main steps of our construction. First, we introduce a mol-

lified noise ξε := ̺ε ∗ ξ, where ̺ is a compactly supported, even, smooth function on

R2 that integrates to 1, and ̺ε(x) := ε−2̺(xε ) for all x ∈ R2. In order to quantify the

Hölder regularity of ξ, ξε, we introduce weighted Hölder spaces of distributions, see

Section 2 below for the general definitions. Informally speaking, given a weight w
and an exponent α, Cαw consists of those elements of Cα that grow at most as fast as w
at infinity. We have the following very simple convergence result, the proof of which

is given on Page 5 below.

Lemma 1.1 For any given a > 0, let pa(x) = (1 + |x|)a on R2 as above. For every

ε, κ > 0, ξε belongs almost surely to C−1−κ
pa

(R2). As ε ↓ 0, ξε converges in probability

to ξ in C−1−κ
pa .

From now on, a is taken arbitrarily small. Since, for any fixed ε > 0, the mollified

noise ξε is actually a smooth function belonging to Cαpa for any α > 0, the SPDE

∂tuε = ∆uε + uε(ξε − Cε) , uε(0, x) = u0(x) , (PAMε)

is well-posed, as can be seen for example by using its Feynman-Kac representation.

The constant Cε appearing in this equation is required in order to control the limit

ε→ 0 and will be determined later on.

Second, let G be a compactly supported, even, smooth function on R2\{0}, such

that G(x) = log |x|
2π whenever |x| ≤ 1

2
. Then, there exists a compactly supported

smooth function F on R2 that vanishes on the ball of radius 1
2

and such that, in the

distributional sense, we have:

∆G(x) = δ0(x) + F (x) . (1.1)
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With these notations at hand, we introduce the process Yε(x) := G ∗ ξε(x). By con-

struction, Yε is a smooth stationary process on R2 that coincides with the solution of

the Poisson equation driven by ξε, up to some smooth term:

∆Yε(x) = ξε(x) + F ∗ ξε(x) .

From now on, Dxi denotes the differentiation operator with respect to the variable xi,
with i ∈ {1, 2}. More generally, for every ℓ ∈ N2, we define Dℓ

xf as the map obtained

from f by differentiating ℓ1 times in direction x1 and ℓ2 times in direction x2. We

also use the notation ∇f = (Dx1f,Dx2f ). The following result is a consequence of

Lemma 1.1 together with the smoothing effect of the convolution with G and DxiG.

Corollary 1.2 For any given κ ∈ (0, 1/2), the sequence of processes Yε (resp. DxiYε)
converges in probability as ε→ 0 in the space C1−κ

pa
(R2) (resp. C−κ

pa
(R2)) towards the

process Y (resp. DxiY ) defined by

Y := G ∗ ξ , DxiY := DxiG ∗ ξ .

We introduce vε(t, x) := uε(t, x)eYε(x) for all x ∈ R2 and t ≥ 0, and we observe that

∂tvε = ∆vε + vε(Zε − F ∗ ξε) − 2∇vε · ∇Yε , vε(0, x) = u0(x)eYε(x) ,

where we have introduced the renormalised process

Zε(x) := |∇Yε(x)|2 − Cε .

At this stage we fix the renormalisation constant Cε to be given by

Cε := E
[

|∇Yε|
2
]

= −
1

2π
log ε+O(1) , (1.2)

where the part denoted by O(1) converges to a constant (depending on the choice of

G and ̺) as ε→ 0, we refer to the end of Section 3 for the calculation. The following

result, which is proven on Page 9, shows that this sequence of renormalised processes

also converges in an appropriate space. We refer to Nualart [Nua06] for details on

Wiener chaoses.

Proposition 1.3 For any given κ ∈ (0, 1/2), the collection of processes Zε converges

in probability as ε → 0, in the space C−κ
pa (R2), towards the generalised process Z de-

fined as follows: for every test function η, 〈Z, η〉 is the random variable in the second

homogeneous Wiener chaos associated to ξ represented by the L2(dz dz̃) function

(z, z̃) 7→

∫

∑

i=1,2

DxiG(z − x)DxiG(z̃ − x)η(x)dx .

