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Abstract

We investigate properties of measures in infinite dimensional spaces in
terms of Poincaré inequalities. A Poincaré inequality states that theL2 vari-
ance of an admissible function is controlled by the homogeneousH

1 norm.
In the case of Loop spaces, it was observed by L. Gross [17] that the ho-
mogeneousH1 norm alone may not control theL2 norm and a potential
term involving the end value of the Brownian bridge is introduced. Aida,
on the other hand, introduced a weight on the Dirichlet form.We show that
Aida’s modified Logarithmic Sobolev inequality implies weak Logarithmic
Sobolev Inequalities and weak Poincaré inequalities withprecise estimates
on the order of convergence. The order of convergence in the weak Sobolev
inequalities are related to weakL1 estimates on the weight function. This
and a relation between Logarithmic Sobolev inequalities and weak Poincaré
inequalities lead to a Poincaré inequality on the loop space over certain man-
ifolds.

1 Introduction

A Poincaré inequality is of the form
∫

N

(f − f̄)2µ(dx) 6
1

C

∫

N

|∇f |2µ(dx),

wheref ranges through an admissible set of real valued functions ona spaceN ,∇
is a gradient type operator,µ a finite measure onN and hence is often normalised
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to have total mass1, andf̄ =
∫

fdµ. ForN = [0, L], µ the normalised Lebesgue
measure, the constantC is 4π2

L2 for C1 functions satisfying the Dirichlet boundary
or the periodic boundary conditions. More generally ifN is a compact closed
Riemannian manifold,dx the volume measure and∇ the Riemannian gradient
operator, the best constant in the Poincaré inequality is given by taking infimum
of the Raleigh quotient ∫

N
|df |2dx

∫

N
f 2dx

over the set of non-constant smooth functions of zero mean. For this reason
Poincaré inequality is associated with the study of the spectral properties of the
Laplacian operator and hence the underlying Riemannian geometry. For quasi
isometric Riemannian manifolds, if a Poincaré inequalityholds for one manifold
it holds for the other.

The Poincaré constantC = λ1, that is the first non-trivial eigenvalue of
the Laplacian on a compact manifold, is related to the isoperimetric constant in
Cheeger’s isoperimetric inequality. Standard isoperimetric inequalities say that
for an open bounded setA in R

n, the ratio between the area of its boundary∂A
and the volume ofA to the power of1− 1

n
is minimised by the unit ball. InR2, it

means thatL2 > 4πA whereA andL are respectively the area of an open set and
L the length of its boundary. By the Federer-Fleming theorem the isoperimetric
constant is the same asinff∈C∞

K

‖∇f‖L1

‖f‖ n
n−1

.

In relation to Poincaré inequality, especially in infinitedimensions, the more
useful form of isoperimetric inequality is that of Cheeger.Following Cheeger let

h = inf
A

µ(∂A)

min{µ(A), µ(M/A)} .

where the infimum is taken over all open subsets ofM . Thenh2 6 4λ1 by
Cheeger [7]. On the other hand letK be the lower bound of the Ricci curvature.
Then it is shown by Buser [6] thatλ1 6 C(

√
Kh+h2) for which M. Ledoux [18]

has a beautiful analytic proof. Versions of isoperimetric inequalities for Gaussian
measures in infinite dimensional spaces are explained in Ledoux [19] and Ledoux-
Talagrand [20].

We take the view that the Poincaré inequality describes properties of the mea-
sureµ for a given gradient operator. Poincaré inequality does not hold for R

n

with Lebesgue measure. It does hold for the Gaussian measure. For the standard
normalised Gaussian measure, the Poincaré constant is1 and the corresponding
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eigenfunction of the Laplacian is the Hermitian polynomialx/2. If h is a smooth
functionµ a measure which is absolutely continuous with respect to theLebesgue
measure with densitye−2h, for anyf in the domain ofd,

∫

N

|df |2(x)µ(dx) = −
∫

N

〈f, ∆f〉(x)µ(dx) − 2

∫

N

〈df, dh〉µ(dx).

The corresponding Poincaré inequality is then related to the Raleigh quotient of
the Bismut-Witten Laplacian∆h := ∆ + 2L∇h on L2(M, e−2hdx). The Bismut-
Witten Laplacian

∆h : L2(M, e−2hdx) → L2(M, e−2hdx)

is unitarily equivalent to the following linear operator onL2(M, dx):

�h = ∆ + (|dh|2 + ∆h).

