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A B S T R A C T

The proposed method is based on the laser flash technique. Radially distributed thermograms are calculated via
a finite element model and used in an inverse method by optimizing either specific heat or thermal conductivity
of a material. These properties are evaluated as a function of radius and respective temperature. Two approx-
imations are introduced inferring the dependence of each property as a function of radius – a polynomial
(PNOM) approximation and an iterative gradient (IG) approximation. The method was tested using synthetic
thermograms and both approximations were capable of yielding excellent results. The IG approximation was
more universal and less sensitive to initial fitting parameters. The PNOM approximation was less computa-
tionally expensive but was prone to artefacts (such as un-physical minima or maxima) and more dependent on
initial fitting parameters. Both approximations were successfully used on experimental data from UO2 and
isostatically pressed graphite. Thermal conductivity was within 5% of the reference empirical correlation for
UO2 and within 7% of the reference curve for graphite.

1. Introduction

The growing need for the determination of thermo-physical prop-
erties of materials has prompted the development of innovative tech-
niques. One of these techniques is the laser flash method. The original
method was developed by Parker, in which he used a flash lamp to
produce a heat pulse traveling from the front to the rear surface of a
specimen. By modelling the heat transfer conditions of the experiment,
he was able to obtain an expression for thermal diffusivity [1]. His
analytical solution assumed an instantaneous surface heat source,
sample opacity, only axial heat conduction and no heat losses. Cowan's
solution [2] introduced radiative heat losses, while Ronchi et al. also
considered the radial conduction of heat [3] and determined simulta-
neously thermal diffusivity, specific heat capacity and hence thermal
conductivity by least squares fitting between model and experimental
data. Recently, a finite element model was developed by Pavlov et al.
[4] incorporating the measured spatial profile of the laser beam. Other
works made use of spatially resolved infrared thermography in order to
evaluate the thermal diffusivity of a material [5–7]. However, the
adopted analytical solutions either neglected heat losses [8] or con-
sidered one-dimensional heat flow [6,7]. So far all methods evaluate a
single value of a thermal property from a single measurement. Fur-
thermore, all of the above models assume the temperature, and hence

properties, throughout the sample to be constant.
In this work an improved method is described by extending the

previously developed inverse method [4] to evaluate either thermal
conductivity or specific heat capacity as a function of radius, and hence,
temperature. In order to achieve this goal, the numerical model will be
coupled with the measurements obtained from an infrared camera. This
coupling allows the determination of temperature dependent curves, of
the aforementioned properties, with a single laser flash measurement.
Hence, the method offers a means of measuring thermal conductivity or
specific heat capacity as a function of temperature (i.e. an entire tem-
perature dependent profile) with a single measurement. Furthermore,
in a future study the method's capability of evaluating the properties of
radially heterogeneous materials could be tested. An example of such
systems is irradiated nuclear fuel [9,10], whereby the microstructure
and composition of the material varies strongly with respect to the fuel
pellet radius. However, spatial heterogeneity is not the subject of the
current study. This work is focused on introducing the new method,
testing its theoretical capability of retrieving the intrinsic, i.e. correct or
exact, temperature dependent profile of either specific heat or thermal
conductivity (using synthetic or computer generated data) and finally
testing the methodology with real experimental data.
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Fig. 1. Schematic of experimental set-up re-
presenting a modified version of a diagram
published previously [4].

Fig. 2. Logic diagram of the inverse method program.
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2. Methodology

2.1. Laser flash experiment

Fig. 1 shows the schematic of the laser flash equipment. A disc
shaped sample is held by three or four zirconia pins to a graphite
sample holder. These are placed in a chamber or steel vessel of con-
trolled atmosphere of argon at a pressure of 4 bar. Prior to filling the
buffer gas, the chamber is flushed. The flushing is performed by filling
and subsequently pumping out a mixture of Ar-5%H2 (vacuum is lim-
ited to 5 μbar). This is done to reduce the residual moisture content. The
maximum temperature of the steel vessel during the experiment has
been estimated to be of the order of 325 K. The chamber has two
sapphire windows, through which two continuous-wave lasers (Nd-YAG
with λ = 1064 nm produced by TRUMPF and Haas Laser GmbH)
preheat each side of the specimen from around 300 K to a chosen
equilibrium temperature. The laser spots are aligned at the centre of the
sample surfaces. The equilibrium temperatures are usually varied from
around 1000 K to above 3000 K. The temperatures are continuously
monitored by high speed pyrometers on the front and rear sides. Fur-
thermore, a spectropyrometer measures the radiance on the front side
at 256 wavelengths in the range of 500–1000 nm and is used for
evaluating the spectral emissivity of the sample [4]. The acquisition
time of the spectropyrometer can range from 40 ms to 1 s, depending on
the temperature measured and a maximum of 256 time frames can be
recorded in a single measurement. The acquisition time used for the
high speed pyrometers can be as low as 500 ns (50 μs is typically used)
and the recorded time interval typically consists of at least 70000 time

frames. The relative error on the temperature measurement is less than
2% (inclusive of the error arising from the uncertainty of the measured
emissivity). The focal distances of the high speed pyrometers are
381 ± 5 mm and 450 ± 5 mm, respectively, while the focal length of
the spectropyrometer is 440 ± 5 mm.

