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Abstract: The problem of the stability analysis for nonlinear differential-algebraic systems
is addressed using tools from classical control theory. Exploiting Lyapunov Direct Method we
provide linear matrix inequalities to establish stability properties of this class of systems. In
addition, interpreting the differential-algebraic system as the feedback interconnection of a
dynamical system and an algebraic system, a sufficient stability condition has been derived using
the small-gain theorem. The proposed techniques are illustrated by means of simple examples.
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1. INTRODUCTION

Analysis and control of differential-algebraic (DA) systems
(also known as descriptor systems, singular systems or
semi-state systems) have been the subject of increasing
interest from the research community in the last decades.
Differential-algebraic systems arise, for example, in multi-
body mechanical systems where they may represent envi-
ronmental constraints or constraints related to kinematic
joints, see Blajer (1992). For example, large mechanical
systems involving thousands of bodies can be modeled as
smaller purely differential subsystems interconnected via
algebraic constraints, see Pogorelov (1998). A similar mod-
eling approach applies to the interconnection of large-scale
electrical networks, where differential-algebraic equations
arise from the application of the Kirchoff’s laws, see Riaza
(2008). Other examples of differential-algebraic systems
arise in social economic systems and chemical processes,
see Dai (1989) and Kunkel and Mehrmann (2006). Despite
significant advances in numerical analysis and simulation
of DA systems, see Brenan et al. (1995), the problem
of stability analysis and control for general DA systems
remains open. Attempts to study DA systems have been
undertaken by developing an equivalent ordinary differen-
tial equations (ODE) representation. ODE representations
require multiple differentiation of the algebraic equations
and further mathematical manipulations which poorly
suit with the large-scale dimension of many engineering
problems. Another approach consists in studying stability
properties of DA systems in their original formulation by
extending tools from classical and modern control theory.
Successful attempts have been made for the case of linear
time-invariant DA systems: for example in Müller (2006)
an inertia theorem is presented, while the observer design
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problem is addressed in Müller and Hou (1991) and in
Darouach and Boutayeb (1995). Contributions in extend-
ing optimal control theory to nonlinear DA systems are
in Glad and Sjöberg (2006), where the Hamilton-Jacobi
equation is directly formulated for DA systems, and in
Sjöberg et al. (2007a), where a sampled-data nonlinear
model predictive control scheme with guaranteed stability
is presented. Stability analysis with Lyapunov methods
is studied in Wang and Zhang (2012) for nonlinear DA
systems with delays. In Wu and Mizukami (1995) the
Lyapunov stability theory is extended to DA systems
and a class of state feedback controllers that guarantee
asymptotic stability of uncertain DA systems is proposed.
In Coutinho et al. (2004) the stability analysis with guar-
anteed domain of attraction and control of DA nonlinear
systems is studied by means of Lyapunov functions based
on the linear matrix inequality framework.
For purely differential systems significant advances have
been done in studying the nonlinear equivalent of the H∞
control problem. One first contribution to this problem
was given by van der Schaft (1992), which showed that
the L2-induced norm can be calculated from the solution
of a Hamilton-Jacobi-Isaacs equation or inequality. Other
major contributions to nonlinear output feedbackH∞ con-
trol come from Isidori and Astolfi (1992) and Isidori and
Kang (1995). However, few results have been developed on
H∞ schemes for DA systems, see for instance Wang et al.
(2002), in which some necessary and sufficient conditions
for the existence of a controller solving the H∞ control
problem for nonlinear DA systems are provided. More
recently, H∞ control and robust adaptive control for a
class of nonlinear DA systems with external disturbances
and parametric uncertainties have been studied in Sun and
Wang (2013).
The objective of this paper is to present some stability
conditions for nonlinear differential-algebraic systems ex-



tending classical tools from nonlinear control theory. In
Section 2 two theorems based on Lyapunov Direct Method
are introduced to study the local stability of DA systems.
At the end of the section a simple example illustrates
the results. In Section 3 we reformulate the differential-
algebraic system as the feedback interconnection of a
purely differential system and a purely algebraic system.
With this approach we are able to exploit the small-gain
theorem for the stability analysis of DA systems. From
the main result we derive simple conditions to achieve
global stability and we establish connections with the
linear case. At the end of the section two examples are
presented: one academic example and a nonlinear system
describing an electrical circuit. Finally, Section 4 contains
some concluding remark.

