¹ Bio-energy with carbon capture and storage (BECCS): ² Opportunities for performance improvement

Mai Bui^{a,b}, Mathilde Fajardy^{a,b}, Niall Mac Dowell^{a,b,∗}

4 ^aCentre for Process Systems Engineering, Imperial College London, South Kensington, ⁵ London SW7 2AZ UK

⁸ Abstract

3

6

This study evaluates the performance of a 500 MW pulverised fuel BECCS sys-¹⁰ tem. A performance matrix is developed to assess the opportunities for BECCS ¹¹ performance improvement in terms of: energy efficiency, carbon intensity, and ¹² pollutant emissions. The effect of fuel properties was analysed for variable (i) ¹³ coal type (high/medium sulphur content), (ii) biomass type (wheat straw and 14 wood chips), (iii) moisture content, and (iv) biomass co-firing proportion $\%$. It ¹⁵ was observed that the co-firing of biomass increased the quantity and quality ¹⁶ of waste heat available for recovery from the exhaust gas. The opportunities to ¹⁷ improve energy efficiency in the BECCS system include enhancing heat recovery 18 and using high performance solvents for $CO₂$ capture, such as biphasic mate-¹⁹ rials. Implementing these approaches increased the power generation eciency ²⁰ from 31% _{HHV} (conventional MEA system) to 38% _{HHV} (using "new solvent" with 21 heat recovery). Furthermore, power generation efficiency was found to influence ²² the carbon intensity on an annual basis and annual capacity (load factor) of 23 the BECCS system. Significant reductions to $SO_{\rm X}$ emissions were achieved by $_{24}$ increasing biomass co-firing $%$ or using low sulphur coal.

- 25 Keywords: Biomass, bio-energy, BECCS, carbon capture and storage (CCS),
- 26 efficiency, co-firing, co-combustion, greenhouse gas removal (GGR)

 b Centre for Environmental Policy, Imperial College London, South Kensington, London ⁷ SW7 1NA UK

[∗]Corresponding author, Email: niall@imperial.ac.uk

1. Introduction

1.1. Bio-energy with carbon capture and storage (BECCS)

 Carbon capture and sequestration (CCS) and "negative emissions" technolo- gies will play an essential role in achieving deep reductions in atmospheric $CO₂$ concentration [\[1\]](#page-26-0). There is growing interest in bio-energy with carbon capture and storage (BECCS) as a promising negative emissions technology, and as a 33 means to meet global warming targets of below 2° C target [\[1\]](#page-26-0) and 1.5° C set by COP21 [\[2\]](#page-26-1). This highlights the importance of having BECCS as a CO₂ mitigation option.

³⁶ The BECCS technology was first introduced for hydrogen production [\[3\]](#page-26-2), ₃₇ before the concept was adapted for "negative emissions" electricity generation [\[4\]](#page-27-0). Over the lifetime of biomass growth, there is a net transfer of atmospheric SO_2 into the biomass. The CO_2 arising from the combustion of this biomass is captured and stored in geological formations, enabling the permanent removal $_{41}$ of CO₂ from the atmosphere [\[5,](#page-27-1) [6\]](#page-27-2), and potentially achieving an overall negative 42 carbon balance [\[5,](#page-27-1) [6,](#page-27-2) [7,](#page-27-3) [8,](#page-27-4) [9,](#page-27-5) [10,](#page-27-6) [11,](#page-27-7) [12\]](#page-28-0). Biomass is generally considered a $CO₂$ neutral substitute for fossil fuels, where co-combustion has also been shown 44 to reduce the emissions of pollutants SO_X , NO_X and particulates [\[13,](#page-28-1) [14,](#page-28-2) [15\]](#page-28-3). Another important advantage of bio-energy with CCS is that it provides reliable ⁴⁶ firm low carbon electricity, unlike intermittent renewable energy sources (IRES) such wind or photovoltaic [\[16,](#page-28-4) [17\]](#page-28-5). The economic loss caused by power outages is ⁴⁸ two orders of magnitude greater than the cost of electricity [\[17\]](#page-28-5). Therefore, this emphasises the value of having rm capacity technologies to balance the use of IRES in an electricity system. Bio-energy with CCS is recognised as a practical $\mathbf{51}$ and immediate approach to mitigating the use of coal and decarbonising the electricity sector.

1.2. Approaches to improve efficiency

1.2.1. Enhancement of fuel properties

 The fuel composition and properties of biomass dier signicantly from coal [\[18\]](#page-28-6). Biomass typically has lower HHV (higher heating value) and higher mois ture content in comparison with coal. Furthermore, co-firing biomass tends $\frac{1}{58}$ to increase fouling and slagging in the boiler furnace [\[19,](#page-28-7) [20,](#page-28-8) [21,](#page-29-0) [22\]](#page-29-1). Conse- quently, biomass co-ring tends to reduce the energy eciency of the power plant $[22, 23, 24]$ $[22, 23, 24]$ $[22, 23, 24]$. The CO₂ capture process imposes an additional energy penalty due ϵ_1 to heat requirements for solvent regeneration [\[25,](#page-29-4) [26\]](#page-29-5). Enhancements to energy ϵ_2 efficiency are required to minimise the marginal cost of electricity generation, enabling operation of the power plant at higher load factor [\[27,](#page-29-6) [28\]](#page-29-7). Therefore, BECC performance improvements would improve commercial viability of the technology and encourage large scale deployment.

 Coal blending to meet power plant requirements is conventional practice ϵ ⁷ [\[29,](#page-30-0) [30,](#page-30-1) [31\]](#page-30-2). Until recently, the main motivation for coal blending has been to $\bullet\bullet\quad$ reduce cost and to utilise more readily available coal resources, *i.e.*, indigenous coal. However, as the fuel markets change, the availability of indigenous coals is declining, increasing the use of imported coals [\[31\]](#page-30-2). Fuel quality has an impact on almost every aspect of power plant operation and performance. Boilers are σ _z typically designed based on a fuel specification, where there is normally an τ ³ allowable range for important fuel properties [\[29\]](#page-30-0) (e.g., HHV, moisture content, ash content and composition, grindability). Table [1](#page-4-0) shows typical fuel property ⁷⁵ requirements for a pulverised coal-fired power plant. Within these property limits, the power plant is expected to produce full load [\[30\]](#page-30-1). However, deviation ₇₇ from this design fuel specification can be detrimental to plant performance as ₇₈ efficiency would reduce outside the recommended property limits. The use of alternative fuels in power plants requires detailed evaluation of the resulting impacts on performance and cost [\[30\]](#page-30-1). The following lists the impact of fuel properties on certain plant performance [\[29,](#page-30-0) [30,](#page-30-1) [31\]](#page-30-2):

 Fuel handling and storage: heating value, moisture content, volatile 83 matter content, ash content and composition, grindability;

- Pulverising/milling: heating value, moisture content, volatile matter content, ash content and composition;
- Combustion performance in the boiler furnace: moisture, ash,

volatile matter, heating value, particle size distribution;

 \bullet Ash management/handling and influence on heat transfer: heat-ing value, moisture, ash content and composition;

Pollutant emissions: sulphur content, nitrogen content.

 Depending on how performance is impacted, modications to equipment and ϵ_2 operations may be required. In the case of biomass co-firing, various power plant congurations and modications have been developed to improve biomass \degree co-firing performance [\[32,](#page-30-3) [33,](#page-30-4) [34,](#page-30-5) [35,](#page-30-6) [36\]](#page-30-7). To minimise the risk to normal boiler operation during biomass co-ring, necessary plant modications may include separate fuel feeding systems, the addition of biomass-dedicated burners and ash handling systems. For appropriate design of the combustion facility, it is 98 essential that the fuel characteristics $(e.g., \text{ moisture}, \text{ash}, \text{heating value}, \text{ignition})$ temperature) of the biomass are well understood [\[37\]](#page-30-8).

100 Fuel blending to meet power plant specifications and requirements enables the use of alternative fuels, whilst maintaining energy output and preventing damage to the boiler. Additionally, fuel blending can be used as a means of com- plying with emission regulations, notably sulphur or mercury emissions [\[31\]](#page-30-2). For instance, $SO_{\rm X}$ emissions during the combustion of high sulphur bituminous coals 105 have been shown to reduce significantly by co-firing with fuels of low sulphur content, e.g., biomass [\[14,](#page-28-2) [38,](#page-30-9) [39,](#page-30-10) [40\]](#page-31-0), or low sulphur coal [\[41\]](#page-31-1). Although cer- tain biomass fuel properties reduce plant efficiency (e.g., high moisture) [\[22,](#page-29-1) [24\]](#page-29-3), some fuel properties can be used to improve the overall combustion performance. In comparison to pure coal, biomass typically has higher oxygen content and greater volatile matter [\[23,](#page-29-2) [35\]](#page-30-6), which improves the reactivity and ignition char-acteristics of the fuel blend [\[31,](#page-30-2) [42\]](#page-31-2), and reduces unburnt carbon [\[43\]](#page-31-3).

 Another approach to enhance performance is the development of biomass pretreatment techniques which improve biomass fuel properties, thus reduc- ing the negative impacts of fuel properties that cause slagging/fouling and re- duced combustion performance. It is desirable to alter the physical properties of biomass to match those of coal, minimising the need to modify fuel handling

Table 1: Typical coal quality requirements for a pulverised coal-fired power plant [\[30\]](#page-30-1). ar $=$ as received, mf $=$ moisture free, daf $=$ dry and ash free. The 'Typical limits' are ranges commonly reported from both literature and survey of power plant operators, where those in the brackets indicate the outer limits that are acceptable under certain circumstances.