Once a steady state has been obtained, a short laser pulse is applied
(generally between 1 ms and 10 ms) by ramping up and then down the
power of the front laser. On the rear side the rise in temperature is
measured as a function of time via a Phoenix infrared camera with a
very narrow band pass filter centred at 1600 nm, which is automatically
triggered upon the initiation of the laser pulse. A set of radially dis-
tributed thermograms is then recorded and transferred directly to a
personal computer (PC). The thermal camera (with the narrow band
pass filter) was calibrated by the Laboratoire national de métrologie et
d'essais for a temperature range of 900 K–3200 K without the sapphire
window. The transmissivity of the sapphire window has been estimated
at JRC Karlsruhe to be 0.86 ± 0.03. All pixels have been corrected for
non-uniformity via a two point correction. The acquisition time of the
thermal camera is 200 μs and 4000 time frames are recorded during
each measurement. The focal length of the camera is 600 mm. The
camera, lasers and pyrometers are positioned at angles no greater than
5° to the normal of the plane parallel to the sample surface.

The pyrometer measurements are transferred to a 14-bit digitiser
(Nicolet Pro 34) and then stored on a PC. Finally, all recorded radiance
signals are converted into an actual temperature reading, using the
spectral emissivity estimated by the spectropyrometer. (It is worth
noting that the wavelength of operation of the camera is above the
upper limit of the spectropyrometer. For the current samples, i.e. UO2

Fig. 3. Steady state and transient measurements recorded using an infrared camera. (A) example of a 3D steady state temperature profile of a UO2 sample. The magnitudes of the x and y
axes are indices and not metric quantities.; (B) the axisymmetric steady state temperature distribution deduced from (A); (C) example of radially distributed thermograms for a UO2

sample measured by the infrared camera compared to the optimised finite element (FEA) solution. (D) radially distributed synthetic thermograms (produced via the FEA model with
perturbed input parameters and added artificial noise) compared to the optimised finite element solution.
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and isostatically pressed graphite, there is available literature data
showing the invariance of emissivity within an extended wavelength
range. However, in other cases spectral emissivity may vary strongly as
a function of wavelength. Hence, an additional device or method would
necessary for determining spectral emissivity at 1600 nm).

2.2. Fitting procedure

A logic diagram of the method is shown in Fig. 2. The experimental
thermograms are converted from a signal reading to a temperature
reading. Prior to the onset of the laser pulse, the base lines of the ra-
dially distributed pixels are recorded. This provides the information for
a base line correction. Furthermore, for noisy data fast Fourier trans-
forms have been employed to filter the noisy data. The detailed de-
scription of the filtering approach has been described in detail in a
previous study [4]. Additionally, bad pixels (defective pixels con-
strained to the maximum signal value, to which the signal of a neigh-
bouring pixel is assigned) in the camera can be detected and omitted
during the fitting stage.

The model thermograms are calculated via a finite element analysis
(FEA) model created with FlexPDE [11] (more details in section 2.4)
and are then fitted to experimental data using one of two approxima-
tions - a functional and an iterative gradient (IG) approximation.
Figs. 3A, 3B and 3C show the typical steady state and transient profiles
obtained from the infrared camera. Furthermore Figs. 3C and 3D show
the converged transient model results compared to experimental data as
well as simulated data (with added white noise and an input parameter
peturbation of 0.5%).

2.3. Fitting approximations

Two approximations are used to model the radially distributed
thermograms obtained experimentally – a functional approximation
and an iterative gradient (IG) approximation. The functional approx-
imation pre-sets an equation based radial dependence (and hence
temperature dependence) on the calculated properties. The parameters
describing the property's function are then optimised. In this study, a
polynomial function is used to approximate the property variation as a
function of radius and hence this approximation is referred to as the
PNOM approximation. The respective fitting parameters are the N

number of constants describing a polynomial of order N-1, which can be
seen from equation (1). In equation (1) thermal conductivity (k(r))
serves as an example property; the method can be applied to multiple
properties such as thermal conductivity, specific heat capacity and
possibly total hemispherical emissivity. Throughout the rest of this
work a 2nd order polynomial will be used, which is described by 3
constants (a a a, , )0 1 2 , i.e. fitting parameters.

∑=
=

−
−k r a r( )

i

N

i
i

1
1

1

(1)

The IG approximation does not assume a global functional form for
the radial dependence (and hence temperature dependence) of the
calculated property. Using this approach the central thermal con-
ductivity is calculated first and stored at its respective position, while
the neighbouring value is allowed to fluctuate and thus establish a
linear gradient between the two radial positions. The calculated prop-
erties are stored and the iteration process moves in a radial direction
from the centre towards the outer edge.

