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Abstract: A novel semi-decentralized control strategy is proposed for the integration in the
power system of large populations of flexible loads, such as electric vehicles and “smart”
appliances. To characterize the interactions between the single agents and their effects on the
grid, a game theory framework is adopted. The price responsive appliances are modelled as
competing players, characterizing a stable and efficient solution as a Nash equilibrium (no
device has unilateral interest in changing its scheduled power consumption when the final
electricity price is considered). We extend previous results on distributed control of flexible
demand, proposing a partial centralization of the power scheduling at critical time instants. In
this way, it is possible to ensure convergence to a Nash equilibrium for a wider range of scenarios,
considering higher penetration levels of flexible demand and a wider range of parameters for the
devices. The effectiveness of the proposed scheme is theoretically proved and its performance is
evaluated in simulations, considering a future UK grid with high penetration of flexible demand.
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1. INTRODUCTION

This paper follows the significant transformations of the
power system in its shifting towards the decentralized
paradigm of the smart grid, as summarized by Ipakchi
(2009). In particular, it deals with the increasing penetra-
tion of new devices, such as electric vehicles and “smart”
appliances, that accommodate some flexibility in their
power consumption when they are connected to the grid.
The possible benefits deriving from the growing diffusion
of these loads in the electric network have been assessed
in detail by Albadi and El-Saadany (2008) and Rahimi
and Ipakchi (2010), showing significant potential for an
increased system reliability and a reduction of electricity
bills for private customers. To obtain these results, it is
necessary to devise suitable mechanisms that coordinate
the power consumption of the appliances, taking into ac-
count their impact on global quantities such as power de-
mand and energy prices. The main objective is to design a
control strategy that guarantees energy cost minimization
for the individual loads and ensures a reliable and efficient
operation of the power system. Centralized approaches
have been proposed by Samadi et al. (2012) and Papavasil-
iou and Oren (2014), determining the power consumption
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of the appliances so as to minimize some global quantity of
the system, such as total generation costs. Given the com-
putational complexity and communication requirements
of these schemes for large populations of appliances, dis-
tributed mechanisms have also been evaluated, considering
stochastic optimization (Chen et al. (2012)), congestion
pricing (Fan (2012)) and iterative processes with Lagrange
relaxation (Papadaskalopoulos and Strbac (2013)).

The present work proposes a game theory approach, mod-
elling the individual appliances as rational players that
compete for power consumption at the cheapest hours of
the day. As a starting point, we consider the theoretical
analysis presented in De Paola et al. (2015), where a
suitable final solution has been characterized as a Nash
equilibrium. Necessary and sufficient equilibrium condi-
tions have been provided, determining the possibility of
successfully coordinating, in a decentralized manner, large
populations of price-responsive appliances. The possibility
of taking additional control actions when such equilibrium
conditions are not fulfilled (for example at high penetra-
tion levels of flexible demand) has also been investigated.
We propose in De Paola et al. (2016a,b) a demand sat-
uration technique that limits power consumption by the
flexible devices at critical time instants, ensuring a Nash
equilibrium while minimizing the total task time of the
population. This paper presents a different approach and
extends the initial equilibrium condition by removing some



assumptions on the broadcast demand/price signal and in-
troducing an increased level of centralization for a fraction
of devices, on limited time intervals. After a detailed the-
oretical analysis, we provide a semi-decentralized scheme
that allows to coordinate the appliances and induce a Nash
equilibrium under very general conditions. Decentralized
convergence of flexible appliances to a Nash equilibrium
has already been obtained by introducing some quadratic
term in the cost function of the agents, as proposed by Ma
et al. (2013), or under some conditions on the price func-
tion and the number of devices, as presented for example in
Chen et al. (2014). The main novelty of the proposed semi-
decentralized scheme is the possibility to induce a stable
solution for any penetration level of flexible demand, with
no additional terms in the cost function of the agents nor
precise knowledge of the electricity price function.

The rest of the paper is structured as follows: Section 2
presents the main modelling choices for the flexible loads
and the energy market. The considered game-theoretical
framework, with previous results and the current approach
for convergence to equilibrium, is presented in Section 3.
The proposed semi-decentralized scheme is described in
Section 4 and tested in simulation in Section 5. Conclusive
remarks are finally presented in Section 6.

2. MODELLING OF FLEXIBLE APPLIANCES AND
INTERACTIONS WITH ELECTRICITY MARKET

Our analysis considers large populations of electrical loads
that can flexibly allocate their power consumption within
the considered time interval [0, T ]. Each device can be
characterized by two parameters: its total required energy
E and its minimum task time τ . The latter corresponds to
the time required for task completion if the device operates
at maximum feasible power P = E/τ . The sets of distinct
energy and time parameters in the appliances populations
are denoted by E and T , respectively. The set Uτ,E of
feasible power profiles u : [0, T ] → R, for a device with
parameters τ and E, can be defined as follows:

Uτ,E :=

{
u(t) :

∫ T

0

u(t) dt = E, 0 ≤ u(t) ≤ E

τ
∀t ∈ [0, T ]

}
.