Parameter	Desired values	Typical limits	
Heating value $(MJ/kg \text{ ar})$	High	Min $24-25$ (23)	
Moisture content $(\%$ ar)	$4 - 8$	Max ₁₂	
Volatile matter $(\%$ mf)	$20 - 35$	Min 20 (side-fired furnaces)	
	$15 - 20$	Max 20 (down-fired furnaces)	
Ash content $(\%$ mf)	Low	$Max 15-20 (max 30)$	
Sulphur content $(\%$ daf)	Low	Dependent on local pollution regulations and flue gas desulphurisation capacity	
Nitrogen content $(\%$ daf)	Low	$(0.8-1.1)$, dependent on local pollution regulations and NO_X control measures	
Chlorine content (% daf)	Low	$Max 0.1 - 0.3 (max 0.5)$	
Hardgrove Grindability Index	High	Min $50-55$ (min 39)	

 and combustion equipment [\[42\]](#page-31-2). Biomass pretreatment can involve mechanical, thermal, chemical or biological processes.

₁₁₉ The "densification" process increases the bulk density of biomass to improve 120 the efficiency of downstream steps, including storage, handling, supply/feed $[44]$. Biomass densification can be achieved through pelletising mills [\[45\]](#page-31-5), briquette 122 presses $[46]$, screw extruders or agglomeration (*i.e.*, binding powder particles) [\[47\]](#page-31-7). The options for pretreatment include:

 • Leaching or washing: removes undesirable chemical components that cause ash deposition issues (*i.e.*, the silicates, chlorides and sulphates of potassium and calcium), or corrosion (i.e., acidic compounds formed from chlorine and sulphur) [\[42\]](#page-31-2).

128 • Dry torrefaction: generates biomass fuel with similar properties to coal, e.g., reduces moisture content, increases heating value, reduces propensity 130 to reabsorb H_2O , improves grindability/milling characteristics, particles are more spherical, also size is smaller and more uniform [\[42,](#page-31-2) [44,](#page-31-4) [48\]](#page-32-0). Dur- ing torrefaction, raw biomass is heated up to temperatures between 200 and 300°C[\[49\]](#page-32-1). The energy requirement is a function of the inlet biomass moisture content at the inlet, torrefaction temperature and reaction time. For an inlet biomass moisture content of 15%, the energy requirement has been found to be around 90 kWh per ton of biomass [\[50\]](#page-32-2). However, this value typically increases signicantly with higher moisture content as the drying heat requirement constitutes a large fraction of the total heat duty for torrefaction.

 Hydrothermal carbonisation or wet torrefaction: end-product is similar to dry torrefaction but wet torrefaction produces a solid with greater energy density [\[51\]](#page-32-3).

 Steam explosion: pressurisation with saturated steam causes physical and chemical changes, the end-product has high density and low moisture reabsorption [\[44\]](#page-31-4). During the process, heat is required to heat the biomass

 and generate the steam at the selected temperature. The heat duty varies with the temperature of the process and biomass type. For instance, the heat duty for steam explosion of switchgrass is 150 kWh per ton of biomass at 140°C, whereas wheat straw requires 210 kWh per ton of biomass at 150 180°C [\[52\]](#page-32-4).

 Each densication and pretreatment process vary in terms of energy consump- tion, impacts on chemical and physical properties, as well as end-product quality [\[47\]](#page-31-7). From an energy eciency perspective, there will be a compromise between the energy consumption of the pretreatment process and level of fuel enhance- ment. To determine the value of biomass pretreatment, the impact of enhancing specic fuel properties on the overall power plant performance needs to be as-sessed carefully.

 Blending or co-ring biomass together with coal can provide a fuel that meets power plant requirements. The biomass reduces the emissions of pollutants 160 SO_X and NO_X, whereas coal increases the heating value to improve combustion performance. Further improvements to fuel properties can be achieved through biomass pre-treatment (e.g., drying, densification). Detailed evaluation of the 163 effect of blended fuel properties and fuel enhancement is necessary to understand 164 biomass co-firing combustion behaviour, as well as the subsequent effect on power plant performance.

 Due to limitations on fuel specication (as seen in Table [1\)](#page-4-0), thus, the 167 biomass-coal co-firing ratio is restricted in existing coal pulverized boilers. In a recent report on biomass co-ring, the IEA Bioenergy recommended a maxi-169 mum biomass co-firing ratio of 10% of the energy input, beyond which, negative impacts on combustion performance and ash management may occur. However, the co-firing ration can increase up to 40% if the biomass has been milled to 172 the right particle size [\[53\]](#page-32-5). Using the specifications of a relatively low moisture biomass, this would translate in a maximum co-firing of around 60% in terms of mass basis. This value can be considered as the maximum co-ring ratio on a mass basis, beyond which, adjustments (e.g. move the flame detection system) 176 or design modifications (e.g. bring the ignition plane back to its initial position, ¹⁷⁷ ash deposition protection measures) must be performed on the boiler technology ¹⁷⁸ [\[53\]](#page-32-5).

 $1.2.2.$ Process design for efficiency improvements

 The $CO₂$ capture process requires low grade thermal energy for solvent re-181 generation, typically sourced as saturated steam at \sim 3 bar [\[25,](#page-29-4) [54\]](#page-33-0). The steam is predominantly supplied through steam extraction from the stream cycle of the power plant, which imposes an eciency penalty on the system [\[55,](#page-33-1) [56\]](#page-33-2). Several options for steam extraction and steam cycle design have been developed to 185 minimise the efficiency penalty incurred due to $CO₂$ capture, these include:

- ¹⁸⁶ Steam extraction at the cross-over pipe between the intermediate pressure 187 (IP) and low pressure (LP) turbines [\[57,](#page-33-3) [58,](#page-33-4) [59,](#page-33-5) [60,](#page-33-6) [61\]](#page-34-0);
- ¹⁸⁸ Extraction of steam from within the LP steam turbine at a suitable point 189 $[62]$;

 \bullet Optimised designs for steam cycle retrofits [\[54,](#page-33-0) [63\]](#page-34-2).

191 An alternative approach is to modify the process configuration of the $CO₂$ ¹⁹² capture process to reduce the energy penalty and improve eciency. Some stud-193 ies focus on cost-effective stripper configurations to improve energy efficiency, 194 e.g, Karimi et al. (2011) [\[64\]](#page-34-3), Van Wagener & Rochelle (2011) [\[65\]](#page-34-4). Various 195 configurations for $CO₂$ removal from natural gas-based power plant have also 196 been evaluated [\[66,](#page-34-5) [67,](#page-35-0) [68\]](#page-35-1). Amrollahi *et al.* (2012) combined lean vapour com-¹⁹⁷ pression with absorber inter-cooling to decrease energy consumption from 3.74 198 to 2.71 MJ/kg $CO₂$ [\[68\]](#page-35-1), whereas \emptyset i et al. (2014) reduced heat consumption 199 from 3.26 MJ/kg $CO₂$ (baseline) to 2.90 MJ/kg $CO₂$ by only using the vapour ₂₀₀ recompression configuration [\[66\]](#page-34-5). In contrast, Zhang *et al.* (2016) focussed on ₂₀₁ evaluating configurations that minimised capital expense. There are several 202 extensive reviews on configuration modifications for $CO₂$ capture in coal-fired $_{203}$ power plants [\[69,](#page-35-2) [70,](#page-35-3) [71,](#page-35-4) [72\]](#page-35-5). Of these process modifications, the split-flow

204 configurations shows promise, providing a 8.3% reduction to reboiler duty (full 205 load), thus, reducing the efficiency penalty substantially [\[73\]](#page-35-6).

₂₀₆ Process modifications can be implemented to use waste heat recovery and ₂₀₇ further improve the overall energy efficiency [\[74\]](#page-35-7). There are three potential ²⁰⁸ approaches to recover waste energy:

 $\frac{1}{209}$ 1. Heat recovery or heat integration within the power plant to improve effi-²¹⁰ ciency;

 211 2. Waste heat recovery from the $CO₂$ capture process to use in the power 212 plant and improve efficiency;

213 3. Heat recovery from the power plant to use in the $CO₂$ capture process, ²¹⁴ reducing the energy penalty.

₂₁₅ Examples of the first approach include flue gas heat recovery, which can be utilised for fuel drying [\[75\]](#page-36-0), or applied in a low pressure economiser to heat the steam cycle condensate [\[76,](#page-36-1) [77,](#page-36-2) [78,](#page-36-3) [79\]](#page-36-4). Pfaff et al. (2010) [\[74\]](#page-35-7) investigated 218 approaches to recover energy from the $CO₂$ capture process to enhance power plant eciency. Heat recovered from the stripper overhead condenser and the CO₂ compressor intercoolers in the capture process were used to pre-heat the power plant steam cycle condensate and combustion air [\[74\]](#page-35-7). Alternatively, flue gas heat recovery can supply energy for solvent regeneration in the $CO₂$ capture process [\[80,](#page-36-5) [81,](#page-36-6) [82,](#page-36-7) [83,](#page-36-8) [84\]](#page-37-0). For this approach, the amount of heat that is recover- $_{224}$ able from flue gas depends on: (i) the point along the pollution control pathway (e.g., exit of boiler, electrostatic precipitator, flue gas desulphurisation); and $_{226}$ (ii) fuel type and quality [\[55\]](#page-33-1). In a coal-fired power plant, the measured flue gas temperature at the economiser outlet is ∼345°C [\[85\]](#page-37-1), whereas the solvent regeneration temperature is typically 120°C [\[86,](#page-37-2) [87,](#page-37-3) [88\]](#page-37-4). All of these studies investigated the implementation of eciency enhancements for applications in ₂₃₀ fossil fuel power plants. The moisture content of biomass can change signifi- $_{231}$ cantly, affecting the flue gas heat transfer rate [\[89\]](#page-37-5) and flue gas volume flow rate [\[30\]](#page-30-1), which in turn influences power plant thermal efficiency [\[82\]](#page-36-7). There-²³³ fore, an extensive performance assessment of biomass-specific power systems is

²³⁴ necessary.