Notation. We use standard notation. The superscripts
> and −> represent the transposition operator and the
transposition of the inverse operator, respectively. I repre-
sents the identity matrix. The symbol Ir(0) denotes a ball
of radius r > 0 and center x = 0. The symbols R>0 and
R≥0 indicate, respectively, the set of strictly positive real
numbers and the set of non-negative real numbers. Given
a function f : Rn → R and a manifold M, the symbol
f |M indicates the restriction of f to M. Given a matrix
A the symbols σ(A) and σ̄(A) represent the smallest and
largest singular value, respectively, of the matrix A. In
addition, σ(A) indicates the spectrum of the matrix A. The
symbol ‖Σ‖∞ represents theH∞ norm of the linear system
Σ. The function sinc(x) is the cardinal sine function, i.e.

sinc(x) = sin(x)
x .

2. LYAPUNOV DIRECT METHOD

In this section we provide some stability conditions for
nonlinear DA systems using Lyapunov Direct Method. We
conclude the section with an example.

2.1 Stability analysis

Consider a continuous-time, autonomous, differential-
algebraic system in semi-explicit form, described by the
equations

ẋ1 = f(x1, x2),
0 = g(x1, x2),

(1)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 denote the states of the
system at time t and f and g are smooth mappings. Before
undertaking the stability analysis, some clarifications are
required on the nature of such a problem. Given a DA
system, the differential index ν is the minimum number of
differentiation steps required to transform the DA system
into an ODE system. As outlined in Tarraf and Asada
(2002) any solution of the differential-algebraic system
with index ν must lay on the solution manifold

M =

{
(x1, x2) :

∂kg(x1, x2)

∂tk
= 0, k = 1, ..., ν − 1

}
(2)

and satisfy the algebraic equation in (1) for all time. Note
that the solution manifold is not attractive (invariant) in
general. Hence, any perturbation of the state may cause
the solution to diverge from the manifold. In conclusion,
the stability property is addressed for perturbations of the
solutions corresponding to consistent initial conditions, i.e.

which remain on the manifold. Assuming that the origin
is an equilibrium point, system (1) can be rewritten in the
form

ẋ1 = A11(x1, x2)x1 +A12(x1, x2)x2,

0 = A21(x1, x2)x1 +A22(x1, x2)x2,
(3)

where

A11 : Rn1+n2 → Rn1×n1 , A12 : Rn1+n2 → Rn1×n2 ,

A21 : Rn1+n2 → Rn2×n1 , A22 : Rn1+n2 → Rn2×n2 .

We also assume that A11, A12, A21 and A22 are smooth
functions. For the sake of clarity the explicit dependence
of the matrices A11, A12, A21, A22 from the state variables
is omitted.

Theorem 1. Consider system (3). Assume that the ma-
trix A22 is square and has full rank for all (x1, x2) ∈
Ir(0, 0) ⊂ Rn1+n2 . Consider the Lyapunov function

V = x>1 Px1, (4)

with P ∈ Rn1×n1 a symmetric and positive definite matrix.
If V |M > 0 and there exists α > 0 such that

A>11P + PA11 + (αA>21A
−>
22 − PA12)A−1

22 A21+

+A>21A
−>
22 (αA−1

22 A21 −A>12P ) < 0,
(5)

for all (x1, x2) ∈ Ir(0, 0) ⊂ Rn1+n2 , then the origin is a
locally asymptotically stable equilibrium point.

Consider now the case in which one wishes to avoid com-
puting the inverse of the matrix A22.

Theorem 2. Consider system (3) and the Lyapunov
function

V = x>1 Px1, (6)

with P ∈ Rn1×n1 a symmetric and positive definite matrix.
If V |M > 0 and there exist constants α > 0 and γ > 0 such
that

A>11P + PA11 + 2αA>21A21 +
1

γ2
PA12A

>
12P < 0,

− 2αA>22A22 + γ2I < 0,

(7)

for all (x1, x2) ∈ Ir(0, 0) ⊂ Rn1+n2 , then the origin is a
locally asymptotically stable equilibrium point.