(1)

In a preliminary phase, each device communicates its
parameters τ and E to the system operator which, on
the basis of this data, can calculate their unnormalized
distribution m : T ×E → R+. For τ1, τ2 ∈ T and E1, E2 ∈
E , the quantity

∫ τ2
τ1

∫ E2

E1
m(τ, E) dE dτ corresponds to the

number of devices with τ1 ≤ τ ≤ τ2 and E1 ≤ E ≤ E2.
The properties of the appliances population can then be
summarized by the energy density f , defined below:

f(τ) :=

∫
E
E ·m(τ, E) dE. (2)

Specifically, f(τ) quantifies the total amount of energy
required by the appliances with time parameter τ . If the
number of appliances is sufficiently high and their param-
eters are adequately diversified, it is possible to describe
the population as a continuum and assume that f(τ) is al-
ways a well-defined function. The results presented in this
paper only require this hypothesis but, for a more compact
presentation, the following assumption is introduced:

Assumption 1. The function f(τ) is bounded and with
compact support:

supp(f) = [qmin, qmax] ⊂ (0, T ]. (3)

The electricity market has been modelled trough the
monotone increasing function Π : [0,+∞) → [0,+∞)
that associates, to a certain value of aggregate power
demand Da(t) at time t, the corresponding electricity price
Π(Da(t)). The demand profile Da(t), in turn, is the sum of
two components: the power demand Di(t) of the inflexible
loads (assumed to be known a priori) and the total power
consumption Df (t) of the flexible loads. Assuming that
the scheduled power of each device exclusively depends on
its parameters τ and E and is denoted by u(·, τ, E) ∈ Uτ,E
(this is true in the subsequent analysis, when loads respond
to a demand/price signal), we obtain:

Df (t) =

∫
T

∫
E
u(t, τ, E)m(τ, E) dE dτ (4)

Da(t) = Di(t) +Df (t). (5)

3. GAME-THEORETICAL FRAMEWORK AND
NASH EQUILIBRIUM NOTION

The flexible appliances are modelled as rational agents
that compete for power consumption at times with cheap-
est electricity. In absence of any coordination, they would
consume power when prices are expected to be low, increa-
sing total demand (and prices) at those times and making
their initial strategy suboptimal. To avoid these rebound
peaks phenomena, the appliances interaction are modelled
through a differential game with the following elements:

• Players: Individual loads with parameters τ and E.
• Strategies: The set of feasible power profiles Uτ,E ,

defined in (1).
• Objective function: Minimization of the energy cost
J , sustained when the final electricity price Π(Da(t))
is considered:

Jτ,E =

∫ T

0

Π(Da(t)) · u(t, τ, E) dt.

The notion of Nash equilibrium for the considered game is
the following:

Definition 1. The scheduled power consumption of the
devices, characterized by u∗ : [0, T ]× T × E → R+, corre-
sponds to a Nash equilibrium in the electricity market if
the following condition is fulfilled for all τ ∈ T and E ∈ E :∫ T

0

Π(D∗a(t))u∗(t, τ, E) dt = min
u(·)∈Uτ,E

∫ T

0

Π(D∗a(t))u(t) dt

(6)
with the following expression for the total demand D∗a:

D∗a(t) = Di(t) +

∫
T

∫
E
u∗(t, τ, E)m(τ, E) dE dτ. (7)

When a Nash equilibrium is achieved, the individual
devices are following a power scheduling u∗ which is
optimal for a certain aggregate demand D∗a (and price
Π(D∗a)), as established in (6). At the same time, from
(7), the whole set of power schedules induce that very
same profile D∗a. This means that each appliance has no
interest in changing its initially scheduled power profile u∗

when the resulting energy price Π(D∗a(t)) is considered.



This notion of equilibrium is similar to the one proposed
in mean field games, where the impact of the single agent
on the global quantities of the system is negligible and
only the behaviour of the whole population needs to be
considered. The Nash equilibrium represents the main
design objective of our study, as it corresponds to a stable
allocation of power consumption which avoids rebound
peaks and synchronicity phenomena, guaranteeing flat
demand profiles and reduced generation costs.

3.1 Fully-Decentralized Scheduling

The initial equilibrium analysis, performed in De Paola
et al. (2015), considers a completely decentralized setup.
The appliances, on the basis of a broadcast demand profile
D (or the corresponding price Π(D)), schedule their power
consumption uD through the following optimization:

uD(·, τ, E) ∈ arg min
u(·)∈Uτ,E

∫ T

0

Π(D(t))u(t) dt. (8)

For a more compact presentation of the equilibrium results
in this scenario, it is useful to consider the sublevel
sets of the broadcast demand profile D, introducing its
cumulative distribution QD:

QD(d) := µ({t ∈ [0, T ] : D(t) ≤ d}) (9)

where µ denotes the Lebesgue measure. We also define
SD(q), corresponding to the set of time instants t for which
QD(D(t)) is less or equal than q:

SD(q) := {t ∈ [0, T ] : QD(D(t)) ≤ q} . (10)

The fully-decentralized analysis relies on the assumption
of level sets of zero measure for D:

µ ({t ∈ [0, T ] : D(t) = d}) = 0 ∀d ∈ Im(D). (11)

Under this hypothesis, we conclude in De Paola et al.
(2015) that the Nash equilibrium presented in Definition 1
can be obtained (by broadcasting D = Di and considering
u∗ = uDi) if and only if:

ΛDi(q) ≤ Λf (q) ∀q ∈ supp(f) (12)

where the negotiable valley capacity ΛD(q) = d
dqQ

−1
D (q)

and the power density of task durations Λf (q) = f(q)/q
characterize the broadcast signal D and the appliances
population, respectively.

3.2 Semi-Decentralized Scheduling of Power Consumption

In this work, we evaluate whether the removal of condition
(11) allows to achieve a Nash equilibrium even when (12) is
not fulfilled (and higher penetration of flexible demand is
considered). In this respect note that, if (11) does not hold,
the scheduled power consumption uD in (8) is not unique.
For example, if D(t) = d ∀t ∈ [0, T ], the right-hand side
of (8) coincides with Uτ,E . Therefore, to characterize the
aggregate power consumption of the flexible devices in the
current scenario and induce a Nash equilibrium, central
coordination of some appliances may be required at certain
time intervals. As a preliminary step for the analysis pre-
sented in the next section, the scheduling of the appliances
is characterized by the power density h : [0, T ]× T → R+

where h(t, τ) quantifies the total power consumed at time
t by appliances with parameter τ ∈ T . For a certain power
profile u, it holds:

h(t, τ) =

∫
E
u(t, τ, E)m(τ, E) dE. (13)

Equivalent equilibrium conditions are now provided:

Lemma 1. Consider the power density h∗ and the associ-
ated power consumption ū∗, defined as follows:

ū∗(t, τ, E) :=
E

f(τ)
h∗(t, τ). (14)

A Nash equilibrium is achieved and (6)-(7) are satisfied for
u∗ = ū∗ if the following holds:

D∗a(t) = Di(t) +D∗f (t) = Di(t) +

∫
T
h∗(t, τ) dτ (15a)

0 ≤ h∗(t, τ) ≤ f(τ)

τ
(15b)∫

SD∗
a
(q)

h∗(t, τ) dt = min

(
f(τ), µ

(
SD∗

a
(q)
) f(τ)

τ

)
(15c)

This result is not formally proved for length reason but one
can verify that (15a) is equivalent to (7) and (15b) ensures
feasibility of h∗. Finally, condition (15c) states that the
integral of h∗ over each sublevel set SD∗

a
(q) of QD∗

a
must

be equal to its maximum feasible value (devices operate at
maximum power when demand and prices are lowest).

4. COORDINATION SCHEME FOR EQUILIBRIUM

The main design objective is to induce, with minimum
centralization, a power density h∗ and an aggregate de-
mand D∗a which fulfil (15) and therefore correspond to
a Nash equilibrium in the electricity market. In Section
4.1 we provide some preliminary assumptions and initial
results for D∗a, analysing their impact on the Nash equi-
librium conditions in Section 4.2. Section 4.3 describes the
centralized part of the control scheme. On the basis of the
preliminary theoretical results, a general description of the
final coordination strategy, is provided in Algorithm 1.

4.1 Assumptions and Properties of Demand Profiles

To simplify the analysis, a monotone increasing signal is
considered for the inflexible demand Di. This choice does
not introduce any loss of generality: any arbitrary D̃i can
always be reordered to obtain a demand functionDi taking
increasing values. If (11) holds for D = D̃i (as it is usually
the case), the reordered profile Di can be calculated with
the change of variable described in De Paola et al. (2015):

Di(QD̃i(D̃i(t)) = D̃i(t). (16)

All the results obtained considering Di can be extended to
the original D̃i by applying the opposite transformation.
Practical examples are shown in Fig. 2 and Fig. 3, in the
simulation section. We also recall the expression of the
aggregate demand D◦a, obtained in a fully decentralized
framework by broadcasting D = Di to the appliances.
Considering that, when Di is increasing, each device with
parameters τ and E operates at maximum power E/τ over
the time interval [0, τ ], we have:

D◦a(t) = Di(t) +

∫ T

t

∫
E

E

τ
m(τ, E)dEdτ = Di(t) +

∫ T

t

f(τ)

τ
dτ.

(17)
The following properties of the sought power profile D∗a,
albeit not formally proved, can be easily inferred:

Lemma 2. For a monotone increasing Di, an aggregate
demand profile D∗a fulfilling the equilibrium conditions
(15) must be nondecreasing.