Fig. 4 shows a schematic of the IG approximation. The first iteration
assumes constant properties along the sample radius, which is a suffi-
ciently good approximation for a relatively large (in terms of surface
area) and homogenous surface heat source. The obtained values (e.g. k
(r1)) in the first iteration are stored and are invariant within the first
radial segment (first small section of the rectangular box in Fig. 4)
during iteration 2. It must be noted that the first radial segment is made
infinitesimally small, confining the converged property value to r1 = 0
(e.g. k(r = 0)). During iteration 2 a linear gradient is established to
describe the local property variation as a function of radius. By using
the stored properties from the previous iteration (k(rstored) in equation
(2)) only one parameter is varied, namely the gradient of the line (e.g.
m2 or equivalently

=
dk
dr r r2

in equation (2)). At a critical radius (rc) the
linearly varying property becomes radially invariant. Hence, a step
function is achieved with a cut-off radius at rc. Upon convergence the
linear variation of the properties is stored within the second radial
segment and the process moves on towards the edge of the axisym-
metric geometry. Another way to imagine this procedure is via a first
order Taylor expansion:

Fig. 4. Schematic of the first three iterations of the iterative gradient approximation. In black are all the values, which are allowed to vary during the optimization procedure of the
respective iteration, while in red are the values which have been stored and fixed as a result of prior iterations. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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where i represents the respective iteration and also coincides with the
radial segment identifier (e.g. r r,1 2, etc.).

2.4. Finite element analysis (FEA)

The FEA model, which has been created with the FlexPDE [11]
software, is axisymmetric. The model describes the transient conditions
in the sample immediately after the onset of the laser pulse.

The governing equation is the transient heat equation:

∂
∂

= ∇ ∇r C r k r Tρ( ) ( ) T
t

·( ( , ) T)p 0 (3)

where ρ is the density (kg m−3), Cp is the specific heat capacity (J kg−1

K−1)), k is thermal conductivity (J s−1 m−1 K−1), T is temperature (K)
and t is time (s). Thermal conductivity (k r T( , ))0 is defined in a more
general mathematical form as both space and temperature dependent.
However for the systems considered in the current work this property is
purely temperature dependent, as the investigated materials are spa-
tially homogeneous and isotropic.

Furthermore, a reduced variable is introduced such that:

= + = +T t r z T r z Ψ t r z T Ψ( , , ) (0, , ) ( , , ) 0 (4)

where T0 is the steady state temperature (K) and Ψ is the reduced
variable temperature (K). The reduced variable is needed so that only
the transient part of the experiment is simulated. This allows for the
experimental steady state profile to be used as input and not simulated.
The experimental steady state temperatures, at a particular radial po-
sition, are then the temperatures corresponding to the evaluated
property at that same radial location. Based on the reduced variable
(reduced temperature), the reduced (Neumann) boundary conditions
expressing the heat balance on the surfaces are:
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where h(T) is the temperature dependent convective heat transfer
coefficient (W m−2 K−1) and determines the amount of heat lost due to
natural convection (details on the calculation of this property have been
provided in a previous study [4]), εtot is the total hemispherical emis-
sivity, which is related to the heat lost due to radiation and ε(1064 nm) is
the emissivity at the laser wavelength (absorptivity) and represents the
fraction of laser light absorbed by the sample, zsample is the specimen
thickness (m) and rsample is the sample radius (m). Finally, the left hand
side of equations (5)–(7) represents the heat flux transferred from the
sample surface to the bulk (also known as Fourier's law).

In accordance with equation (4), the initial condition is:

==Ψ 0t 0 (8)

The properties of the graphite and UO2 samples used, together with
the corresponding laser parameters, are tabulated in Table 1 and
Table 2. The relative convergence criteria used for the temperature
calculation performed by the FEA model is 0.2%. Quadratic triangular

mesh elements (6 nodes per element) have been used. Adaptive re-
meshing has been used starting from a mesh with 30 grid points
alongside the larger dimension and a proportional number of grid
points alongside the smaller dimension. This number of grid points has
been determined in order for the numerical error of the variables to
converge with respect to the initial mesh density and be lower than
0.2%. The time step is automatically adjusted by FlexPDE as for the
cubic term in a Taylor expansion of the variables in time to be lower
than the convergence criteria applied (0.2%) [11]. Finally, the energy
density of the laser pulse in equation (5) is described by the following
relationship:

=θ P r t
πr
( , )

b
2 (9)

where P (J s−1) is the power of the laser pulse, θ is the power density (J
s−1 m−2) deposited by the beam, rb is the waist or beam spot radius
(m).