²³⁵ 1.3. Study objectives

²³⁶ To improve the energy efficiency of BECCS in this study, heat recovery from 237 boiler exhaust flue gas is used to supply heat for the $CO₂$ capture process. This ²³⁸ paper evaluates the performance of a 500 MW dedicated BECCS system under 239 different operating conditions (e.g., variable fuel properties, different capture ²⁴⁰ solvents, and effect of heat recovery). The effects on combustion performance $_{241}$ from different: (i) coal types (high and medium sulphur content), (ii) biomass ²⁴² types (wheat straw and clean wood chips with variable moisture content), and ²⁴³ (iii) biomass co-firing proportions percentage was demonstrated. Blending coal ²⁴⁴ with biomass provides the benefit of reducing pollutant emissions. Also, by vary-²⁴⁵ ing fuel moisture content, the impact of drying biomass on plant performance 246 was investigated. Additionally, the effect of solvent technology $(e.g.,$ different $_{247}$ heat duty) and biomass co-firing proportion on the system energy efficiency ²⁴⁸ and carbon intensity was evaluated. These results lead to the development of a 249 performance matrix which summarises the effect of key process parameters.

²⁵⁰ The remainder of the paper is structured as follows: (i) First the methodol-²⁵¹ ogy and modelling procedure is presented. (ii) The performance of a 500 MW 252 BECCS plant is evaluated, assessing the influence of fuel quality and biomass co-253 firing proportion on the adiabatic flame temperature, SO_X and NO_X emissions, ²⁵⁴ heat recovery, plant eciency and carbon intensity. (iii) A performance matrix ²⁵⁵ is developed to assess the opportunities for BECCS performance improvement 256 in terms of minimising pollutant emissions, enhancing power efficiency, reducing ²⁵⁷ carbon intensity. Lastly, (iv) the paper concludes with a discussion of future 258 directions for this research field.

²⁵⁹ 2. Methodology

²⁶⁰ The modelling procedure used to assess performance of the 500 MW pul-²⁶¹ verised fuel BECCS system has been summarised below. Detailed equations 262 and descriptions of the models is available in Bui et al. (2017)[\[83\]](#page-36-8).

263 2.1. Power plant and $CO₂$ capture model

 The fuel types selected for this analysis included (i) high sulphur coal, (ii) low sulphur coal, (iii) clean virgin wood chip, and (iv) wheat straw. The mois- ture content of biomass fuels varied between 5% to 50%. The properties and composition of these fuels is provided in Table [2.](#page-11-0)

Three $CO₂$ capture solvents were considered:

- 1. High heat duty scenario: MEA with a regeneration energy requirement of ²⁷⁰ 3600 MJ/t_{CO₂} [\[90\]](#page-37-6), and temperature of 120°C;
- 2. Medium heat duty scenario: industrial solvent Cansolv, which requires 272 2300 MJ/ t_{CO_2} and 120°C in the reboiler [\[86,](#page-37-2) [87\]](#page-37-3);
- 3. Low heat duty scenario: uses "new solvent" that operates at $2000 \mathrm{MJ/t_{CO}}$, and 80°C [\[83\]](#page-36-8).

₂₇₅ The "new solvent" heat duty is based on performance data for biphasic sol- vent systems, which can achieve overall heat duty reduction of 30% compared $_{277}$ to conventional MEA systems [\[93\]](#page-38-0). The heat duty of 2900 MJ/t_{CO₂ has been} reported to be the attainable limits for MEA systems [\[88\]](#page-37-4). Therefore, a 30% $_{\rm 279}$ reduction to an energy requirement of 2000 MJ/t_{CO2} is in accordance with the state-of-the-art systems in literature [\[94,](#page-38-1) [95\]](#page-38-2).

 The ultra-supercritical 500 MW coal-red power plant with 90% post-combustion CO² capture was modelled in the Integrated Environment Controlled Model (IECM) software [\[90\]](#page-37-6). The fuel and solvent data was implemented in the IECM 284 model to calculated the fuel firing flow rate and the net power output, which was 285 subsequently used to determine the power plant efficiency $(\%_{HHV})$ and carbon 286 intensity (kg $CO₂$ emitted per MWh generated).

2.2. Thermochemical combustion model

 The thermochemistry of the co-combustion of coal with biomass was mod- elled in the software FactSage 7.0 [\[96,](#page-38-3) [97\]](#page-38-4). Table [3](#page-12-0) summarises the coal and biomass fuel blending scenarios modelled in FactSage, where the biomass co-291 firing proportion was increased from 0% to 50% at increments of 5% . The fuel

	High sulphur	Medium	Clean wood	Wheat straw	
	coal	sulphur coal	chips		
Reference	[90]	[91]	[91]	[14, 92]	
HHV $(MJ \cdot kg^{-1}$ dry)	$27.14\,$	27.06	19.16	19.22	
Fuel composition	wt $\%$	wt $\%$	dry wt $%$	dry wt %	
\mathcal{C}	$63.75\,$	64.6	$50\,$	48.7	
$\rm H$	$4.5\,$	4.38	$5.4\,$	5.7	
\overline{O}	6.88	$7.02\,$	42.2	$39.1\,$	
Cl	$0.29\,$	$\,0.023\,$	$0.02\,$	$0.32\,$	
S.	$2.51\,$	$0.86\,$	$0.05\,$	$0.01\,$	
$\mathbf N$	$1.25\,$	1.41	$0.3\,$	0.6	
Moisture	$11.12\,$	$9.5\,$			
Ash	9.7	$12.2\,$	$2.0\,$	$5.5\,$	
Ash composition	$\%$ ash	$\%$ ash	$\%$ ash	$\%$ ash	
SiO ₂	$46.8\,$	$50\,$	43.1	56.2	
$\rm Al_2O_3$	$18.0\,$	$30.0\,$	$8.9\,$	$1.2\,$	
Fe ₂ O ₃	$20.0\,$	9.8	$3.9\,$	$1.2\,$	
CaO	7.0	4.0	$28.0\,$	6.5	
MgO	$1.0\,$	0.5	$4.2\,$	$3.0\,$	
Na ₂ O	$0.6\,$	0.1	$2.0\,$	$1.3\,$	
K_2O	$1.9\,$	0.1	$5.5\,$	23.7	
TiO ₂	$1.0\,$	$2.0\,$	0.4	0.06	
P_2O_5	$\rm 0.2$	$1.8\,$	$2.2\,$	4.4	
SO ₃	$3.5\,$	$1.7\,$	$1.8\,$	$1.1\,$	
MnO	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$1.34\,$	

Table 2: Fuel properties and composition for the coal and biomass types used for this analysis.

292 firing flow rates from IECM in tonnes per hour was used as the mass basis for ²⁹³ the calculations in FactSage. To ensure complete combustion, the excess air 294 coefficient (λ) of 1.3 was used, which maintain an O₂ concentration of \sim 5 − 6% 295 in the flue gas (in accordance with industrial practice).

Scenario	Coal type	Biomass type	
A	Medium sulphur coal	Wheat straw 5\% moisture	
B	Medium sulphur coal	Wheat straw 16% moisture	
C	Medium sulphur coal	Wood chip 5% moisture	
D	Medium sulphur coal	Wood chip 50% moisture	
E	High sulphur coal	Wheat straw 5% moisture	
F	High sulphur coal	Wheat straw 16\% moisture	
G	High sulphur coal	Wood chip 5% moisture	
H	High sulphur coal	Wood chip 50% moisture	

Table 3: Coal and biomass co-combustion scenarios modelled in FactSage.

 The combustion of each fuel blend was simulated from 200°C to the adiabatic flame temperature (the AFT was calculated in FactSage). The subsequent flue 298 gas mixture was cooled from the AFT to 370° C (predicted flue gas temperature at the boiler exit in IECM). The objective was to calculate the following proper-300 ties for each biomass co-firing scenario: (i) AFT, (ii) SO_X and NO_X emissions, and (iii) exhaust gas properties at 370°C. These calculated exhaust gas prop- erties, *i.e.*, AFT, gas flow rate and specific heat capacity, were subsequently implemented in the heat recovery model.

³⁰⁴ 2.3. Heat recovery model

 A heat recovery model was developed in MATLAB; it was based on a heat exchanger system consisting of a heater, an evaporator and a super-heater [\[98\]](#page-38-5). Using the input data from the FactSage analysis, the heat exchanger model ₃₀₈ (shown in Figure [1\)](#page-13-0) was used to calculate the "recoverable heat", which is the percentage of solvent heat duty recoverable from the boiler exhaust gases.

3. Performance evaluation of a 500 MW BECCS system

$3.1.$ *Adiabatic flame temperature (AFT)*

 Figure [2](#page-14-0) illustrates that AFT generally increased with higher biomass co- ring proportions. For all fuel blends, the overall higher heating value (HHV) of $\frac{1}{214}$ the blended fuel reduced as biomass co-firing % increased, thus, the fuel firing 315 rate increased in order to meet the specified power plant capacity (500 MW). The biomass moisture content had a signicant inuence on the degree at which μ ₃₁₇ AFT increased. The coal co-fired with biomass of low 5% moisture achieved the highest AFT increase. Compared to ring medium sulphur coal alone, 50% $\frac{1}{219}$ co-firing with 5% moisture wood/straw increased the AFT by 136°C (Scenario A and C). The straw with moderate moisture content of 16% also provided a substantial increase of 108°C in AFT at 50% biomass co-firing. In contrast, there was a marginal $4-5^{\circ}$ C increase in AFT when co-firing coal with biomass of 50% moisture. The medium sulphur coal had higher ash content compared to high sulphur coal (shown in Table [2\)](#page-11-0), consequently, co-firing the same biomass with medium sulphur coal generated lower AFT compared to high sulphur coal. The fuel moisture and ash content had a strong impact on the combustion performance (i.e., AFT), which is concordant with previous research [\[99\]](#page-38-6). The selection of fuels that reduce the moisture and ash content of the overall blend

Figure 2: Adiabatic flame temperature (AFT) for different co-firing scenarios with coal and biomass.

329 can provide higher AFT and potentially achieve greater flue gas temperatures.

³³⁰ 3.2. Pollutant emissions

 The SO_X and NO_X emissions have been represented as concentration of the exhaust flue gas at 370°C (from the FactSage analysis) in terms of parts per million (ppm) and parts per billion (ppb), respectively. Typically, the reduction in SO_X emissions during biomass co-firing are due to: (i) reduction in fuel sulphur content, (ii) presence of chemical compounds in ash that can absorb 336 SO₂ (e.g., alkali oxides) [\[14\]](#page-28-2).