We are now able to set up a fixed point argument for the process vε with controls that

are uniform in ε. The precise statement of the main result of this article requires some

notation: in this introduction, we provide a weaker but more readable version of the

statement and we refer to Section 4 for the details.
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Theorem 1.4 Let u0 be a Hölder distribution with regularity better than −1, and that

grows at most exponentially fast at infinity. The sequence of processes vε converges

uniformly on all compact sets of (0,∞) × R2, in probability as ε → 0, to a limit v
which is the unique solution of

∂tv = ∆v + v(Z − F ∗ ξ) − 2∇v · ∇Y , v(0, x) = u0(x)eY (x) .

As a consequence, uε converges in probability towards the process u = ve−Y .

2 Weighted Hölder spaces

In this section, we introduce the appropriate weighted spaces that will allow us to set

up a fixed point argument associated to (PAM). We work in Rd for a general dimension

d ∈ N, even though we will apply these results to d = 2 in the next sections.

Definition 2.1 A function w : Rd → (0,∞) is a weight if there exists a positive

constant C > 0 such that

C−1 ≤ sup
|x−y|≤1

w(x)

w(y)
≤ C .

In this article, we will consider two families of weights indexed by a, ℓ ∈ R:

pa(x) := (1 + |x|)a , eℓ(x) := exp (ℓ(1 + |x|)) .

Observe that the constant C can be taken uniformly for all pa and eℓ, as long as a and

ℓ lie in a compact domain of R2. We can now consider weighted versions of the usual

spaces of Hölder functions Cα(Rd).

Definition 2.2 For α ∈ (0, 1), Cαw(Rd) is the space of functions f : Rd → R such that

‖f‖α,w := sup
x∈Rd

|f (x)|

w(x)
+ sup

|x−y|≤1

|f (x) − f (y)|

w(x)|x− y|α
<∞ .

More generally, for every α > 1, we define Cαw(Rd) recursively as the space of func-

tions f which admit first order derivatives and such that

‖f‖α,w := sup
x∈Rd

|f (x)|

w(x)
+

d
∑

i=1

‖Dxif‖α−1,w <∞ .

We then extend this definition to negative α. To this end, we define for every r ∈ N,

the space Br1 of all smooth functions η on Rd, which are compactly supported in the

unit ball of Rd and whose Cr norm is smaller than 1. We will use the notation ηλx to

denote the function y 7→ λ−dη( y−xλ ).
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Definition 2.3 For every α < 0, we set r := −⌊α⌋ and we define Cαw(Rd) as the space

of distributions f on Rd such that

‖f‖α,w := sup
x∈Rd

sup
η∈Br

1

sup
λ∈(0,1]

|f (ηλx )|

w(x)λα
<∞ .

In order to deal with the regularity of random processes, it is convenient to have a

characterisation of Cαw that only relies on a countable number of test functions. To

state such a characterisation, we need some notation. For any ψ ∈ Cr, we set

ψnx (y) := 2
nd
2 ψ((y1 − x1)2n, . . . , (yd − xd)2n) , x, y ∈ Rd , n ≥ 0 .

We also define Λn := {(2−nki)i=1...d : ki ∈ Z}.

Proposition 2.4 Let α < 0 and r > |α|. There exists a finite set Ψ of compactly

supported functions in Cr, as well as a compactly supported function ϕ ∈ Cr such that

{ϕ0
x, x ∈ Λ0} ∪ {ψnx , n ≥ 0, x ∈ Λn, ψ ∈ Ψ} forms an orthonormal basis of Rd, and

such that for any distribution ξ on Rd, the following equivalence holds: ξ ∈ Cαw if and

only if ξ belongs to the dual of Cr and

sup
n≥0

sup
ψ∈Ψ

sup
x∈Λn

|〈ξ, ψnx 〉|

w(x)2−
nd
2
−nα

+ sup
x∈Λ0

|
〈

ξ, ϕ0
x

〉

|

w(x)
<∞ . (2.1)

Proof. This result is rather standard and is obtained by a wavelet analysis, see [Mey92,

Dau88] or [Hai14, Prop. 3.20]. In these references, the spaces are not weighted, but

since all the arguments needed for the proof are local, it suffices to use the fact that
w(y)
w(x)

is bounded from above and below uniformly over all x, y such that |x − y| ≤ 1
to obtain our statement. �

Remark 2.5 If ξ is a linear transformation acting on the linear span of the functions

ϕ0
x, ψnx such that (2.1) is finite, then ξ can be extended uniquely to an element of Cαw.