2.5. Optimization algorithm

The Levenberg-Marquardt method [18,19] was used to find the least
square minimum between the experimental thermograms and the
model thermograms. The convergence criterion used is the relative
difference in the parameter vector between two consecutive iterations.
If this absolute relative difference is lower than 10−4 after two con-
secutive parameter updates, the code terminates. The other con-
vergence criterion is related to the gradient of the least square differ-
ence between model and experimental thermograms (see equation
(12)) and is discussed below. The method has been designed to work
with four types of fitted parameters, namely, thermal conductivity (k),
specific heat capacity (Cp) heat transfer coefficient (h) and total hemi-
spherical emissivity (εtot). Thermal diffusivity can also be identified (as
suggested in Fig. 1), indirectly from the other fitted properties. This
means that if for instance the code is used to evaluate thermal con-
ductivity, then by using the obtained results, in addition to literature
values for specific heat and density, one can calculate thermal diffu-
sivity:

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

p

k
c
h

ε

p

tot (10)

The parameters in equation (10) can be scalars or vectors (e.g.
several parameters per property describing a polynomial functional
form of the property). It is also important to note that due to the cor-
relation results shown in section 3.1, the proposed methodology in this
work can only estimate one property at a time (out of the four given by
equation (10)). The other properties then must be provided as input.
The cost function (fc) for the least square minimisation is the following:

Table 1
Summary of sample characteristics and laser beam parameters.

Material Parameter (units) Value range

UO2 room temperature density ρ273 (kg m−3) 10200
porosity (%) 7
thickness (mm) 0.9
radius (mm) 4.175
beam spot radius (mm) 2.5
pulse duration (ms) 10

graphite room temperature density ρ273 (kg m−3) 1810
porosity (%) 20
thickness (mm) 3.05
radius (mm) 2.495
beam spot radius (mm) 1.5
pulse duration (ms) 10
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where fM is the time dependent temperature profile calculated by the
model, fE is the time dependent temperature profile measured by the
infrared camera, ti is the time at which a temperature reading was re-
corded by the camera, after initiation of the laser pulse, i is the index of
the temperature measurement at a particular time and N is the total
number of temperature records acquired at different times ti.

3. Results and discussion

3.1. Sensitivity analysis and parameter correlation

The method presented in this paper can have a set of fitted (output)
parameters as well as various input parameters. It is important to un-
derstand how each of these parameters affects the model thermograms,
in order to: 1) asses the relative importance of input and fitting para-
meters 2) examine the interdependence between parameters. As a first
step the sensitivity coefficients (Si) are calculated for each parameter:

=S t
df t

dp
p( )

( )
i

i
i (13)

where f t( ) is the model thermogram (K), pi is the respective parameter
and t is time (s). The sensitivity curves for all parameters are shown in
the Appendix. Fig. 5 shows the integral sensitivity coefficients ac-
cording to equation (14). All derivatives and integrals have been per-
formed numerically using the forward difference method and trape-
zoidal rule, respectively.

∫ ∫=S t
df t

dp
p dt( )

( )
i

i
i

0

1.5

(14)

where the limits of the integral represent the duration of the transient
(thermogram), i.e. a duration of 1.5 s. A high value of S t( )i indicates
high sensitivity. Parameters with larger sensitivity (or also integral
sensitivity) coefficients have relatively larger influence on the output
compared to parameters with lower S t( )i values. Fig. 5 shows a general
nonlinear drop in the sensitivity of all parameters towards the edge of
the sample. This follows the radial drop in the deposited laser energy
density from the centre of the sample towards the outer periphery. This
could lead to experimental disturbances (e.g. noise) having an

Table 2
Material properties of UO2 and isostatically pressed graphite used as input in the FEA model.

Material Property Expression Reference

UO2 ρ(T) × + × − × + ×− − − −ρ {9.973 10 9.08 10 T 2.705 10 T 4.391 10 T }273
1 6 6 2 13 3 [12]

ε(1064 nm) 0.9 [13]
ε(1600 nm) + × −−0.836 4.321 10 (T 3120)6 [14]

εtot 0.85 [15]
graphite ρ(T) × × − × + × +− − −T T Tρ (5 10 8 10 6 10 0.9981)273

13 3 10 2 6 [16]

ε(1064 nm) × +− T4.053156 10 0.87390635 [16]
ε(1600 nm) 0.87 [4]
εtot − × − T0.92 5.33 10 6 [17]

Fig. 5. Integral sensitivity coefficients vs normalised radius (r/rp) for the potential fitting
parameters - thermal conductivity (k), specific heat (Cp), convective heat transfer coef-
ficient (h) and total hemispherical emissivity (εtot), as well as the input parameters –
spatial laser power profile (P(r)), normal spectral emissivity at 1064 nm (ε1064), sample
thickness (ts). These have been obtained by applying equation (13) to the results pre-
sented in Figure A1 (see Appendix); (B) Zoom-in of the lower right corner of (A).
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increasingly stronger adverse effect on the accuracy of the property
values towards the sample periphery. However, this negative effect
could be partially offset by the increase in the relative integral sensi-
tivity of the parameters of interest, namely thermal conductivity and
specific heat capacity. Fig. 5 shows thermal conductivity and specific
heat capacity become the most sensitive parameters at r/rp = 1.

