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Shortly after the discovery of Weyl semimetals properties related to the topology of their bulk band structure
have been observed, e.g. signatures of the chiral anomaly and Fermi arc surface states. These essentially single
particle phenomena are well understood but whether interesting many-body effects due to interactions arise in
Weyl systems remains much less explored. Here, we investigate the effect of interactions in a microscopic model
of a type-II Weyl semimetal in a strong magnetic field. We identify a charge density wave (CDW) instability
even for weak interactions stemming from the emergent nesting properties of the type-II Weyl Landau level
dispersion. We map out the dependence of this CDW on magnetic field strength. Remarkably, as a function
of decreasing temperature a cascade of CDW transitions emerges and we predict characteristic signatures for
experiments.

Introduction. The theory of Weyl fermions in condensed
matter systems — semimetals where conduction and valence
bands have non-degenerate touching points — has a long
and intriguing history, bringing ideas originally developed
in the context of particle physics into the realm of materi-
als physics.[1–5] Recently the experimental discovery of a
Weyl semimetal was reported by various groups [6–8] soon
followed by transport measurements demonstrating the chiral
anomaly [9, 10] as well as the connection of Fermi arc surface
states to chiral bulk modes in strong magnetic fields[11].

Much recent attention has focused on type-II Weyl
semimetals [12] whose linear dispersion is so strongly tilted
[13–16] that it forms electron and hole pockets. Several ma-
terials in this class, including WTe2 [17], WP2 [18, 19] and
MoxW1−xTe2 [20], have in parallel attracted ample attention
due to their remarkable magnetotransport properties. While
a single particle analysis reveals a novel twist on the chiral
anomaly in type-II Weyl semimetals [21–23], there is no com-
monly accepted explanation of the observed magnetotransport
properties nor an understanding of whether they are at all
rooted in the topological properties of these materials, high-
lighting the need for an understanding of many-body effects.

Exotic interaction effects in Weyl semimetals [13, 24],
some taking place only in systems with tilted Weyl cones [13],
have recently been explored. More conventional phenomena
such as density wave instabilities have so far only been dis-
cussed in type-I Weyl semimetals where, however, they re-
quire a significant critical interaction strength at zero magnetic
field [25–28], consider the chemical potential away from the
Weyl node[29] or only appear in a magnetic field as effective
one-dimensional instabilities of the chiral mode [30–32]. Fur-
ther spin ordering in Weyl semimetals has been studied [33].

Here we show that the electron- and holelike pockets of
the overtilted cones in type-II Weyl semimetals generically
render these systems much more susceptible to interaction ef-
fects. In particular we show that in a magnetic field the Lan-

dau level dispersion acquires nestinglike features between a
large number of Landau level bands which triggers a charge
density wave (CDW) transition for small interactions. As this
emergent weak coupling instability in a magnetic field nei-
ther requires perfect particle-hole compensation nor nesting
of the zero field band structure we argue that CDW phases are
a common property of the high field regime of type-II Weyl
semimetals.

Our starting point is a simple microscopic Hamiltonian
H = H0 + Hint with a quadratic lattice model H0 featuring
Weyl nodes and a local density-density interaction Hint. We
show that in a field a weak coupling intracone CDW instabil-
ity with a wavevector related to the electron and hole pocket
separation appears. Our qualitative discussion is corroborated
by a microscopic calculation for which we derive a contin-
uum description. Going beyond lowest order in the momenta
is necessary to describe closed electron and hole pockets. We
note that this is in general crucial for a correct low energy
description in type-II Weyl systems.

This Rapid Communication is structured as follows: First
we introduce a simple microscopic model of a type-II Weyl
semimetal. Calculating the dispersion of Landau levels in a
magnetic field both in the lattice and in the corresponding
continuum description, we give an intuitive argument for a
CDW instability based on emergent nesting features. Second,
we develop the mean-field theory for generic interactions in a
type-II Weyl cone in a magnetic field. Third, we present self-
consistent CDW solutions as a function of temperature and
magnetic field. Finally, we discuss implications for experi-
ments.

