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Conventionally ordered magnets possess bosonic ele-
mentary excitations, called magnons. By contrast, no mag-
netic insulators in more than one dimension are known
whose excitations are not bosons but fermions. Theoret-
ically, some quantum spin liquids (QSLs) [1] – new topo-
logical phases which can occur when quantum fluctuations
preclude an ordered state – are known to exhibit Majo-
rana fermions [2] as quasiparticles arising from fraction-
alization of spins [3]. Alas, despite much searching, their
experimental observation remains elusive. Here, we show
that fermionic excitations are remarkably directly evident
in experimental Raman scattering data [4] across a broad
energy and temperature range in the two-dimensional ma-
terial α-RuCl3. This shows the importance of magnetic
materials as hosts of Majorana fermions. In turn, this
first systematic evaluation of the dynamics of a QSL at fi-
nite temperature emphasizes the role of excited states for
detecting such exotic properties associated with otherwise
hard-to-identify topological QSLs.

The Kitaev model has recently attracted attention as a
canonical example of a QSL with emergent fractionalized
fermionic excitations [2, 5]. The model is defined for S = 1/2
spins on a honeycomb lattice with anisotropic bond-dependent
interactions, as shown in Fig. 1a [2]. Recent theoretical work
– by providing access to properties of excited states – has
predicted signs of Kitaev QSLs in the dynamical response
at T = 0 [6, 7] and in the T dependence of thermodynamic
quantities [8, 9]. However, the dynamical properties at fi-
nite T have remained a theoretical challenge as it is necessary
to handle quantum and thermal fluctuations simultaneously.
Here, by calculating dynamical correlation functions over a
wide temperature range we directly identify signatures of frac-
tionalization in available experimental inelastic light scatter-
ing data.

In real materials, Kitaev-type anisotropic interactions may
appear through a superexchange process between jeff = 1/2
localized moments in the presence of strong spin-orbit cou-
pling [10]. Such a situation is believed to be realised in sev-
eral materials, such as iridates A2IrO3 (A=Li, Na) [11, 12] and
a ruthenium compound α-RuCl3 [4, 13–15]. These materials
show magnetic ordering at a low T (∼ 10 K), indicating that
some exchange interactions coexist with the Kitaev exchange
and give rise to the magnetic order instead of the QSL ground
state [16–19]. Nevertheless, evidence suggests that the Ki-
taev interaction is predominant (several tens to hundreds of
Kelvin) [15, 18–22], which may provide an opportunity to

observe the fractional excitations in a quantum paramagnetic
state above the transition temperature as a proximity effect of
the QSL phase.

In particular, unconventional excitations were observed by
polarized Raman scattering in α-RuCl3 [4]. In this material,
Néel ordering sets in only at Tc ∼ 14K, while the Kitaev in-
teraction appears to be much larger than the Heisenberg inter-
action [15, 22], and hence finite-temperature signatures of the
Kitaev QSL are expected to be observed in the paramagnetic
state persisting in a broad temperature window above Tc.

The inset of Figure 2 shows the integrated experimental Ra-
man intensity for α-RuCl3 as a function of temperature [4].
A background contribution, likely due to phonons, has been
identified and subtracted [4], as it persists up to very high T
much larger than any magnetic scale. In this limit, it can be
fitted to standard one-particle scattering which is proportional
to n + 1 with n = 1/(eβω − 1) being the Bose distribution
function. The main panel (red symbols) shows the remaining,
presumably dominantly magnetic contribution.