An important way to analyse the potential and also the limitations
of the proposed methodology is to look at the interdependence of
parameters and in particular the Pearson correlation coefficient is used
to do this. This parameter can be calculated in the following manner:

∫

∫ ∫⎜ ⎟

=
⎛
⎝

⎞
⎠

⎡
⎣
⎢

⎛
⎝
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⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

⎤
⎦
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ρ
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·

·
ij

t df t
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t df t
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t df t
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0
( ) ( )

0
( ) 2

0
( )

2 1/2

D

i j

D

i

D

j (15)

where ρij is the correlation coefficient between parameters i and j. By
calculating the coefficient for each pair in the parameter vector (refer to
equation (10)), it can be determined which pairs of parameters may be
suitable for simultaneous determination. Highly correlated parameters,
with their absolute correlation coefficients (positive or negative) ap-
proaching unity, are not suitable for simultaneous fitting as it is easy to
obtain good fits (low least squares difference between model and ex-
perimental data) with a set of physically unsound parameter values.
Hence, the inverse problem becomes highly ill-posed.

In Fig. 6 the correlation curves for 6 unique pairs of fitting

Fig. 6. The correlation “Pearson” coefficient of parameter pairs vs. relative radial posi-
tion. The chosen parameters are based on equation (10) and are thermal conductivity (k),
specific heat (Cp), convective heat transfer coefficient (h) and total hemispherical emis-
sivity (εtot). The numerical values of the correlation coefficients for each parameter pair
can be found in Tables A1 to A5 (see Appendix).

Fig. 7. Graph A shows specific heat vs. normalised radius. Graph B shows thermal conductivity vs. normalised radius. Both plots compare the output of the two approximations (Iterative
gradient (IG) approximation vs. polynomial (PNOM) approximation) to the exact solution (the exact solutions are the property profiles used to generate the synthetic thermograms, which
were then used to test the approximations). The two property profiles were obtained from independent runs of the IG and PNOM approximations (i.e. the two properties were not fitted
simultaneously). Graph C shows specific heat vs. temperature. Graph D shows thermal conductivity vs. temperature. Graphs C and D were obtained by assigning the known temperature at
each radial position to the corresponding property value at the same radial coordinate.

T.R. Pavlov et al. International Journal of Thermal Sciences 124 (2018) 98–109

104



parameters are shown (based on the parameters in equation (10)). The
correlation coefficients have been plotted as a function of radius in
order to examine the radial dependence between parameters. This is
done, in order to understand if simultaneous property determination is
possible for all radially distributed thermograms. In Fig. 6 it is evident
that the heat loss parameters heat transfer coefficient (h) and total
hemispherical emissivity (εtot) are very strongly positively correlated
and hence cannot be fitted simultaneously. Furthermore, all parameter
pairs tend to become strongly correlated towards the edge of the
sample, making simultaneous fitting unadvisable. However, simulta-
neous fitting of thermal conductivity, specific heat capacity and one of
the heat loss parameters (preferably total hemispherical emissivity due
to the significantly larger sensitivity) is possible for the central ther-
mogram. This has been already investigated by Pavlov et al. [4] and
Ronchi et al. [3]. Hence, using the current methodology one should
investigate the radial profile of one property at a time, in order to
improve the well-posedness of the inverse problem.

3.2. Synthetic data tests

In order to assess the two approximations (IG approximation and
PNOM approximation), a set of synthetic thermograms were created
based on the thermophysical properties of UO2, a material which has
been widely studied in literature [12]. Most of these properties are
listed in Tables 1 and 2. The input parameters – steady state radial
temperature profile of the sample, sample dimensions and laser beam
spot characteristics, are obtained experimentally, based on a laser
heating experiment (Fig. 1) performed on a UO2 specimen. The re-
ference thermal conductivity used was taken from Ronchi et al. [3],
while the reference specific heat capacity was taken from Fink et al.
[12]. The functions of these properties can be found in the Appendix
(equations A1 and A2).

Once, the synthetic thermograms are calculated, each approxima-
tion is initiated away from the optimal parameters describing the in-
trinsic or exact profile of a property– either specific heat capacity or
thermal conductivity. As it was shown in the previous section, it is
important to fit only one property and its associated parameters at a
time. Fig. 7 compares the two approximations and their solutions to the
exact solution (input property for producing synthetic data). Separate
evaluations were completed for thermal conductivity and specific heat
capacity.

Fig. 7 clearly shows that both approximations yield results, which
are representative of the exact solutions. The IG approximation out-
performs the PNOM approximation in the case of thermal conductivity,
while the PNOM approximation gives a slightly better estimate of the
specific heat capacity profile. This can also be shown by comparing the
relative standard deviation (RSD) and R2 values of each approximation
for the two properties (based on equations (16)–(18)). In the case of
specific heat capacity the PNOM output exhibits both a lower RSD, as
well as higher coefficient of dependence (R2), while for thermal con-
ductivity the output of the IG approach is associated with both a lower
RSD and higher R2.