We are now in position to characterise the regularity of the noise.

Proof of Lemma 1.1. We work in dimension d = 2. Set α = −1− κ with κ > 0. By

Proposition 2.4, it suffices to show that almost surely

sup
n≥0

sup
ψ∈Ψ

sup
x∈Λn

|〈ξ, ψnx〉|

2−n(1+α)pa(x)
. 1 , sup

x∈Λ0

|
〈

ξ, ϕ0
x

〉

|

pa(x)
. 1 .

We restrict to the first bound, since the second is simpler. For any integer p ≥ 1, we

write

E

[

sup
n≥0

sup
ψ∈Ψ

sup
x∈Λn

( |〈ξ, ψnx 〉|

2−n(α+1)pa(x)

)2p
]

.
∑

n≥0

∑

ψ∈Ψ

∑

x∈Λn

22np(α+1)

pa(x)2p
(E〈ξ, ψnx 〉

2)p
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.
∑

n≥0

∑

ψ∈Ψ

∑

x∈Z2

22np(α+1)

pa(x)2p
22n .

At the first line, we used the equivalence of moments of Gaussian random variables.

At the second line, we used the following facts: the restriction of Λn to the unit ball of

R2 has at most of the order of 22n elements, the L2 norm of ψnx is 1 and pa is a weight.

Recall that α < −1, Ψ is a finite set and pa(x) = (1 + |x|)a. Taking p large enough,

we deduce that the triple sum converges, so that ξ admits a modification that almost

surely belongs to Cαpa . We now turn to ‖ξε − ξ‖α,pa : the computation is very similar,

the only difference rests on the term

E〈ξ − ξε, ψ
n
x 〉

2 = ‖ψn0 − ̺ε ∗ ψ
n
0 ‖

2
L2 . 1 ∧ (ε222n) . (2.2)

Let n0 be the smallest integer such that 2−n0 ≤ ε. For p large enough, we obtain

E

[

sup
n≥0

sup
ψ∈Ψ

sup
x∈Λn

( |〈ξ − ξε, ψ
n
x〉|

2−n(α+1)pa(x)

)2p
]

.
∑

x∈Z2

∑

n≥0

22n+2np(α+1)

pa(x)2p
(1 ∧ ε2p22np)

.
∑

n<n0

ε2p22n(p(α+2)+1) +
∑

n≥n0

22n(p(α+1)+1) .

Since α = −1 − κ < −1, taking p large enough, we get that the second sum on the

r.h.s. is bounded by a term of order ε−2(1+p(α+1)). Then, according as p(α+2) +1 is

negative, null or positive, the first sum on the r.h.s. is bounded by a term of order ε2p,

ε2p| log2 ε| or ε−2(1+p(α+1)). Consequently, for p large enough E‖ξε − ξ‖2pα,pa → 0 as

ε ↓ 0. �

Letwf and wg be two weights on Rd. We have the following elementary extension

of the classical theorem [BCD11, Thm 2.52].

Theorem 2.6 Let f ∈ Cαwf
and g ∈ Cβwg where α < 0 and β > 0 with α + β > 0.

Then there exists a continuous bilinear map (f, g) 7→ f · g from Cαwf
×Cβwg into Cαwfwg

that extends the classical multiplication of smooth functions.

Remark 2.7 The space Cα defined in Section 2 coincides with the usual Besov space

Bα∞,∞. Indeed, they enjoy the same characterisation in a wavelet analysis, see [Hai14,

Prop 3.20] and [Mey92, Section 6.10].