The spectral property of∆h, hence the validity of the Poincaré inequality forµ is
determined by the spectral property of the Schrödinger operator�h onL2(M ; dx).

The state space.A number of infinite dimensional spaces have been the ob-
jects of study. They include the space of paths over a finite state space, in particu-
lar the space of loops, or more generally space of maps. Our interest in path spaces
comes from the desire to understand regularity properties of measures which are
distributions of important stochastic processes and to establish a related Sobolev
calculus. By path space we mean the space of continuous pathswhich are not nec-
essarily smooth, of which Wiener spaceΩ with Wiener measureP is a primary
example. Other natural measures are those induced by stochastic processes such
as the Brownian Bridge measure. The properties of Brownian Bridge measures
are non-trivial. They are singular measures with respect tothe Wiener measure.
For the Wiener space the gradient operator would be that related to the Cameron-
Martin space of the measure. Interesting functions on the Wiener space such as
stochastic integrals are not in general differentiable as real valued functions on the
Banach spaceΩ. They are on the other hand often differentiable in the senseof
Malliavin calculus where the functions are differentiatedin the directions of the
Cameron-Martin space, also called H-differentiation. This will play the role of
the standard differentiation on a differentiable manifold. The corresponding gra-
dient operator will be used in the formulation of Poincaré inequality with respect
to measures on the Wiener space and on more general spaces of continuous paths.
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Main Results. Although a Logarithmic Sobolev inequality holds for the Brow-
nian bridge measure on the Wiener space and for the Brownian motion measure on
the path space over a compact manifolds, it may not hold on a general loop space.
As noted by L. Gross, [17], Poincaré inequalities do not hold on the Lie groupS1

due to the lack of connectedness of the loop space. A. Eberle,[10], gave an exam-
ple of a compact simply connected Riemannian manifold on which the Poincaré
inequality does not hold for the Brownian bridge measure. Driver-Lohrenz [9]
showed that Logarithmic Sobolev inequalities hold on loop groups for the heat
kernel measure on loop spaces over a compact type Lie group. For the Brownian
bridge measure a positive result was obtained by Aida for theHyperbolic spaceH
where he obtained a weak form of Logarithmic Sobolev inequality with a weight
function. We show here that Aida’s type weak logarithmic Sobolev inequality
leads to a weak logarithmic Sobolev inequality using the non-homogeneousH1

norm together with anL∞ norm. We also show that there is a precise passage
from weak Logarithmic Sobolev inequality to weak Poincaréinequality. As a
corollary we obtain a Poincaré inequality for the Brownianbridge measure on
loop spaces over the hyperbolic space where the Bismut tangent space is defined
using the Levi-Civita connection.

Acknowledgement. We would like to thank Martin Hairer for stimulating
discussions and for pointing to look into the work of Guillinet al. This research
is supported by the EPSRC( EP/E058124/1).

2 The Missing Arguments

On a compact manifold, Poincaré inequality for the Laplace-Beltrami operator is
proved by showing that

inf
f∈H1,|f |

L2=1,
R

f=0

∫

M

|∇f |2dx

is attained, by a non constant function. The main ingredientfor this method to
work is the Rellich-Kondrachov compact embedding theorem of H1,q into Lp,
which we do not have in the infinite dimensional situation. The other approach
is the dynamic one which we will now explain. It is equivalentto consider the
corresponding operator on differential 1-forms. By a Riemannian manifold we
mean a connected Riemannian manifold.

We give the standard semi-group argument which in principleworks for mea-
sures on infinite dimensional spaces. For better understanding assume that the
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measure concerned is on a finite dimensional Riemannian manifold. Let M be a
smooth complete manifold and forx0 ∈ M let (Ft(x0, ω), t > 0) be the solution
flow to a stochastic differential equation

dxt =

m∑

i=1

Xi(xt) ◦ dBi
t + X0(xt)dt

with initial valuex0. HereXi are smooth vector fields andω the chance variable.
Let µt be the law ofFt with initial distributionµ0. It is given by

µt(A) =

∫

x∈M

P (Ft(x) ∈ A)µ0(dx).