∑= −
−

−
R

f r f r
f r f

1
( ( ) ( ))

( ( ) )i

N
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2
2
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where fexact is the exact profile of the property, fevaluated is the evaluated
profile of the property using either the PNOM or IG approximation, fexact
is the mean of the exact property profile (see Table 3).

The radial profile of thermal conductivity cannot be very exactly
reproduced by a 2nd order polynomial and hence the PNOM approx-
imation performs worse. Furthermore, the polynomial can yield un-
physical phenomena such as pronounced minima or maxima, while in
reality this is just a functional-fitting artefact. This can be observed in
Fig. 7B and 7D where the PNOM approximation erroneously predicts a
minimum in thermal conductivity at r/rp ≈ 0.25 at around 1925 K. In
terms of computation time the IG approximation is more expensive and
scales linearly with the number of radially distributed thermograms.
The IG approximation was initialised around 64% away from the exact
profile (for thermal conductivity at 3.4 W m−1 K−1 while for specific
heat at around 600 J kg−1 K−1). The PNOM approximation was in-
itialised with parameter values only 15% away from the values re-
presenting the optimal fit to the exact profile as the PNOM approx-
imation is more sensitive to the initial values of its parameter vector.
Hence, in cases where the temperature dependence of the evaluated
property is completely unknown, the converged parameter set may not
accurately reflect the true underlying property profile. The IG approach
is less sensitive to the initial values as it fits a single parameter per
property at a time. This makes the IG approximation very attractive
when there is no prior knowledge of the temperature dependence of a
property. Hence, the IG approach is more general and non-parametric
in nature.

3.3. Tests with experimental data

Ultimately, the capabilities of the newly developed methodology
and its coupling with the laser flash set-up (described in Section 2.1)
were tested. Two different materials were investigated and their
thermal conductivities were evaluated. These materials were UO2 and
isostatically pressed polycrystalline graphite. The results of their
thermal conductivities are presented in Fig. 8. It is clear that the PNOM
approximation and the IG approximation yield good results for both
materials. The UO2 results were corrected to 95% porosity using the
Brand and Neuer correction [20]. The model curve in Fig. 8B is re-
presentative of the experimental data in this temperature range, as has
been previously shown by Pavlov et al. [4]. The error on thermal
conductivity is 19.6% based on a 3-level full factorial design described
in detail in a previous study [4]. It must be noted, however that the
relative error has been assumed independent of the radial location at
which the property has been evaluated. This assumption will be as-
sessed in a future study.

Fig. 8 shows rather flat thermal conductivity profiles with respect to
temperature for both materials. In the case of graphite, this is due to its
high thermal conductivity. Hence, the gradient in temperature across
the sample radius is small and the thermal conductivity could only be
evaluated in a small temperature range as shown in Fig. 8B. Uranium
dioxide, on the other hand, exhibits a minimum in thermal conductivity
at around 2000 K. In the vicinity of this stationary point the thermal
conductivity of UO2 does not vary significantly. This minimum is due to

Table 3
Comparison of the relative standard deviation (RSD) and the coefficient of determination
(R2) for the output of each approximation.

Statistical parameter IG PNOM

RSD of Cp (%) 0.23 0.07
RSD of k (%) 0.15 0.34
R2 of Cp 0.967 0.997
R2 of k 0.993 0.971
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the competition between: 1) degradation of lattice thermal conductivity
and 2) increasing electronic thermal conductivity due to mobilisation of
electrons (via small polaron hopping) [3,21].

3.4. Experimental limitations and future work

One of the limiting factors when measuring the temperature re-
sponse on the rear side of the specimen is the size of source effect in-
herent to all devises measuring radiance, such as pyrometers or thermal
cameras. This implies that the temperature measurement does not occur
at a discrete spatial point on the surface but is rather an integral
quantity of the spatial response function (point spread function) of the
devise and the spatial temperature distribution on the measured sur-
face. This effect is not particularly problematic at the centre of the
sample surface (when using the experimental configuration described
in this work), where the temperature profile is rather flat and the size of
source effect can be considered to be negligible. However, towards the
edge of the sample, due to steeper temperature gradients such effects
may become significant. Hence, a correction procedure should be de-
vised as part of a future study. Another limitation arose due to a tran-
sient power instability in the rear laser (this laser was used for pre-
heating the samples and not for pulsing). With increasing power,
random power oscillations became apparent (most likely due to the
aging and deterioration of components related to the voltage control).
These may have corrupted the transient measurements (thermograms).
Hence, a laser with a more stable power output will be used in the
future to eliminate this source of uncertainty.

The implementation of the previously suggested improvements will
benefit future experimental studies and tests on materials with stronger
property variations with respect to temperature. Furthermore, the ap-
plication of more precise, higher resolution thermal cameras will enable
the method to be even more sensitive to property variations and
achieve its full theoretical potential. Future work will also include
testing the method and the two approximations on radially hetero-
geneous materials. Finally, with regard to the currently used noise

filtering algorithm, in the future more sophisticated approaches, such as
Tikhonov regularisation [22] or Wiener filter based conjugate gradient
minimisation [23], could be employed for establishing the optimal filter
width.