Proof. Let χ be a compactly supported, smooth function on Rd such that
∑

k∈Zd χ(x−
k) = 1 for all x ∈ Rd. For simplicity, we set χk(·) := χ(· − k). Writing ‖ · ‖α for

the α-Hölder norm without weight (i.e. with weight 1), observe that h ∈ Cαw if and

only if ‖hχk‖α . w(k) hold uniformly over all k ∈ Zd, and ‖h‖α,w is equivalent to

the smallest possible bound. From [BCD11, Thm 2.52], we know that fχk · gχℓ is

well-defined for all k, ℓ ∈ Zd, and that the bound ‖fχk · gχℓ‖α . ‖fχk‖α‖gχℓ‖β
holds. Consequently, we get

‖fχk · gχℓ‖α . wf (k)wg(ℓ)‖f‖α,wf
‖g‖β,wg

,
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uniformly over all k, ℓ ∈ Zd. Since the number of non-zero terms among {〈fχk ·
gχℓ, ηx〉, k, ℓ ∈ Zd} is uniformly bounded over all η ∈ Br1, all x ∈ Rd and all f, g
as in the statement, we deduce that f · g :=

∑

k,ℓ∈Zd fχk · gχℓ is well-defined and

that ‖f · g‖α,wfwg . ‖f‖α,wf
‖g‖β,wg

holds. Finally, the multiplication of [BCD11,

Thm 2.52] extends the classical multiplication of smooth functions, therefore, from

our construction, it is plain that this property still holds in our case. �

Let now Pt(x) := (4πt)−
d
2 e−|x|2/4t be the heat kernel in dimension d. We write

Pt ∗ f for the spatial convolution of Pt with a function/distribution f on Rd. We have

the following regularisation property which is a slight variant of well-known facts.

Lemma 2.8 For every β ≥ α and every f ∈ Cαeℓ , we have

‖Ptf‖β,eℓ . t−
β−α

2 ‖f‖α,eℓ ,

uniformly over all ℓ in a compact set of R and all t in a compact set of [0,∞).

Proof. We use a decomposition of the heat kernel Pt(x) = P+(t, x) + P−(t, x) where

P− is smooth and P+ is supported in the unit ball centred at 0, we refer the reader

to Lemma 5.5 in [Hai14] for instance. Using the decay properties of the heat kernel,

the statement regarding P− is easy to check. Concerning the singular part, one writes

P+ =
∑

n≥0 Pn where each Pn is a smooth function supported in the parabolic annu-

lus {(t, x) : 2−n−1 ≤ |t|
1

2 + |x| ≤ 2−n+1} and such that Pn(t, x) = 2dnP0(22nt, 2nx).

Then, we get

|〈f, ηλx (· − y)〉| . λαeℓ(x+ y) , |〈f,Dk
xPn(t, · − y)〉| . 2−n(α−|k|)eℓ(y) ,

uniformly over all η ∈ Br1, all x, y ∈ Rd, all t > 0, all n ≥ 0 and all k ∈ N2. Notice

that Pn(t, ·) vanishes as soon as n ≥ 1− 1
2

log2 t. Consequently,

|〈P+(t) ∗ f, ηλx〉| . eℓ(x)(λα ∧ t
α
2 ) , |〈f,Dk

xP+(t, · − x)〉| . eℓ(x)t
α−|k|

2 ,

so that the statement follows by interpolation. �

3 Bounds on Y and Z

Let us collect a few facts on the behaviour of smooth functions with a singularity

at the origin; we refer to [Hai14, Sec. 10.3] for proofs. For any smooth function

K : Rd\{0} → R and any real number ζ , we define

|||K|||ζ;m = sup
|k|≤m

sup
x∈Rd

‖x‖|k|−ζ |Dk
xK(x)| ,

where the first supremum runs over k ∈ Nd and |k| =
∑

i ki. We say that K is of

order ζ if |||K|||ζ;m < ∞ for all m ∈ N. Recall ̺ε from the introduction, and define

Kε = K ∗ ̺ε. If K is of order ζ ∈ (−d, 0) then for all m ∈ N, there exists C > 0
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such that |||Kε|||ζ;m ≤ C|||K|||ζ;m, uniformly over ε ∈ (0, 1]. Furthermore, for all

ζ̄ ∈ [ζ − 1, ζ), there exists a constant C > 0 such that

|||K −Kε|||ζ̄;m ≤ Cεζ−ζ̄ |||K|||ζ;m+1 .