 337 Figure [3](#page-15-0) (left) shows that SO_X emissions reduced as the biomass co-firing 338 proportion increased. Furthermore, the SO_X emissions from high sulphur coal 339 co-firing were significantly greater than the medium sulphur coal scenarios. The $\bullet\bullet\quad$ scenarios involving high sulphur coal, Figure [4](#page-16-0) (left), demonstrate SO_X emissions $\frac{3}{41}$ decreased linearly with higher biomass co-firing %, which can be attributed to ³⁴² the biomass (both the wood chip and wheat straw) having signicantly lower Figure 3: Emissions of SO_X (left) and NO_X (right) during the co-combustion of coal with biomass at different co-firing percentages. Refer to Table [3](#page-12-0) for fuel blends in each Scenario.

³⁴³ sulphur content compared to coal. In contrast, biomass co-firing with medium $\frac{344}{4}$ sulphur coal resulted in a non-linear decrease of SO_X emissions, shown by Figure ³⁴⁵ [4](#page-16-0) (right). As discussed by Bui et al. (2017) [\[83,](#page-36-8) [84\]](#page-37-0), this non-linear (step-change) ³⁴⁶ behaviour may be the result of equilibrium reaction shifts that occur at low fuel ³⁴⁷ sulphur content. The FactSage analysis revealed that the alkali metal oxides in $\bullet\bullet\bullet$ the ash also contributed to the reduction in SO_X emissions, specifically CaO, 349 MgO [\[14,](#page-28-2) [100\]](#page-38-7), Na₂O and K₂O [\[101,](#page-38-8) [102\]](#page-39-0).

350 Some experimental studies suggest increased biomass co-firing % reduced 351 NO_X emissions [\[103,](#page-39-1) [104\]](#page-39-2). However, other studies have indicated high propor- 352 tions of biomass co-firing can lead to NO_X emissions increasing [\[40,](#page-31-0) [105\]](#page-39-3) or ³⁵³ remaining unchanged [\[106\]](#page-39-4) compared combustion of coal alone. The variation $\frac{354}{10}$ in the effect of biomass co-firing on NO_X emissions across different studies is 355 due to the combustion conditions having a significant effect on the level of NO_X $\frac{356}{100}$ emissions during biomass co-firing [\[14,](#page-28-2) [15,](#page-28-3) [40,](#page-31-0) [107\]](#page-39-5). In particular, temperature 357 and the presence of N_2 can significantly influence NO_X emission levels [\[108\]](#page-39-6). At 358 combustion temperatures >1300°C, thermal and prompt NO_X reaction path-359 ways can occur leading to NO_X formation from the N_2 in air [\[105,](#page-39-3) [109,](#page-39-7) [110\]](#page-39-8). 360 Figure [3](#page-15-0) (right) shows AFT was above 1300°C, resulting in higher NO_X emis- 361 sions due to increased formation from N_2 in air. In practice, combustion condiFigure 4: The SO_X emissions when biomass is co-fired with coal of high sulphur content (left) and medium sulphur content (right). Refer to Table [3](#page-12-0) for fuel blends in each Scenario

362 tions are optimised and controlled to ensure NO_X emissions are minimal (e.g., ³⁶³ temperature maintained below 1300°C, air staging, fuel staging) [\[105\]](#page-39-3). Future ³⁶⁴ modelling work will need to consider such combustion control mechanisms to 365 ensure the prediction of NO_X emissions are an accurate representation of an ³⁶⁶ actual power plant combustion system.

³⁶⁷ 3.3. Heat recovery

³⁶⁸ The heat recovery evaluation was conducted for co-combustion scenario of ³⁶⁹ high sulphur coal with 16% moisture wheat straw (Scenario F). Figure [5](#page-17-0) illus-₃₇₀ trates the influence of solvent heat duty and biomass co-firing proportion on 371 the recoverable heat (percentage of heat duty compensated by flue gas heat 372 recovery). Of the three solvent scenarios at 0% biomass co-firing (*i.e.*, firing 373 coal alone), heat recovery can only fulfil 100% of the regeneration energy re-374) quirements for the "new solvent" scenario (*i.e.*, heat duty of $2000 \mathrm{~MJ/t_{CO_2}}$). To ₃₇₅ meet the specified power plant capacity, the fuel firing rate had to increase as $\frac{376}{100}$ the biomass co-firing % increased, as a consequence of biomass having a lower 377 HHV compared to coal. As a result, the flow rate of the exhaust gas leaving ₃₇₈ the boiler increased with higher biomass co-firing proportions, thereby increas-379 ing the amount of recoverable heat. Once biomass co-firing proportion reaches

Figure 5: The fraction of solvent heat requirement that can be supplied from flue gas heat recovery as a function of the solvent heat duty (HD) and biomass co-firing percentage.

 40%, heat recovery is capable of supplying all of the energy requirements in all 381 three solvent scenarios. Therefore, flue gas heat recovery could enable operation of a BECCS plant without an efficiency penalty from $CO₂$ capture. However, this would be at the expense of some capital investment.

34 Plant efficiency

 385 The plant efficiency for different scenarios at 50% biomass co-firing is illus-386 trated by Figure [6.](#page-18-0) The MEA system (baseline) had an efficiency of $31\%_{\rm HHV}$. 387 A significant increase in BECCS plant efficiency was achieved by using a more 388 advanced $CO₂$ capture solvents and flue gas heat recovery. The scenario using 389 "new solvent" and heat recovery achieved $38\%_{\rm HHV}$ efficiency, which is 8% higher 390 than the world average of 30% (LHV, or slightly $\langle 29\%_{\rm HHV} \rangle$ for coal-fired power 391 plants [\[111\]](#page-39-9). Thus, these efficiency enhancements address the energy penalty 392 issues caused by co-firing biomass and solvent regeneration.

Figure 6: Efficiency ($\%_{\rm HHV}$) of a 500 MW BECCS plant using different capture solvents and HR at 50% biomass co-firing, compared with average power plant efficiencies worldwide. NS $=$ new solvent, $HR =$ heat recovery, $BAU =$ business as usual.

³⁹³ 3.5. Carbon intensity

394 As the biomass co-firing proportion is increased, the BECCS plant be-³⁹⁵ comes more carbon negative (Figure [7\)](#page-19-0). Additionally, the carbon negativity ³⁹⁶ of the system increased as the plant efficiency decreased. As shown in Table $\frac{397}{4}$ $\frac{397}{4}$ $\frac{397}{4}$ at 50% biomass co-firing, the low efficiency MEA system captured -296 kg 398 CO_2/MWh , whereas the 'new solvent' system with heat recovery captured -244 \log kg $CO₂/MWh$. Although counter-intuitive, the rationale is that a system with ⁴⁰⁰ higher eciency would burn less fuel per MWh of electricity generated, thus, 401 less $CO₂$ is captured from the atmosphere. This highlights the importance of ⁴⁰² identifying an appropriate performance matrix for the evaluation of BECCS.

 $\frac{1}{403}$ It is important to note that this conclusion holds as long as the CO₂ emissions 404 associated with biomass supply chain $-$ or biomass carbon footprint (BCF) $\frac{1}{405}$ do not offset the amount of $CO₂$ removed by the power plant. There is a ⁴⁰⁶ maximum carbon footprint value, which is a function of the biomass carbon ₄₀₇ content, co-firing proportion and capture rate, beyond which, the facility is no

Figure 7: System carbon intensity as a function of the biomass co-firing proportion $\%$.

Table 4: Effect of solvent type on the carbon intensity and efficiency of a 500 MW BECCS plant co-firing 50% biomass with 90% CO_2 capture.

	Efficiency	Carbon intensity
System	$(\%_{HHV})$	(kg CO ₂ /MWh)
MEA	31 3	-296
Cansoly	33.7	-275
New solvent	34 3	-271
New solvent $+$ heat recovery	38.0	-244

408 longer carbon negative. In this configuration, facilities that are more efficient \bullet at converting biomass into power will emit less $CO₂$ than their less efficient $_{\rm 410}$ counterparts. The effect of biomass carbon footprint in $\rm k_{\rm 8CO_2}/\rm MWh_{\rm HHV}$ and 411 co-firing proportion on the power plant carbon intensity is illustrated for wheat 412 straw at 90% capture rate in figure [8a](#page-20-0) (low efficiency MEA process) and [8b](#page-20-0) 413 (high efficiency new solvent process).

414 As can be observed in both figures, less efficient plants are slightly more car-⁴¹⁵ bon negative for values below the BCF upper limit, and more carbon positive

416 for values above the BCF upper limit compared to the more efficient plants. $_{\rm 417}$ – The BCF upper limit increases with co-firing, from 93 kg $_{\rm CO_2}/\rm MWh_{\rm HHV}$ at 20% 418 co-firing, to 301 kg $_{\rm CO_2}/\rm MWh_{\rm HHV}$ at 100% co-firing. To put this in context, ⁴¹⁹ bioelectricity facilities are required to report emissions 60% lower than the EU ⁴²⁰ mean electricity carbon intensity, according to the UK Bioenergy strategy [\[112\]](#page-40-0). $_{\rm 421}$ This translates into a limit of 285 $\rm k_{\rm {SCO}_2}/\rm {MWh}_e$ for embedded GHG emission 422 in the biomass supply chain, or a limit of 128 $\text{kg}_{\text{CO}_2}/\text{MW}_{\text{HHV}}$ when assuming 423 a maximal biomass conversion efficiency of 45% _{HHV}. These limits are over the 424 BCF upper bound at 20% co-firing, which underlines the importance of consid-⁴²⁵ ering the biomass carbon footprint during identification of BECCS performance ⁴²⁶ indicators.

⁴²⁷ 4. BECCS performance matrix

⁴²⁸ The results are summarised into a BECCS performance matrix in Table [5,](#page-21-0) ⁴²⁹ which illustrates the eect of key properties on the plant performance. The ⁴³⁰ measures for performance in a BECCS system include: (i) pollutant reduction, \bullet 31 (ii) energy efficiency, (iii) CO₂ negativity, or (iv) a combination of these.

