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Bayesian hierarchical modelling of weak lensing: The golden goal

Alan Heavens∗, Justin Alsing, Andrew Jaffe, Till Hoffmann

ICIC (Imperial Centre for Inference and Cosmology)
Imperial College, South Kensington

London SW7 2AZ, U.K.
∗E-mail: a.heavens@imperial.ac.uk

Alina Kiessling

Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Drive,

Pasadena, CA 91109, USA

Benjamin Wandelt

Institut d’Astrophysique de Paris, UMR CNRS 7095,
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To accomplish correct Bayesian inference from weak lensing shear data requires a com-
plete statistical description of the data. The natural framework to do this is a Bayesian
Hierarchical Model, which divides the chain of reasoning into component steps. Start-
ing with a catalogue of shear estimates in tomographic bins, we build a model that
allows us to sample simultaneously from the the underlying tomographic shear fields
and the relevant power spectra (E-mode, B-mode, and EB, for auto- and cross-power
spectra). The procedure deals easily with masked data and intrinsic alignments. Using
Gibbs sampling and messenger fields, we show with simulated data that the large (over
67000-) dimensional parameter space can be efficiently sampled and the full joint poste-
rior probability density function for the parameters can feasibly be obtained. The method
correctly recovers the underlying shear fields and all of the power spectra, including at
levels well below the shot noise.
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1. The risks of future experiments

Cosmology has often been described in recent years as moving into the precision

era, where error bars at percent level are commonplace in the cosmic microwave

background. In future, this precision will increase enormously in related fields,

such as large-scale structure, weak gravitational lensing, and, in due course, 21cm

studies, with ambitious observational programmes connected with Euclid, the Large

Synoptic Survey Telescope, and the Square Kilometre Array. The surveys associated

with these facilities will deliver exquisite precision, which will help to answer many

of the major cosmological questions of the decade, such as the nature of Dark

Energy, possible beyond-Einstein gravity, macroscopic extra dimensions, and the

masses and hierarchy of neutrinos. However, with this precision comes risk: the

small statistical error bars that come from the large datasets involved will lead to

potentially far-reaching and erroneous conclusions if the accuracy of the results is not

correspondingly high. To achieve this requires very good control of systematic effects
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at all stages of the experiment, including in the statistical analysis of the data. In

this report, we focus on weak gravitational lensing, and propose a rigorous statistical

framework that can encapsulate essentially everything the data tell us, allowing for

accurate and suitably precise inferences to be made, with full propagation of errors.

2. The goal of scientific inference

Let us focus on the scientific method. A very general description of an experiment is

that there is some prior information I, some new data d, and one or more models M

with parameters θ. W assume we wish to infer the parameters of a given model in

the light of the new data collected by the experiment. From a Bayesian perspective,

everything we know is encapsulated in the posterior probability,

p(θ|d, I) ∝ p(d|θ, I)p(θ|I)
where we have used Bayes’ theorem to write it in terms of the likelihood and the

prior, and the dependence on the model has been suppressed. This is it; one can

if desired form estimates of the parameters from this, but that is not necessarily

useful, and one can from this form Bayesian credible intervals for the parameters.

The posterior is the desired outcome of the experiment — it is in a sense the ‘golden

goal’ of statistical analysis.

2.1. Computing the posterior

Inevitably, for anything other than a very simple experiment, the posterior proba-

bility is not an analytic function, and cannot be computed directly, and the most

common general technique is to draw samples from the posterior (or sometimes

the likelihood). Asymptotically, methods such as Markov Chain Monte Carlo will

sample the target distribution with a density of samples that is proportional to the

target, so with a sufficient number of samples, the chain characterises the target to

whatever accuracy is required, although there may be computational constraints.

So, is there any reason not to try to construct the posterior? The answer is

basically no — if you can do it, you should. However, for some situations this may

be computationally a very demanding task. However, recent theoretical advances

and the increase in computational power mean that many problems for which pre-

viously this golden goal was unachievable are now soluble. The posterior itself is

complicated, but it may be broken down into a hierarchy of elements, each of which

we do understand and can sample from. This forms what is called a ‘Bayesian

Hierarchical Model’ (BHM). The state-of-the-art has reached a stage where one of

the most demanding cosmological probes is now accessible to a rigorous treatment

— weak gravitational lensing on a cosmic scale.