If K1 and K2 are of order ζ1 and ζ2 respectively, then K1K2 is of order ζ = ζ1 + ζ2
and we have the bound

|||K1K2|||ζ;m ≤ C|||K1|||ζ1;m|||K2|||ζ2;m ,

where C is a positive constant.

Assume that ζ1 ∧ ζ2 > −d. We set ζ = ζ1 + ζ2 + d. If ζ < 0, then K1 ∗K2 is of

order ζ and we have the bound

|||K1 ∗K2|||ζ;m ≤ C|||K1|||ζ1;m|||K2|||ζ2;m . (3.1)

On the other hand, if ζ ∈ R+\N and K1,K2 are compactly supported, then the func-

tion

K(x) = (K1 ∗K2)(x) −
∑

|k|<ζ

xk

k!
Dk
x(K1 ∗K2)(0) ,

is of order ζ and a bound similar to (3.1) holds, but with the constant C depending on

the size of the supports in general.

We will apply these bounds to the function G defined in the introduction. Since

G is smooth on R2\{0}, compactly supported and satisfies G(x) = log |x|
2π in a neigh-

bourhood of the origin, it is a function with a singularity of order ζ , for all ζ < 0,

according to our definition. From now on, we set ̺∗2 = ̺ ∗ ̺ and we assume without

loss of generality that ̺, ̺∗2 are supported in the unit ball of R2.

Lemma 3.1 Fix κ ∈ (0, 1). We have the bounds

E

[

|Z(ηλx )|2
]

. λ−κ , E

[

|Zε(η
λ
x )|2

]

. λ−κ , E

[

|Zε(η
λ
x ) − Z(ηλx )|2

]

. λ−5κεκ ,

uniformly over all ε, λ ∈ (0, 1), all x ∈ R2 and all η ∈ Br1.

Proof. By translation invariance, it suffices to consider x = 0. The random variables

Z(ηλ), Zε(η
λ) and Zε(η

λ) − Z(ηλ) all belong to the second homogeneous Wiener

chaos associated with the noise ξ. This is because the constant Cε has been chosen to

cancel the 0-th Wiener chaos component of |∇Yε|
2. We start with the second bound

of the statement:

E

[

|Zε(η
λ)|2

]

=

2
∑

i=1

∫

z,z̃

(

∫

ηλ(x)DxiGε(z − x)DxiGε(z̃ − x)dx
)2

dz dz̃

=

2
∑

i=1

∫ ∫

ηλ(x)ηλ(x′)
(

(DxiGε) ∗ (DxiGε)(x− x′)
)2

dx dx′ ,
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so that the bounds at the beginning of the section yield the desired result. The first

bound of the statement follows by replacing Gε by G in the expression above. We

turn to the proof of the third bound. To that end, we write

E

[

|Zε(η
λ) − Z(ηλ)|2

]

=
2

∑

i=1

∫ ∫

ηλ(x)ηλ(x′)Hε,i(x− x′)dx dx′ ,

where

Hε,i(y) =
(

(Dxi(Gε −G)) ∗DxiGε

)

·
(

(Dxi(Gε +G)) ∗DxiGε

)

(y)

−
(

(Dxi(Gε −G)) ∗DxiG
)

·
(

(Dxi(Gε +G)) ∗DxiG
)

(y) ,

so that, once again, the bounds on the behaviour of singular functions at the origin

yield the asserted bound. �

Proof of Proposition 1.3. Let L denote an arbitrary element among Z , Zε and Z−Zε.
Using the equivalence of moments of elements in inhomogeneous Wiener chaoses of

finite order, we obtain

E

[

sup
n≥0

sup
x∈Λn

( L(ψnx )

pa(x)2−nα−n

)2p
]

.
∑

k∈Z2

1

pa(k)2p

∑

n≥0

∑

x∈Λn∩B(k,1)

E[L(ψnx )2]p

2−nα2p−2np
.

