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One-point statistics of the Lagrangian displacement field. The remapping proce-
dure, described in section 2 of the main paper, relies on the Eulerian density contrast. As
noted by previous authors [see in particular 1], in the Lagrangian representation of the LSS,
it is natural to use the divergence of the displacement field ψ instead of the Eulerian density
contrast δ. This addendum provides additional comments on the one-point statistics of ψ
and comparatively analyzes key features of ψ and δ.

In the Lagrangian frame, the quantity of interest is not the position, but the displace-
ment field Ψ(q) which maps the initial comoving particle position q to its final comoving
Eulerian position x (see e.g. [2] or [3] for overviews),

x ≡ q + Ψ(q). (1)

It is important to note that, though Ψ(q) is a priori a full three-dimensional vector field, it
is curl-free up to second order in Lagrangian perturbation theory (appendix D in [4] or [3]
for a review). We did not consider contributions beyond 2LPT. After publication of the
main paper, Chan [5] analyzed the non-linear evolution of Ψ, splitting it into its scalar and
vector parts (the so-called “Helmholtz decomposition”). Looking at two-point statistics, he
found that shell-crossing leads to a suppression of small-scale power in the scalar part, and,
subdominantly, to the generation of a vector contribution.

Let ψ(q) ≡ ∇q · Ψ(q) denote the divergence of the displacement field, where ∇q is
the divergence operator in Lagrangian coordinates. ψ quantifies the angle-averaged spatial-
stretching of the Lagrangian dark matter “sheet” in comoving coordinates [1]. Let Pψ,LPT
and Pψ,Nbody be the one-point probability distribution functions (PDF) for the divergence of
the displacement field in the LPT and in the full N -body fields, respectively. We denote by
Pδ the corresponding PDFs for the Eulerian density contrast.

In figure 1, we show the PDFs of ψ for the ZA, 2LPT and full N -body gravity. The
most important feature of ψ is that, whatever the model for structure formation, the PDF
exhibits reduced non-Gaussianity compared to the PDF for the density contrast δ (see the
upper panel of figure 7 in the main paper for comparison). The main reason is that Pδ,
unlike Pψ, is tied down to zero at δ = −1. It is highly non-Gaussian in the final conditions,
both in N -body simulations and in approximations to the true dynamics. For a quantitative
analysis, we looked at the first and second-order non-Gaussianity statistics: the skewness γ1
and the excess kurtosis γ2,

γ1 ≡
µ3
σ3

and γ2 ≡
µ4
σ4
− 3, (2)

where µn is the n-th moment about the mean and σ is the standard deviation. We estimated
γ1 and γ2 at redshift zero in our simulations, in the one-point statistics of the density contrast
δ and of the divergence of the displacement field ψ. The results are shown in table 1. In all
cases, we found that both γ1 and γ2 are much smaller when measured from Pψ instead of Pδ.

At linear order in Lagrangian perturbation theory (the Zel’dovich approximation), the
divergence of the displacement field is proportional to the density contrast in the initial
conditions, δ(q), scaling with the negative growth factor, −D1(τ):

ψ(1)(q, τ) = ∇q ·Ψ(1)(q, τ) = −D1(τ)δ(q). (3)

Since we take Gaussian initial conditions, the PDF for ψ is Gaussian at any time with the ZA.
In full gravity, non-linear evolution slightly breaks Gaussianity. Pψ,Nbody is slightly skewed
towards negative values while its mode gets shifted around ψ ≈ 1. Taking into account non-
local effects, 2LPT tries to get closer to the shape observed in N -body simulations, but the
correct skewness is overshot and the PDF is exceedingly peaked.
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Figure 1. Redshift-zero probability distribution function for the divergence of the displacement field
ψ, computed from eight 1024 Mpc/h-box simulations of 5123 particles. A quantitative analysis of the
deviation from Gaussianity of these PDFs is given in table 1. The particle distribution is determined
using: a full N -body simulation (purple curve), the Zel’dovich approximation (ZA, light red curve) and
second-order Lagrangian perturbation theory (2LPT, light blue curve). The vertical line at ψ = −3
represents the collapse barrier about which ψ values bob around after gravitational collapse. A bump
at this value is visible with full gravity, but LPT is unable to reproduce this feature. This regime
corresponds to virialized, overdense clusters.

Model Pδ Pψ
Skewness γ1

ZA 2.36± 0.01 −0.0067± 0.0001

2LPT 2.83± 0.01 −1.5750± 0.0002

N -body 5.14± 0.05 −0.4274± 0.0001

Excess kurtosis γ2

ZA 9.95± 0.09 −2.2154× 10−6 ± 0.0003

2LPT 13.91± 0.15 3.544± 0.0011

N -body 62.60± 2.75 −0.2778± 0.0004

Table 1. Non-Gaussianity parameters (the skewness γ1 and the excess kurtosis γ2) of the redshift-
zero probability distribution functions Pδ and Pψ of the density contrast δ and the divergence of
the displacement field ψ, respectively. The confidence intervals given correspond to the 1-σ standard
deviations among eight realizations. In all cases, γ1 and γ2 are reduced when measured from ψ instead
of δ.