The model. We first concentrate on the non-interacting
bandstructure governed by

H0(k) = (M − cos kx − cos ky)σx + sin kyσ
y

+ sin kzσ
z + (t1 sin kz + t2 sin 2kz)σ

0 (1)

in which the tilt of the Weyl cones can be easily tuned to fea-
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ture electron and hole pockets, e.g. at M = 1, t1 + 2t2 > 1
this model has type-II Weyl nodes at kW = (±π/2, 0, 0).
Since we are interested in intracone instabilities we can ex-
pand around one of the cones yielding a low energy contin-
uum description

Heff
0 (k) =± kxσx + kyσ

y + (kz −
1

6
k3
z)σz

+

(
(t1 + 2t2)kz −

1

6
(t1 + 8t2)k3

z

)
σ0. (2)

The momenta ki (i = x, y, z) are in the range −π < ki ≤ π
and measured in 1/a0, where a0 is the lattice spacing. We
have omitted an overall prefactor ~v which sets the energy
scale in terms of Fermi velocity v. Importantly, we have ex-
panded up to O(k2

x, k
2
y, k

5
z) and included the next-to-leading-

order term in kz . We are not aware that this has been done
before but it is crucial for a correct low-energy description
with closed electron and hole pockets.

Throughout this Rapid Communication we assume the re-
alistic but exemplary values of ~v = 1eV Å and a0 = 7Å.
The term proportional to t2 is included to get smoother elec-
tron and hole pockets (see Figure 1a) and to elucidate how
longer range hopping terms can be included in the low order
expansion. Our effective model inherits the perfect compen-
sation between electron and hole pockets present in our tight
binding model and which is also a prominent feature of WTe2.
However, as discussed below such perfect compensation is not
a crucial ingredient of our CDW mechanism.

It is worth mentioning that there are also type-I nodes at
k = (±π/2, 0, π) in this lattice model. However, these are
unimportant for our considerations and could easily be re-
moved at the price of a having a more complex lattice model.

We concentrate on magnetic fields along the z tilt direction
of the cones leading to flat Landau levels in the kx, ky-plane
dispersing only along the kz direction. Then we can introduce
the field via the usual vector potential A minimally coupled to
the crystal momentum Π = ~k− e

cA and work with the usual
ladder operators in the Landau level (LL) basis [see Supple-
mental Material (SM)[34] for details], such that the spectrum
is given by the eigenvalues of

Ĥeff
0 =(−ηkz + γk3

z)σ0 + (kz + βk3
z)σz +

√
2n

lB
σx (3)

with the Landau level index n > 0 and the magnetic length

lB =
√

~
eB . The parameters η = −(t1 + 2t2), β = − 1

6 , γ =

− 1
6 (t1 + 8t2) are directly related to our lattice model, with

t1 = −0.8, t2 = −0.6 for concreteness throughout this paper.

Furthermore, we obtain the transformation relating our
original sublattice creation operators cA/B,n,p,kz , with p la-
beling the degenerate states within each LL, to new operators
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Figure 1. Comparison of the dispersion of the lattice model and the
continuum theory without magnetic field (top panel). The dispersion
of the lattice model in a magnetic field is shown in the middle panel
(with two Weyl cones at different kx superposed) and the correspond-
ing dispersion of the continuum theory (single cone) in the bottom
panel. The parameters of the lattice model are t1 = −0.8, t2 =
−0.6, a0 = 7Å and the parameters of the low energy theory are
chosen to match the third-order expansion of the lattice model. The
magnetic field strength for the bottom row is B = 86T .

a/bn,p,kz for to the electron and holelike bands(
an,p,kz
bn,p,kz

)
=

(
u(kz, n,B) v(kz, n,B)
−v(kz, n,B) u(kz, n,B)

)
︸ ︷︷ ︸

Û(kz,n,B)

(
cA,n,p,kz
cB,n,p,kz

)

(4)

with u(kz, n,B)2 + v(kz, n,B)2 = 1. Their dispersions are
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given by

Ea/b(kz, n) = −ηkz + γk3
z ±

√
(kz + βk3

z)2 +
2

l2B
|n| (5)

for n 6= 0, and for n = 0 the chiral level is given by

Ekz,0 = (1− η)kz + (β + γ)k3
z . (6)

