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We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into
different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory,
accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model
selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-
types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-web, diva and
origami for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and
(iii) predicting galaxy colors. Our study substantiates a data-supported connection between cosmic web
analysis and information theory, and paves the path towards principled design of analysis procedures for the
next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts
used in this work publicly available.

I. INTRODUCTION

The large-scale distribution of matter in the Universe
is not uniform, but forms a complex pattern known as
the cosmic web (Bond, Kofman & Pogosyan, 1996; van
de Weygaert & Bond, 2008). As it retains memory about
structure formation processes, it contains a rich vari-
ety of astrophysical and cosmological information. Ap-
plications of mapping the cosmic web include in parti-
cular: correlating with galaxy properties (e.g. Blanton
et al ., 2005); studying the effect of the large-scale struc-
ture (LSS) on light propagation through cosmic expan-
sion, dust extinction, and absorption by the intergalac-
tic medium (e.g. Planck Collaboration, 2015); testing ge-
neral relativity (Falck, Koyama & Zhao, 2015); probing
dark matter annihilation along caustics (Vogelsberger &
White, 2011); and looking for “bullet cluster” objects
(Harvey et al ., 2015). Properties of cosmic web elements
can also be viewed as statistical summaries of the large-
scale structure, and serve as alternatives to correlation
functions in order to learn about cosmological parame-
ters (for recent results, see e.g. de Haan et al ., 2016 using
clusters; Hamaus et al ., 2016 using voids).

Important tools for cosmic web analysis are classifiers,
i.e. algorithms that dissect the entire large-scale struc-
ture into one of its structural elements. In contrast to
structure finders that focus on one component at a time

a)Electronic mail: florent.leclercq@polytechnique.org

(typically clusters, filaments, or voids), they allow an
analysis of the connection between cosmic web compo-
nents, identified in the same framework. The richly-
structured morphology of the cosmic web is simultane-
ously sensitive to the original phases of the field, the lo-
cal density and velocity, and the growth history. Clas-
sifiers reduce this complex information to the common
concepts of voids, sheets, filaments, and clusters. Many
such algorithms have been proposed over the last decade,
exploiting different physical information to perform the
classification: the eigenvalues of the tidal tensor (the
T-web, Hahn et al ., 2007, and its extensions, Forero-
Romero et al ., 2009); the eigenvalues of the velocity
shear tensor (the V-web, Hoffman et al ., 2012, and its
particle-based formulation, Fisher, Faltenbacher & John-
son, 2016); the eigenvalues of the shear of the Lagrangian
displacement field (diva, Lavaux & Wandelt, 2010); the
number of orthogonal axes along which stream-crossing
occurs (origami, Falck, Neyrinck & Szalay, 2012). Diffe-
rent classifiers provide different insights into cosmic web
morphology. The aim of this paper is to offer a principled
way of choosing among possible classifiers, depending on
the application of interest.

As outlined by Leclercq, Jasche & Wandelt (2015b)
and further demonstrated in this work, the need for infor-
mation theory in cosmic web analysis uniquely emerges
from the uncertainties inherent to actual observations,
as opposed to the unique answer provided by any one
simulation. Indeed, building a complete cosmographic
description of the real Universe from galaxy positions
requires high-dimensional, non-linear probabilistic me-
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thods. As a response, Bayesian large-scale structure in-
ference (Lahav et al ., 1994; Zaroubi, 2002; Erdoǧdu
et al ., 2004; Kitaura & Enßlin, 2008; Jasche & Ki-
taura, 2010; Jasche et al ., 2010a; Jasche & Wandelt,
2013; Kitaura, 2013; Wang et al ., 2013, 2014) offers a
methodical approach. It has been shown recently that
resulting reconstructions can be used for the detection of
cosmic web elements (halos, Merson et al ., 2016; voids,
Leclercq et al ., 2015) and for the application of cosmic
web classifiers (Nuza et al ., 2014; Leclercq, Jasche &
Wandelt, 2015b; Leclercq et al ., 2016).

In previous work, we studied the dynamic cosmic
web of the nearby Universe, relying on the analysis of
the Sloan Digital Sky Survey (SDSS) main galaxy sam-
ple with the borg algorithm (Jasche, Leclercq & Wan-
delt, 2015) and using different classifiers. Specifically, in
Leclercq, Jasche & Wandelt (2015b), we used the T-web
definition; and in Leclercq et al . (2016) we used diva and
origami. A legitimate question, unanswered yet, regards
the relative merits of our different cosmic web maps,
which is linked to the relative performance of the diffe-
rent classifiers, depending on the desired use. These pos-
sible applications are of three broad classes: (i) optimal
parameter inference, (ii) model comparison, and (iii) pre-
diction of future observations. In each case, the optimal
choice of a classifier is naturally expressed as a Bayesian
experimental design problem. Beyond the Gaussian as-
sumption and Fisher matrix forecasts (which are known
to suffer from severe shortcomings, see Wolz et al ., 2012),
information-theoretic approaches to the design of expe-
riments and analysis procedures, especially for the sec-
ond and third kind of problems, remain largely unused
in cosmology (see however Bassett, 2005, concerning the
optimal design of cosmological surveys for parameter esti-
mation). Nevertheless, interestingly, problems that share
strong mathematical similarity have been studied in the
bioinformatics literature (e.g. Vanlier et al ., 2012, 2014).

One of the most commonly used and versatile Bayesian
design criteria is to maximize the mutual information be-
tween the data and some quantity of interest. Mutual
information is an information-theoretic notion based on
entropy that reflects how much of the uncertainty in one
random variable is reduced by knowing about the other.
In Leclercq, Jasche & Wandelt (2015a), we discussed an
optimal decision-making criterion for segmenting the cos-
mic web into different structure types on the basis of
their respective probabilities and the strength of data
constraints. In the present paper, we use classifier utili-
ties and the concept of mutual information to extend the
decision problem to the space of classifiers. We illustrate
this methodological discussion with three cosmological
problems of the types mentioned above: (i) optimization
of the information content of cosmic web maps, (ii) dis-
crimination of dark energy models, and (iii) prediction
of galaxy colors. In doing so, we quantify the relative
performance of the T-web, diva and origami for each
of these applications.

After discussing information mapping in the cosmic

web in section II, we introduce utilities for cosmic web
classifiers in section III. We discuss our results and give
our conclusions in section IV. The relevant notions of
information theory and of Bayesian experimental design
are respectively reviewed in appendices A and B.

II. MAPPING INFORMATION IN THE COSMIC WEB

The goal of this section is to introduce probabilistic
maps of the cosmic web and assess their information
content. We briefly review Bayesian large-scale struc-
ture analysis in section II A. We then discuss probabilis-
tic classifications of the cosmic web in section II B and
introduce the relevant information-theoretic notions in
section II C.

A. Bayesian large-scale structure analysis

The cosmic web maps used in this work have been
built upon results previously obtained by the application
of borg (Bayesian Origin Reconstruction from Galax-
ies, Jasche & Wandelt, 2013) to the SDSS main galaxy
sample (Jasche, Leclercq & Wandelt, 2015). borg is a
Bayesian large-scale structure inference code that recon-
structs the primordial density fluctuations and produces
physical reconstructions of the dark matter distribution
that underlies observed galaxies, by assimilating the sur-
vey data into a cosmological structure formation model.
To do so, it samples a complex posterior distribution in
a multi-million dimensional parameter space (correspon-
ding to the voxels of the discretized domain) by means of
the Hamiltonian Monte Carlo algorithm (Duane et al .,
1987).

For each move in parameter space, the code does
several evaluations of the data model, which involves
second-order Lagrangian perturbation theory (see e.g.
Bernardeau et al ., 2002) to describe large-scale struc-
ture formation between initial density fields (at a scale
factor a = 10−3) and the present day (at a = 1). In
this fashion, the code jointly accounts for the shape of
the three-dimensional matter field and its formation his-
tory, in the linear and mildly non-linear regimes. Besides
large-scale structure formation, borg accounts for uncer-
tainties coming from luminosity-dependent galaxy biases
and observational effects such as selection functions, the
survey mask, and shot noise. The distribution of galaxies
is modeled as an inhomogeneous Poisson process on top
of evolved, biased density fields. For a more extensive
discussion of the borg data model, the reader is referred
to chapter 4 in Leclercq (2015).