If the system is elliptic theX ′
is induces a Riemannian metric and the infinitesi-

mal generator is of the form1
2
∆ + A for ∆ the Laplace-Beltrami operator for the

corresponding Levi-Civita connection andA a vector field called the drift. Sup-
pose that the drift is of gradient form given by a potential functionh. Then the
system has an invariant measureµ(dx) = e2hdx which is finite for example if
Ricx − 2Hessx(h) > ρ for a positive numberρ. HereRic denotes the Ricci cur-
vature for the intrinsic Riemannian metric. More generallythe finiteness of the
invariant measure holds even if the lower boundρ depends onx provided that the
quantity

sup
x∈K

∫ ∞

0

Ee−
R t

0 ρ(Fs(x,ω))dsdt,

is finite for any given compact subsetK, see [23] [22]. In the following we assume
that the system has an finite invariant measureµ and we assume thatPtf converges
in L2(M ; µ) ast goes to infinity. Then
∫

M

(f − f̄)2dµ =

∫

M

(
f 2 − f̄ 2

)
dµ = lim

t→∞

∫

M

(f 2 − (Ptf)2)(x)dµ(x)

= − lim
t→∞

∫

M

∫ t

0

∂

∂s
(Psf)2ds dµ

= lim
t→∞

∫ t

0

∫

M

(dPsf)2 dµ ds =

∫ ∞

0

∫

M

(dPsf)2 dµ ds.

Hered∗ is theL2 adjoint of the differential operatord with respect to the measure
µ. For v0 ∈ Tx0M , let TFt(ω)(v0) be the spatial derivative ofFt(x0, ω0) in the
direction ofv0 which in general only exists in theL2 sense. Define

δPt(df)(v0) = Edf(TFt(ω)(v0)).
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This extends to a semi-group on bounded differential 1-forms and under suitable
conditions solves a corresponding partial differential equation on differential 1-
forms. Assume thatd(Ptf) = δPt(df), see [22] for conditions for this to hold.
The conditionRicx − 2Hessx(h) > ρ for some constantρ > 0 implies that the
norm of the conditional expectation of the derivative flow iscontrolled bye−ρt,
see [21] for more precise estimate, and hence we have controlfor d(Ptf) and

∫

M

(f − f̄)2dµ ≤
∫ ∞

0

∫

M

E|df |2(Ft((x, ω)) dµ e−ρsds

=
1

ρ

∫

M

|df |2(x) dµ.

This proof using the equivalence of Poincaré inequality and the semi-group
inequality|Pt|2L2 6 e−ρt. The conditionRic−2Hess(h) is bounded from below is
called Bakry-Emery condition [4]. In the case ofM = R

n, the standard Gaussian
measure corresponding to a system withRic ≡ 0 and the Bakry-Emery condition
is exactly the log-convexity condition on measures. In thiscaseh(x) = −x2

4
and

the constant in the Poincaré inequality is1. The Poincaré theorem above can be
considered as a generalisation to the Lichnerowicz Theorem, a standard theorem
in Riemannian geometry which gives a lower bound for the firsteigenvalue of the
Laplacian in terms of the lower bound on the Ricci curvature.

In fact under the assumptions given above the stronger Logarithmic Sobolev
inequality holds:

∫

f 2 log
f 2

E|f |2µ(dx) 6
2

ρ

∫

|∇f |2µ(dx).

For the standard Gaussian measure the logarithmic Sobolev constant is2. The
proof is virtually the same. We apply the same argument to thefunctionPtf log Ptf ,
with limit f̄ log(f̄), instead of tof on functions bounded below by a positive con-
stant. A Fatou lemma allows the extension to positive functions. The final result
is obtained by applying the same argument to|f | and observe that|∇|f || = |∇f |.

Instead of the equilibrium measureµ on the finite dimensional Riemannian
manifold, we study the law of a stochastic process(Ft(ω), 0 6 t 6 T ) on the
space of paths overM , of which the Wiener measure on the Wiener space is a
special case. To apply the semi-group argument we would needto have a good
understanding of the semi-group associated tod∗d and corresponding semi-groups
on differential 1-forms which is itself an issue to be resolved, except in the case of
the classical Wiener space. The semi-group argument is modified and the standard
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method is the Clark-Ocone formula approach, which combinesthe problem of
defining the unbounded operatord with the investigation of the measure itself.