The LL dispersions are shown in the bottom panel of Fig. 1
which can be directly compared to the corresponding numeri-
cal tight-binding calculation in a field displayed in the middle
panel. Both make apparent one of the main findings of our
work — the size and shape of the two inverted pockets almost
exactly match when shifted by the arrow QCDW indicated in
Fig. 1. These nesting features between entire electron and
hole pockets, Ea(kz) ≈ −Eb(kz+QCDW ), are, for example,
well established in parent compounds of iron-based supercon-
ductors, where they lead to density wave instabilities even for
small interactions [35]. This is of course similar to the usual

one-dimensional Peierls instability, which is cut off here by
the broken inversion symmetry, but arguably more general.

A direct calculation of the corresponding LL- and pocket-
resolved susceptibility (see Fig. S1 in the SM) confirms the
qualitative picture: (i) A dominant peak at QCDW appears in
the interband component connecting electron and hole pock-
ets; (ii) the peak is maximal for scattering between bands with
the same LL index n; (iii) due to a small asymmetry between
the pockets, which also depends on the LL index, nesting is
not perfect which cuts off a true singularity of the susceptibil-
ity and introduces a peculiar field dependence. Note that in
the case of imperfect particle-hole compensation the pockets
would be shifted in energy with respect to each other lead-
ing to dominant nesting between branches with different LL
indices, but the overall pictures remains valid.

Mean Field Ansatz. To study the formation of a CDW we
add interactions to the single particle theory presented above.
Due to the multiband nature, even the simplest contact inter-
action (strength U ) is a sufficient approximation for a short-
range interaction, as we are interested in the coupling between
two different bands. We project the contact interaction to LLs,

Hint =
U

2

∑
n1,n2,n3,n4,
p1,p2,kz,k

′
z,

qx,qy,qz

eiqy(p1−p2−qx)Jn4,n1
(q)Jn3,n2

(−q)
∑

α,β=A,B

c†α,n1,p1,kz
c†β,n2,p2,k′z

cβ,n3,p2+qx,k′z+qzcα,n4,p1−qx,kz−qz (7)

which introduces additional momentum dependence [36] (see SM).
From the main peaks of bare susceptibility we know that the leading CDW instability arises between electron and hole

bands with the very same LL index n. This allows us to simplify the problem considerably by only considering interactions
with all n1,2,3,4 = n equal. Hence the different Landau levels decouple, and we perform the following computations for
a fixed Landau level index and combine results for different Landau levels later. Furthermore, since the nesting connects
the different branches (with creation operators a and b), we are interested in a CDW in 〈a†b〉. We introduce the generic
CDW wavevector Q = (Qx, Qy, Qz) to formulate the general mean field theory using the ansatz: 〈a†p,kzbp−qx,kz−qz 〉 =

∆(kz,Q)e−ipQyeiQyqx/2δ(qx −Qx)δ(qz −Qz).
Our focus are CDWs along the kz direction and therefore we concentrate on CDW vectors Q =

(
0, 0, Q

)
. We decouple the

interaction in the usual way which allows us to write the Hamiltonian in the bilinear form for each LL

HMF,n (p, kz) =
(
a†p,kz b†p,kz−Q

)(Ea(p, kz) P (kz)
P (kz)

∗ Eb(p, kz −Q)

)(
ap,kz
bp,kz−Q

)
. (8)

The details of the derivation of the off-diagonal elements P in
terms of the projected interaction matrix elements [37] and the
order parameter ∆ are given in the SM. There, we also show
that our ansatz gives real electron densities [38]. Knowing
P , we obtain self-consistent solutions for ∆ numerically and
thereby determine whether or not the system supports a CDW.

As a check, we have confirmed that the wave vector corre-
sponding to the smallest critical interaction for a mean-field
CDW transition indeed coincides with the main peak of the
bare susceptibility at Q = QCDW .

Results: Cascade of CDW transitions in temperature.

While an independent determination of the CDW wave vec-
tor (QCDW ) for each Landau level is possible we choose a
common QCDW for all Landau levels to account for the in-
evitable inter-Landau-level-coupling, which we neglected in
our approximation. This global QCDW is obtained by maxi-
mizing the number of gapped levels, and hence represents the
energetically most favorable configuration.