When L is equal to Z or Zε, Lemma 3.1 ensures that E[L(ψnx )2] . 2−2n+κn uniformly

over all x, n, and ε. Moreover, #(Λn ∩B(k, 1)) . 22n, so that

E

[

sup
n≥0

sup
x∈Λn

( L(ψnx )

pa(x)2−nα−n

)2p
]

.
∑

k∈Z2

1

pa(k)2p

∑

n≥0

2np(2α+κ)+2n .

This quantity is finite for α = −κ and p large enough. Therefore, Z and Zε belong to

C−κ
pa .

Regarding Z − Zε, Lemma 3.1 ensures that E[(Z − Zε)(ψ
n
x )2] . εκ2−2n+5κn uni-

formly over all x, n and ε. Then, the same arguments as before yield

E

[

sup
n≥0

sup
x∈Λn

( (Z − Zε)(ψ
n
x )

pa(x)2−nα−n

)2p
]

.
∑

k∈Z2

1

pa(k)2p

∑

n≥0

εκp2np(2α+5κ)+2n ,

so that, choosing for instance α = −3κ and p large enough, one gets the bound

E
[

‖Z − Zε‖−3κ,pa

]

. ε
κ
2 uniformly over all ε ∈ (0, 1], thus concluding the proof.

�

Proof of Corollary 1.2. Since G is compactly supported and coincides with the Green

function of the Laplacian in a neighbourhood of the origin, the classical Schauder

estimates [Sim97] imply that for any α ∈ R, the bounds

‖G ∗ f‖α+2 . ‖f‖α , ‖DxiG ∗ f‖α+1 . ‖f‖α ,
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hold uniformly over all f ∈ Cα. Recall the functions χk, k ∈ Zd from the proof of

Theorem 2.6. Since G is compactly supported, we deduce from the bounds above that

‖G ∗ (fχk)‖α+2 . w(k)‖f‖α,w , ‖DxiG ∗ (fχk)‖α+1 . w(k)‖f‖α,w ,

uniformly over all k ∈ Zd and all f ∈ Cαw. For fixed x, only a bounded number of

{χk(x), k ∈ Zd} are non-zero, uniformly over all x ∈ Rd. Since f =
∑

k∈Zd fχk, we

deduce that

‖G ∗ f‖α+2,w . ‖f‖α,w , ‖DxiG ∗ f‖α+1,w . ‖f‖α,w ,

uniformly over all f ∈ Cαw. This being given, the statement is a direct consequence of

Lemma 1.1. �

We conclude this section with the computation of the renormalisation constant

Cε. Recall that ̺, ̺∗2 and G are compactly supported. We let Gε be the compactly

supported, smooth function G ∗ ̺ε. We have

Cε = E
[

|∇Yε|
2
]

=
∑

i=1,2

∫

x∈R2

DxiGε(x)DxiGε(x)dx = −

∫

x∈R2

Gε(x)∆Gε(x)dx ,

where we used a simple integration by parts to get the last identity. By (1.1), we have

∆Gε = ̺ε + Fε, where Fε = F ∗ ̺ε. The latter is a compactly supported, smooth

function that vanishes on the centred ball of radius 1/2− ε. Hence, uniformly over all

ε ∈ (0, 1], the function GεFε is smooth and compactly supported so that its integral

is uniformly bounded. On the other hand, since ̺ is even, ̺∗2 integrates to 1 and

G(x) = 1
2π log |x| for all x ∈ B(0, 1/2), we get

−

∫

Gε(x)̺ε(x)dx = −

∫

G(x)̺∗2ε (x)dx =
1

2π
log ε−1 −

1

2π

∫

log |x|̺∗2(x)dx .

The first term on the right gives the diverging term of the renormalisation constant,

while the second term is finite. This concludes the computation.

4 Picard iteration

For any r > 0, ℓ ∈ R and T > 0, we consider the Banach space Erℓ,T of all continuous

functions v on (0, T ] × R2 such that

|||v|||ℓ,T,r := sup
t∈(0,T ]

‖v(t, ·)‖r,eℓ+t

t−1+κ
<∞ .

This being given, we have the following precise statement of our main result.