2.2 Example 1

Consider the DA system in Scarciotti (2018) described by
the equations[

ẋ1

ẋ2

]
=

[
0 2
−4 −2

] [
x1

x2

]
+

[
1 + µ̃ 0

0 1

] [
x3

x4

]
,[

0
0

]
=

[
0 1
−1 sinc(x2)

] [
x1

x2

]
+

[
1 0
0 1

] [
x3

x4

]
,

(8)

where µ̃ ∈ R is a constant parameter. Note that the matrix
A22 = I is invertible. The linear matrix inequality in (5)
becomes[

0 −3
1−µ̃ −ε−2

]
P+P

[
0 1−µ̃
−3 −ε−2

]
+2α

[
1 −ε
−ε ε2+1

]
<0, (9)

which depends on the parameters µ̃ and

ε ∈
[
min
x2

sinc(x2), max
x2

sinc(x2)

]
.

Select, for instance,
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Fig. 1. The eigenvalues λ̄1 (dotted line) and λ̄2 (solid line)
of the left hand side of (9) for different values of µ̃.

P =

[
205 22
22 35

]
(10)

and α = 1 in (9). Consider

λ̄i(µ̃) = max
ε∈[−1,1]

λi(ε, µ̃), i = 1, 2, (11)

where λi(ε, µ̃) are the eigenvalues of the matrix in the left
hand side of (9). Fig. 1 shows that for µ̃ ∈ (−0.5, 0.91) both
eigenvalues have negative real part, thus the inequality
(9) holds. By Theorem 1 we conclude that the origin is a
locally asymptotically stable equilibrium of system (8).

3. A SMALL-GAIN THEOREM FOR DA SYSTEMS

In this section we first recall some useful definitions. We
then provide a simple condition to have a finite L2-gain
for an algebraic system and then we formulate a small-gain
theorem for the stability analysis of nonlinear DA systems.
We illustrate the results by mean of two examples.

3.1 Some definitions

We now give the definition of L2-gain in the spirit of
Lemma 3.2.4 of van der Schaft (1996).

Definition 1. The nonlinear system

ẋ = f(x, u),

y = h(x),
(12)

with state x(t) ∈ Rn, input u(t) ∈ R has L2-gain less
than γ if it is dissipative with respect to the supply rate
s(u, y) = 1

2γ
2‖u‖2− 1

2‖h(x)‖2 and with a storage function
that is differentiable and positive definite with a strict
minimizer at x = 0.

Remark 1. In the linear case the L2-gain of a stable
system is equal to the H∞ norm of its transfer matrix,
see Theorem 5.4 in Khalil (1996) or van der Schaft (1996).

3.2 Stability analysis

Consider again system (3) with A22(x1, x2) square and
locally invertible around the origin. The system can be
viewed as the feedback interconnection of the two systems

Σ1

Σ2

w z

y v

Fig. 2. Feedback interconnection representation of the DA
system (3).

Σ1 :

{
ẋ1 = A11(x1, w)x1 +A12(x1, w)w,

z = A21(x1, w)x1,
(13)

with input w(t) ∈ Rn2 and output z(t) ∈ Rn2 , and

Σ2 :

{
0 = v +A22(x1, x2)x2,

y = x2,
(14)

with input v = z and output y = w, see also Fig. 2. We
now provide a preliminary result.

Lemma 1. Consider system (14). Suppose

max
(x1,x2)∈Rn1+n2

σ̄(A−1
22 (x1, x2)) ≤ k, (15)

for some k > 0. Then system Σ2 has finite L2-gain.