4. Conclusions

A new inverse method has been developed by coupling a numerical
model with a laser flash equipment. The method can evaluate thermal
conductivity or specific heat capacity as a function of radius and hence
temperature with a single measurement. Two approximations were
used for the dependence of each property as a function of radius – a
polynomial (PNOM) approximation and an iterative gradient (IG) ap-
proximation.

The high correlation between fitting parameter pairs does not make
simultaneous parameter determination favourable. The synthetic data
tests show that both approximations were capable of yielding very good
results. The IG approximation is more universal and less sensitive to the
fitting initialisation, while the PNOM approximation is less computa-
tionally expensive, however, prone to functional artefacts (such as un-
physical minima or maxima) and more dependent on the initial fitting
parameters.

The experimental results for thermal conductivity of UO2 and iso-
statically pressed graphite are in good agreement with literature cor-
relations. This provides further confidence in the proposed metho-
dology and its application to other systems.
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Fig. 8. Experimental evaluation of thermal conductivity of UO2 vs. Temperature (Fig. 8A) Experimentally evaluated thermal conductivity of isostatically pressed graphite vs. Temperature
(Fig. 8B). Both properties have been compared to the available literature. The thermal conductivity for each material was evaluated with both the IG approximation and the PNOM
approximation. Error bars correspond to two standard deviations combined relative error.
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Appendix

Fig. A1. Sensitivity coefficients S (K) on the rear boundary as a function of time computed using the thermo-physical properties of UO2 for various parameters (thermal conductivity (k),
specific heat (cp), convective heat transfer coefficient (h), the total hemispherical emissivity (εtot), spatial laser beam profile (P(r)), absorptivity (ε1064) and thickness (ts)). A) radial
location r = 0; B) radial location r = rB/2; C) radial location r = rB; D) radial location r = rB + (rP - rB)/2; E) radial location r = rp; (rB – beam spot radius (m), rP – sample radius (m)).
The range of each x-axis in each subplot is identical to the one shown in E).

Table A1
Correlation matrix for the four possible fitting parameters at r = 0.

k Cp h ε

k 1.00 −0.74 0.11 0.11
Cp −0.74 1.00 0.56 0.56
h 0.11 0.56 1.00 1.00
ε 0.11 0.56 1.00 1.00

Table A2
Correlation matrix for the four possible fitting parameters at r = rB/2. (rB stands for beams spot radius)

k Cp h ε

k 1.00 −0.71 0.15 0.14
Cp −0.71 1.00 0.55 0.55
h 0.15 0.55 1.00 1.00
ε 0.14 0.55 1.00 1.00
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Table A3
Correlation matrix for the four possible fitting parameters at r = rB. (rB stands for beams spot radius)

k Cp h ε

k 1.00 −0.82 −0.14 −0.14
Cp −0.82 1.00 0.63 0.63
h −0.14 0.63 1.00 1.00
ε −0.14 0.63 1.00 1.00

Table A4
Correlation matrix for the four possible fitting parameters at r = rB + (rP - rB)/2. (rB stands for beams spot radius while rP stands for pellet radius)

k Cp h ε

k 1.00 −0.99 −0.75 −0.75
Cp −0.99 1.00 0.78 0.79
h −0.75 0.78 1.00 1.00
ε −0.75 0.79 1.00 1.00

Table A5
Correlation matrix for the four possible fitting parameters at r = rP. (rP stands for pellet radius)

k Cp h ε

k 1.00 −1.00 −0.91 −0.91
Cp −1.00 1.00 0.87 0.87
h −0.91 0.87 1.00 1.00
ε −0.91 0.87 1.00 1.00
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where k is thermal conductivity (W m−1 K−1) and T is temperature (K).
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where Cp is specific heat (J kg−1 K−1) and T is temperature (K).

References

[1] W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash method of determining
thermal diffusivity, heat Capacity, and thermal conductivity, J Appl Phys 32 (1961)
1679–1684.

[2] R.D. Cowan, Pulse method of measuring thermal diffusivity at high temperatures, J
Appl Phys 34 (1963) 926–927.

[3] C. Ronchi, M. Sheindlin, Thermal conductivity of uranium dioxide up to 2900 K
from simultaneous measurement of the heat capacity and thermal diffusivity, J Appl
Phys 85 (1999) 776–789.

[4] T. Pavlov, L. Vlahovic, D. Staicu, R.J.M. Konings, M.R. Wenman, P. Van Uffelen,
et al., A new numerical method and modified apparatus for the simultaneous
evaluation of thermo-physical properties above 1500?K: A case study on iso-
statically pressed graphite, Thermochim Acta 652 (2017) 39–52.

[5] F. Cernuschi, A. Russo, L. Lorenzoni, A. Figari, In-plane thermal diffusivity eva-
luation by infrared thermography, Rev Sci Instrum 72 (2001) 3988–3995.