Figure 2 shows a slice of the divergence of the displacement field, measured at redshift
zero for particles occupying a flat 5122-pixel Lagrangian sheet from one of our simulations.
For comparison, see also the figures in [1, 6, 7]. We used the color scheme of the latter
paper, suggesting a topographical analogy when working in Lagrangian coordinates. As
structures take shape, ψ departs from its initial value; it takes positive values in underdensities
and negative values in overdensities. The shape of voids (the “mountains”) is found to be
reasonably similar in LPT and in the N -body simulation. For this reason, the influence of
late-time non-linear effects in voids is milder as compared to overdense structures, which
makes them easier to relate to the initial conditions. However, in overdense regions where
ψ decreases, it is not allowed to take arbitrary values: where gravitational collapse occurs,

– 2 –



J
C
A
P
0
4
(
2
0
1
5
)
A
0
1

0 50 100 150 200
x [Mpc/h]

0

50

100

150

200

y
[M

p
c/
h
]

δ in Nbody

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

ln
(2

+
δ
)

0 50 100 150 200
x [Mpc/h]

0

50

100

150

200

y
[M

p
c/
h
]

ψ in Nbody

−4.0

−3.2

−2.4

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

4.0

ψ

0 50 100 150 200
x [Mpc/h]

0

50

100

150

200

y
[M

p
c/
h
]

ψ in 2LPT

−4.0

−3.2

−2.4

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

4.0

ψ

0 50 100 150 200
x [Mpc/h]

0

50

100

150

200

y
[M

p
c/
h
]

ψ in ZA

−4.0

−3.2

−2.4

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

4.0

ψ

Figure 2. Slices of the divergence of the displacement field, ψ, on a Lagrangian sheet of 5122 particles
from a 5123-particle simulation of box size 1024 Mpc/h, run to redshift zero. For clarity we show only
a 200 Mpc/h region. Each pixel corresponds to a particle. The particle distribution is determined
using respectively a full N -body simulation, the Zel’dovich approximation (ZA) and second-order
Lagrangian perturbation theory (2LPT). In the upper left panel, the density contrast δ in the N -
body simulation is shown, after binning on a 5123-voxel grid. To guide the eye, some clusters and
voids are identified by yellow and purple dots, respectively. The “lakes”, Lagrangian regions that have
collapsed to form halos, are only visible in the N -body simulation, while the “mountains”, Lagrangian
regions corresponding to cosmic voids, are well reproduced by LPT.

“lakes” form and ψ gets stuck around a collapse barrier, ψ ≈ −3. As expected, these “lakes”,
corresponding to virialized clusters, can only be found in N -body simulations, since LPT fails
to accurately describe the highly non-linear physics involved. A small bump at ψ = −3 is
visible in Pψ,Nbody (see figure 1). We checked that this bump gets more visible in higher mass-
resolution simulations (200 Mpc/h box for 2563 particles), where matter is more clustered.
This means that part of the information about gravitational clustering can be found in the
one-point statistics of ψ. Of course, the complete description of halos requires to precisely
account for the shape of the “lakes”, which can only be done via higher-order correlation
functions. More generally, it is possible to use Lagrangian information in order to classify
structures of the cosmic web. In particular, diva [8] uses the shear of the displacement field
and origami [9] the number of phase-space folds. As pointed out by Falck & Neyrinck [10],
while these techniques cannot be straightforwardly used for the analysis of galaxy surveys,
where we lack Lagrangian information, recently proposed techniques for physical inference of
the initial conditions [11, 12] should allow their use with observational data.
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Figure 3. Left panel. Two-dimensional histograms comparing particle densities evolved with full N -
body dynamics (the x-axis) to densities in the LPT-evolved particle distributions (the y-axis). The
red lines show the ideal y = x locus. A turn-up at low densities is visible with 2LPT, meaning that
some overdense regions are predicted where there should be deep voids. Right panel. Same plot for
the divergence of the displacement field ψ. Negative ψ corresponds to overdensities and positive ψ
correspond to underdensities. The dotted blue line shows the collapse barrier at ψ = −3 where particle
get clustered in full gravity. The scatter is bigger with ψ than with δ, in particular in overdensities,
since with LPT, particles do not cluster. The turn-up at low densities with 2LPT, observed with the
density contrast, is also visible with the divergence of the displacement field.

Figure 3 shows two-dimensional histograms comparing N -body simulations to the LPT
realizations for the density contrast δ and the divergence of the displacement field ψ. At this
point, it is useful to note that a good mapping exists in the case where the relation shown
is monotonic and the scatter is narrow. As pointed out by Neyrinck [1, 13], matter in the
substructure of 2LPT-voids has incorrect statistical properties: there are overdense particles
in the low density region of the 2LPT δ-scatter plot. This degeneracy is also visible in the
ψ > 0 region of the 2LPT ψ-scatter plot. On average, the scatter is bigger with ψ than with
δ, in particular in overdensities (ψ < 0), since with LPT, particles do not cluster: ψ takes
any value between 2 and −3 where it should remain around −3.

Summing up our discussions in this addendum, we analyzed the relative merits of the
Lagrangian divergence of the displacement field ψ, and the Eulerian density contrast δ. The
important differences are the following:

1. Ψ being irrotational up to order two, its divergence ψ contains nearly all information
on the displacement field in one dimension, instead of three. The collapse barrier
at ψ = −3 is visible in Pψ for N -body simulations but not for LPT. A part of the
information about non-linear gravitational clustering is therefore encoded in the one-
point statistics of ψ.
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2. ψ exhibits much fewer gravitationally-induced non-Gaussian features than δ in the final
conditions (figure 1 and table 1).

3. However, the values of ψ are more scattered than the values of δ with respect to the
true dynamics (figure 3), meaning that an unambiguous mapping is more difficult.
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