Note that while the differential equation in (3) is not
affected by adding the algebraic equation multiplied by
a function Γ : Rn1 × Rn2 → Rn1×n2 of the state, the
system in (13) is affected by the addition of such a term.
Performing this operation we obtain

ẋ1 =A11(x1, w)x1 +A12(x1, w)w+

+ Γ(x1, w)(A21(x1, w)x1 +A22(x1, w)w),
(16)

or, after some rearrangements,

ẋ1 =(A11(x1, w) + Γ(x1, w)A21(x1, w))x1+

+ (A12(x1, w) + Γ(x1, w)A22(x1, w))w.
(17)

We now provide a small-gain theorem for the stability
analysis of DA systems.

Theorem 3. Consider system (3) and assume that condi-
tion (15) holds. Suppose that the systems Σ1 is detectable
in a closed and bounded set Ω and there exists Γ such that
the L2-gain γ1 of the modified system described by equation
(17) is

γ1 <
1

max
(x1,x2)∈Ω

σ̄(A−1
22 (x1, x2))

. (18)

Then the origin is a locally asymptotically stable equilib-
rium point.
Remark 2. The choice of Γ in equation (17) plays an
important role in the calculation of the L2-gain of system
Σ1. As we show in Section 3.4, if a linear system Σ1 is not
asymptotically stable, then a proper choice of the matrix
Γ transforms Σ1 in an asymptotically stable system.

From the previous theorem the next result follows.

Corollary 1. Consider system (3). Suppose the following
conditions hold.

(C1) There exists Γ such that



∂

∂w
[(A11(x1, w) + Γ(x1, w)A21(x1, w))x1+

+ (A12(x1, w) + Γ(x1, w)A22(x1, w))w] = 0.
(19)

(C2) x1 = 0 is a locally asymptotically stable equilibrium
of the system

ẋ1 = A11(x1, 0) + Γ(x1, 0)A21(x1, 0))x1. (20)

(C3) A22(0, x2) is invertible.

Then the origin is an asymptotically stable equilibrium of
system (3).
Remark 3. Consider the following linear differential-
algebraic system

ẋ1 = A11x1 +A12x2,
0 = A21x1 +A22x2,

(21)

where A11 ∈ Rn1×n1 , A12 ∈ Rn1×n2 , A21 ∈ Rn2×n1 and
A22 ∈ Rn2×n2 are constant matrices. Assume that the
matrix A22 is invertible, then condition (C1) of Corollory
1 holds for Γ = −A12A

−1
22 . In addition, condition (C2) is

equivalent to

Re(λi) < 0 ∀λi ∈ σ(A11 −A12A
−1
22 A21). (22)

Note that (22) is a necessary and sufficient condition
for asymptotic stability of the linear DA system (21)
(provided A22 is invertible).

3.3 Example 2

Consider system (8). Such a system can be described as
the interconnection of the two systems

Σ1 :


[
ẋ1

ẋ2

]
=

[
0 2

−4 −2

] [
x1

x2

]
+

[
1 + µ̃ 0

0 1

] [
w1

w2

]
,[

z1

z2

]
=

[
0 1

−1 sinc(x2)

] [
x1

x2

]
,

(23)

and

Σ2 :


[
0

0

]
=

[
v1

v2

]
+

[
1 0

0 1

] [
x3

x4

]
,[

y1

y2

]
=

[
x3

x4

]
.

(24)

Since the matrix

A11 =

[
0 2
−4 −2

]
(25)

has all eigenvalues with negative real part, system Σ1 is
asymptotically stable. Note that the function ε = sinc(x2)
is bounded thus an upper bound on the L2-gain of system
Σ1 can be calculated as

γ1 = max
ε∈[−1,1]

‖Σ1‖∞. (26)

Fig. 3 shows the value of γ1 as a function of µ̃, from which
it is clear that

γ1 < 1, ∀µ̃ ∈ (−1.44,−0.56). (27)

Since A22 = I it follows that γ2 = 1. Hence, by Theorem 3
the origin is a (globally) asymptotically stable equilibrium
point of system (8) for all µ̃ ∈ (−1.44,−0.56). Note that
the set of µ̃ for which the equation is stable is different
from that in Example 1.
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Fig. 3. Plot of γ1 for different values of µ̃.