In Fig. 2 we show the numerical results for the critical tem-
perature of the CDW transition at different magnetic fields and
per Landau level n. It becomes clear that in lowering the tem-
perature more and more, the Landau levels undergo the phase
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Figure 2. Top panel: Highest critical temperature per Landau level
for fixed interaction strength U = 0.025 and fixed wave vector
QCDW = 1.48 (see discussion in the main text). Bottom panel:
Fraction of levels crossing the Fermi energy (when no interaction is
considered) that are gapped by a CDW. When lowering the temper-
ature, there is a cascade of consecutive CDW transitions, leading to
an increased fraction of gapped levels. Parameters are the same as
for the top panel.

transition, hence we observe a cascade of successive CDW
transitions. It is important to keep in mind that the mag-
netic field also changes the spacing between Landau levels
and thereby the number of Landau levels crossing the Fermi
energy (the degeneracy in each level increases accordingly).
To account for this, we count the total number of gapped lev-
els at each temperature and magnetic field strength and com-
pute the fraction of this number compared to the number of
Landau levels crossing the Fermi energy in the corresponding
noninteracting system. This fraction is shown in the bottom
panel of Fig. 2 and turns out to be roughly independent of
field.

Experimental signatures. Our scenario implies thermody-
namic signatures of a high-field phase transition, e.g., in spe-
cific heat or magnetization (see the inset in Fig. 3). The
CDW real-space modulation of the electronic density ρ(r) ∝
cos(QCDW · rz) should be detectable via x-ray scattering.

In addition, the suppression of electronic states around the
chemical potential entails clear experimental signatures and
should be observable, for example, via scanning tunneling mi-
croscopy (STM) measurements. In Fig. 3 we compare the
energy-resolved density of states (DOS) as a function of mag-
netic field between a noninteraction system (top panel) and the
system with weak interactions (bottom panel). We observe a

striking difference at zero energy (near the Weyl point) where
the CDW clearly leads to a strong suppression of the DOS. As
not all Landau levels are gapped by the CDW, for small inter-
actions there is some residual DOS in this region, and hence
it is not a complete gap.

Note that the DOS oscillates due to the discreteness of Lan-
dau levels. We expect that the corresponding quantum oscilla-
tions in thermodynamic observables survive even in regimes
in which the CDW opens a full gap [39].
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Figure 3. DOS as a function of of magnetic field strength and energy,
summed over the 50 lowest Landau levels. When including interac-
tions (bottom panel, numerical result obtained at T = 4.6K) a gap
opens compared to the case without interactions (top panel). Inset:
Temperature dependence of heat capacity CV /T (arbitrary units) at
fixed magnetic field of B = 20T . As expected CV /T is constant
(blue line) without the CDW, but taking the CDW into account (or-
ange line) deviations are clearly visible below the critical temperature
indicated by the dashed green line.

Finally, if the magnetic field is not aligned in the direction
of the tilt, as chosen in our setup, the electron- and holelike
pockets of the LLs disappear [21], leading to a characteristic
suppression of the CDW.

Discussion. We introduced an exemplary lattice model of a
type-II Weyl semimetal and obtained a low energy description
that takes finite electron and hole pockets into account. From
this we identified emergent nesting properties that occur be-
tween electron- and holelike Landau level branches once the
Weyl semimetal is placed in a magnetic field. We developed
a general mean-field theory of a Weyl semimetal in a field,
confirming the intuitive picture of a nesting induced CDW in-
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stability. The self-consistent calculations allowed us to trace
its dependence on temperature and magnetic field.

Here, we focused on the most relevant parts, i.e., intra Lan-
dau level couplings between different branches. While we
made plausible why these approximations should be valid, a
more quantitative analysis of the inter-Landau-level couplings
poses interesting questions for future research, as well as a full
lattice calculation. We have pointed out several clear experi-
mental signatures of the field-induced CDW transition, e.g.,
in thermodynamics, STM, and xrays.