Most remarkably, the T dependence of the spectral weight
up to high temperatures (more than an order of magnitude
above Tc), does not follow the bosonic form expected for
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FIG. 1. Schematic pictures for the Kitaev model and Raman pro-
cesses. a, honeycomb lattice structure. Blue, green, and red bonds
represent Ising-like interactions between x-, y-, and z-components of
the S = 1/2 spins, respectively. Incoming and outgoing photons,
whose frequencies are ωi and ω f , are also depicted. b and c, Feyn-
man diagrams of the Raman scattering processes which correspond
to a creation or annihilation of a pair of matter fermions [process (A)]
and a combination of creation and annihilation of the matter fermions
[process (B)], respectively. In process (A), a photon scattering cre-
ates two fermions with energies ε1 and ε2 as shown in b, and hence,
the Raman shift ω = ω f − ωi is equal to ε1 + ε2. In process (B), the
scattering creates a fermion with energy ε2 and annihilates a fermion
with ε1 simultaneously as shown in c, and hence, ω is equal to ε2−ε1.

ar
X

iv
:1

60
2.

05
27

7v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  1

7 
Fe

b 
20

16



2

0.0

0.1

0.2

0.3

0.4

0.5

 0  100  200  300

In
te

n
s
it
y
 (

a
.u

.)

T (K)

Experiment

Theory

Bosonic background

n+1
(1-f )2

0.1

0.2

0.3

 0  50  100  150  200  250  300

In
te

n
s
it
y
 (

a
.u

.)

T (K)

FIG. 2. Comparison between the numerical results and the ex-
perimental data for α-RuCl3. Main panel: blue circles represent
QMC data for a L = 20 cluster for the integrated Raman intensity
Imid shown in Fig. 3c. Red squares are the experimental data in the
energy window from 5 meV to 12.5 meV [4], from which the non-
magnetic background is subtracted (see text). Green dashed lines
represent the fitting by aM[1 − f (ε∗M)]2 + bM (see caption of Fig. 3).
We take J = 10 meV in calculating Imid. Inset: red squares show
the experimental raw data and the orange curve indicates the bosonic
background.

conventional insulating magnets in which both magnons and
phonons obey Bose statistics. It is thus imperative to under-
stand the origin of this anomalous contribution. This will
provide a more direct test of the proximity to QSLs than an
asymptotic low-T behaviour which is sensitive to the subdom-
inant exchange interactions.

Results. The main panel of Figure 2 provides a compari-
son of the T dependence of our theoretical results (blue cir-
cles) with the experimental data. The good agreement over
a wide temperature range, from just above Tc up to a much
higher scale (∼ 15Tc), offers compelling evidence that our Ki-
taev QSL theory correctly identifies the nature of fundamental
excitations in the form of fractionalized fermions. This is fur-
ther reinforced by noticing that the asymptotic two-fermion-
scattering form (1− f )2, with f = 1/(1 + eβε) being the Fermi
distribution function, is a good fit of the response. In the fol-
lowing, we outline our calculations and explain how the two-
fermion-scattering T -dependence emerges as a result of frac-
tionalization.

We investigate the Raman spectrum at finite T for the Ki-
taev model using quantum Monte Carlo (QMC) simulations
which directly utilize the fractionalization of quantum spins
into two species of Majorana fermions: itinerant “matter” and
localized “flux” fermions (see Methods for details). Crucially,
the Raman response is elicited only by the itinerant Majorana
fermions [7], which allows us to detect their Fermi statistics
more directly than in other dynamical responses [6]. Be-
low we focus on the case of isotropic exchange couplings,
Jx = Jy = Jz = J; a small anisotropy plausible in real ma-
terials does not alter our main conclusions (see Supplemen-
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FIG. 3. Calculated Raman intensity for finite temperatures.
a, ω dependences of the Raman spectra I(ω) at several T . b, con-
tour map of the Raman spectrum I(ω) in the T -ω plane. c, inte-
grated spectral weights Imid for 0.5 < ω/J < 1.5, and d, Ilow for
0.0 < ω/J < 0.25, whose energy ranges are indicated by the hatched
and shaded areas in Fig. 3a, respectively. Green dashed lines rep-
resent fits with aM[1 − f (ε∗M)]2 + bM for c with ε∗M/J = 0.62; and
aL f (ε∗L)[1 − f (ε∗L)] + bL for d with ε∗L/J = 0.42 (see Supplementary
information). Here, f (ε) = (1 + eβε)−1 is the Fermi distribution func-
tion with zero chemical potential. Horizontal dashed-dotted lines
represent the values of Ilow and Imid at T = 0 [7, 23]. The red and
blue areas in c and d highlight the contributions to the integrated Ra-
man intensities from the processes (A) and (B), respectively. Vertical
dotted lines indicate two crossover temperatures, T ∗ and T ∗∗.