⁴³² 4.1. Reduction of pollutant emissions

⁴³³ The reduction of pollutant emissions from a power plant will be necessary for ⁴³⁴ two possible reasons: (i) satisfy stringent emission regulations [\[43\]](#page-31-3), or (ii) meet ⁴³⁵ requirements of downstream processes for air pollution control [\[113,](#page-40-1) [114,](#page-40-2) [115\]](#page-40-3). ⁴³⁶ Blending coal with biomass can be used as a means to reduce pollutant emissions 437 of $\rm SO_{X}$ and $\rm NO_{X}$ [\[32\]](#page-30-3), as the results from this study have demonstrated. Signifi-438 cant reductions to SO_X emissions can be achieved by increasing the biomass co-⁴³⁹ ring proportion (decrease in overall sulphur content). Fuel selection is another ⁴⁴⁰ important factor; selecting coals that have low sulphur content can signicantly 441 reduce \rm{SO}_{X} emissions. The \rm{SO}_{X} levels ranged from 420 – 1180 ppm when high ⁴⁴² sulphur coal was co-red with biomass, whereas the use of medium sulphur 443 coal reduced SO_X emissions to $\textless 10$ ppm (satisfying tolerance requirements of amines). Further reductions to $SO_{\rm X}$ can be achieved by utilising biomass with 445 ash that contains alkali metal oxides (e.g., CaO, MgO, Na₂O and K₂O). How-⁴⁴⁶ ever, biomass ash containing silicates, chlorides and sulphates of potassium and ⁴⁴⁷ calcium are undesirable as they increase slagging and fouling formation [\[42\]](#page-31-2).

⁴⁴⁸ Although co-firing with fuels of low nitrogen content will contribute to re-ductions in NO_X emissions [\[103,](#page-39-1) [104\]](#page-39-2), NO_X formation is mainly influenced by 450 combustion conditions. To minimise N_{X} emissions for each specific fuel blend, ⁴⁵¹ the combustion conditions require optimisation or reconfiguration of the burn- 452 ers. Some approaches used to reduce NO_X formation include fuel/air staging 453 [\[110\]](#page-39-8), or replacing N₂ gas with CO_2 (reduces NO_X formation from the N₂ in 454 air) [\[41\]](#page-31-1).

 4.55 4.2. Improvement to power efficiency

456 To improve the efficiency of the BECCS systems and reduce the marginal ⁴⁵⁷ cost of electricity generation, it is important to consider the following:

- ⁴⁵⁸ Fuel selection for ideal combustion properties;
- ⁴⁵⁹ High performance solvents (low heat duty and regeneration temperature);
- \bullet Heat recovery (increases with higher AFT and flue gas flow rate).

⁴⁶¹ The fuel properties that would improve efficiency include higher HHV, lower moisture and ash content. For instance, selecting coals with lower ash content, whereas low moisture biomass with low tendency for ash deposition is ideal. To minimise the energy penalty from $CO₂$ capture, utilise a high performance solvent with low heat duty and low regeneration temperature.

⁴⁶⁶ Although the heat in the exhaust gas at the boiler exit is considered "waste" ⁴⁶⁷ from the perspective of electricity generation, this is useful energy, in terms of 468 quality and quantity, for solvent regeneration in the $CO₂$ capture process. The ⁴⁶⁹ implementation of a heat recovery system would require capital investment. ⁴⁷⁰ However, the advantage would be that heat recovery could allow BECCS to ϵ_{11} operate without the efficiency penalty associated with $CO₂$ capture. Thus, en- 472 hancing heat recovery conditions can indirectly improve plant efficiency. How-473 ever, some factors that improve heat recovery tend to reduce efficiency. For $\frac{474}{474}$ instance, co-firing fuels with low HHV (e.g., biomass) reduces plant efficiency, ₄₇₅ however, requires higher fuel firing rate and increases the flue gas flow rate, ⁴⁷⁶ which in turn increases recoverable heat.

477 4.3. Enhancement of $CO₂$ negativity

₄₇₈ The systems with lower efficiency will be more carbon negative (per MWh ⁴⁷⁹ basis) as they consume more biomass fuel, which captures and permanently 480 stores more $CO₂$ from the atmosphere. Consequently, enhancing the $CO₂$ nega-⁴⁸¹ tivity per MWh for a BECCS system would require implementing measures that \bullet reduce efficiency. This may involve co-firing biomass with low fuel quality (e.g., 483 high moisture and ash) or using the least efficient CO_2 capture system (e.g., sol-⁴⁸⁴ vents with high heat duty such as MEA). The use lower quality fuels can reduce ⁴⁸⁵ fuel costs. Also, the least efficient subcritical plants generally will have lower ⁴⁸⁶ capital costs compared to the high eciency supercritical or ultrasupercritical ⁴⁸⁷ power plants [\[116\]](#page-40-4), further cost reductions are possible by retrotting the cur-⁴⁸⁸ rent fleet of power plants for BECCS, most of which use subcritical technology \bullet [\[117,](#page-40-5) [118\]](#page-40-6). However, it is essential to consider the impact of plant efficiency on the annual dispatch load of the system.

Figure 9: Annual negative carbon emissions (kt $_{\rm CO_2}/\rm{yr})$, $i.e.$, avoided CO $_2$ emissions, as a function of the system efficiency ($\%\text{HHV}$) and load factor (%) of a BECCS system.

 The load factor (annual capacity) of a power plant is a function of the plant eciency. Systems that have higher eciency will have lower marginal costs for electricity generation, which enables them to be economically competitive with other power generation technology. Therefore, enabling these plants to operate at higher load factors (higher annual dispatch factor) [\[27,](#page-29-6) [28\]](#page-29-7). Figure [9](#page-24-0) 496 illustrates the influence of plant efficiency and annual capacity (load factor $\%$) on the annual avoided $CO₂$ emissions. The low efficiency MEA system captures 498 0.66 Mt_{CO2} annually at 60% capacity. However, the high efficiency system using 199 new solvent and heat recovery capture the same amount of $CO₂$ annually but will operate at a capacity factor of 72%. Thus, increasing the CO₂ negativity ϵ_{01} (e.g., decreasing plant efficiency) of a BECCS plant on a MWh basis will not necessary increase the annual $CO₂$ mitigation potential.

5. Conclusion

 BECCS has the potential provide negative emissions, whilst providing reli-able rm power generation capacity. However, marginal costs are higher com pared to other power generation technologies due to the energy penalty incurred from the $CO₂$ capture process and use of biomass fuel. This study evaluates opportunities to improve the performance of BECCS through: (i) pollutant \bullet reduction, (ii) efficiency enhancement, and (iii) $CO₂$ negativity.

510 Biomass co-firing with coal has been reported to provide significant reduc- \mathfrak{so}_1 tions in SO_X and NO_X emissions. The thermochemical analysis demonstrates $\frac{1}{2}$ that increasing biomass co-firing proportion reduced SO_X emissions due to the ⁵¹³ decrease in fuel sulphur content. Fuel selection is also an important factor in $_{514}$ reducing SO_X formation. For instance, co-firing low sulphur coal reduced SO_X ⁵¹⁵ by up to two orders of magnitude. Although some alkali metals are associated $\frac{1}{2}$ with ash deposition problems, these ash component have a role in \rm{SO}_{X} reduc- 517 tion. The NO_X emissions were mainly dependent on combustion conditions, 518 therefore, conditions may need to be calibrated to minimise NO_X formation.

₅₁₉ Factors that enhance efficiency in a BECCS system include the use of high ⁵²⁰ performance solvents (low heat duty) and using heat recovery to supply energy 521 for solvent regeneration. The efficiency can be improved indirectly by increasing $\frac{1}{2}$ the recoverable heat from the flue gas, e.g., greater AFT or higher flue gas flow ⁵²³ rate. By using a high performance solvent with heat recovery, the BECCS $_{524}$ system could achieve an efficiency of $38\%_{\text{HHV}}$, higher than the current fleet of 525 coal-fired power plant with efficiencies ranging from $26 - 35\%$.

 On the other hand, to achieve greater carbon negativity (on a per MWh basis), a low efficiency system is more desirable due to increased consumption \mathfrak{s}_{28} of biomass fuel, which results in more CO₂ being captured and permanently stored. Increasing the $CO₂$ negativity per MWh would involve using biomass 530 with high moisture and ash content or utilising the least efficient capture solvent, e.g., MEA. However, increasing $CO₂$ negativity on a MWh basis (e.g., low efficiency) will not equate to higher $CO₂$ mitigation. It is important to consider 533 the impact of efficiency on the dispatch rate of the system in the electricity market. Typically, reducing the eciency of a power plant will decrease its annual capacity factor, lowering its dispatch rate in comparison to the high 536 efficiency systems.

 The major barrier for commercial deployment of BECCS is the lack of eco- nomic and political drivers, rather than technical (assuming fossil-fuel CCS is now a proven technology) [\[26\]](#page-29-5). The potential role of BECCS in the electricity grid is unique as it will provide reliable rm capacity, whilst also providing a $\frac{541}{16}$ means to decarbonise the electricity sector [\[16,](#page-28-4) [17\]](#page-28-5). To enhance the economic $\frac{1}{542}$ viability and encourage deployment of BECCS plant with higher CO₂ negativ- ity, financial incentives for electricity generation with negative $CO₂$ emissions would be necessary. To improve the commercial potential of BECCS, there is a $\frac{545}{100}$ need to develop sustainable biomass supply chains and establish suitable CO₂ sequestration sites [\[26\]](#page-29-5).

6. Acknowledgements

 The authors would like to acknowledge funding from the EPSRC under grants EP/M001369/1 (MESMERISE-CCS), EP/M015351/1 (Opening New Fu- els for UK Generation) and EP/N024567/1 (CCSInSupply). Mathilde Fajardy thanks Imperial College London for funding a PhD scholarship.