3.4 Example 3

The result presented in Section 3 is validated on the model
studied in Sjöberg et al. (2007b) and Scarciotti (2018),
which describes the electrical circuit shown in Fig. 4. The
model is described by the differential-algebraic equations

u̇C1 =
1

2

i1
1 + 10−1uC1

+
1

2

i2
1 + 10−2uC1

,

Φ̇ = uL,

0 = uR − 5i− 10i3,

0 =
i1

1 + 10−1uC1

− i2
1 + 10−2uC1

,

0 = u− uR − uC1 − uL,
0 = Φ− arctan(i),

0 = i− i1 − i2,

(28)

i(t)

u(t) R C1

C2

L
uC(t)

uR(t) uL(t)

Fig. 4. The electrical circuit in Scarciotti (2018).

where u is an ideal voltage source, uR is the voltage of the
nonlinear resistor, i1, i2 and uC1

represent, respectively,
the currents and the voltage of the capacitor, and Φ and uL
represent, respectively, the saturated flux and the voltage
of the inductor. In the following analysis we assume that
the ideal voltage source u is set to zero. System (28) can
be written according to the notation used in Section 3,
where (x̃1, x̃2) = (uC1

,Φ) are the dynamic variables,
(x̃3, x̃4, x̃5, x̃6, x̃7) = (i, i1, i2, uL, uR) are the algebraic
variables and

A11 =

[
0 0
0 0

]
, A21 =


0 1
0 0
0 0
0 0
−1 0

 ,



A12 =

0
1

2

1

1 + 0.1 x̃1

1

2

1

1 + 0.01x̃1
0 0

0 0 0 0 1

 ,

A22 =



−arctan (x̃3)

x̃3
0 0 0 0

−10 x̃2
3 − 5 0 0 1 0

1 −1 −1 0 0

0
1

1 + 0.1x̃1

−1

1 + 0.01x̃1
0 0

0 0 0 −1 −1


.

Since the matrix A11 is zero, i.e. system Σ1 is not asymp-
totically stable, the alternative description (17) is required
to apply Theorem 3. Consider, for instance, the choice

Γ =

[
0.5 0 0.5 0 0
−5 1 0 0 1

]
, (29)

which is calculated according to Remark 3 from the
linearized system. Then the alternative description of
system Σ1 is

Σ1 :

{
ẋ1 = Ax1 +B(x1, w)w,

z = Cx1,
(30)

where x1 = [x̃1 x̃2]T , w = [x̃3 x̃4 x̃5 x̃6 x̃7] and

A = A11 + ΓA21, (31)

B(x1, w) = A12(x̃1) + ΓA22(x̃1, x̃3), (32)

C = A21. (33)

First note that the matrix A is constant and has all
eigenvalues with negative real part, hence the modified
system Σ1 is asymptotically stable. The L2-gain of system
Σ1 is the smallest γ1 which satisfies the linear matrix
inequality, see Doyle et al. (1989),

ATP + PA+
PB̂T B̂P

γ2
1

+ CCT ≤ 0, (34)

where
B̂ = max

|x1|<0.1
|w|<0.1

B(x1, w), (35)

for some symmetric and positive definite matrix P . For
instance, equation (34) is satisfied for

P =

[
53 5
5 1.5

]
(36)

and γ1 = 0.1225. Moreover,

max
|x̃1|<0.1
|x̃3|<0.1

σ̄(A−1
22 (x̃1, x̃3)) = 7.3677, (37)

hence from Lemma 1 it follows that system Σ2 has finite
gain. Since

γ1 = 0.1225 <
1

7.3677
= 0.1357, (38)

all conditions of Theorem 3 are satisfied and the origin is a
locally asymptotically stable equilibrium point of system
(28).

4. CONCLUSION

In this paper we have extended the Lyapunov Direct
Method to nonlinear DA systems by proposing two the-
orems. In addition, interpreting the DA system as the
feedback interconnection of a dynamical system and an
algebraic system, sufficient stability conditions have also
been derived using the small-gain theorem. We have also
shown that the proposed results yeld necessary and suffi-
cient stability conditions when applied to linear DA sys-
tems. Finally, we have provided three examples to validate
the theoretical results.
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