tary information). The thermodynamic behaviour exhibits two
characteristic crossover T -scales originating from fractional-
ization at T ∗/J ∼ 0.012 and T ∗∗/J ∼ 0.38: the former is
related to the condensation of flux Majorana fermions, set by
the flux gap ∼ 0.06J [2], while the latter arises from the for-
mation of matter Majorana fermions at much higher T , set by
their bandwidth ∼ 1.5J.

Figure 3a shows the QMC data for the Raman spectrum
I(ω) at several T . At T = 0, it exhibits ω-linear behaviour
in the low energy region, due to a linear Dirac dispersion of
matter Majorana fermions [7]. With increasing T above T ∗,
the low energy part increases and the ω = 0 contribution be-
comes nonzero, as shown in the figure for T/J = 0.0375. At
higher T , the broad peak in the intermediate energy range at
ω/J ∼ 1 is suppressed above T ∼ T ∗∗. Indeed, the Raman
spectrum at T/J = 0.75 shows no substantial energy depen-
dence for 0 < ω/J . 2, as shown in Fig. 3a. For higher T , the
intermediate-to-high energy weight gradually decreases. The
T and ω dependence of the Raman spectrum is summarized
in Fig. 3b. The result clearly shows that the broad peak struc-
ture is slightly shifted to the low energy side above T ∗ and the
spectrum becomes featureless above T ∗∗.

For further understanding of the T dependence of the Ra-
man spectra, it is helpful to work in a basis of complex mat-
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ter fermions constructed as a superposition of real Majorana
fermions (see Methods). These elementary excitations deter-
mine the T -dependence because their occupation (in a fixed
background of fluxes) is given by the Fermi distribution func-
tion. In detail, one needs to analyse two different processes
contributing to Raman scattering [23]: one consists of cre-
ation or annihilation of a pair of fermions [process (A)], with
the other a combination of the creation of one fermion and
the annihilation of another [process (B)] (see Methods for de-
tails). Process (A) is proportional to [1− f (ε1)][1− f (ε2)]δ(ω−
ε1 − ε2), where ω is the Raman shift, ε1 and ε2 are the ener-
gies of fermions (see Fig. 1b). Process (B) is proportional to
f (ε1)[1 − f (ε2)]δ(ω + ε1 − ε2) and vanishes at T = 0 due to
absence of matter fermions in the ground state (see Fig. 1c).
Because of their different frequency dependence – e.g., (A)
vanishes for ω → 0 at low T – their distinct T -behaviour can
be extracted by looking at different frequency windows.

Figure 3c shows the T dependence of the integrated spectral
weight in the middle energy window, Imid for 0.5 < ω/J < 1.5
(see the hatched region in Fig. 3a). The same is used in Fig. 2
in accordance with the frequency window for the experimen-
tal data with J = 10 meV. We emphasize that the value of J
is consistent not only with the spectral width and peak posi-
tion of the Raman continuum at the lowest T [4] but also with
the inelastic neutron scattering in α-RuCl3 [15]. As shown in
Fig. 3c, Imid has a non-monotonic change as a function of T :
it grows around T ∗ with increasing T , but turns over to de-
crease above T/J ∼ 0.1, yielding the shift of the peak struc-
ture in I(ω) to the low energy side shown in Fig. 3b. We also
highlight the contributions from the processes (A) and (B) in
Fig. 3c. The result clearly indicates that Imid is dominated by
the process (A), which supports the scaling with (1 − f )2 (see
Supplementary information).