References

- [1] IPCC, Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergov- ernmental Panel on Climate Change., Cambridge University Press, Cam-bridge, United Kingdom and New York, NY, USA, 2014.
- [2] COP21, The 2015 United Nations Climate Change Conference, 30 Novem-ber to 12 December 2015, http://www.cop21.gouv.fr/en/.
- [3] R. H. Williams, Fuel Decarbonization for Fuel Cell Applications and Se-₅₆₀ questration of the Separated CO₂ CEES Report 295, Tech. rep., Center for Energy and Environmental Studies, Princeton University (1996).
- [4] H. J. Herzog, E. M. Drake, Carbon dioxide recovery and disposal from large energy systems, Annual Review of Energy and the Environment 21 (1996) 145-166.
- [5] F. Kraxner, S. Nilsson, M. Obersteiner, Negative emissions from BioEn-₅₆₆ ergy use, carbon capture and sequestration (BECS)-the case of biomass production by sustainable forest management from semi-natural temper- $\frac{1}{568}$ ate forests, Biomass and Bioenergy 24 (4-5) (2003) 285-296.
- [6] S. Fuss, J. G. Canadell, G. P. Peters, M. Tavoni, R. M. Andrew, P. Ciais, R. B. Jackson, C. D. Jones, F. Kraxner, N. Nakicenovic, C. Le Quere, $\mathbf{571}$ M. R. Raupach, A. Sharifi, P. Smith, Y. Yamagata, Betting on negative $\frac{572}{100}$ emissions, Nature Climate Change 4 (10) (2014) 850–853.
- [7] K. Möllersten, J. Yan, J. R. Moreira, Potential market niches for biomass $\frac{574}{100}$ energy with $CO₂$ capture and storage – Opportunities for energy supply $\frac{575}{100}$ with negative CO_2 emissions, Biomass and Bioenergy 25 (3) (2003) 273– 285.
- [8] K. Möllersten, L. Gao, J. Yan, M. Obersteiner, Ecient energy systems 578 with $CO₂$ capture and storage from renewable biomass in pulp and paper $\frac{579}{1583}$ mills, Renewable Energy 29 (9) (2004) 1583-1598.
- [9] J. S. Rhodes, D. W. Keith, Engineering economic analysis of biomass IGCC with carbon capture and storage, Biomass and Bioenergy 29 (6) (2005) 440-450.
- [10] C. Azar, K. Lindgren, M. Obersteiner, K. Riahi, D. P. van Vuuren, K. M. \sim G. J. den Elzen, K. Möllersten, E. D. Larson, The feasibility of low $\rm CO_2$ concentration targets and the role of bio-energy with carbon capture and storage (BECCS), Climatic Change 100 (1) (2010) 195202.
- [11] M. Fajardy, N. Mac Dowell, Can BECCS deliver sustainable and resource ecient negative emissions?, Energy and Environmental Science (2017) in press.
- [12] N. Mac Dowell, M. Fajardy, Inecient power generation as an optimal route to negative emissions via BECCS?, Environmental Research Letters (2017) in press.
- 593 [13] D. Loeffler, N. Anderson, Emissions tradeoffs associated with cofiring for- est biomass with coal: A case study in Colorado, USA, Applied Energy 113 (2014) 67-77.
- [14] H. Spliethoff, K. R. G. Hein, Effect of co-combustion of biomass on emis- $\frac{597}{10}$ sions in pulverized fuel furnaces, Fuel Processing Technology 54 (1-3) (1998) 189-205.
- 599 [15] H. Spliethoff, W. Scheurer, K. R. G. Hein, Effect of co-combustion of sewage sludge and biomass on emissions and heavy metals behaviour, 601 Process Safety and Environmental Protection 78 (1) (2000) 33–39.
- 602 [16] A. Boston, H. K. Thomas, Managing flexibility whilst decarbonising the GB electricity system, Tech. rep., http://erpuk.org/project/managing-flexibility-of-the-electricity-sytem (2015) .
- 605 [17] C. F. Heuberger, I. Staffell, N. Shah, N. Mac Dowell, Quantifying the value of CCS for the future electricity system, Energy & Environmental 607 Science 9 (8) (2016) 2497-2510.
- [18] S. V. Vassilev, C. G. Vassileva, V. S. Vassilev, Advantages and disadvan- tages of composition and properties of biomass in comparison with coal: \bullet 10 An overview, Fuel 158 (2015) 330–350.
- [19] M. Pronobis, Evaluation of the inuence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations, Biomass and 613 Bioenergy 28 (4) (2005) 375-383.
- 614 [20] T. Heinzel, V. Siegle, H. Spliethoff, K. R. G. Hein, Investigation of slagging in pulverized fuel co-combustion of biomass and coal at a pilot-scale test $\frac{616}{1098}$ facility, Fuel Processing Technology 54 (1998) 109–125.