Starting from samples of inferred initial conditions,
which contain the data constraints, we perform a non-
linear filtering step (see chapter 7 in Leclercq, 2015).
This is achieved by evolving samples forward in time with
second-order Lagrangian perturbation theory (2LPT) to
the redshift of z = 69, then running a constrained si-
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mulation with the cola method (Tassev, Zaldarriaga &
Eisenstein, 2013) from z = 69 to z = 0.

When producing the maps used in this work (Leclercq,
Jasche & Wandelt, 2015b; Leclercq et al ., 2016), we used
a set of 1,097 non-linear borg-cola samples. Their ini-
tial conditions are defined on a 750 Mpc/h (comoving)
cubic grid of 2563 voxels. The evolved realizations con-
tain 5123 particles and have been obtained with 30 cola
timesteps. Whenever it is necessary, particles are binned
to the grid using the cloud-in-cell scheme.

B. Classifications

This paper focuses on the possibility to classify the cos-
mic web into four different structure types: voids, sheets,
filaments, and clusters. Any of the algorithms cited in the
introduction can be used on our set of constrained real-
izations. However, for the purpose of this paper, we will
compare the results of three classifiers:

• the T-web (Hahn et al ., 2007),

• diva (Lavaux & Wandelt, 2010),

• and origami (Falck, Neyrinck & Szalay, 2012).

With the T-web, structures are classified according
to the sign of the eigenvalues µ1(~x) ≤ µ2(~x) ≤ µ3(~x)
of the tidal field tensor T, the Hessian of the rescaled
gravitational potential Φ:

Tij ≡ H(Φ)ij =
∂2Φ

∂~xi∂~xj
, (1)

where Φ obeys the reduced Poisson equation

∆Φ(~x) = δ(~x), (2)

δ being the local density contrast. A voxel belongs to
a cluster, a filament, a sheet or a void, if, respectively,
three, two, one or zero of the µi are positive. The T-web
is a Eulerian procedure, in the sense that it operates at
the level of voxels of the discretized domain. It can be
applied at any time, but does not use the time-evolution
of structures to classify them.

In contrast, Lagrangian classifiers rely on the displace-

ment field ~Ψ(~q), which maps the initial position of par-
ticles ~q to their final position ~x(~q) (see e.g. Bernardeau
et al ., 2002):

~x(~q) ≡ ~q + ~Ψ(~q). (3)

Such classifiers provide a description of the cosmic web
at the level of the initial grid of particles.

Instead of the tidal field tensor T, diva uses the shear
of the displacement field R, defined by

R`m ≡
∂~Ψ`

∂~qm
. (4)

Denoting by λ1(~q) ≤ λ2(~q) ≤ λ3(~q) the eigenvalues of
R, a particle’s structure type is defined as before by
counting the number of positive λi (instead of µi). Note
that at first order in Lagrangian perturbation theory (the
Zel’dovich approximation), T and R are proportional, so
the T-web and diva yield the same classification of the
cosmic web. Differences only arise at higher order.

An alternative way to classify particles is to consider
the evolution of the matter streams they belong to.
During gravitational collapse, “shell-crossing” happens
when different streams pass through a single location.
origami defines structure types according to the number
of orthogonal axes along which a Lagrangian patch un-
dergoes shell-crossing. Specifically, void, sheet, filament,
and cluster particles are defined as particles that have
been crossed along zero, one, two, or three orthogonal
axes, respectively. The T-web, diva and origami rules
for cosmic web classification are summarized in table I.

In Bayesian large-scale structure inference, uncertain-
ties are quantified by the variation of density fields among
constrained samples. As shown in previous work (Jasche
et al ., 2010b; Leclercq, Jasche & Wandelt, 2015b;
Lavaux & Jasche, 2016; Leclercq et al ., 2016), uncer-
tainties can be self-consistently propagated to structure
type classification as follows. Let us denote by ξ one
of the classifiers. By applying ξ to a specific large-scale
structure realization, we obtain a unique answer in the
form of four scalar fields that obey the following condi-
tions for any ~σp:

Ti(~σp|ξ) ∈ {0, 1} for i ∈ J0, 3K and

3∑
i=0

Ti(~σp|ξ) = 1

(5)
where T0 = void, T1 = sheet, T2 = filament, T3 = clus-
ter, and where ~σp is ~xk (the location of a voxel) if ξ is
a Eulerian classifier, or ~q` (the location of a particle on
the initial grid) if ξ is a Lagrangian classifier. By ap-
plying ξ to the complete set of constrained realizations
and counting the relative frequencies of structure types
at each spatial coordinate ~σp, we obtain a posterior pro-
bability mass function (pmf) in the form of four scalar
fields P(Ti(~σp)|d, ξ) ≡ Ti(~σp|ξ) that take their values in
the range [0, 1] and sum up to one at each ~σp:

Ti(~σp|ξ) ∈ [0, 1] for i ∈ J0, 3K and

3∑
i=0

Ti(~σp|ξ) = 1.

(6)
The corresponding prior probabilities P(Ti|ξ) can be

estimated by applying the same procedure to a set of un-
constrained realizations produced using the same setup
as for constrained samples. We found that these proba-
bilities are well approximated by Gaussians whose means
and standard deviations are given in table II for the pri-
mordial large-scale structure and III for the late-time
large-scale structure.

With Eulerian classifiers, a classification of the primor-
dial large-scale structure is obtained when the ~xk are vo-
xels of the grid on which the initial density field is defined
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Classifier ξ: T-web diva origami

Type Eulerian Lagrangian Lagrangian

Structure type

Void µ1, µ2, µ3 < 0 λ1, λ2, λ3 < 0 no-stream crossing

Sheet µ1, µ2 < 0 and µ3 > 0 λ1, λ2 < 0 and λ3 > 0 stream-crossing along one axis

Filament µ1 < 0 and µ2, µ3 > 0 λ1 < 0 and λ2, λ3 > 0 stream-crossing along two orthogonal axes

Cluster µ1, µ2, µ3 > 0 λ1, λ2, λ3 > 0 stream-crossing along three orthogonal axes

TABLE I. Rules for classification of structure types according to the T-web, diva, and origami procedures.

(see section IV in Leclercq, Jasche & Wandelt, 2015b).
With Lagrangian classifiers, it is directly obtained by
looking at the initial grid of particles (see section II in
Leclercq et al ., 2016). The web-type posterior maps for
the primordial large-scale structure in the SDSS volume
are shown in figure 1.

In Leclercq et al . (2016), we also showed how to trans-
late the result of Lagrangian classifiers from particles’
positions ~q` to Eulerian voxels ~xk, so as to obtain a des-
cription of the late-time large-scale structure: particles
transport their Lagrangian structure type along their tra-
jectory, and are binned to the grid at their final Eulerian
position. In figure 2, we show the web-type posterior for
evolved structures in the SDSS. We focus on these maps
in the rest of this paper.

C. Information-theoretic comparison of classifiers

The posterior probability maps for each classifier show
complex and distinct features, coming both from the
quantification of observational uncertainty and from the
various physical criteria used to define structures. It is
therefore important to use appropriate tools to charac-
terize their information content and agreement. As dis-
cussed in Leclercq, Jasche & Wandelt (2015b), informa-
tion theory offers a natural language to address these
questions. In this framework, the uncertainty content of
a pmf P is the Shannon entropy (Shannon, 1948), H[P]
(in shannons, Sh); the information gain due to the data is
the relative entropy or Kullback-Leibler divergence (Kull-
back & Leibler, 1951) of the posterior P from the prior
π, DKL[P||π]; finally, the similarity between two pmfs
P and Q is measured by the Jensen-Shannon divergence
(Lin, 1991), DJS [P :Q] (see appendix A). For our analy-
sis, these quantity read generically

H [P(T(~xk)|d, ξ)] ≡ −
3∑
i=0

P(Ti(~xk)|d, ξ) log2 P(Ti(~xk)|d, ξ), (7)

DKL [P(T(~xk)|d, ξ)‖P(T|ξ)] ≡
3∑
i=0

P(Ti(~xk)|d, ξ) log2

(P(Ti(~xk)|d, ξ)
P(Ti|ξ)

)
, (8)

DJS [P(T(~xk)|d, ξα) :P(T(~xk)|d, ξβ)] ≡ H
[P(T(~xk)|d, ξα) + P(T(~xk)|d, ξβ)

2

]
− H [P(T(~xk)|d, ξα)] +H [P(T(~xk)|d, ξβ)]

2
(9)

where the space of structure types is {T0 = void, T1 =
sheet, T2 = filament, T3 = cluster} and the space of
classifiers is {ξ0 = T-web, ξ1 = diva, ξ2 = origami}.