3. Weak gravitational lensing

Weak gravitational lensing4 distorts the shapes and sizes of galaxy images, and the

measured shape of an individual image can be used as a very noisy estimate of
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the spin-weight 2 shear field induced by lensing. A Bayesian Hierarchical Model

for lensing could in principle be built from the raw image pixel data all the way

to inferences about cosmology, but here we restrict ourselves to a subset of the

analysis process, taking as a starting point estimates of the shear at the locations

of individual galaxies. This does not propagate all errors fully, but is a major first

step forward. We also assume that we have photometric redshifts for the galaxies,

and bin them in both photo-z and pixels on the sky, in sufficient numbers that we

can assume the errors (which are dominated by intrinsic ellipticity dispersion) are

gaussian. Thus we have pixelised noisy shear maps in some number of tomographic

bins, represented by the data, written in terms of the true shear maps s and the

noise n (characterised by a covariance matrix N) as d = s + n (d represents the

complete data vector, including pixels in all tomographic bins). The statistical

properties of the maps are set by various power spectra (auto- [within a bin], and

cross-, in both E- and B-mode, and EB cross-powers). These power spectra are

controlled in a physical model by cosmological parameters, and we have a choice

of performing a cosmology-independent characterisation of the data, or inferring

cosmological parameters. Thus we have as unknown parameters either:

• True shear maps s, plus power spectra CXY
αβ ; X,Y = E or B; α, β = bin,

• or true shear maps s, plus cosmological parameters θ.

There are advantages to doing both, but let us concentrate initially on the first. The

power spectra all enter into C = 〈s sT 〉, we may parametrise C by band powers. We

have a relatively large number of parameters about C to infer, and a very large num-

ber (∼ 105 − 107) of true pixelised shear values. Thus it is a very high-dimensional

problem. Statistically we are interested most in p(C|d), so would marginalise over s,

but if one is interested in map-making, then one can obtain p(s|d) by marginalising

over C.

3.1. Weak lensing Bayesian Hierarchical Model

A weak lensing BHM is shown in Fig. 1; Alsing et al.1 give further details. The

generative model for the data consists of drawing samples of C, from which shear

maps can be drawn, since the conditional probability p(s|C) is known, and noise

be added since the conditional probability p(d|s,N) is also known. BHMs lend

themselves naturally to Gibbs samplers, which sample alternately from the power

spectra and the map:

Ci+1 ← P (C|si)
si+1 ← P (s|Ci, d,N). (1)

Interestingly, for gaussian fields, the distributions (conditioned on the observed data

d) can be written down: p(C|s) is an inverse-Wishart distribution; p(s|C, d,N) is a

gaussian with a mean given by the Wiener-filtered map, dWF = (C−1+N−1)−1N−1d

with covariance (C−1+N−1)−1. However, there is a difficulty in that these matrices

 T
he

 F
ou

rt
ee

nt
h 

M
ar

ce
l G

ro
ss

m
an

n 
M

ee
tin

g 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

M
PE

R
IA

L
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 o
n 

12
/1

4/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



August 31, 2017 16:38 ws-procs961x669 MG-14 – Proceedings (Part C) C379 page 3008

3008

are huge (up to say 107 × 107 elements). Unless they are diagonal, they cannot be

handled at all. Now, C is diagonal in the harmonic domain, and N is diagonal in

the pixel domain, but there is no basis in which both of them are diagonal. This

problem has been elegantly solved2 by the introduction of a messenger field.

P (d|s,N)P (d|s,N)

NN

dd

P (C)P (C)

CC

P (s|C)P (s|C)

ss

Fig. 1. Simple Bayesian Hierarchical Model for weak lensing. C represents the lensing power
spectra, s the true shear fields, d the data, and N the noise covariance.