The reduction of the DOS would also lead to an in-
creased magnetoresistance, which is a feature of great inter-
est in many type-II Weyl systems. A similar mechanism has
been proposed to explain the magnetoresistance properties of
graphite [40–42]. Considering the parallel alignment of the
tilt and the magnetic field, our scenario is only directly ap-
plicable to WP2 [18, 19], while the geometry is different in
the case of WTe2 [17] and MoxW1−xTe2 [20]. A more de-
tailed study of transport properties is desirable and left for
future research. However, if our scenario is mutatis mutan-
dis applicable to the nonsaturating magnetoresistance of these
materials as well, there are some immediate consequences:
Most saliently it would be in contrast to the semiclassical pic-
ture suggested in Ref. 17 which relies on on strict particle-
hole symmetry. It is supported by the fact that the magne-
totransport of WTe2 has an unusual temperature dependence
and that MoTe2 with similar properties is far from particle-
hole compensated [43]. Note that the number of LLs crossing
the Fermi level is determined by the magnetic field component
B⊥ projected along the tilt direction. Hence, a magnetoresis-
tance from LL formation of the form (B⊥)2 suggests a cos2 θ
angular dependence similar to measurements on WP2 [19].

Finally, we note that for larger interactions the LL spectrum
is fully gapped, which should lead to a concomitant three-
dimensional Hall plateau [44] similar to other systems with
density-wave-induced three-dimensional Hall effects [45, 46].
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Figure S1. Left panel: Susceptibility (arbitrary units) in the non-interacting case with parameters at B = 20T, T = 0.46K, ω = 0. The
maximal susceptibility is reached for λ = a, λ′ = b and n = n′. Right panel: Critical interaction strength in dependence of CDW wavevector
Q for a single Landau level (n = 1, B = 10). The solid vertical line corresponds to the prediction from the susceptibility calculation.

LANDAU LEVEL SPECTRUM AND INTERACTION

As discussed in the main text, the magnetic field B = ∇ × A is introduced by a minimal coupling of the vector potential,
which we consider to be A = (0, Bx, 0) in the Landau gauge, to the crystal momentum Π = ~k − e

cA. Then we obtain the
standard raising and lowering operators a = lB√

2~ (Πx − iΠy) and a† = lB√
2~ (Πx + iΠy) with [a, a†] = 1. And consequently

we arrive at the following Hamiltonian describing the low energy theory

H0 =

∫
d3r

(
Ψ†A(r) Ψ†B(r)

)((1− η)kz + (γ + β)k3
z

√
2

lB
â†

√
2

lB
â −(1 + η)kz + (γ − β)k3

z

)(
ΨA(r)
ΨB(r)

)
(10)

with

Ψ†A(r) =
∑
n,p,kz

eikzzψn,p(x, y)ĉA,n,p,kz (11)

ψn,p(x, y) =
1√
L
eipx

(
π22n(n!)2

)−1/4
e−

1
2 (y+p)2Hn(y + p) (12)

while for B there is a shift from n to n− 1

Ψ†B(r) =
∑
n,p,kz

eikzzψn−1,p(x, y)ĉB,n,p,kz (13)

where ψ are properly normalized Harmonic oscillator wavefunctions including the Hermite polynomials Hn.
The generic interaction is given by

Hint =
1

2

∑
α,β=A,B

∫
d3r1

∫
d3r2Ψ†α(r1)Ψ†β(r2)U(r1 − r2)Ψβ(r2)Ψα(r1) (14)

where the contact interaction corresponds to the interaction potential U(r) = δ(r). Note, in using the contact interaction we
avoid introducing another scale, but we checked that the qualitative findings presented in the following can be reproduced using
longer ranged interactions including Coulomb.

Projecting this contact interaction onto the Landau levels we obtain Eq. 7 in the main text with

Hint =
1

2

∑
n1,n2,n3,n4,
p1,p2,kz,k

′
z,

qx,qy,qz

eiqy(p1−p2−qx)Mn1,n2,n3,n4
(q)

∑
α,β=A,B

c†α,n1,p1,kz
c†β,n2,p2,k′z

cβ,n3,p2+qx,k′z+qzcα,n4,p1−qx,kz−qz (15)

Mn1,n2,n3,n4
(q) = U(q) Jn4,n1

(qx, qy)Jn3,n2
(−qx,−qy)︸ ︷︷ ︸

F (qx,qy)