Slices through the voxel-wise Kullback-Leibler diver-
gence of web-type posteriors from their respective pri-
ors, for different classifiers, are shown in figure 3. As
expected, the information gain is close to zero out of
the survey boundaries. There, the information gain fluc-
tuates around ∼ 0.03 Sh (T-web), ∼ 0.02 Sh (diva),
∼ 0.05 Sh (origami). These values are small, but posi-
tive. This artifact is due to the limited number of samples

used in our analysis: because of the finite length of the
Markov Chain, the sampled representation of the pos-
terior has not yet fully converged to the true posterior,
and therefore it can show artificial information gain with
respect to the prior (see also the discussion in Leclercq,
Jasche & Wandelt, 2015a). In observed regions, SDSS
galaxies are informative on the underlying cosmic web at
the level of several shannons in most of the volume for
the T-web and diva, this information being more evenly
distributed in the diva map. With origami, the infor-
mation gain can reach ∼ 3 Sh in shell-crossed structures,
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FIG. 1. Slices through the posterior probabilities for different structure types (from left to right: void, sheet, filament, and
cluster), in the primordial large-scale structure in the Sloan volume (a = 10−3). These four three-dimensional probabilities
sum up to one at each location. From top to bottom, structure types are defined using the T-web, diva and origami. The
first row (T-web, reproduced from Leclercq, Jasche & Wandelt, 2015b) shows 2563-voxel grids; the second and third row (diva
and origami, reproduced from Leclercq et al ., 2016) show Lagrangian grids of 5123 particles.

Classifier ξ: T-web diva origami

Structure type µP(Ti|ξ) σP(Ti|ξ) µP(Ti|ξ) σP(Ti|ξ) µP(Ti|ξ) σP(Ti|ξ)

Primordial large-scale structure (a = 10−3)

Void 0.07979 5.4875× 10−5 0.06288 7.5158× 10−5 0.59079 7.3765× 10−4

Sheet 0.42022 1.0240× 10−4 0.38229 1.7662× 10−4 0.16487 3.7328× 10−4

Filament 0.42022 1.0412× 10−4 0.42716 1.4050× 10−4 0.09775 2.2532× 10−4

Cluster 0.07978 5.6337× 10−5 0.12767 1.7990× 10−4 0.14659 5.0061× 10−4

TABLE II. Prior probabilities assigned by the T-web, diva and origami to the different structures types, in the primordial
large-scale structure (a = 10−3), i.e. in the initial density field for the T-web, and on the Lagrangian grid of particles for diva
and origami.
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FIG. 2. Slices through the posterior probabilities for different structure types (from left to right: void, sheet, filament, and
cluster), in the late-time large-scale structure in the Sloan volume (a = 1). These four three-dimensional probabilities sum up
to one on a voxel basis. From top to bottom, structure types are defined using the T-web, diva and origami. The first row
is reproduced from Leclercq, Jasche & Wandelt (2015b), the second and third rows from Leclercq et al . (2016).

Classifier ξ: T-web diva origami

Structure type µP(Ti|ξ) σP(Ti|ξ) µP(Ti|ξ) σP(Ti|ξ) µP(Ti|ξ) σP(Ti|ξ)

Late-time large-scale structure (a = 1)

Void 0.14261 6.1681× 10−4 0.20216 4.7733× 10−4 0.89459 4.4745× 10−4

Sheet 0.59561 6.3275× 10−4 0.54845 2.5827× 10−4 0.06727 3.0459× 10−4

Filament 0.24980 5.5637× 10−4 0.22587 3.6287× 10−4 0.02249 1.0619× 10−4

Cluster 0.01198 5.8793× 10−5 0.02352 6.8724× 10−5 0.01565 7.9767× 10−5

TABLE III. Prior probabilities assigned by the T-web, diva and origami to the different structures types, in the late-time
large-scale structure (a = 1).
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FIG. 3. Slices through the Kullback-Leibler divergence of the web-type posterior from the prior. This quantity, defined by
equation (8), represents the information gained on structure type classification by looking at SDSS galaxies. It corresponds to

the joint utility for parameter inference of the SDSS data set d̃ and the classifier ξ (U1(d̃, ξ), see equation (10)). From left to
right, structures are defined using the T-web, diva and origami.
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FIG. 4. Slices through the Jensen-Shannon divergence between pairs of web-type posteriors, as indicated above the panels.
The Jensen-Shannon divergence, defined by equation (9), is a symmetric measure of the disagreement (between 0 and 1 Sh)
between the different classifiers.

but in most of the volume, filled with voids, it cannot
exceed the value of 0.1614 Sh (which corresponds to the
certain inference of a void, i.e. P(T0(~xk)|d, ξ2) = 1, with
a prior value of P(T0|ξ2) = 0.89459).

In figure 4, we show slices through the Jensen-Shannon
divergence of pairs of web-type posteriors. These maps
confirm and precisely quantify the visual impression, ob-
tained with figure 2, that the T-web and diva classifi-
cations do not differ much and are far from the origami
result.

III. CLASSIFIER UTILITIES

This section describes how to set up utility functions in
the space of classifiers. This space can contain any of the
algorithms mentioned in the introduction. Formally, all
the implementation details (e.g. threshold, smoothing

scale, method-internal parameters) should also be con-
sidered as yielding different classifiers. For simplicity, we
limit the space of classifiers to {ξ0 = T-web, ξ1 = diva,
ξ2 = origami}, using the detailed setups described in
Leclercq, Jasche & Wandelt (2015b) and Leclercq et al .
(2016). In particular, we adopted natural choices for the
method-internal parameters suggested by their authors
and by our borg analysis,1 but did not further explore
these choices in this study.

In analogy with the formalism of Bayesian experimen-

1 In particular, T-web classifications are defined at a comoving Eu-
lerian scale of ∼ 3 Mpc/h (corresponding to a grid of 2563 voxels
on a cube of 750 Mpc/h side length), and diva and origami
classifications are defined at a comoving Lagrangian scale of
∼ 1.5 Mpc/h (corresponding to a regular lattice of 5123 par-
ticles in the same cube).
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tal design (see appendix B), we introduce the utility of a
classifier as U(ξ) = 〈U(d, ξ)〉P(d|ξ), where U(d, ξ) is the

joint utility of a data set d and a classifier ξ. The decision
problem will consist in maximizing the utility U(ξ).

As noted in the introduction, the choice of a classifier
should be specific to the application of interest. For ex-
ample, a classifier which efficiently estimates the shape
of the cosmic web may not extract the relevant informa-
tion for discriminating among cosmological models, or
may not be useful for predicting future observations. In
this section, we introduce some Bayesian utility functions
for various experimental goals. We illustrate each situa-
tion with a physical question and in each case, we give
an estimate of the relative performance of the different
classifiers considered in this paper.

A. Utility for parameter inference: cosmic web analysis

In Bayesian experimental design, common utility func-
tions that aim at optimal parameter inference are
information-based (see section B 1). Following this idea,
we propose that the optimal classifier for cosmic web
analysis should simply maximize the expected informa-
tion gain, i.e. the utility U1(ξ) ≡ 〈U1(d, ξ)〉P(d|ξ), with

U1(d, ξ)(~xk) ≡ DKL [P(T(~xk)|d, ξ)||P(T|ξ)] (10)

=

3∑
i=0

P(Ti(~xk)|d, ξ) log2

(P(Ti(~xk)|d, ξ)
P(Ti|ξ)

)
.

Note that in this case, U1(d, ξ)(~xk) depends on the lo-
cation (for each data set, U1(d, ξ) is a three-dimensional
map of the large-scale structure), but U1(ξ) should not
depend on the location once the expectation over all pos-
sible data realizations is taken.

Using property (B3), we obtain

U1(ξ) = I[T:d|ξ], (11)

the mutual information between the inferred parameters
(the web-types) and the data. This utility will therefore
maximize the information content of the inferred cosmic
web map.