Lemma 3. Given the demand profiles D∗a and D◦a in (17),

let D∗I (t) =
∫ t
0
D∗a(x) dx and D◦I (t) =

∫ t
0
D◦a(x) dx denote

their integrals. If D∗a fulfils (15) for some h∗, it holds:

D∗a(t) ≤ D◦a(t) ∀t ∈ [0, T ] : D∗I (t) = D◦I (t). (18)

The result of Lemma 2 follows from the supposed Nash
equilibrium (all devices operate with higher power at lower
prices). For Lemma 3, consider that D◦a is obtained by
all appliances operating at maximum power until task
completion. Therefore, when D∗I (t) = D◦I (t), the same
must have been occurred to induce D∗a. It follows that, in
both cases, only appliances with τ ≥ t are available at time
t. This corresponds to an upper bound on the aggregate
demand D∗a:

D∗a(t) = Di(t) +D∗f (t) ≤ Di(t) +

∫ T

t

f(s)

s
ds = D◦a(t).

The candidate solutions for D∗a can now be limited to a
specific class Da of demand profiles, defined as follows:

Definition 2. Consider D∗a : [0, T ] → R+ fulfilling Lemma
2 and 3. The signal D∗a belongs to the class Da if and
only if there exists a scalar k ∈ {0, 1} and time instants
t1, . . . , tN (with 0 = t1 < · · · < tN = T and N ≥ 2) that
fulfil the following for i = 1, . . . , N − 1:

Ḋ∗a(t) > 0 ∀t ∈ (ti, ti+1) if (−1)k+i < 0

Ḋ∗a(t) = 0 ∀t ∈ (ti, ti+1) if (−1)k+i > 0.
(19)

In other words, we are restricting our analysis to demand
signals whose derivative has non-negative and piecewise-
constant sign. Any trait with decreasing values is excluded
a priori from Lemma 2. For any D∗a(·) ∈ Da and corre-
sponding t1, . . . , tN and k, we can provide a simple expres-
sion of the sublevel sets SD∗

a
(q), introduced in (10). From

the monotonicity of D∗a(t) and QD∗
a
(d), for q ∈ [ti, ti+1) it

holds:

SD∗
a
(q) =

{
[0, q] if (−1)k+i < 0

[0, ti+1] if (−1)k+i > 0
(20)

4.2 Necessary Equilibrium Conditions

The equilibrium results presented in Section 3 give impor-
tant indications for the design process if they are analysed
on the basis of the new assumptions and notation.

Proposition 1. Consider a demand profile D∗a(·) ∈ Da (as
specified in Definition 2) and a time interval [ti, ti+1) ⊂
[0, T ] such that (−1)k+i < 0. Equilibrium conditions (15)
are satisfied only if:

h∗(t, τ) =


0 if τ < t

f(τ)

τ
if τ ≥ t

∀t ∈ [ti, ti+1) (21a)

D∗a(t) = Di(t) +

∫ T

t

f(τ)

τ
dτ ∀t ∈ [ti, ti+1). (21b)

Proof. We initially evaluate condition (15c) for q =
t ∈ [ti, ti+1). Taking into account expression (20) for the
sublevel set SD∗

a
under the current assumptions, we obtain:∫ t

0

h∗(x, τ) dx =


f(τ) if τ < t

t · f(τ)

τ
if τ ≥ t

∀t ∈ [ti, ti+1).

(22)

Condition (21a) is necessary since it corresponds to the
time derivative of (22). The proof is concluded by noticing
that (15b) always holds in the present case and (15a) is
equivalent to (21b) for the chosen h∗.

From Proposition 1, we can establish that a profile
D∗a ∈ Da fulfilling (15) is equal, in its increasing traits, to
D◦a in (17). Moreover, on the corresponding time intervals
[ti, ti+1), the power density h∗ and the repartitioned power
ū∗, defined by (14), can be induced in a decentralized
manner by simply broadcasting D = Di to the appliances.

Remark 1. Conditions (15) can only be satisfied by a func-
tion D∗a(·) ∈ Da which is the composition of increasing
profiles (equal to the corresponding values of D◦a), con-
nected by traits at constant value. Given that the total
integrals of D∗a and D◦a must be the same (all devices must
complete their task and therefore consume a specified total
amount of energy), it is clear that in practical applications
a limited number of candidate solutions D∗a will need to
be considered.

In the simulations of the present paper, the profile D∗a
has been calculated heuristically. In the journal version of
this work it will be shown that at least one D∗a with the
aforementioned properties always exists and an algorithm
for its analytical calculation will be provided.