(16)
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with cα=B,n → cB,n+1, the Fourier transformed interaction potential U(q) and the factor F due to the wavefunctions overlap.
Here all in-plane momenta are measured in units of lB . Using the wavefunctions from Eq. (13) we get for J [47]

Jm,n(qx, qy) =

√
n!

m!
e−|q|

2/4

(
qx + iqy√

2

)m−n
Lm−nn

( |q|2
2

)
with |q|2 = q2

x + q2
y for m < n (17)

Jm,n (qx, qy) = J∗n,m (−qx,−qy) . (18)

The full Hamiltonian then reads

H = H0 +Hint . (19)

DENSITY WAVE ORDER PARAMETER

The intra LL branch components

〈a†p,kzap−qx,kz−qz 〉 = na(kz)e
−ipQyeiQyqx/2δ(qx −Qx)δ(qz) (20)

〈b†p,kzbp−qx,kz−qz 〉 = nb(kz)e
−ipQyeiQyqx/2δ(qx −Qx)δ(qz) (21)

only shift the chemical potential which can be fixed independently. To motivate the ansatz for our CDW order parameter, we
show in the following explicitly that the resulting electron density is real and modulated in the form cos(Qz · rz).

For now we look only at the density of the cA part and we fix n and B so we do not write out dependencies on these variables:

ρA(r) =
∑
q

eiq·rρA(q) (22)

where

ρA(q) =
∑
p1,kz

eiqy(p1−qx/2)〈c†A,p1,kzcA,p1−qx,kz−qz 〉 (23)

so that

ρA(r) =
∑
q

eiq·r
∑
p1,kz

eiqy(p1−qx/2)〈c†A,p1,kzcA,p1−qx,kz−qz 〉 (24)

=
∑
q

eiq·r
∑
p1,kz

eiqy(p1−qx/2)〈(u(kz)a
†
p1,kz

− v(kz)b
†
p1,kz

)(u(kz − qz)ap1−qx,kz−qz − v(kz − qz)bp1−qx,kz−qz 〉 (25)

=
∑
q

eiq·r
∑
p1,kz

eiqy(p1−qx/2)
(
u(kz)u(kz − qz)〈a†p1,kzap1−qx,kz−qz 〉 (26)

+ v(kz)v(kz − qz)〈b†p1,kzbp1−qx,kz−qz 〉 (27)

+ u(kz)v(kz − qz)〈a†p1,kzbp1−qx,kz−qz 〉 (28)

+ v(kz)u(kz − qz)〈b†p1,kzap1−qx,kz−qz 〉
)

(29)

where the first two summands, Eqs. (26) and (27), are just given by
∑
kz
u(kz)

2nA(kz) + v(kz)
2nB(kz). So we consider

the second part in detail, Eqs. (28) and (29), using the ansatz from above. We obtain the corresponding 〈b†a〉 terms by shifting
variables:

∑
q

eiq·r
∑
p1,kz

eiqy(p1−qx/2)
(
u(kz)v(kz − qz)∆(kz,Q)e−ip1QyeiQyqx/2δ(qx −Qx)δ(qz −Qz) (30)

+ v(kz)u(kz − qz)∆∗(kz + qz,Q)eip1Qye−iQyqx/2δ(qx +Qx)δ(qz +Qz)
)

(31)
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then
∑
p1
eip1(qy±Qy) gives a δ(qy ±Qy), such that

=
∑
q

eiq·r
∑
kz

e−iqyqx/2
(
u(kz)v(kz − qz)∆(kz,Q)eiQyqx/2δ(qx −Qx)δ(qy −Qy)δ(qz −Qz) (32)

+ v(kz)u(kz − qz)∆∗(kz − qz,Q)e−iQyqx/2δ(qx +Qx)δ(qy +Qy)δ(qz +Qz)
)
, (33)

making use of all the delta functions and using Q = (Qx, Qy, Qz) we get

=
∑
kz

(
eiQ·ru(kz)v(kz −Qz)∆(kz,Q) (34)

+ e−iQ·rv(kz)u(kz +Qz)∆
∗(kz +Qz,Q)

)
. (35)

Now we shift the kz of the second summand to kz → kz − Qz , as the summation over kz goes from −∞ to +∞ and
limkz→±∞ v(kz) = 0 this poses no problems. Finally we get

ρA(r) =
∑
kz

u(kz)v(kz −Qz)
(
eiQ·r∆(kz,Q) + e−iQ·r∆∗(kz,Q)

)
(36)

which is manifestly real.