[21] S. B. Hansen, P. A. Jensen, F. J. Frandsen, H. Wu, M. S. Bashir, J. Waden-

bäck, B. Sander, P. Glarborg, Deposit probe measurements in large

- biomass-red grate boilers and pulverized-fuel boilers, Energy & Fuels 620 28 (6) (2014) 3539-3555.
- ϵ_{21} [22] M. Pronobis, The influence of biomass co-combustion on boiler fouling $\frac{622}{10000}$ and efficiency, Fuel 85 (4) (2006) 474-480.
- [23] L. L. Sloss, Emission from coring coal, biomass and sewage sludge, CCC/175, IEA Clean Coal Centre, London, United Kingdom, 2010.
- [24] S. Fogarasi, C.-C. Cormos, Assessment of coal and sawdust co-firing power generation under oxy-combustion conditions with carbon capture and stor-627 age, Journal of Cleaner Production 142, Part 4 (2017) 3527–3535.
- [25] K. Goto, K. Yogo, T. Higashii, A review of eciency penalty in a coal-629 fired power plant with post-combustion CO_2 capture, Applied Energy 111 630 (2013) $710-720$.
- [26] A. Bhave, R. H. S. Taylor, P. Fennell, W. R. Livingston, N. Shah, N. Mac Dowell, J. Dennis, M. Kraft, M. Pourkashanian, M. Insa, J. Jones, N. Burdett, A. Bauen, C. Beal, A. Smallbone, J. Akroyd, Screening and techno-economic assessment of biomass-based power generation with CCS 635 technologies to meet 2050 CO₂ targets, Applied Energy 190 (2017) 481– 489.
- [27] N. Mac Dowell, N. Shah, The multi-period optimisation of an amine-based \log capture process integrated with a super-critical coal-fired power sta- tion for exible operation, Computers & Chemical Engineering 74 (2015) 169-183.
- 641 [28] N. Mac Dowell, I. Staffell, The role of flexible CCS in the UK's future energy system, International Journal of Greenhouse Gas Control 48, Part 643 2 (Flexible operation of carbon capture plants) (2016) 327-344.
- [29] A. M. Carpenter, Coal blending for power stations, IEACR/81, IEA Coal Research, London, United Kingdom, 1995.
- [30] A. M. Carpenter, Switching to cheaper coals for power generation, CCC/01, IEA Coal Research, London, United Kingdom, 1998.
- [31] L. L. Sloss, Blending of coals to meet power station requirements, CCC/238, IEA Clean Coal Centre, London, United Kingdom, 2014.
- [32] J. Dai, S. Sokhansanj, J. R. Grace, X. Bi, C. J. Lim, S. Melin, Overview
- and some issues related to co-ring biomass and coal, The Canadian Jour-652 nal of Chemical Engineering 86 (3) (2008) 367-386.
- 653 [33] R. Fernando, Fuels for biomass cofiring, $\text{CCC}/102$, IEA Clean Coal Cen-tre, London, United Kingdom, 2005.
- [34] R. Fernando, Coring of coal with waste fuels, CCC/126, IEA Clean Coal Centre, London, United Kingdom, 2007.
- ϵ ₆₅₇ [35] R. Fernando, Cofiring high ratios of biomass with coal, CCC/194, IEA Clean Coal Centre, London, United Kingdom, 2012.
- [36] S. van Loo, J. Koppejan, The Handbook of Biomass Combustion and 660 Co-inAring, Earthscan, London, United Kingdom, 2008.
- [37] A. A. Bhuiyan, A. S. Blicblau, A. K. M. S. Islam, J. Naser, A review ₆₆₂ on thermo-chemical characteristics of coal/biomass co-firing in industrial furnace, Journal of the Energy Institute.
- 664 [38] A. Demirbaş, Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related en- vironmental issues, Progress in Energy and Combustion Science 31 (2) 667 (2005) $171-192$.
- \bullet $[39]$ W. L. Van De Kamp, D. J. Morgan, The co-firing of pulverised bituminous coals with straw, waste paper and municipal sewage sludge, Combustion $\frac{670}{1000}$ Science and Technology 121 (1–6) (1996) 317–332.
- [40] L. Cheng, X. P. Ye, B. C. English, D. Boylan, T. Johnson, B. Zemo, Co-⁶⁷² firing switchgrass in a 60-megawatt pulverized coal-fired boiler: Effects on combustion behavior and pollutant emissions, Energy Sources, Part A: 674 Recovery, Utilization, and Environmental Effects 38 (3) (2016) 322–329. [41] E. Rokni, A. Panahi, X. Ren, Y. A. Levendis, Curtailing the genera- tion of sulfur dioxide and nitrogen oxide emissions by blending and oxy- combustion of coals, Fuel 181 (2016) 772-784. [42] B. N. Madanayake, S. Gan, C. Eastwick, H. K. Ng, Biomass as an energy 679 source in coal co-firing and its feasibility enhancement via pre-treatment 680 techniques, Fuel Processing Technology 159 (2017) 287-305. [43] I. Barnes, Understanding pulverized coal, biomass and waste combustion, CCC/205, IEA Clean Coal Centre, London, United Kingdom, 2012. [44] J. S. Tumuluru, J. R. Hess, R. D. Boardman, C. T. Wright, T. L. Westover, 684 Formulation, pretreatment, and densification options to improve biomass
- specications for co-Firing high percentages with coal, Industrial Biotech-686 $\log y \cdot 8 \cdot (3) \cdot (2012) \cdot 113-132.$
- [45] T. Filbakk, G. Skjevrak, O. Høibø, J. Dibdiakova, R. Jirjis, The inuence of storage and drying methods for Scots pine raw material on mechanical pellet properties and production parameters, Fuel Processing Technology 690 92 (5) (2011) 871-878.
- [46] P. Purohit, A. K. Tripathi, T. C. Kandpal, Energetics of coal substitution $\frac{692}{1321}$ by briquettes of agricultural residues, Energy 31 (8–9) (2006) 1321–1331.
- [47] J. S. Tumuluru, C. T. Wright, J. R. Hess, K. L. Kenney, A review of biomass densication systems to develop uniform feedstock commodities for bioenergy application, Biofuels, Bioproducts and Biorening 5 (6) 696 $(2011) 683 - 707$.
- [48] F. R. Kargbo, J. Xing, Y. Zhang, Pretreatment for energy use of rice straw: A review, African Journal of Agricultural Research 4 (11) (2009) 699 $1560 - 1565$.
- [49] P. C. A. Bergman, A. R. Boersma, R. W. R. Zwart, J. H. A. Kiel, τ_{01} Torrefaction for biomass co-firing in existing coal-fired power stations, Tech. Rep. July, Energy research Centre of the Netherlands ECN (2005). [doi:ECN-C--05-013.](http://dx.doi.org/ECN-C--05-013)
- URL [http://www.ecn.nl/publications/PdfFetch.aspx?nr=](http://www.ecn.nl/publications/PdfFetch.aspx?nr=ECN-C--05-013) [ECN-C--05-013](http://www.ecn.nl/publications/PdfFetch.aspx?nr=ECN-C--05-013)
- [50] A. Uslu, A. P. C. Faaij, P. C. A. Bergman, Pre-treatment technologies, ₇₀₇ and their effect on international bioenergy supply chain logistics. Techno- economic evaluation of torrefaction, fast pyrolysis and pelletisation, En-ergy 33 (8) (2008) 12061223. [doi:10.1016/j.energy.2008.03.007.](http://dx.doi.org/10.1016/j.energy.2008.03.007)
- [51] W. Yan, T. C. Acharjee, C. J. Coronella, V. R. Vásquez, Thermal pre- treatment of lignocellulosic biomass, Environmental Progress & Sustain- π_{2} able Energy 28 (3) (2009) 435–440.
- [52] H. Shahrukh, A. O. Oyedun, A. Kumar, B. Ghiasi, L. Kumar, S. Sokhansanj, [Comparative net energy ratio analysis of pellet pro-](http://dx.doi.org/10.1016/j.biombioe.2016.03.022) [duced from steam pretreated biomass from agricultural residues and en-](http://dx.doi.org/10.1016/j.biombioe.2016.03.022) π ¹⁶ [ergy crops,](http://dx.doi.org/10.1016/j.biombioe.2016.03.022) Biomass and Bioenergy 90 (2016) 50–59. [doi:10.1016/j.](http://dx.doi.org/10.1016/j.biombioe.2016.03.022) [biombioe.2016.03.022.](http://dx.doi.org/10.1016/j.biombioe.2016.03.022)
- URL <http://dx.doi.org/10.1016/j.biombioe.2016.03.022>
- [53] W. R. Livingston, J. Middelkamp, W. Willeboer, S. Tosney, B. Sander, S. Madrali, M. Hansen, [The status of large scale biomass ring: The](http://www.ieabcc.nl/publications/IEA{_}Bioenergy{_}T32{_}cofiring{_}2016.pdf) [milling and combustion of biomass materials in large pulverised coal](http://www.ieabcc.nl/publications/IEA{_}Bioenergy{_}T32{_}cofiring{_}2016.pdf) [boilers,](http://www.ieabcc.nl/publications/IEA{_}Bioenergy{_}T32{_}cofiring{_}2016.pdf) Tech. rep., IEA Bionergy (2016).
- URL [http://www.ieabcc.nl/publications/](http://www.ieabcc.nl/publications/IEA{_}Bioenergy{_}T32{_}cofiring{_}2016.pdf)
- [IEA{_}Bioenergy{_}T32{_}cofiring{_}2016.pdf](http://www.ieabcc.nl/publications/IEA{_}Bioenergy{_}T32{_}cofiring{_}2016.pdf)
- [54] L. M. Romeo, S. Espatolero, I. Bolea, Designing a supercritical steam σ ₇₂₆ cycle to integrate the energy requirements of $\rm CO_2$ amine scrubbing, Inter-national Journal of Greenhouse Gas Control 2 (4) (2008) 563-570.
- [55] M. Lucquiaud, J. Gibbins, On the integration of $CO₂$ capture with coal- red power plants: A methodology to assess and optimise solvent-based post-combustion capture systems, Chemical Engineering Research and $_{731}$ Design 89 (9) (2011) 1553-1571.
- [56] E. Sanchez Fernandez, M. Sanchez del Rio, H. Chalmers, P. Khakharia, E. L. V. Goetheer, J. Gibbins, M. Lucquiaud, Operational exibility op- tions in power plants with integrated post-combustion capture, Interna- tional Journal of Greenhouse Gas Control 48, Part 2 (Flexible operation $\frac{736}{100}$ of carbon capture plants) (2016) 275-289.
- [57] N. Y. Nsakala, J. Marion, C. Bozzuto, G. Liljedahl, M. Palkes, D. Vogel, $M.$ Guha, H. Johnson, S. Plasynski, Engineering feasibility of $CO₂$ capture on an existing US coal-red power plant, in: First National Conference on Carbon Sequestration, U.S. Department of Energy (DOE), National Energy Technology Laboratory, 2001.
- [58] M. Lucquiaud, J. Gibbins, Effective retrofitting of post-combustion $CO₂$ capture to coal-fired power plants and insensitivity of $CO₂$ abatement costs to base plant eciency, International Journal of Greenhouse Gas Control 5 (3) (2011) 427-438.
- [59] N. Ceccarelli, M. van Leeuwen, T. Wolf, P. van Leeuwen, R. van der Vaart, W. Maas, A. Ramos, Flexibility of low-CO₂ gas power plants: Integration of the CO² capture unit with CCGT operation, in: 12th International Conference on Greenhouse Gas Control Technologies (GHGT-12), Vol. 63, $\frac{1750}{250}$ Energy Procedia, pp. 1703–1726.
- [60] M. Thern, K. Jordal, M. Genrup, Temporary $CO₂$ capture shut down: Implications on low pressure steam turbine design and efficiency, in: 7th
- Trondheim Conference on CO² capture, Transport and Storage, Vol. 51, $\frac{1}{754}$ Energy Procedia, 2014, pp. 14–23.
- [61] M. Lucquiaud, E. S. Fernandez, H. Chalmers, N. Mac Dowell, J. Gibbins, ⁷⁵⁶ Enhanced operating flexibility and optimised off-design operation of coal plants with post-combustion capture, in: 12th International Conference on Greenhouse Gas Control Technologies (GHGT-12), Vol. 63, Energy 759 Procedia, 2014, pp. 7494-7507.
- [62] T. Sanpasertparnich, R. Idem, I. Bolea, D. deMontigny, P. Tontiwach- wuthikul, Integration of post-combustion capture and storage into a pul- verized coal-red power plant, International Journal of Greenhouse Gas Control 4 (3) (2010) 499-510.
- [63] M. Lucquiaud, J. Gibbins, Steam cycle options for the retrot of coal and gas power plants with postcombustion capture, in: 10th International Conference on Greenhouse Gas Control Technologies (GHGT-10), Vol. 4, 767 Energy Procedia, 2011, pp. 1812–1819.
- [64] M. Karimi, M. Hillestad, H. F. Svendsen, Capital costs and energy consid-⁷⁶⁹ erations of different alternative stripper configurations for post combustion CO² capture, Chemical Engineering Research and Design 89 (8) (2011) $1229-1236$.
- [65] D. H. Van Wagener, G. T. Rochelle, Stripper configurations for CO_2 cap- ture by aqueous monoethanolamine and piperazine, Energy Procedia 4 (2011) 1323-1330.
- [66] L. E. Øi, T. Bråthen, C. Berg, S. K. Brekne, M. Flatin, R. Johnsen, I. G. Moen, E. Thomassen, Optimization of configurations for amine based $CO₂$ absorption using Aspen HYSYS, in: 7th Trondheim Conference on $CO₂$ capture, Transport and Storage (2013), Vol. 51, Energy Procedia, 2014, $\frac{1}{779}$ pp. 224-233.
- ⁷⁸⁰ [67] Y. Zhang, B. Freeman, P. Hao, G. T. Rochelle, Absorber modeling for ⁷⁸¹ ngcc carbon capture with aqueous piperazine, Faraday Discussions 192 (0) $782 \t(2016) 459-477.$
- ⁷⁸³ [68] Z. Amrollahi, P. A. M. Ystad, I. S. Ertesvåg, O. Bolland, Optimized 784 process configurations of post-combustion $CO₂$ capture for natural-gas-⁷⁸⁵ red power plantPower plant eciency analysis, International Journal of T_{786} Greenhouse Gas Control 8 (2012) 1-11.
- 787 [69] Y. Le Moullec, M. Kanniche, Screening of flowsheet modifications for an τ ⁸⁸ efficient monoethanolamine (MEA) based post-combustion $CO₂$ capture, 789 International Journal of Greenhouse Gas Control 5 (4) (2011) 727-740.
- ⁷⁹⁰ [70] H. Ahn, M. Luberti, Z. Liu, S. Brandani, Process conguration studies ⁷⁹¹ of the amine capture process for coal-fired power plants, International J ₇₉₂ Journal of Greenhouse Gas Control 16 (2013) 29–40.
- ⁷⁹³ [71] A. Cousins, L. T. Wardhaugh, P. H. M. Feron, Preliminary analysis of σ ₇₉₄ process flow sheet modifications for energy efficient CO_2 capture from ⁷⁹⁵ ue gases using chemical absorption, Chemical Engineering Research and $_{796}$ Design 89 (8) (2011) 1237-1251.
- 797 [72] A. Cousins, L. T. Wardhaugh, P. H. M. Feron, A survey of process flow $\frac{798}{200}$ sheet modifications for energy efficient $CO₂$ capture from flue gases using ⁷⁹⁹ chemical absorption, International Journal of Greenhouse Gas Control $\frac{1}{5}$ (4) (2011) 605-619.
- ⁸⁰¹ [73] N. Mac Dowell, N. Shah, Dynamic modelling and analysis of a coal-⁸⁰² fired power plant integrated with a novel split-flow configuration post-803 combustion $CO₂$ capture process, International Journal of Greenhouse 804 Gas Control 27 (2014) 103-119.
- 805 [74] I. Pfaff, J. Oexmann, A. Kather, Optimised integration of post-combustion 806 CO₂ capture process in greenfield power plants, Energy 35 (10) (2010) 807 $4030-4041$.
- 808 [75] IEAGHG, $CO₂$ capture in low rank coal power plants, Technical Study
- 809 2006/1, IEA Greenhouse Gas R&D Programme (IEA GHG), Cheltenham,
- ⁸¹⁰ United Kingdom, 2006.
- 811 [76] D. Wang, A. Bao, W. Kunc, W. Liss, Coal power plant flue gas waste heat $\frac{1}{2}$ and water recovery, Applied Energy 91 (1) (2012) 341-348.
- 813 [77] X. Wang, Z. Hu, S. Deng, Y. Xiong, H. Tan, Effect of biomass/coal co- $\sin 4$ firing and air staging on NO_X emission and combustion efficiency in a ⁸¹⁵ drop tube furnace, in: J. Yan, D. J. Lee, S. K. Chou, U. Desideri, H. Li ⁸¹⁶ (Eds.), International Conference on Applied Energy (ICAE2014), Vol. 61, 817 Energy Procedia, 2014, pp. 2331-2334.
- ⁸¹⁸ [78] G. Xu, S. Huang, Y. Yang, Y. Wu, K. Zhang, C. Xu, Techno-economic 819 analysis and optimization of the heat recovery of utility boiler flue gas, 820 Applied Energy 112 (2013) 907-917.
- 821 [79] G. Xu, C. Xu, Y. Yang, Y. Fang, Y. Li, X. Song, A novel flue gas waste $\frac{1}{2}$ heat recovery system for coal-fired ultra-supercritical power plants, Ap-823 plied Thermal Engineering 67 (1-2) (2014) 240-249.
- ⁸²⁴ [80] T. Harkin, A. Hoadley, B. Hooper, Process integration analysis of a brown $\frac{1}{25}$ coal-fired power station with $CO₂$ capture and storage and lignite drying, 826 Energy Procedia 1 (1) (2009) 3817-3825.
- 827 [81] T. Harkin, A. Hoadley, B. Hooper, Reducing the energy penalty of $CO₂$ ⁸²⁸ capture and compression using pinch analysis, Journal of Cleaner Produc- $\frac{18}{9}$ tion 18 (9) (2010) 857–866.
- 830 [82] N. Mac Dowell, M. Fajardy, On the potential for BECCS efficiency im-⁸³¹ provement through heat recovery from both post-combustion and oxy-832 combustion facilities, Faraday Discussions 192 (0) (2016) 241-250.
- ⁸³³ [83] M. Bui, M. Fajardy, N. Mac Dowell, Bio-Energy with CCS (BECCS) ⁸³⁴ performance evaluation: Eciency enhancement and emissions reduction, 835 Applied Energy 195 (2017) 289-302.