[6] J.F. Bisson, D. Fournier, Influence of diffraction on low thermal diffusivity mea-
surements with infrared photothermal microscopy, J Appl Phys 83 (1998)
1036–1042.

[7] J.-F. Bisson, D. Fournier, M. Poulain, O. Lavigne, Thermal conductivity of yttria –
zirconia single crystals, determined with spatially resolved infrared thermography,
J Am Ceram Soc 83 (2000) 1993–1998.

[8] F. Cernuschi, L. Lorenzoni, P. Bianchi, A. Figari, The effects of sample surface

treatments on laser flash thermal diffusivity measurements, Infrared Phys Technol
43 (2002) 133–138.

[9] J. Spino, K. Vennix, M. Coquerelle, Detailed characterisation of the rim micro-
structure in PWR fuels in the burn-up range 40-67 GWd/tM, J Nucl Mat. 231 (1996)
179–190.

[10] C. Walker, Assessment of the radial extent and completion of recrystallisation in
high burn-up UO2 nuclear fuel by EPMA, J Nucl Mat. 275 (1999) 56–62.

[11] PDE Solutions, FlexPDE, (2013).
[12] J.K. Fink, Thermophysical properties of uranium dioxide, J Nucl Mat. 279 (2000)

1–18.
[13] M. Bober, H.U. Karow, K. Mueller, Study of the spectral reflectivity and emissivity

of liquid ceramics, High Temp - High Press 12 (1980) 161–168.
[14] H. Karow, M. Bober, Experimental investigations into the spectral reflectivities and

emissivities of liquid UO2, Thermodyn Nucl Mat. 1 (1979).
[15] J.H. Harding, D.G. Martin, P.E. Potter, Thermophysical and thermochemical

properties of fast reactor materials, (1989), http://dx.doi.org/10.1177/
0193723509343615.

[16] B. Hay, K. Anhalt, L. Chapman, K. Boboridis, J. Hameury, S. Krenek, et al.,
Traceability improvement of high temperature thermal property measurements of
materials for new fission reactors, IEEE Trans Nucl Sci 61 (2014) 2112–2119.

[17] T. Matsumoto, A. Ono, Specific heat capacity and emissivity measurements of
ribbon-shaped graphite using pulse current heating, Int J Thermophys 16 (1995)
267–275.

[18] D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J

T.R. Pavlov et al. International Journal of Thermal Sciences 124 (2018) 98–109

108

http://refhub.elsevier.com/S1290-0729(17)30337-X/sref1
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref1
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref1
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref2
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref2
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref3
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref3
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref3
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref4
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref4
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref4
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref4
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref5
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref5
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref6
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref6
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref6
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref7
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref7
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref7
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref8
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref8
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref8
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref9
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref9
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref9
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref10
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref10
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref11
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref12
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref12
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref13
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref13
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref14
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref14
http://dx.doi.org/10.1177/0193723509343615
http://dx.doi.org/10.1177/0193723509343615
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref16
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref16
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref16
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref17
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref17
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref17
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref18


Soc Ind Appl Math 11 (1963) 431–441.
[19] J. Moore, The levenberg marquardt method implementation and theory, Conference

on numevical analysis, 1977, pp. 1–12.
[20] R. Brandt, G. Neuer, Thermal conductivity and thermal radiation properties of UO2,

J Non-Equilibrium Thermodyn 1 (1976) 3–23.
[21] T. Pavlov, M.R. Wenman, L. Vlahovic, D. Robba, R.J.M. Konings, P. Van Uffelen,

et al., Measurement and interpretation of the thermo-physical properties of UO2 at

high temperatures: the viral effect of oxygen defects, Acta Mat 139 (2017) 138–154.
[22] K.A. Woodbury, J.V. Beck, Estimation metrics and optimal regularization in a

Tikhonov digital filter for the inverse heat conduction problem, Int J Heat Mass
Transf 62 (2013) 31–39.

[23] F. Bozzoli, S. Rainieri, Comparative application of CGM and Wiener filtering
techniques for the estimation of heat flux distribution, Inverse Probl Sci Eng 19
(2011) 551–573.

T.R. Pavlov et al. International Journal of Thermal Sciences 124 (2018) 98–109

109

http://refhub.elsevier.com/S1290-0729(17)30337-X/sref18
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref19
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref19
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref20
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref20
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref21
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref21
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref21
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref22
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref22
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref22
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref23
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref23
http://refhub.elsevier.com/S1290-0729(17)30337-X/sref23

	A new method for the characterization of temperature dependent thermo-physical properties
	Introduction
	Methodology
	Laser flash experiment
	Fitting procedure
	Fitting approximations
	Finite element analysis (FEA)
	Optimization algorithm

	Results and discussion
	Sensitivity analysis and parameter correlation
	Synthetic data tests
	Tests with experimental data
	Experimental limitations and future work

	Conclusions
	Acknowledgements
	mk:H1_15
	References