Theorem 4.1 Let ℓ ∈ R and T > 0. Consider an initial condition u0 ∈ C−1+4κ
eℓ

. For

all ℓ′ > ℓ, the sequence of processes vε converges in probability as ε→ 0 in the space

E1+2κ
ℓ′,T to a limit v which is the unique solution of

∂tv = ∆v + v(Z − F ∗ ξ) − 2∇v · ∇Y , v(0, x) = u0(x)eY (x) .

As a consequence, uε converges in probability in E1−κ
ℓ′,T towards the process u = ve−Y .
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The rest of this section is devoted to the proof of this result. Fix κ ∈ (0, 1
4

), and let

the parameter a appearing in the weight pa be any value in (0, κ
2

). Let g, h(1), h(2) ∈
C−κ

pa and f ∈ C−1+4κ
eℓ

be given. We define the map v 7→ MT,fv as follows:

MT,fv(t) =

∫ t

0

Pt−s ∗
(

vs · g +Dxivs · h
(i)
)

ds+ Pt ∗ f .

In this equation, there is an implicit summation over i ∈ {1, 2}. This convention will

be in force for the rest of the article.

Proposition 4.2 Take ℓ0 ∈ R. For any given g, h(1), h(2) ∈ C−κ
pa

and any f ∈ C−1+4κ
eℓ0

,

the map MT,f admits a unique fixed point v ∈ E1+2κ
ℓ0,T

. Furthermore, the solution map

(g, h(1), h(2), f ) 7→ v is continuous.

Proof. The parameter r in the space Erℓ,T is taken to be equal to 1 + 2κ. Since this

value is fixed until the end of the proof, we do not write the subscript r in the associated

norm.

First, Lemma 2.8 ensures that ‖Pt ∗ f‖1+2κ,eℓ+t
. t−1+κ‖f‖−1+4κ,eℓ uniformly over

all t in any given compact interval of R+. Second, using Theorem 2.6 and the simple

inequality

sup
x∈R2

pa(x)eℓ+s(x)

eℓ+t(x)
≤ e−a

( a

t− s

)a
,

we obtain

‖vs · g +Dxivs · h
(i)‖−κ,eℓ+t

. (t− s)−a‖vs‖1+2κ,eℓ+s
(||g||−κ,pa + ||h(i)||−κ,pa)

. (t− s)−as−1+κ|||v|||ℓ,T (||g||−κ,pa + ||h(i)||−κ,pa) ,

uniformly over all s, t in a compact set of R+ and all ℓ in a compact set of R. Then,

by Lemma 2.8 and using a < κ/2, we obtain

∥

∥

∥

∥

∫ t

0

Pt−s ∗
(

vs · g +Dxivs · h
(i)
)

ds

∥

∥

∥

∥

1+2κ,eℓ+t

(4.1)

.

∫ t

0

(t− s)−
1

2
−2κs−1+κds |||v|||ℓ,T (||g||−κ,pa + ||h(i)||−κ,pa)

. t−1+κT
1

2
−2κ|||v|||ℓ,T (||g||−κ,pa + ||h(i)||−κ,pa) ,

uniformly over all t ∈ (0, T ]. This ensures that MT,f (v) ∈ E1+2κ
ℓ,T . Furthermore we

have

|||MT,fv −MT,f v̄|||ℓ,T . T
1

2
−2κ|||v − v̄|||ℓ,T (‖g‖−κ,pa + ‖h(i)‖−κ,pa) , (4.2)

uniformly over all ℓ in a compact set of R, all T in a compact set of R+, all f ∈
C−1+4κ
eℓ

and all v, v̄ ∈ Eℓ,T . (Here and below we write Eℓ,T instead of E1+2κ
ℓ,T for

conciseness.) Consequently, there exists T ∗ > 0 such that MT ∗,f is a contraction on
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Eℓ,T ∗ , uniformly over all ℓ ∈ [ℓ0, ℓ0 + T ] and all f ∈ C−1+4κ
eℓ

. Fix an initial condition

f ∈ C−1+4κ
eℓ0

. To obtain a fixed point for the map MT,f , we proceed by iteration.

The map MT ∗,f admits a unique fixed point v∗ ∈ Eℓ0,T ∗ . If T ∗ ≥ T , we are done.