3.2. Results from simulations

We applied the algorithm1 sketched above to simulated noisy, masked 2-bin tomo-

graphic shear maps generated using SUNGLASS simulations3, inferring 1940 power

spectrum parameters. The shear maps contain 128× 128 pixels, bringing the total

number of parameters in the inference task to 67476.

We ran three Gibbs chains with independent starting points, obtaining 3.6M

samples, each taking 0.5s on a desktop. Convergence was determined with a

Gelman-Rubin statistic r < 1.1 for the marginal distributions of all parameters.

Fig. 2 shows the results in the map domain. Fig. 3 shows the recovered E-mode

tomographic (auto and cross) power spectra for the two tomographic bins.

4. Cosmological parameter inference and intrinsic alignments

An alternative to using the power spectra as parameters is to use cosmological pa-

rameters, with a Boltzmann code to generate the lensing power spectra. This has

some advantages, in that the number of parameters is reduced, and some sampling

issues in the very low S/N regime may be avoided. An additional advantage is that

it may be possible to include non-gaussianity in the conditional distributions. The
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Fig. 2. Tomographic maps of the γ1 component of the shear for the noiseless simulated shear
maps (far left), noisy masked simulated maps (second from left), mean posterior maps (third from
left) and the posterior variance (far right). The mean posterior maps recover most of the structure
from the simulated shear maps. Note that inference is made about the field in masked regions,
but the posterior variance in those regions is significantly higher than in unmasked regions.

disadvantage is that the analysis becomes model-dependent, and the power spec-

trum approach gives a neat encapsulation of the statistical properties of the data

at the 2-point level, regardless of the origin of the signal. The other advantage of

using the power spectrum approach is that it is in principle possible to do the cos-

mological parameter inference as a second step, using the power-spectrum chains.

This way, different models for intrinsic alignments of galaxies (a potential source of

significant systematic error in weak lensing) may be investigated without rerunning

chains. They can be included in a post-processing step as an addition to the the-

oretical power spectrum (rather than as a source of correlated noise, which would

be much harder to deal with). Using power spectra, one could in principle include

higher-order, non-gaussian terms (bispectrum, trispectrum), but in the general case

this is unfeasible, as there is an extremely large number of parameters unless they

are regularised by imposing a physical model. In this case the correct procedure

will be to use a gaussian likelihood, as it is the maximum entropy distribution given

a mean and covariance, and is thus in some sense the least informative and most

conservative assumption. Both approaches should be undertaken.

 T
he

 F
ou

rt
ee

nt
h 

M
ar

ce
l G

ro
ss

m
an

n 
M

ee
tin

g 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

M
PE

R
IA

L
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 o
n 

12
/1

4/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



August 31, 2017 16:38 ws-procs961x669 MG-14 – Proceedings (Part C) C379 page 3010

3010

10
2

10
3

�

10
-12

10
-11

10
-10

10
-9

10
-8

C
�

(E
1
,E

1
)

10
2

10
3

10
-12

10
-11

10
-10

10
-9

10
-8

(E
1
,E

2
)

10
2

10
3

�

10
-12

10
-11

10
-10

10
-9

10
-8

C
�

(E
2
,E

2
)

Fig. 3. Recovered E-mode tomographic shear power spectra: the orange (grey) bands indicate
the 68% (95%) credible regions, the black lines show the posterior means, the red lines show the
estimated band powers from the noiseless, mask-less simulated shear catalogue and the horizontal
blue lines show indicate the mean ellipticity-noise level.

5. Conclusion

We have shown here how a Bayesian Hierarchical Model can be used to generate

samples efficiently from the posterior distribution — the ‘golden goal’ of statistical

analysis — for tomographic weak lensing shear maps, and a multitude of lensing

power spectra, inferring parameters in a ∼ 10
5
-dimensional space. It solves many

of the awkward problems of cosmic shear, such as how to treat the mask (pixel

variances are simply set to infinity), and how to include intrinsic alignments (simply

as an additional signal power contribution).
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