Figure 3 shows the joint utility U1(d̃, ξ) for different

classifiers and for one particular data set d̃, namely the
SDSS galaxies used in our borg analysis (see section 2 in
Jasche, Leclercq & Wandelt, 2015). In order to estimate
U1(ξ), one should in principle consider the expectation
of such maps over all possible data sets. This task in-
volves building many synthetic galaxy catalogs mimick-
ing the SDSS and performing on them a borg analysis
followed by different cosmic web classifications. Conside-
ring computational time requirements, such an endeavor
is unattainable. Instead, we propose to estimate U1(ξ) by

considering U1(d̃, ξ)(~xk) at different locations. This idea
is analog to the hypothesis of ergodicity: if the SDSS
is a fair sample of the Universe, then the ensemble av-
erage and the sample average of any quantity coincide.

Utility T-web diva origami

Û1(ξ) [Sh] 0.4573 0.2664 0.1347

Û ′1(ξ) [Sh−1] 36.28 55.09 20.92

Û2(ξ) [10−3 Sh] 5.53 2.22 3.24

Û ′2(ξ) [Sh−1] 1454.2 1782.9 861.06

Û3(ξ) [Sh] 0.0152 0.0101 0.0143

TABLE IV. Estimation of the utility of different classifiers
(the T-web, diva and origami) for different optimization

problems: parameter inference (cosmic web analysis, Û1), in-
sensitivity to artifacts for parameter inference (cosmic web

analysis, Û ′1), model comparison (dark energy equation of

state, Û2), insensitivity to artifacts for model comparison

(dark energy equation of state, Û ′2), prediction of additional

observations (galaxy colors, Û3).

For cosmic web analysis, this means supposing that the
SDSS contains a large enough variety of voids, sheets,
filaments, and clusters so that all possible configurations
of such structures are represented fairly.

Formally, we introduce the following estimator:

U1(ξ) ≈ Û1(ξ) ≡ 1

Nobs

∑
~xk

U1(d̃, ξ)(~xk). (12)

where the summation runs over voxels of the observed
regions, characterized by the three-dimensional survey
response operator being positive (see Jasche, Leclercq &
Wandelt, 2015). There are Nobs = 3, 148, 504 such vo-
xels out of Ntot = 2563 = 16, 777, 216. The results,
given in table IV, indicate that for cosmic web inference,
preference should be given, in this order, to the T-web,
diva, then origami. This ordering is mostly due to the
very high information gain in T-web clusters, and to the
strong prior preference of origami for voids, which limits
its information gain – as noted in section II C.

A disadvantage of using information gain as the uti-
lity function is its sensitivity to artifacts. This is a ge-
neral feature of all information-theoretic quantities that
are maximized in case of maximal randomness (such as
entropy): they are not only sensitive to “interesting” pat-
terns, but also to “incidental” information. In our case,
classifiers have different sensitivities to artifacts in our
cosmic web reconstructions, of various origin: noise in the
data, approximate physical modeling, limited number of
samples, etc. In order to assess the “risk” taken by diffe-
rent classifiers when producing the final cosmic web map,
one needs to quantify the average number of “false posi-
tives”. To do so, we propose to use the information gain
in unobserved regions as a proxy for the sensitivity to ar-
tifacts, and to minimize its expectation value. Therefore,
we introduce the utility U ′1(ξ) = 〈U ′1(d, ξ)〉P(d|ξ), where

U ′1(d, ξ)(~xk) ≡ DKL [P(T(~xk)|d, ξ)||P(T|ξ)]−1 (13)

and ~xk has not been observed when the data set d has
been taken.
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For the SDSS, with a similar argument as before, U ′1
is estimated by the inverse of the average artificial infor-
mation gain in unconstrained regions, i.e.

U ′1(ξ) ≈ Û ′1(ξ) ≡

 1

Nunobs

∑
~xk

U1(d̃, ξ)(~xk)

−1 (14)

where the summation now runs on unobserved voxels (i.e.
where the survey response operator is zero), and where
Nunobs ≡ Ntot − Nobs. Numerical values, given in table
IV, show that, from this point of view, diva outperforms
the T-web and origami.

Considering simultaneously U1 and U ′1, a user can
make a decision based on a quantitative criterion that
weights the utility of different classifiers, accounting for
the user’s preferred trade-off between information gain
and sensitivity to artifacts.

B. Utility for model selection: dark energy equation of
state

Model selection is an important experimental design
problem which has generated some research interest (see
section B 2). In a Bayesian context, model selection is
typically based on the Bayes factor, which measures the
amount of evidence that the data provide for one model
over another. In cosmology, competing models can be
for example the standard ΛCDM paradigm and one of
its extensions. Our aim in this section is to choose the
cosmic web classifier that selects the best features to dis-
criminate between such models.

It has recently been shown that the Jensen-Shannon
divergence between posterior predictive distributions can
be used as an approximate predictor for the change in
the Bayes factor (Vanlier et al ., 2014). Following this
idea, we propose a model selection utility for classifiers
as U2(ξ) ≡ 〈U2(d, ξ)〉P(d|ξ), where

U2(d, ξ)(~xk) ≡ DJS [P(T(~xk)|d,M1) :P(T(~xk)|d,M2)|ξ] ,
(15)

whereM1 andM2 are two competing cosmological mod-
els.

In the following, we exemplify for three cosmological
models in which the dark energy component has different
equations of state: M−0.9, M−1, M−1.1 corresponding
respectively to wCDM with w = −0.9, ΛCDM (w = −1)
and wCDM with w = −1.1. For simplicity, we note
Pw(d) ≡ P(T(~xk)|d,Mw) for w ∈ {−0.9,−1,−1.1}. Dif-
ferent values for the equation of state of dark energy will
mean different expansion history and growth of structure
in the Universe, which affects the late-time morphology
of the cosmic web. We aim here at finding the classifier
which best separates the predictions of different models.
Following equation (15), the joint utility of a data set d
and a classifier ξ is the Jensen-Shannon divergence be-
tween the three probabilities

U2(d, ξ)(~xk) = DJS[P−0.9(d) :P−1(d) :P−1.1(d)|ξ], (16)

where we need the generalized definition of DJS (equation
(A27)). Given property (B10), we have

U2(ξ) = I[M :R(d)|ξ], (17)

the mutual information between M and R(d), respec-
tively the model indicator and the mixture of distribu-
tions P−0.9(d),P−1(d),P−1.1(d):

R(d) ≡ 1

3
[P−0.9(d) + P−1(d) + P−1.1(d)] . (18)

For the SDSS data set d̃, the probabilities P−1(d̃)
have been already inferred and discussed within standard
ΛCDM cosmology (see section II B and figure 2). To eva-

luate P−0.9(d̃) and P−1.1(d̃), we ran a set of constrained
simulations within wCDM cosmology, corresponding to
our existing set.2 More precisely, we started from the set
of borg-inferred initial phases (obtained by dividing the
initial density realizations by the square root of the fidu-
cial power spectrum, in Fourier space) and rescaled the
Fourier modes so as to reproduce the linear matter power
spectrum for our set of cosmological parameters and for
the correct value of w. These power spectra have been
obtained with the cosmological Boltzmann code class
(Blas, Lesgourgues & Tram, 2011). The resulting initial
conditions have been evolved with 2LPT to the redshift
z = 69 and with 30 cola timesteps from z = 69 to
z = 0. During the evolution, we fixed the dark energy
equation of state to w = −0.9 or w = −1.1. Finally, we
performed cosmic web analysis as before to get P−0.9(d̃)

and P−1.1(d̃) for each classifier.
Figure 5 shows the Jensen-Shannon divergence be-

tween P−0.9(d̃), P−1(d̃) and P−1.1(d̃); i.e. the joint uti-

lity U2(d̃, ξ) of the SDSS data set and each of our three
classifiers (see equation (16)). There, one can clearly
notice that Lagrangian classifiers (diva and origami)
pick out more structure than the T-web. In particu-
lar, we find that the surroundings of voids are especially
sensitive regions to separate the predictions of different
dark energy models. This can be easily interpreted: as
the cosmic web is affected by dark energy throughout its
growth, the Lagrangian displacement field (used by diva
and origami) keeps a better memory of the expansion
history of the Universe than the final Eulerian position
of particles (used by the T-web).