A complementary result is now presented for time intervals
with constant aggregate demand:

Proposition 2. Consider a demand signal D∗a(·) ∈ Da (as
specified in Definition 2) and the time interval [ti, ti+1] ⊆
[0, T ] such that (−1)k+i > 0. Equilibrium conditions (15)
are satisfied only if:

h∗(t, τ) =


0 if τ < ti

f(τ)

τ
if τ ≥ ti+1

∀t ∈ [ti, ti+1] (23a)

∫ ti+1

ti

h∗(t, τ) dt = f(τ)

[
1− ti

τ

]
∀τ ∈ [ti, ti+1] (23b)

Proof. Condition (15c) is evaluated for q = t−i and
q ∈ [ti, ti+1], considering expression (20) for the sublevel
set SD∗

a
. Taking the difference of the resulting terms yields:

∫ ti+1

ti

h∗(t, τ) dt =


0 if τ < ti

f(τ)

[
1− ti

τ

]
if ti ≤ τ ≤ ti+1

(ti+1 − ti)
f(τ)

τ
if τ > ti+1

(24)
Note that (23b) can be inferred from the second case in
(24). Moreover, since condition (15b) must hold, the first
case in (24) is satisfied only if h∗(t, τ) is identically zero
for t ∈ [ti, ti+1] when τ < ti. For similar reasons, since
the measure of the integration interval in (24) is equal to
ti+1 − ti, we have that h∗(t, τ) must be identically equal
to f(τ)/τ for t ∈ [ti, ti+1] and τ ≥ ti+1. Therefore, we can
conclude that also (23a) must hold when the equilibrium
conditions (15) are fulfilled.

From Proposition 2, three different behaviours of the ap-
pliances can be identified on intervals [ti, ti+1] of constant
demand, depending on their parameter τ . The devices with
τ < ti do not operate as they have already completed
their task at lower times. The opposite result holds for the



appliances with τ > ti+1 since they cannot complete their
tasks within the interval [0, ti+1]. Considering that they
need to operate at time instants t > ti+1 (characterized
by higher values of demand D∗a(t) and price Π(D∗a(t))),
to achieve minimum cost they must consume maximum
power on the interval [ti, ti+1] of constant demand. Note
that the appliances considered so far can still be coordi-
nated in a decentralized manner by simply broadcasting
Di and inducing the desired behaviour. On the other
hand, an increased level of coordination is required for
appliances with τ ∈ [ti, ti+1]. In this case Proposition
2 only provides an integral condition on h∗ since there
are multiple scheduled profiles of power consumption that
ensure minimum cost. From the results of Proposition 1 for
i−1, we can conclude that these devices need to operate at
rated power on [0, ti] and then complete their task within
the time interval [ti, ti+1].

4.3 Centralized Scheduling

From previous considerations, in order to fulfil (15) and
achieve a Nash equilibrium, it is necessary to centrally
coordinate appliances with τ ∈ [ti, ti+1] on time intervals
[ti, ti+1] of constant aggregate demand D∗a. In other words,
we must determine a power density h∗ which fulfils the
following conditions:∫ ti+1

ti

h∗(t, τ) dτ = D∗a(t)−Di(t)−
∫ T

ti+1

f(τ)

τ
dτ

∀t ∈ [ti, ti+1]

(25a)

0 ≤ h∗(t, τ) ≤ f(τ)

τ
∀t ∈ [ti, ti+1] ∀τ ∈ [ti, ti+1]

(25b)∫ ti+1

ti

h∗(t, τ) dt = f(τ)

[
1− ti

τ

]
∀τ ∈ [ti, ti+1]. (25c)

Equation (25a) is obtained by substituting (23a) in (15a)
and (25b) is the equivalent of (15b) while (25c), from
Proposition 2, corresponds to (15c). In our analysis, in-
stead of the power density h, we consider the remaining
rated task time η : [0, ti+1−ti]×[ti, ti+1]→ R+. The quan-
tity η(t, τ) denotes the reduction in rated task time that
a device with parameter τ needs to achieve (by operating
at rated power P = E/τ) on the interval [ti + t, ti+1] of
constant D∗a. It can be defined as:

η(t, τ) := τ − ti −
τ

f(τ)

∫ ti+t

ti

h(x, τ) dx. (26)

The relationship between η and h in the opposite sense can
be easily calculated by differentiating (26) with respect to
t:

h(ti + t, τ) = −f(τ)

τ
ηt(t, τ) ∀t ∈ [0, ti+1 − ti]. (27)

If we substitute (27) in equations (25), the scheduling
problem consists in determining a function η∗ that fulfils
the following set of equivalent conditions:

−
∫ ti+1

ti

f(τ)

τ
η∗t (t, τ) dτ = Dr(t) ∀t ∈ [0, ti+1−ti] (28a)

−1 ≤ η∗t (t, τ) ≤ 0 ∀t ∈ [0, ti+1−ti] ∀τ ∈ [ti, ti+1] (28b)

η∗(ti+1 − ti, τ) = 0 ∀τ ∈ [ti, ti+1] (28c)

where Dr(t) denotes the right-hand-side in equation (25a),
evaluated at ti + t:

Dr(t) := D∗a(ti + t)−Di(ti + t)−
∫ T

ti+1

f(τ)

τ
dτ. (29)

The proposed scheduling, which fulfils (28) and induces a
Nash equilibrium, is characterized by the solution η? of
the following equations:

η(0, τ) = τ − ti

ηt(t, τ) =


−1 if η(t, τ) > η(t, θDr (t))
−1 if η(t, τ) = η(t, θDr (t)), W−(t) = W+(t)

− Dr(t)−W+(t)

W−(t)−W+(t)
if η(t, τ) = η(t, θDr (t)), W−(t) > W+(t)

0 if η(t, τ) < η(t, θDr (t))

(30)

The quantity θDr (t) ∈ [ti, ti+1] is such that
∫ ti+1

θDr (t)
f(τ)
τ dτ =

Dr(t). Its existence and uniqueness follow from the posi-
tivity of f and the following inequalities:

0 =

∫ ti+1

ti+1

f(τ)

τ
dτ ≤ Dr(t) ≤

∫ ti+1

ti

f(τ)

τ
dτ.