Fock term

In the mean field expansion we need to pay special attention to the Fock terms and we use a trick from Ref. [37]. Starting
from an exemplary Fock term in the mean field expansion∑

q,p1,p2,kz,k′z

eiqy(p1−p2−qx)M(q)〈c†p1,kzcp2+qx,k′z−qz 〉c
†
p2,k′z

cp1−qx,kz−qz (37)

following the steps of [37] we arrive at

=
∑

px,py,sz,

1

NB

∑
qx,qy

ei(qypx−pyqx)M(q)
∑
y+,y−

eipy(y+−y−−px)〈c†y+,kzcy+−px,kz−sz 〉c
†
y−,k′z

cy−+px,k′z+sz (38)

where we used the replacements px = p1 − p2 − qx, R = p1+p2
2 , y± = R ±

(
qx+px

2

)
and inserting the clever 1, NB

being the number of state in the Landau level: 1
NB

∑
y+,py

eipy(y+−y−−qx−px) = 1. (The indices A,B of the c operators are not
specified here, but the order of the operators stays fixed).

Renaming variables as y+ → p1, y− → p2, sz → qz, px ↔ qx, py ↔ qy we get

∑
q,p1,p2,kz,k′z

eiqy(p1−p2−qx)M̃(q)〈c†p1,kzcp1−qx,kz−qz 〉c
†
p2,k′z

cp2+qx,k′z+qz , (39)

where

M̃(q) =
1

NB

∑
px,py

ei(pyqx−pxqy)M(p) (40)

which is (up to a rotation) the Fourier transform of M(q) in the qx, qy plane.
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Projected mean-field matrix elements

We start with the interaction matrix from above for the Hartree terms, and use (40) for the Fock terms to get the matrix
elements in the c-basis. First we write the Hamiltonian (19) as a matrix:

H =
(
c†A,p1,kzc

†
A,p2,k′z

c†A,p1,kzc
†
B,p2,k′z

c†B,p1,kzc
†
A,p2,k′z

c†B,p1,kzc
†
B,p2,k′z

)
Hc


cA,p2+qx,k′z+qzcA,p1−qx,kz−qz
cA,p2+qx,k′z+qzcB,p1−qx,kz−qz
cB,p2+qx,k′z+qzcA,p1−qx,kz−qz
cB,p2+qx,k′z+qzcB,p1−qx,kz−qz


(41)

=
(
a†p1,kza

†
p2,k′z

a†p1,kzb
†
p2,k′z

b†p1,kza
†
p2,k′z

b†p1,kzb
†
p2,k′z

)
Ha


ap2+qx,k′z+qzap1−qx,kz−qz
ap2+qx,k′z+qzbp1−qx,kz−qz
bp2+qx,k′z+qzap1−qx,kz−qz
bp2+qx,k′z+qzbp1−qx,kz−qz

 (42)

with

Ha = U4(kz, k
′
z)Hc U

T
4 (k′z + qz, kz − qz) (43)

where

U4(k1, k2) = U(k1, B)⊗ U(k2, B) (44)

To obtain the matrix elements P used in the mean-field Hamiltonian in the main text, we write each of the 16 terms of this
Hamiltonian in a mean field expansion and collect the terms with the corresponding operators including necessary shifts of
variables to write it in the basis of akz .

CDW contribution to the heat capacity CV

The formation of the CDW leads to the usual thermdymanic signatures around Tc. This is shown explicitly in the inset of Fig.
3 where we have calculated the heat capacity for the model with and without the CDW via

CαV ∝ −
∂Uα
∂T

with Uα = NB
∑
i

Eαi nF (Eαi ) (45)

where Eαi with α =CDW (α = 0) are the energy levels with (without) the CDW formation and the multi-label i refers to the LL
index, the momentum kz and the electron- and holelike band index.
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