Since we have only one data set at hand, it is possible,
as in section III A, to use an estimator for U2:

U2(ξ) ≈ Û2(ξ) ≡ 1

Nobs

∑
~xk

U2(d̃, ξ)(~xk), (19)

2 This treatment is approximate, since the calculation of P−0.9(d̃)
and P−1.1(d̃) should in principle involve inference of the ini-
tial conditions with a modified version of borg, accounting for
w 6= − 1. Considering computational requirements, we leave
this exact study for future work.
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FIG. 5. Slices through the Jensen-Shannon divergence between the three cosmic web-type posteriors P(T(~xk)|d,Mw, ξ), for
the dark energy equation of state w ∈ {−0.9,−1,−1.1} and the classifier ξ indicated above the panels (from left to right: the

T-web, diva, and origami). This quantity corresponds to the joint utility for model selection of the SDSS data set d̃ and

of the considered classifier ξ (U2(d̃, ξ), see equation (16)). The color scale has been stretched around zero using the mapping
x 7→ argsinh(103 x).

and for the corresponding “risk” taken by classifiers when
separating different models, U ′2:

U ′2(ξ) ≈ Û ′2(ξ) ≡

 1

Nunobs

∑
~xk

U2(d̃, ξ)(~xk)

−1 . (20)

Numerical results are given in table IV. Noticeably, this
crude estimator for U2 favors the T-web versus diva
and origami: though the Jensen-Shannon divergence
between the different pmfs is more evenly distributed
with the T-web (see figure 5), its average value within
the entire volume is the highest.

C. Utility for predictions: galaxy colors

In the context of optimizing the predictive power of ex-
periments, the expected information gain from the prior
to the posterior predictive distributions is a useful uti-
lity function. As discussed in section B 3, it is also the
mutual information between predicted and upcoming ob-
servations, conditional on the experimental design.

Let us denote by c future observations, or observations
already available but that have not been used so far. We
introduce the utility of a classifier ξ to perform predic-
tions as U3(ξ) ≡ 〈U3(d,T, ξ)〉P(d,T|ξ), where the joint uti-

lity of a data set d, a classification T and a classifier ξ is
the information gain on c, i.e.

U3(d,T, ξ) ≡ DKL[P(c|d,T, ξ)||P(c|ξ)]. (21)

In the following, we exemplify for the prediction of a
property of galaxies that has been used neither in our
borg inference nor cosmic web analyses: their color.
More specifically, we started from the objects used in

the borg SDSS DR7 run (see Jasche, Leclercq & Wan-
delt, 2015, section 2). We queried the SDSS database
in order to keep only those identified as galaxies after
spectral analysis (specClass = 2) and to get for each of
them the r-band apparent magnitude (modelMag r) and
the (g − r) color (grModelColor). From the apparent
magnitude r and the redshift z, we computed the r-band
absolute magnitude M0.1 r. Absolute magnitudes receive
appropriate K-correction to their z = 0.1 value using the
code of Blanton et al . (2003a); Blanton & Roweis (2007)
and E-correction using the luminosity evolution model of
Blanton et al . (2003b). Each galaxy is then given a color
label following the criterion of Li et al . 2006 (formula 7
and table 4): it is “red” if its (g − r) color satisfies

(g − r) ≥ −0.788− 0.078×M0.1 r, (22)

and “blue” otherwise. Therefore, in the following, the
color c is seen as a two-valued random variable in the
set {cI = blue, cII = red}. The following step is to deter-
mine in which web-type environment each galaxy lives,
given the different classifiers. To do so, we adopted the
criterion of Leclercq, Jasche & Wandelt (2015a) for op-
timal decision-making, combined with the probabilities
presented in section II B. Since we want to commit to a
structure type for each galaxy, we adopted α = 1 in the
notations of Leclercq, Jasche & Wandelt (2015a) (the fair
game situation). This choice ensures that a decision is
made for each voxel of the cosmic web map and results
in the “speculative maps” of the large-scale structure,
shown in figure 6. We then assigned to each galaxy the
structure type of its voxel using the Nearest-Grid-Point
scheme.

Summing up the discussion above, we built a catalog
containing, for each galaxy: a color ca (a ∈ {I, II}) and
three structure types Ti (i ∈ J0, 3K) – one for each of
the classifiers ξα (α ∈ J0, 2K). Some rows of this catalog



11

0 100 200 300 400 500

z [Mpc/h]

500

400

300

200

100

0

−
x
[M

p
c/
h
]

T-web

0 100 200 300 400 500

z [Mpc/h]

500

400

300

200

100

0

diva

0 100 200 300 400 500

z [Mpc/h]

500

400

300

200

100

0

origami

FIG. 6. Slices through maps of structure types in the late-time large-scale structure as observed by the SDSS. The color coding
is blue for voids, green for sheets, yellow for filaments, and red for clusters. From left to right, structures are defined using the
T-web, diva and origami. These maps are based on the posterior probabilities shown in figure 2, using the Bayesian decision
rule of Leclercq, Jasche & Wandelt (2015a) for α = 1.0 (the fair game situation, in which a decision is made everywhere). Blue
galaxies are overplotted as blue squares and red galaxies as red diamonds.

ra dec z T-web diva origami color

189.41567183 −0.82251765 0.072441 3 2 1 I

178.47971762 −0.79366005 0.132380 2 2 1 II

211.60459472 0.89288053 0.047731 3 2 0 I

132.11854651 0.27207873 0.051950 2 3 1 II

174.52633299 43.94979005 0.052975 1 0 0 I

222.71912116 38.99904573 0.056868 0 0 0 I

201.00744331 13.95337526 0.023865 3 3 3 II

209.12213650 12.81801605 0.027113 2 1 0 I

TABLE V. Some rows of the galaxy catalog used in section III C. The columns are: right ascension and declination (in degrees,
J2000.0 equatorial coordinates); redshift; web-type environment as defined by the T-web, diva and origami (T0 = void,
T1 = sheet, T2 = filament, T3 = cluster); galaxy color label (cI = blue, cII = red). The optimal choice of a classifier can be
seen as a machine learning problem: in this training set, which classification is the most relevant to predict galaxy color?

are given in table V as examples. This catalog contains
Ngal = 367, 157 galaxies.

In many respects, the question of choosing the best
classifier for predicting galaxy colors can now be viewed
as a supervised machine learning problem. Each of the
input galaxies is assigned a set of attributes, the web-
type in which it lives according to each classifier, and a
class label, its color (see table V). The design problem of
choosing the most efficient classifier for predicting galaxy
properties is analog to the machine learning problem of
determining the most relevant attribute for discriminat-
ing among the classes to be learned (for a cosmological
example, see e.g. Hoyle et al ., 2015).

Following equation (21), the utility of a classifier for
predicting galaxy colors, that we seek to maximize, is

U3(ξ) = 〈DKL[P(c|T, ξ)||P(c)]〉P(T|ξ) (23)

where we have used that P(c|ξ) = P(c) (before look-
ing at the data, galaxy colors do not depend on the

chosen classifier), and the simplifying assumption that
P(c|d,T, ξ) = P(c|T, ξ) (galaxy colors do not further de-
pend on the data once their web-type environment is
specified). It follows that the utility is the mutual in-
formation between the classification and the new obser-
vations (see section B 3):

U3(ξ) = I[T:c|ξ] (24)

= H[P(c)]−H[P(c|T, ξ)]

= H[P(c)]−
3∑
i=0

P(T = Ti|ξ)H[P(c|T = Ti, ξ)]

The weighting coefficients to be used in the last line re-
present the probability that a galaxy lives in web-type
Ti, given classifier ξ, irrespective of its color. They are
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FIG. 7. Schematic illustration of the procedure to compute the utility of classifiers for predicting galaxy colors (equations
(24)–(27)), using the subcatalog given in table V. In this example, the parent entropy is H = −3/8 log2(3/8)− 5/8 log2(5/8) ≈
0.954 Sh. The child entropy in each structure type is computed similarly and reported above. For each classifier, the utility is

the parent entropy minus the weighted average of children entropies. In this case, we get Û3(ξ0) = 0.266 Sh for the T-web,

Û3(ξ1) = 0.610 Sh for diva and Û3(ξ2) = 0.610 Sh for origami.

approximated as (see also equation (B15))

P(T = Ti|ξ) ≈
| {c|T = Ti, ξ} |

Ngal
(25)

=
∑

a∈{I,II}

Nca(T = Ti|ξ)
Ngal

=
Nblue(T = Ti|ξ) +Nred(T = Ti|ξ)

Ngal
,

i.e. the fraction of galaxies (blue or red) that live in web-
type Ti. Note that this is different from P(Ti|ξ), the
prior probability for a given voxel to belong to a structure
of type Ti. This difference accounts in particular for the
fact that galaxies live preferentially in the most complex
structures of the cosmic web.