Meanwhile, the results presented in Figure 3d covering the
low energy window, Ilow for 0.0 < ω/J < 0.25 (see the shaded
region in Fig. 3a), have a different T -dependence. The in-
crease around T ∗ is because the Dirac semimetallic dip in the
itinerant fermion system is filled in due to thermal fluctuations
of the flux fermions [9]. Moreover, with increasing T , Ilow sat-
urates around the high-T crossover T ∗∗. As shown in Fig. 3d,
above T/J ∼ 0.1 Ilow is dominated by the process (B), indicat-
ing that the T dependence is well fitted by f (1− f ). However,
the intensity Ilow, is one order of magnitude smaller than Imid.

Discussion. The striking T dependence of the Raman inten-
sity observed in experiments can be naturally attributed to the
response from fractionalized fermionic Majorana excitations,
dominantly from pairs of creation and annihilation of matter
fermions. The T dependence is qualitatively different from
that of conventional insulating magnets which show bosonic
Raman spectra from two-magnon scattering [24]. It is impor-
tant to note that here we are dealing with a two-dimensional
magnet [13–15]. In one dimension, there is no such crisp dis-
tinction between Bose and Fermi statistics, as in the absence
of true exchange processes, bosons with hardcore repulsion
are rather similar to fermions obeying the Pauli principle; and
on the other hand the roles of topology and order in two di-

mensions are quite distinct from a one-dimensional case [25].
The crucial observation here is that the unexpected

fermionic contribution is clearly observed over a remarkably
wide T range, more than an order of magnitude higher than
the transition temperature into the incidental low-temperature
Néel order. This approach is distinct from the conventional
quest for exotic properties of QSLs, where the experimental
hallmark of fermionic excitations has mainly been pursued in
asymptotic T behaviour, e.g., in the T -linear specific heat for
temperatures much lower than the interaction energy. How-
ever, the low-T analyses of such thermodynamic quantities are
further complicated by the need to distinguish between QSLs,
glassy behaviour, spurious order, and other low energy contri-
butions typified, e.g., by nuclear spins. Our finding provides a
direct way of identifying QSL behaviour, and in particular, the
presence of fermionic excitations. This, we hope, will stimu-
late further studies of other dynamical quantities in the wide T
range [15] as well as studies of other candidate materials like
A2IrO3 (A=Li, Na) [26].

Methods. The Hamiltonian of the Kitaev model on the hon-
eycomb lattice is given by

H = −Jx

∑
〈 jk〉x

S x
jS

x
k − Jy

∑
〈 jk〉y

S y
jS

y
k − Jz

∑
〈 jk〉z

S z
jS

z
k, (1)

where S j = (S x
j , S

y
j, S

z
j) represents an S = 1/2 spin on site

j, and 〈 jk〉γ stands for a nearest-neighbour γ(= x, y, z) bond
shown in Fig. 1a [2]. By using the Jordan-Wigner transforma-
tion and introducing two kinds of Majorana fermions c j and
c̄ j [27, 28], the model is rewritten as

H =
iJx

4

∑
( jk)x

c jck −
iJy

4

∑
( jk)y

c jck −
iJz

4

∑
( jk)z

ηrc jck, (2)

where ( jk)γ is the nearest-neighbour pair satisfying j < k on
the γ bond, and ηr = ic̄ jc̄k is a Z2 variable defined on the z
bond (r is the label for the bond), which takes ±1. Eq. (2)
describes free itinerant Majorana fermions coupled to clas-
sical Z2 variables {ηr}. While the configurations of {ηr} are
thermally disturbed away from the ground state configuration
with all ηr = 1, the thermodynamic behaviour can be obtained
by properly sampling {ηr} as follows. As the Hamiltonian for
a given configuration of {ηr} is bilinear in terms of c operators,
it is easily diagonalized as

H({ηr}) =
∑
λ

ελ

(
f †λ fλ −

1
2

)
. (3)

Here, we introduce complex matter fermions fλ with the
eigenenergies ελ(≥ 0), which are related to c by

c j =
∑
λ

(
X jλ fλ + X∗jλ f †λ

)
, (4)

where X jλ is introduced so as to diagonalize the Hamiltonian.
Then, we evaluate the free energy F f ({ηr}) = −β−1 ln Z f ({ηr})
for the configuration {ηr}, where Z f ({ηr}) = Tr{c j}e