Otherwise, set f∗ := v∗T ∗/2 ∈ C1+2κ
eℓ∗

0

, where ℓ∗0 = ℓ0 + T ∗/2. Since ℓ∗0 ≤ ℓ0 + T , the

map MT ∗,f∗ is again a contraction on Eℓ∗
0
,T ∗ , so that it admits a unique fixed point

v∗∗ ∈ Eℓ∗
0
,T ∗ . We define vs := v∗s for all s ∈ (0, T ∗/2] and vs := v∗∗s−T ∗/2 for all

s ∈ (T ∗/2, 3T ∗/2]. A simple calculation shows that v is a fixed point of M 3T∗

2
,f

and

that v ∈ Eℓ0,3T ∗/2. Suppose that v̄ is another fixed point. By the uniqueness of the

fixed point on (0, T ∗], we deduce that v∗ and v̄ coincide on this interval. Moreover,

a simple calculation shows that (v̄s+T∗

2

, s ∈ (0, T ∗]) is necessarily a fixed point of

MT ∗,f∗ so that it coincides with v∗∗. Iterating this argument ensures existence and

uniqueness of the fixed point on any interval [0, T ].

We turn to the continuity of the solution map with respect to f , g and h(i). Let M̄
be the map associated with ḡ and h̄(i). For any initial conditions f and f̄ in C−1+4κ

eℓ
,

both MT,f and M̄T,f̄ admit a unique fixed point v and v̄. Furthermore, we have

vt − v̄t =
(

MT,fv −MT,f v̄
)

t
+

∫ t

0

Pt−s ∗
(

v̄s(g − ḡ) +Dxi v̄s(h
(i) − h̄(i))

)

ds

+ Pt ∗ (f − f̄ ) .

Using (4.1) and (4.2), we deduce that

|||v − v̄|||ℓ,T . T
1

2
−2κ|||v − v̄|||ℓ,T (‖g‖−κ,pa + ‖ḡ‖−κ,pa + ‖h(i)‖−κ,pa + ‖h̄(i)‖−κ,pa)

+ T
1

2
−2κ|||v|||ℓ,T (‖ḡ − g‖−κ,pa + ‖h̄(i) − h(i)‖−κ,pa)

+ ‖f − f̄‖−1+4κ,ℓ ,

uniformly over all ℓ in a compact set of R and all T in a compact set of R+. FixR > 0.

There exists T > 0 such that

|||v − v̄|||ℓ,T . ‖f − f̄‖−1+4κ,ℓ + T
1

2
−2κ(‖ḡ − g‖−κ,pa + ‖h̄(i) − h(i)‖−κ,pa) ,

uniformly over all ℓ in a compact set of R and all g, ḡ, h, h̄ such that |||v|||ℓ,T , ‖g‖−κ,pa ,

‖ḡ‖−κ,pa , ‖h(i)‖−κ,pa and ‖h̄(i)‖−κ,pa are smaller than R. This yields the continuity of

the solution map on (0, T ]. By iterating the argument as above, we obtain continuity

on any bounded interval. �

We are now in position to prove the main result of this article.

Proof of Theorem 4.1. Let u0 be an element in C−1+4κ
eℓ

for a given ℓ ∈ R. Let fε :=
u0e

Yε . By Corollary 1.2 and Theorem 2.6, fε converges to f = u0e
Y in C−1+4κ

eℓ′′

for any ℓ′′ > ℓ. Let vε be the unique fixed point of MT,fε with gε = Zε − F ∗ ξε
and h(i)

ε := −2DxiYε. By Corollary 1.2 and Proposition 1.3, we know that gε, h
(i)
ε

converge in probability to

g = Z − F ∗ ξ , h(i) = −2DxiY ,
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in C−κ
pa . Notice that the convergence of F ∗ ξε towards F ∗ ξ is a consequence of

Lemma 1.1, since F is a compactly supported, smooth function. Therefore, Proposi-

tion 4.2 ensures that vε converges in probability in E1+2κ
ℓ′′,T to the unique fixed point v

of the map MT,f associated to g, h(1), h(2). Moreover, Theorem 2.6 ensures that, for

any ℓ′ > ℓ′′, uε = vεe
−Yε converges to u = ve−Y in the space E1−κ

ℓ′,T . �
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