- ronmental Control Model Getting Started, Tech. Rep. April, Center for Energy and Environmental Studies, Carnegie Mellon University (2001).
- [91] IEAGHG, CO² Capture at Coal Based Power and Hydrogen Plants, Re- port, International Energy Agency Greenhouse Gas R&D Programme 860 (IEAGHG) (2014).
- [92] S. V. Vassilev, D. Baxter, L. K. Andersen, C. G. Vassileva, An overview $\frac{1}{262}$ of the chemical composition of biomass, Fuel 89 (5) (2010) 913–933.
- ⁸⁶³ [93] Q. Ye, X. Wang, Y. Lu, Screening and evaluation of novel biphasic solvents $\frac{1}{864}$ for energy-efficient post-combustion CO_2 capture, International Journal of ⁸⁶⁵ Greenhouse Gas Control 39 (2015) 205214.
- ⁸⁶⁶ [94] L. Raynal, P. Alix, P.-A. Bouillon, A. Gomez, M. l. F. de Nailly, $\text{M. Jacquin, J. Kittel, A. di Lella, P. Mougin, J. Trapy, The DMXTM$ ⁸⁶⁸ process: An original solution for lowering the cost of post-combustion $\frac{1}{869}$ carbon capture, Energy Procedia 4 (2011) 779–786.
- ⁸⁷⁰ [95] P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bon-⁸⁷¹ gartz, A. Schreiber, T. E. Muller, Worldwide innovations in the develop- $\frac{1}{872}$ ment of carbon capture technologies and the utilization of CO₂, Energy 873 $&$ Environmental Science 5 (6) (2012) 7281-7305.
- ⁸⁷⁴ [96] C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, ⁸⁷⁵ R. Ben Mahfoud, J. Melançon, A. D. Pelton, S. Petersen, FactSage ther-876 mochemical software and databases, Calphad 26 (2) (2002) 189-228.
- ⁸⁷⁷ [97] C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, ⁸⁷⁸ I. H. Jung, Y. B. Kang, J. Melançon, A. D. Pelton, C. Robelin, S. Petersen,
- 879 FactSage thermochemical software and databases recent developments, 880 Calphad 33 (2) (2009) 295-311.
- ⁸⁸¹ [98] W. L. Luyben, Heat exchanger simulations involving phase changes, Com-882 puters and Chemical Engineering 67 (2014) 133-136.
- 883 [99] M. Sami, K. Annamalai, M. Wooldridge, Co-firing of coal and biomass ⁸⁸⁴ fuel blends, Progress in Energy and Combustion Science 27 (2) (2001) 885 $171 - 214$.
- 886 [100] P. Marier, H. P. Dibbs, The catalytic conversion of SO_2 to SO_3 by fly ash 887 and the capture of SO_2 and SO_3 by Co and MgO , Thermochimica Acta 888 8 (1) (1974) $155-165$.
- ⁸⁸⁹ [101] V. R. Gray, Retention of sulphur by laboratory-prepared ash from low-890 rank coal, Fuel 65 (11) (1986) 1618–1619.
- [102] J. V. Ibarra, J. M. Palacios, A. M. de Andrés, Analysis of coal and char 892 ashes and their ability for sulphur retention, Fuel $68(7)$ (1989) $861-867$.
- [103] M. M. Roy, K. W. Corscadden, An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove, Applied Energy 99 (2012) 206-212.
- [104] M. M. Roy, A. Dutta, K. Corscadden, An experimental study of com- bustion and emissions of biomass pellets in a prototype pellet furnace, 898 Applied Energy 108 (2013) 298-307.
- [105] T. Nussbaumer, Combustion and co-combustion of biomass: Fundamen- tals, technologies, and primary measures for emission reduction, Energy 901 $&$ Fuels 17 (6) (2003) 1510-1521.
- [106] A. Gani, K. Morishita, K. Nishikawa, I. Naruse, Characteristics of co- combustion of low-rank coal with biomass, Energy & Fuels 19 (4) (2005) $1652 - 1659$.
- 905 [107] H. Rüdiger, A. Kicherer, U. Greul, H. Spliethoff, K. R. G. Hein, Inves- tigations in combined combustion of biomass and coal in power plant 907 technology, Energy & Fuels 10 (3) (1996) 789–796.
- 908 [108] Y. Hu, S. Naito, N. Kobayashi, M. Hasatani, CO_2 , NO_X and SO_2 emis- sions from the combustion of coal with high oxygen concentration gases, 910 Fuel 79 (15) (2000) $1925-1932$.
- 911 [109] EPA, Technical bulletin: Nitrogen oxides (NO_X) , why and how they are controlled, Tech. rep., North Carolina, US (1999).
- [110] I. Obernberger, T. Brunner, G. Bärnthaler, Chemical properties of solid biofuelssignicance and impact, Biomass and Bioenergy 30 (11) (2006) $973 - 982$.
- [111] IEA, OECD, Power Generation from Coal: Measuring and Reporting Ef-917 ficiency Performance and $CO₂$ Emissions, Tech. rep. (2010).
- [112] DECC, [UK Bioenergy Strategy,](https://www.gov.uk/government/uploads/system/uploads/attachment{_}data/file/48337/5142-bioenergy- strategy-.pdf) Tech. Rep. April, DECC (2012).
- URL [https://www.gov.uk/government/uploads/system/uploads/](https://www.gov.uk/government/uploads/system/uploads/attachment{_}data/file/48337/5142-bioenergy- strategy-.pdf)
- [attachment{_}data/file/48337/5142-bioenergy-strategy-.pdf](https://www.gov.uk/government/uploads/system/uploads/attachment{_}data/file/48337/5142-bioenergy- strategy-.pdf)
- 921 [113] D. Adams, Flue gas treatment for CO_2 capture, $CCC/169$, IEA Clean Coal Centre, London, United Kingdom, 2010.
- [114] M. Azzi, S. Day, D. French, B. Halliburton, A. Element, O. Farrell, \bullet P. Feron, Impact of flue gas impurities on amine-based PCC plants – Final Report, Australian National Low Emissions Coal Research and De-velopment (ANLEC R&D), CSIRO, Australia, 2013.
- μ ₂₂₇ [115] L. Linde, Implementation of beccs in a polygeneration system—a techno- economic feasibility study in the district heating network of stockholm, 929 Thesis (2016).
- 930 [116] J. Turner, Lean and clean: why modern coal-fired power plants are better by design, Power Technology, http://www.power- technology.com/features/featurelean-and-clean-why-modern-coal-red-power-plants-are-better-by-design-4892873/, 2016.
- [117] D. Probasco, B. Ruhlman, Coal-red generation cost and perfor-935 mance trends, Power Magazine, http://www.powermag.com/coal-fired-generation-cost-and-performance-trends/, 2011.
- 937 [118] X. Tan, Supercritical and ultrasupercritical coal-fired power generation, 938 Journal of the Washington Institute of China Studies 6 (1) (2012) 53–72.