The first term in equation (24) is the “parent” entropy

H[P(c)] =
∑

a∈{I,II}

Nca
Ngal

log2

(
Nca
Ngal

)
(26)

=
Nblue

Ngal
log2

(
Nblue

Ngal

)
+
Nred

Ngal
log2

(
Nred

Ngal

)
.

Similarly, for each classifier and each structure type, the
“child” entropy H[P(c|T = Ti, ξ)] is estimated as

∑
a∈{I,II}

Nca(T = Ti|ξ)
Ngal

log2

(
Nca(T = Ti|ξ)

Ngal

)
. (27)

Eventually, equations (24), (25), (26) and (27) yield

Û3(ξ), an estimator of U3 for each of the classifiers. A
schematic illustration of the entire procedure is given in
figure 7.

The result of our analysis is presented in table VI
and illustrated by the pie charts of figure 8. In the ta-
ble, the first row represents the number of blue and red
galaxies of our catalog, irrespective of their web-type en-
vironment. It permits to estimate the parent entropy
H[P(c)] = 0.9974 Sh. We also quote the number of blue
and red galaxies that live in voids, sheets, filaments, and
clusters, as defined by the T-web (second row), by diva
(third row) and by origami (fourth row). Resulting

numbers for estimated utilities Û3(ξ) are given in the
last row of table IV.

Several physical comments can be made at this point.
All classifiers agree on a general trend, which can be
observed in table VI: red galaxies live preferentially in
clusters, while blue galaxies live preferentially in sheets
and voids. This is in agreement with earlier results (e.g
Hogg et al ., 2003; Patiri et al ., 2006; Alpaslan et al .,
2015). It is interesting to note, that though almost half
of the galaxies are found in a void according to origami,
its utility stays comparable to that of the other classi-
fiers. In our setup, the T-web and origami have sim-
ilar performance at predicting galaxy colors, and out-
perform diva. This could be due to the weaker sensi-
tivity of diva classifications to the local density, which
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blue red

all 194,503 172,654

(53.0%) (47.0%)

blue red

void sheet filament cluster void sheet filament cluster

T-web 19,150 19,290 63,318 92,745 18,456 8,370 42,678 103,150

(50.9 %) (69.7 %) (59.7 %) (47.3 %) (49.1 %) (30.3 %) (40.3 %) (52.7 %)

diva 26,358 27,051 67,515 73,579 22,436 15,289 51,402 83,527

(54.0 %) (63.9 %) (56.8 %) (46.8 %) (46.0 %) (36.1 %) (43.2 %) (53.2 %)

origami 82,805 69,583 29,748 12,367 55,362 60,775 36,589 19,928

(59.9 %) (53.4 %) (44.8 %) (38.3 %) (40.1 %) (46.6 %) (55.2 %) (61.7 %)

TABLE VI. Number and percentage of blue and red galaxies as a function of their web-type environment. In the first row,
the number of blue and red galaxies in the entire catalog are reported. For the other rows, the number corresponds to the
number of blue/red galaxies in the web-type indicated by the column, given the classifier indicated by the row; the percentage
corresponds to the fraction of galaxy living in this web-type that are blue/red.

T-web diva origami

FIG. 8. Pie diagrams illustrating the data of table VI, with the area of sectors proportional to the corresponding number of
galaxies. The color of sectors represent the structure type (blue for voids, green for sheets, yellow for filaments, and red for
clusters), and the borders represent the galaxy color (cI = blue, cII = red).

is known to correlate with galaxy colors (Hogg et al .,
2003). It is also notable that for all classifiers, the in-
formation gained on galaxy colors once their web-type is
known is rather small – of the order of 10−2 Sh, to be
compared, for example, to the ∼ 1 Sh gained on cosmo-
logical models from cosmic microwave background expe-
riments (Seehars et al ., 2014; Martin, Ringeval & Ven-
nin, 2016). From a machine learning perspective, this
result means that none of the attributes that we con-
sidered are really relevant to learn the class label. This
suggests that galaxy colors are only loosely related to
the physical information exploited by the T-web, diva
and origami (tidal field, shear of the Lagrangian dis-
placement field and number of particle crossings, respec-
tively). It further highlights the necessity of developing
targeted cosmic web classifiers for cross-correlating with
galaxy properties. Unsupervised machine learning from
an extended space of attributes, including galaxy pro-
perties and their cosmic environment at different scales
(e.g. Frank, Jasche & Enßlin, 2016) could allow progress

for the design of such classifiers.

IV. SUMMARY AND CONCLUSIONS

Following Leclercq, Jasche & Wandelt (2015b), this
study discusses the data-supported connection between
cosmic web analysis and information theory. It is a
project exploiting the cosmic web maps of Leclercq,
Jasche & Wandelt (2015b) and Leclercq et al . (2016),
which are part of the rich variety of chrono-cosmographic
results produced by the application of the Bayesian in-
ference engine borg (Jasche & Wandelt, 2013) to the
Sloan Digital Sky Survey main sample galaxies (Jasche,
Leclercq & Wandelt, 2015). Using information-theoretic
concepts, in section II, we measure and characterize the
extent to which the SDSS is informative about the mor-
phological features of the underlying cosmic web, as de-
fined by the T-web (Hahn et al ., 2007), diva (Lavaux &
Wandelt, 2010), and origami (Falck, Neyrinck & Szalay,
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2012).
In section III, this paper quantitatively addresses the

question of choosing a cosmic web classifier, depending
on the desired use. To do so, we extend the decision-
theory framework of Leclercq, Jasche & Wandelt (2015a)
by introducing utility functions on the space of classifiers.
We consider three classes of problem: parameter infe-
rence (section III A), model selection (section III B), and
prediction of new observations (section III C). In each
of these general situations, we propose a utility function
based on the concept of mutual information and moti-
vated in the general framework of Bayesian design. We
summarize them below:

• for parameter inference: U1(ξ) = I[T : d|ξ] (equa-
tion (11)), the mutual information between the
classification T and the data d, given the classifier
ξ,

• for model selection: U2(ξ) = I[M :R(d)|ξ] (equa-
tion (17)), the mutual information between the
model indicatorM and the mixture R(d) of poste-
rior distributions, conditional on the different com-
peting models and on the classifier ξ,

• for predictions: U3(ξ) = I[T : c|ξ] (equation (24)),
the mutual information between the classification
T and the new observations c, given the classifier
ξ.

In practice, due to the difficulty of combining competing
goals, the decision maker may be unwilling or unable to
specify a unique utility function. Given the set of possible
utility functions for different situations, a target function
for several design objectives can be written down, for
example, as a weighted average of different utilities.

As an illustration of our methodological framework, we
assessed the relative performance of the T-web, diva,
origami for different goals, one of each type mentioned
above: optimization of the information content of cos-
mic web maps, comparison of dark energy models, and
prediction of galaxy colors. Our physical findings can be
summarized as follows. We found that the T-web ma-
ximizes the information content of web-type maps (espe-
cially in the densest regions), but that diva may have to
be preferred due to its lower sensitivity to artifacts. Un-
surprisingly, Lagrangian classifiers (diva and origami),
which exploit the displacement field, excel at finding the
regions of the cosmic web, such as the boundaries of
voids, that are the most sensitive to the equation of state
of dark energy. Finally, all classifiers agree on the ge-
neral trend of red galaxies in clusters, and blue galaxies
in sheets and voids. The information gained on galaxy
colors is the highest with the T-web, slightly less with
origami, and lowest with diva; but the absolute number
stays rather low. Though investigation of this question
should be made much more comprehensive, this result
is indicative of the as-of-now limited understanding of
the connection between galaxy properties and the cosmic

web, which is essential to the development of a consistent
cosmological theory of galaxy formation and evolution.

Numerical results given in table IV depend on method-
internal parameters, in particular a scale on the Eulerian
or Lagrangian grid. Though we did not investigate this
question, in addition to making comparisons between dif-
ferent classifiers, the same formalism can be used within
each classification method to assign a utility for each pa-
rameter choice, then decide on which values to use. This
allows to probe the hierarchical nature of the cosmic web
quantitatively and to focus on the optimal filtering scale
for the considered problem. At the largest filtering scales
(for example, when studying the dark energy equation
of state), we expect the results of the T-web and diva
to converge, since the methods are equivalent at first or-
der in Lagrangian perturbation theory; whereas origami
will miss all the phase-space foldings that happen below
the considered scale. At the smallest filtering scales (for
example, when studying galaxies), we expect an increase
of the information gained on all features that are intrin-
sically local, such as many galaxy properties.