The terms W− and W+ (for which the dependency from η
and θDr is not explicitly shown) correspond to:

W−(t) =

∫
S−
Dr(t)

f(τ)

τ
dτ W+(t) =

∫
S+
Dr(t)

f(τ)

τ
dτ

(31)
where the integration sets S−Dr(t) and S+Dr(t) are defined as:

S−Dr(t) := {τ : η(t, τ) ≥ η(t, θDr (t))}
S+Dr(t) := {τ : η(t, τ) > η(t, θDr (t))} .

(32)

By applying h in (27) with ηt as specified in (30), the
total power Dr(t) is consumed by the appliances with
higher values of remaining task time η. Since η(0, τ) is
monotone increasing with respect to τ , if such monotonic-
ity is preserved over time the power will be allocated on
the appliances with higher parameter τ . In this context,
the quantity θDr (t) represents the parameter threshold
that determines which appliances are operating. When
Td(t) = (S−Dr(t)\S

+
Dr(t)

) = {τ : η(t, τ) = η(t, θDr (t))} has

positive measure (and therefore W−(t) > W+(t)), the
task time reduction is repartitioned equally among all
devices with τ ∈ Td(t). Note that (30) is a non-canonical
PDE (dependence of ηt from τ is implicit through the
functions W− and W+) whose resolution is beyond the
scope of this paper. Since a numerical integration of (30) is
always possible in a simulative context, for the subsequent
analysis the following hypothesis is introduced:

Assumption 2. Equations (30) have one and only one
solution η? : [0, ti+1 − ti] × [ti, ti+1] → R+ which is
continuous and nondecreasing with respect to τ .

It is now possible to provide the main result of this section:

Theorem 1. For a signal D∗a(·) ∈ Da, the equilibrium
conditions (28) on intervals [ti, ti+1] ⊂ [0, T ] of constant
demand always hold for η∗ = η?.

Proof. See Appendix.

Theorem 1 provides the remaining elements required to
characterize the proposed semi-decentralized scheme. This
can be implemented with the procedure presented below,
inducing a Nash equilibrium in the electricity market.



Algorithm 1 Semi-decentralized power scheduling

(1) The desired profile of aggregate demandD∗a is initially
calculated. Using D◦a in (17) as a starting point, it
is possible to determine a profile D∗a ∈ Da with the
properties detailed in Remark 1.

(2) Proposition 1 and 2 return the power density h∗

of the appliances that do not require a centralized
control. Their power scheduling can be induced in
a distributed manner by broadcasting the inflexible
demand Di.

(3) For each time interval [ti, ti+1] characterized by con-
stant aggregate demand D∗a, we calculate the central-
ized scheduling for the subset of devices that require
coordination.
(a) The partial differential equation (30) is numer-

ically integrated, obtaining the remaining rated
task time η?.

(b) The power density h∗ and scheduled power ū∗ are
given by (27) with η = η? and (14), respectively.

5. SIMULATION RESULTS

The semi-decentralized scheduling presented in the pre-
vious section is now tested in simulations. The chosen
inflexible demand D̃i (not reordered for increasing values)
is equal to historical data of total power consumption in
the UK grid as measured by National Grid (2016) (blue
trace in Fig. 3) and the total energy required by the flexible
appliances amounts to 55GWh. In the considered case
study the energy density f , which is defined in (2) and pro-
vides a general description of the appliances population, is
given by the sum of two truncated gaussians centered at 4h
and 8h. This can correspond, for example, to two groups
of devices that require about 4h and 8h, respectively, to
complete their tasks at rated power. It can be verified
that, in the current scenario, a Nash equilibrium cannot be
induced in a purely decentralized manner by broadcasting
some demand/price signal to the appliances. This is clear
from Fig. 1, where it is shown that the necessary and
sufficient condition (12) for a decentralized equilibrium,
introduced and proved in De Paola et al. (2015), is not
satisfied.
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Fig. 1. Negotiable valley capacity ΛDi (blue trace) and
power density of task durations Λf (red trace).