−βH({ηr});
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β = 1/T is the inverse temperature, and we set kB = 1. The
thermal average of an operator O is given by

〈O〉 =
1
Z

∑
{ηr}

Tr{c j}

[
Oe−βH

]
= 〈Ō({η})〉η, (5)

where we define Ō({ηr}) = Z f ({ηr})−1Tr{c j}[Oe−βH({ηr})] and
〈· · · 〉η = Z−1 ∑

{ηr}
[· · · ]e−βF f ({ηr}) with Z being the partition

function of the system. In our calculations, we take the sum
over configurations {ηr} in the average 〈· · · 〉η by performing
Monte Carlo (MC) simulations so as to reproduce the distri-
bution e−βF f ({ηr}). This admits the quantum MC (QMC) simu-
lation which is free from the sign problem [9].

In order to calculate the Raman spectrum at finite T , we em-
ploy the Loudon-Fleury (LF) approach [29, 30] by following
previous T = 0 studies [7, 23]: the LF operator for the Kitaev
model is given by R =

∑
γ=x,y,z

∑
〈 jk〉γ (εin ·d

γ)(εout ·d
γ)JγS γ

j S
γ
k ,

where εin and εout are the polarization vectors of the incom-
ing and outgoing photons and dγ is the vector connecting
sites on a NN γ bond. Using the LF operator, the Raman
intensity is given by Ill′ (ω) = 1

N

∫ ∞
−∞

dteiωt〈R(t)R(0)〉, where
R(t) = eiH tRe−iH t and N is the number of sites; l and l′ de-
note the directions of εin and εout in R, respectively. Note that
Ixx = Iyy = Ixy ≡ I is satisfied in the isotropic case [7]. In
terms of the Majorana fermions, the LF operator is described
by a bilinear form of c operators as

R =
1
2

∑
jk

B jk({ηr})c jck, (6)

where B({ηr}) is a Hermitian matrix with pure imag-
inary elements. Note that R(t) is simply given by
1
2
∑

jk B jk({ηr})c j(t)ck(t) as all {ηr} commute with the Hamil-
tonian. It is this property, which allows us to evaluate exactly
the dynamical correlator of R. Using Eq. (4), we obtain

R =
1
2

∑
λλ′

[
Cλλ′

(
2 f †λ fλ′ − δλλ′

)
+ Dλλ′ f

†

λ f †λ′ + D∗λ′λ fλ fλ′
]
,

(7)

where Cλλ′ =
∑

jk B jkX∗jλXkλ′ and Dλλ′ =
∑

jk B jkX∗jλX∗kλ′ . By
applying Wick’s theorem, we obtain the Raman intensity for
a given configuration {ηr} as

Īll′ (ω; {ηr}) =
1
N

∑
λλ′

[
2π|Cλλ′ |

2 f (ελ)[1 − f (ελ′ )]δ(ω + ελ − ελ′ )

+ π|Dλλ′ |
2[1 − f (ελ)][1 − f (ελ′ )]δ(ω − ελ − ελ′ )

]
,

(8)

where ω > 0. Finally, the thermal average is evaluated as
Ill′ (ω) = 〈Īll′ (ω; {ηr})〉η using the QMC simulation.

The terms in Eq. (8) describe two different Raman pro-
cesses, which show different T dependences via the Fermi
distribution function f (ε): the first term corresponds to the
process (B) (Fig. 1c) and the second term corresponds to the
process (A) (Fig. 1b). Thus, the T dependence of the Raman

intensity provides a good indicator of fermionic excitations in
Kitaev QSLs.

Following our previous QMC study [9], we have performed
more than 30000 MC steps for the measurements after 10000
MC steps for the thermalization using parallel tempering tech-
nique, for N = 2L2 clusters with L = 12 and 20. The Raman
intensity Ill′ (ω) is computed from 3000 samples during the
30000 MC steps.
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