In order to facilitate the use of our methods and as
a complement to our earlier release of density fields and
cosmic web maps, we made publicly available the maps,
analysis scripts and galaxy catalog used in this paper,
which can be used to reproduce our results. These pro-
ducts are available from the first author’s website, cur-
rently hosted at http://icg.port.ac.uk/∼leclercq/.

Though we used the common terms of voids, sheets,
filaments, and clusters, this paper can be considered as a
generic way to optimally define four summary statistics
A, B, C, D of the large-scale structure, depending on the
desired use. Therefore, beyond the specific application
of cosmic web analysis, our methodology opens the way
to the automatic design of summary statistics of the LSS
that capture targeted parts of its information content. In
the coming area of accurate cosmology with deep galaxy
surveys, we expect that the optimal design of analysis
procedures will play an ever-increasing role.

Appendix A: Information theory

We review here some useful information-theoretic no-
tions. For simplicity, we consider only discrete ran-
dom variables, but the generalization to continuous vari-
ables is possible, by replacing discrete sums by inte-
grals. Throughout this appendix, X and Y are two
discrete random variables with respective possible va-
lues in X = {x0, ..., xn} and Y = {y0, ..., ym}. We note
their respective pmfs P(X) and P(Y ). We denote by
Q(X) ≡ P(X ′) the pmf of another discrete random vari-
able X ′ with possible values in X .

http://icg.port.ac.uk/~leclercq/
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1. Jensen’s inequality

An important result used in the following is Jensen’s
inequality (Jensen, 1906) in a probabilistic setting. Let
us consider a probability space, a random variableX with
probability distribution P(X) and a convex function ϕ.
Then

ϕ(〈X〉P(X)) ≤ 〈ϕ(X)〉P(X) (A1)

where the brackets indicate the expectation value of the
quantity inside, under the probability P(X).

2. Information content and Shannon entropy

The information content (or self-information) of X is
defined by

I[X] ≡ −
∑
x∈X

log2 P(x), (A2)

where the P(x) are the probabilities of possible events.
The entropy (Shannon, 1948) is the expectation of the
information content under the probability itself, i.e.

H[X] ≡ 〈I[X]〉P(X) = 〈− log2 P(X)〉P(X) . (A3)

It can be written explicitly

H[X] = −
∑
x∈X
P(x) log2 P(x). (A4)

Information content and Shannon entropy are non-
negative quantities. Furthermore, Jensen’s inequality
(section A 1) implies that:

H[X] =
∑
x∈X
P(x) log2

(
1

P(x)

)

≤ log2

(∑
x∈X
P(x)

1

P(x)

)
= log2 |X |, (A5)

since − log2 is a convex function. This maximal entropy
is effectively attained in the case of a uniform pmf: un-
certainty is maximal when all possible events are equi-
probable.

The joint entropy of two random variables X and Y is
defined as

H[X,Y ] ≡ 〈I[X,Y ]〉P(X,Y )

= −
∑

x∈X ,y∈Y
P(x, y) log2 P(x, y). (A6)

One may also define the conditional entropy of X given
Y as

H[X|Y ] ≡ 〈H[X|Y = y]〉P(Y ) =
∑
y∈Y
P(y)H[X|Y = y].

(A7)

Using

H[X|Y = y] = −
∑
x∈X
P(x|y) log2 P(x|y) (A8)

and P(x, y) = P(x|y)P(y), it is easy to show that the
conditional entropy verifies

H[X|Y ] =
∑

x∈X ,y∈Y
P(x, y) log2

( P(y)

P(x, y)

)
. (A9)

From equations (A4), (A6) and (A9), one can derive the
chain rule of conditional entropy:

H[X|Y ] = H[X,Y ]−H[Y ], (A10)

from which follows straightforwardly an equivalent of
Bayes’ theorem for entropies,

H[X|Y ] +H[Y ] = H[Y |X] +H[X]. (A11)

Finally, the cross entropy between two random vari-
ables X and X ′ with possible values in the same set X
and respective pmfs P(X) and Q(X) is

H[X||X ′] ≡ −
∑
x∈X
P(x) log2Q(x). (A12)

3. Mutual information

The mutual information of two variables X and Y is
defined as

I[X :Y ] ≡
∑

x∈X ,y∈Y
P(x, y) log2

( P(x, y)

P(x)P(y)

)
. (A13)

It is a symmetric measure of inherent dependence of X
and Y . Jensen’s inequality (section A 1) implies that it
is non-negative:

− I[X :Y ] =
∑

x∈X ,y∈Y
P(x, y) log2

(P(x)P(y)

P(x, y)

)

≤ log2

 ∑
x∈X ,y∈Y

P(x, y)
P(x)P(y)

P(x, y)


= log2

 ∑
x∈X ,y∈Y

P(x)P(y)

 = 0. (A14)

A remarkable property is that the entropy satisfies
H[X] = I[X :X], the mutual information of X and itself.

Using the definition of conditional probabilities, one
can also show that mutual information can be equiva-
lently expressed as:

I[X :Y ] = H[X]−H[X|Y ] (A15)

= H[Y ]−H[Y |X] (A16)

= H[X] +H[Y ]−H[X,Y ] (A17)

= H[X,Y ]−H[X|Y ]−H[Y |X]. (A18)
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It follows that for any X and Y , H[X|Y ] ≤ H[X]. There-
fore, conditional entropy should be understood as the
amount of randomness remaining in X once Y is known.
H[X|Y ] = 0 if and only if the value of X is completely de-
termined by the value of Y . Conversely, H[X|Y ] = H[X]
if and only if X and Y are independent random variables.

4. Kullback-Leibler divergence

In this section and in the following, we consider two
discrete random variables X and X ′ with possible va-
lues in X and respective pmfs P(X) and Q(X) ≡
P(X ′). When there is no ambiguity, we simplify the
formalism and note I[P] ≡ I[X], H[P] ≡ H[X],
H[P||Q] ≡ H[X||X ′], etc.

The Kullback-Leibler divergence (Kullback & Leibler,
1951) is a non-symmetric measure of the difference be-
tween two probability distributions. It is defined as

DKL [P||Q] ≡
∑
x∈X
P(x) log2

(P(x)

Q(x)

)
. (A19)

It can also be expressed in terms of the entropy of P and
the cross entropy between P and Q (see equations (A4)
and (A12)):

DKL [P||Q] = H [P||Q]−H [P] . (A20)

An important result, known as Gibbs’ inequality, states
that the Kullback-Leibler divergence is non-negative,
reaching zero if and only if P = Q. Equivalently, for
two pmfs P and Q, H[P] ≤ H [P||Q], i.e. the (self) en-
tropy of P is always smaller than the cross entropy of
P with any other pmf Q. The proof uses the inequality
ln(x) ≤ x − 1 for all x > 0, with equality if and only if

x = 1. Denoting by X̃ the subset of X for which P(x) is
non-zero, we have:∑

x∈X̃

P(x) ln

(Q(x)

P(x)

)
≤
∑
x∈X̃

P(x)

(Q(x)

P(x)
− 1

)
=
∑
x∈X̃

Q(x)−
∑
x∈X̃

P(x)

=
∑
x∈X̃

Q(x)− 1 ≤ 0. (A21)

The property follows trivially.
As can be seen from its definition, equation (A13), mu-

tual information is related to the Kullback-Leibler diver-
gence:

I [X :Y ] = DKL [P(x, y)||P(x)P(y)] . (A22)

Furthermore, using P(x, y) = P(x|y)P(y), we obtain

I [X :Y ] =
∑
y∈Y
P(y)DKL [P(x|y)||P(x)]

= 〈DKL [P(x|y)||P(x)]〉P(Y ) . (A23)

Mutual information can thus be understood as
the expectation of the Kullback-Leibler divergence
DKL [P(x|y)||P(x)] (seen as a random variable in y) of
the conditional distribution P(x|y) from the uncondi-
tional distribution P(x).