We now evaluate if the proposed semi-decentralized
scheme can achieve better results. As a preliminary step in
our analysis, we apply (16) and obtain the reordered (in-
creasing) profile Di of flexible demand (blue trace in Fig.
2). Algorithm 1 can now be used to determine the semi-
decentralized coordination which induces a Nash equilib-
rium. In step 1 the desired profile of aggregate demand
D∗a (fulfilling the properties of Remark 1) is calculated.
The result in the present case is shown in Fig. 2, where
it is compared with the inflexible demand Di and the
profile D◦a in (17), induced by broadcasting Di to the
appliances. One can verify that D∗a belongs to the class
Da of Definition 2, with k = 1, N = 3 and t2 = 6.63h.
In other words, D∗a is constant on the interval [0, t2] and
is equal to D◦a on the remaining time. The equivalent
quantities in the original time coordinates (denoted with
tilde accent) are presented in Fig. 3. The proposed semi-
decentralized scheme will induce the aggregate demand
D̃∗a, guaranteeing a Nash equilibrium and avoiding the

oscillation of the fully decentralized profile D̃◦a.

The control actions required to induce D∗a are now anal-
ysed. At step 2 of the design algorithm, applying Propo-
sition 1 for i = 2 and Proposition 2 for i = 1, we can
conclude that all appliances with parameter τ > t2 must
operate at rated power (corresponding to power density
h∗(t, τ) = f(τ)/τ) until task completion. This behaviour
can be induced in a decentralized fashion by broadcasting
the inflexible demand Di and letting them schedule their
power consumption in order to minimize the total energy
cost. The power consumption of devices with parameter
τ ≤ t2 on the time interval [0, t2] is determined in step 3 of
Algorithm 1. We numerically integrate equations (30) with
ti = t1 = 0h. The resulting η? : [0, t2] × [0, t2] → R+ has
been formally introduced in Assumption 2 and represents
the remaining rated task time of the appliances during the
centralized phase of the proposed scheduling. For a clearer
exposition of the results, we will consider the remaining
rated task time η∗ : [0, T ]×T → R+, evaluated for all the
appliances over the whole time interval [0, T ]:

η∗(t, τ) := τ − τ

f(τ)

∫ t

0

h∗(x, τ) dx. (33)
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Fig. 2. Reordered profile of inflexible demand Di (blue),
candidate aggregate demand D∗a for Nash equilibrium
(red) and demand profile D◦a defined in (17) and
obtained by broadcasting D = Di (green).
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Fig. 3. Inflexible demand D̃i, candidate aggregate demand
D̃∗a for Nash equilibrium and aggregate demand D̃◦a
with fully decentralized scheduling, in the original
time variable.

The function η∗(t, τ) quantifies the rated task time reduc-
tion that a device with parameter τ needs to achieve in the
interval [t, T ] when the power density h∗ is being applied.
The values of η∗ across the variable τ , for different values
of time t, are shown in Fig. 4. Note that an interval charac-
terized by equal values of η∗ appears almost immediately.
This means that the appliances with higher parameters τ
operate at maximum power rate. The remaining power re-
quired to track D∗a is redistributed among the devices with
τ in the interval of constant η∗(t, ·), in order to achieve
equal derivative η∗t . As shown by the magenta trace in Fig.
4 at t = t2 = 6.63h, we have η∗(t2, τ) = 0 when τ ∈ [0, t2]
and η∗(t2, τ) = τ − t2 when τ ≥ t2. This is coherent with
previous results and shows that η∗(t2, τ) can be brought
to zero by imposing that devices with τ > t2 operate at
rated power (ηt(t, τ) = −1) until task completion. The
last result shown in Fig. 5 is the normalized power profile
u∗N (t, τ) = ū∗(t, τ, E)/P = ū∗(t, τ, E) τE , where ū∗(t, τ, E)
defined in (14) is the scheduled power consumption of
devices with parameters τ and E associated to the power
density at equilibrium h∗. Initially, all appliances are either
operating at maximum or at zero power rate. Once the
flat region in η∗ appears, they gradually converge to some
intermediate value. At t = t2 = 6.63h the flat region of
η∗ becomes zero, implying that all loads with τ ≤ t2 have
completed their tasks. The remaining ones operate at full
power fot t > t2 until they also achieve task completion.

6. CONCLUSIONS

This paper presents a novel semi-decentralized scheme
for efficient integration of flexible demand in the power
system. By relaxing some assumptions of previous studies
and introducing partial coordination of the devices on
certain time intervals, we can achieve a Nash equilibrium
for large populations of price-responsive appliances, under
very general assumptions. The theoretical analysis and
the description of the proposed scheme are followed by
simulation results that evaluate the achieved performance.
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Appendix A. PROOF OF THEOREM 1

It is initially shown that η? in Assumption 2 always fulfils
(28a) and (28b). For the latter, it is sufficient to verify
that (28b) holds for the third nontrivial case in (30),
showing that W−(t) ≥ Dr(t) ≥ W+(t). This is always
true given the positivity of f and the fact that, from (32),
we have S+Dr(t) ⊆ [θDr (t), ti+1] ⊆ S−Dr(t). To check (28a),

it is sufficient to evaluate its left-hand side for the two
cases W−(t) = W+(t) and W−(t) > W+(t). Condition
(28c) is now considered. We first introduce an alternative
remaining task time η� : [0, ti+1 − ti] × [ti, ti+1] → R+,
obtained controlling the devices in a fully decentralized
manner by broadcasting D = Di:

η�(t, τ) :=

{
τ − ti − t if τ > ti + t

0 if τ ≤ ti + t.
(A.1)

We evaluate the total power D?
r and D�r consumed by the

considered subset of appliances (with τ ∈ [ti, ti+1]) when
η? and η� are applied, respectively:

D?
r(t) = −

∫ ti+1

ti

f(τ)

τ
η?t (t, τ) dτ =

∫ ti+1

θDr (t)

f(τ)

τ
dτ

(A.2a)

D�r(t) = −
∫ ti+1

ti

f(τ)

τ
η�t (t, τ) dτ =

∫ ti+1

t+ti

f(τ)

τ
dτ.

(A.2b)
We also introduce their integrals D?

I and D�I :

D?
I (t) :=

∫ t

0

D?
r(x) dx =

∫ ti+1

ti

f(τ)

τ
[η?(0, τ)− η?(t, τ)] dτ

D�I (t) :=

∫ t

0

D�r(x) dx =

∫ ti+1

ti

f(τ)

τ
[η�(0, τ)− η�(t, τ)] dτ.

(A.3)
From the properties of the considered D∗a(·) ∈ Da, it holds:

D?
I (ti+1 − ti) =

∫ ti+1

ti

f(τ)

τ
[τ − ti] dτ =

∫ ti+1

ti

f(τ)

τ
η?(0, τ).

(A.4)
Combining the results of (A.4) and (A.3) at t = ti+1 − ti
yields: ∫ ti+1

ti

f(τ)

τ
· η?(ti+1 − ti, τ) dτ = 0.

Given the positivity of f , if (28c) is violated for η∗ = η?,
then η?(ti+1 − ti, τ) takes negative values for some
τ ∈ [ti, ti+1]. Since we are assuming that η? is continu-
ous and its derivative η?t is always nonpositive, this only
happens if there exists t̄ ∈ [0, ti+1 − ti) and τ̄ ∈ [ti, ti+1]
such that:

η?(t̄, τ̄) = 0 η?t (t̄, τ̄) < 0. (A.5)

Having established the monotonicity of η? in Assumption
2, its support at time t with respect to τ is equal to:

supp(η?(t, ·)) = (γ(t), ti+1] ∀t ∈ [0, ti+1 − ti] (A.6)

for some γ(t) ∈ [ti, ti+1]. It follows that, since η? is the
solution of (30), condition (A.5) is fulfilled (and (28c) is
violated by η?) if and only if the following holds at some
t̃ ∈ [ti, ti+1]:

θDr (t̃) < γ(t̃). (A.7)

If this is the case, we have:

η?t (t, τ) = −1 ∀τ ≥ γ(t̃) ∀t ≤ t̃. (A.8)

To see this, consider that η?t fulfils (30) and therefore
equality in the variable τ is preserved in η? across time.
Given t̄, τ1 and τ2 such that η?(t̄, τ1) = η?(t̄, τ2), it holds:

η?(t, τ1) = η?(t, τ2) ∀t ≥ t̄ (A.9)

from which it follows:

η?(t, τ) > η?(t̃, γ(t̃)) ∀τ > γ(t̃) ∀t < t̃. (A.10)

Since θDr (t) ≤ θDr (t̃) < γ(t̃) for t ≤ t̃, we can exclude that
η?t (t, τ) with τ > γ(t̃) is expressed by the third case in (30),
proving (A.8). Similar results can be easily obtained for η�

in (A.1):

η?t (t, τ) = −1 ∀τ ≥ ti + t̃ ∀t ≤ t̃ (A.11a)

supp(η?(t̃, ·) = (ti + t̃, ti+1]. (A.11b)

It is straightforward to show that γ(t̃) = ti + t̃ and the
following equality is fulfilled:

η?(t̃, τ) = η�(t̃, τ) ∀τ ∈ [ti, ti+1].

Considering (A.3), an equivalent relationship holds for the
total power integrals:

D?
I (t̃) = D�I (t̃). (A.12)

Since we are considering demand profiles D∗a(·) ∈ Da, we
can apply Lemma 3 at t̃ + ti and derive the following
inequality:

D?
a(t̃+ ti) = D?

r(t̃)−Di(t̃+ ti)−
∫ T

ti+1

f(τ)

τ
dτ

≤ D�r(t̃)−Di(t̃+ ti)−
∫ T

ti+1

f(τ)

τ
dτ = D�a(t̃+ ti).

This can be rewritten as:

D?
r(t̃) =

∫ ti+1

θDr (t)

f(τ)

τ
dτ ≤

∫ ti+1

ti+t̃

f(τ)

τ
dτ = D�r(t̃)

(A.13)
Given the positivity of f(τ)/τ , inequality (A.13) implies
that θDr (t̃) ≥ ti+t̃ = γ(t̃). This contradicts (A.7), showing
that η? also fulfils (28c) and concluding the proof.