A convenient way to think of DKL [P||Q] is as of a
quantification of the information lost when Q is used
to approximate P. In Bayesian statistics, the Kullback-
Leibler divergence can be used as a measure of the infor-
mation gained in moving from the prior distribution of
some quantity x, P(x) to the posterior distribution of x
given the data d, P(x|d). According to Bayes’ theorem,

P(x|d) =
P(d|x)

P(d)
P(x). (A24)

In this context, we refer to the Kullback-Leibler diver-
gence of the posterior from the prior,

DKL [P(x|d)||P(x)] =
∑
x∈X
P(x|d) log2

(P(x|d)

P(x)

)
,

(A25)
as the information gain.

5. Jensen-Shannon divergence

The Jensen-Shannon divergence (Lin, 1991) is a sym-
metrized version of the Kullback-Leibler divergence. It
is defined as

DJS [P :Q] ≡ 1

2
DKL [P‖R] +

1

2
DKL [Q‖R] , (A26)

where R ≡ (P +Q) /2. The above definition can be
generalized to more than two distributions, by noting

DJS [P1 :P2 : ... :Pn] ≡ 1

n

n∑
i=1

DKL

[
Pi||

∑n
j=1 Pj
n

]
.

(A27)
The square root of the Jensen-Shannon divergence is a
metric and is often referred to as Jensen-Shannon dis-
tance (Endres & Schindelin, 2003).

Using equation (A19), one can check explicitly that

DJS [P :Q] = H[R]− 1

2
H[P]− 1

2
H[Q]. (A28)

The Jensen-Shannon divergence can also be related
to the concept of mutual information. Let us consider
the random variable Z that takes the values 0 and 1
with probabilities 1/2 and 1/2, and the random variable
R ≡ ZX ′+ (1−Z)X. The pmf of R is R = (P +Q)/2.
Using equation (A15), the mutual information between
R and Z is

I[R :Z] = H[R]−H[R|Z], (A29)
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where H[R] is H[R], and (using equation (A8))

H[R|Z] =
1

2
H[R|Z = 0] +

1

2
H[R|Z = 1]

=
1

2
H[X] +

1

2
H[X ′]

=
1

2
H[P] +

1

2
H[Q]. (A30)

Thus, given equation (A28), we have

DJS [P :Q] = I[R :Z], (A31)

the mutual information between the mixture variable R
and the indicator Z used to produce the mixture. It fol-
lows from this result that the Jensen-Shannon divergence
is always between 0 and 1 Sh, since mutual information
is non-negative and since

I[R :Z] = H[Z]−H[Z|X] ≤ H[Z] = 1. (A32)

Appendix B: Bayesian experimental design

In Bayesian experimental design (e.g. Chaloner &
Verdinelli, 1995), the expected utility of an experiment
with design ξ can be defined as

U(ξ) ≡ 〈U(d, ξ)〉P(d|ξ) =

∫
P(d|ξ)U(d, ξ) dd. (B1)

It should incorporate experimental aims and be specific
to the targeted application. In this appendix, we review
some of the more commonly used utility functions.

1. Parameter inference utility functions

Precise parameter inference is an frequent goal for ex-
perimental design. In this case, U(d, ξ) is a function of
the posterior probability distribution function P(θ|d, ξ)
of the inferred parameters θ. It is often chosen as the
gain in Shannon information, i.e.

U(d, ξ) ≡ DKL [P(θ|d, ξ)||P(θ|ξ)]

=

∫
P(θ|d, ξ) log2

(P(θ|d, ξ)
P(θ|ξ)

)
dθ, (B2)

where DKL is the Kullback-Leibler divergence of the pos-
terior from the prior (see section A 4). In this fashion, the
utility U(ξ) is the expected information gain under the
experimental design ξ. Given equations (B1) and (B2),
it can also be written as

U(ξ) =

∫
P(d|ξ)DKL [P(θ|d, ξ)||P(θ|ξ)] dd

=

∫∫
P(θ, d|ξ) log2

( P(θ, d|ξ)
P(θ|ξ)P(d|ξ)

)
dθ dd

≡ I [θ :d|ξ] , (B3)

i.e. the mutual information between θ and d, conditional
on the experimental design ξ (see also equations (A13)
and (A23)).

In some situations, instead of using the expected infor-
mation gain, it is acceptable to simplify the problem by
considering scalar functions of the posterior covariance
matrix cov(θ|d, ξ). For example, a design maximizing
the expected value of

UA(d, ξ) ≡ 1

tr(cov(θ|d, ξ)−1)
(B4)

is called A-optimal, and a design maximizing the ex-
pected value of

UD(d, ξ) ≡ det(cov(θ|d, ξ)) (B5)

is called D-optimal (see Bassett, 2005, for an application
to the design of cosmological surveys).

2. Model selection utility functions

In model selection questions, the quantity of interest
is not the posterior distributions of different models, but
the Bayes factor, defined as

B12(ξ) ≡ P(d|ξ,M1)

P(d|ξ,M2)
, (B6)

i.e. the ratio of evidences, where for i = 1, 2,

P(d|ξ,Mi) =

∫
P(d|θ, ξ,Mi)P(θ|ξ,Mi) dθ. (B7)

Naively, optimizing experimental design to effectively al-
low model selection suggests to simply use as utility

U(ξ) = B12(ξ). (B8)

Forecasting a predictive distribution of Bayes factors has
been studied in the case of nested models using the
Savage-Dickey ratio (Trotta, 2007), but it is computa-
tionally intractable for most non-linear models that are
not nested.

Another common idea in the Bayesian design literature
for model selection is to use mutual information: the
optimal design ξ is the one that maximizes the mutual
information between the model indicator M (a random
variable on the space of possible models, that takes the
value Mi with the meta-prior probability P(Mi)) and
the future observation d:

U(ξ) = I [M :d|ξ] (B9)

(see, for example, Cavagnaro et al ., 2010).
The model selection utility known as “total separa-

tion” (Roth, 1965) rather aims at finding designs that
yield the largest difference between the means of poste-
rior predictive distributions of rival models.
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In the context of involved non-linear models of bio-
chemical reaction networks, Vanlier et al . (2014) pro-
posed a model selection utility based on the Jensen-
Shannon divergence between posterior predictive distri-
butions. Let us denote by Pi ≡ P(d|d̃,Mi, ξ) the proba-
bility of a new measurement d given the available data
set d̃, under modelMi (i = 1, 2) and experimental design
ξ. Using property (A31), the utility is

U(ξ) = DJS [P1 :P2|ξ] = I[M :R|ξ], (B10)

where R is the mixture of predictive densities and M is
the model indicator. Informally, maximizing the Jensen-
Shannon divergence between predictive distributions is
maximizing the reduction of uncertainty in the determi-
nation of which of the two distributions the new mea-
surement comes from. For analytically tractable models,
Vanlier et al . (2014) showed that the Jensen-Shannon
divergence of predictive distributions is approximately
monotonically related to the expected change in the
Bayes factor, in favor of the model that generates new
data. This supports the Jensen-Shannon divergence as a
useful quantity for model discrimination.

3. Utilities for prediction of future observations

The design ξ that optimizes the predictive power of the
experiment, once data d are acquired, is the one which
allows the best prediction of future observations t, con-
ditional on d and ξ (e.g. Vanlier et al ., 2012). In this si-
tuation, the Kullback-Leibler divergence of the posterior
predictive distribution from the prior predictive distribu-
tion can be used as joint utility:

U(d, ξ) = DKL [P(t|d, ξ)||P(t|ξ)] , (B11)

and the utility of ξ is the expected information gain for
the predicted observation:

U(ξ) = 〈DKL [P(t|d, ξ)||P(t|ξ)]〉P(d) . (B12)

Using property (A23), this is equivalent to the mutual
information between the predicted observation t and the
upcoming observation d, conditional on the design ξ:

U(ξ) = I [t :d|ξ] . (B13)

It is also the change of entropy from the prior predictive
distribution to the posterior predictive distribution (see
equation (A15)),

U(ξ) = H [P(t|ξ)]−H [P(t|d, ξ)] . (B14)

The above formalism is directly analog to that of super-
vised machine learning, where T denotes a set of training
examples, each of the form (t, `) = (t1, t2, ..., tn, `), where
ta ∈ Vals(a) is the value of the a-th attribute of example
t and ` is its class label. The goal is to determine which
of the attributes are the most informative, if one wants

to predict the class label of future elements. The utility
of an attribute a is the expected information gain:

U(a) = H [T ]−H [T |a] (B15)

= H [T ]−
∑

ã∈Vals(a)

| {`|ta = ã} |
|T | H [{`|ta = ã}] .
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