2.1 Poincaŕe Inequality for Gaussian Measures

First letµ be a a Gaussian measure whose support is a finite dimensional vector
space,Rn. It is not surprising that a functionf differentiable inRn with df = 0
is a constant on this subspace. LetB be a Banach space andµ a mean zero
Gaussian measure withB its topological support and covariance operatorΓ. The
Cameron-Martin spaceH is the intersection of all vector subspaces ofB of full
measure and it is a dense set ofB. Yet the Gaussian measureµ does not charge
H, µ(H) = 0. And µ is quasi translation invariant precisely in the directionsof
vectors ofH. Let f : B → R be anL2 function differentiable in the directions
of H and let∇f ≡ ∇Hf , an element ofH, be the gradient off defined by
〈∇f, h〉H = df(h). The square of theH-norm of the gradientf is precisely
∑

i |df(hi)|2 wherehi is an orthonormal basis ofH. There is a corresponding
quadratic form:

∫

B
|∇f |2H(x)µ(dx).

When B is a Hilbert space the Cameron-Martin space is the range ofΓ
1
2

andΓ can be considered as a trace class linear operator onB. If f is a BC1

function, ∇Bf is defined and∇Hf = Γ∇Bf . The associated quadratic form
is
∫

B
|Γ−1/2∇Bf |2Bdµ(x) and the Poincaré inequality becomes, forf with zero

mean, ∫

f 2(x)µ(dx) 6
1

C

∫

B

|Γ−1/2∇Hf |2Bdµ(x).

To the quadratic form
∫

B
|Γ− 1

2∇Hf |2Bdµ(x) there associates a linear operatorL
given by ∫

fLgdµ =

∫

〈∇Hf, Γ−1∇Hg〉B dµ.

The dynamic of the corresponding semi-group is given by the solution of the the
Langevin equationdut = dWt − 1

2
utdt, whereWt is a cylindrical Wiener process

onH.

ForT any given positive number, define

C0(R
m) ≡ Ω = {σ : [0, T ] → R

m : σ(0) = 0 continuous}.
The standard Wiener measureP onΩ is a Gaussian measure with Covariance

Γ(l1, l2) =

∫ T

0

∫ T

0

(s ∧ t)dµℓ1(s)dµℓ2(t)
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whereµℓi
are measures on[0, T ] associated toℓi ∈ Ω∗. Its associated Cameron-

Martin space is the Sobolev space onR
n consisting of paths inΩ with finite

energy

H =

{

h : [0, T ] → R
m such that

∫ T

0

|ḣt|2dt < ∞
}

.

Denote byC∞
K the space of real valued functions onN with compact support. Let

Cyl = {f(ωt1 , . . . , ωtk), f ∈ C∞
K (

k
︷ ︸︸ ︷

R
m × · · · × R

m), 0 < t1 6 · · · 6 tk 6 T}.

For the cylindrical functionf ,

df(ω)(h) =

k∑

i=1

∂if(ωt1 , . . . , ωtk)(hti),

where∂if stands for differentiation with respect to i-th variable. Hence

∇f(ω)(t) =

k∑

i=1

∂if(ωt1 , . . . , ωtk)t ∧ ti

wheret ∧ ti denotesmin(t, ti). The gradient operator, more precisely the asso-
ciated quadratic form, is associated to the Laplace operator L = −1

2
d∗d, where

d∗ : L2(L(Ω → H),P) → L2(Ω,P) is the adjoint of the differential opera-
tor d. Note thatd∗ depends on the measureµ and the norm on the Cameron-
Martin space. It is also called the number operator as it actsas a multiplica-
tion operator on each chaos of the Wiener Chaos decomposition of theL2 space:
L2(Ω, µ) = ⊕∞

k=0Hk. Thend∗df =
∑∞

n=0 kIk(f), whereIk(f) is the orthogonal
projection off to thek-th chaosHk. The operatord whose initial domain the
set of smooth cylindrical functions with compact support isknown to be a clos-
able operator. LetID1,2 be the closure ofd under the graph norm with the graph
norm|f |2L2 +

∫
|∇f |2 dµ. These are referred as the Sobolev space (defined by H-

differentiation). The Gaussian Sobolev space structure can be given to any mean
zero Gaussian measures and a Poincaré inequality related to the gradient can be
shown to be valid for all functions inID2,1 with Poincaré constant1. The classical
approach to this is to use the symmetric property, rotation invariance, of the Gaus-
sian measure. It is Gross, [16], who obtained the Logarithmic Sobolev inequal-
ity and notices its validity in an infinite dimensional spaceand its relation with
Nelson’s hypercontractivity. A number of simple proofs have since been given.
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The dynamic argument we outlined earlier also works as the Ornstein-Uhlenbeck
semi-groupPt for L has the commutation property:∇Ptf = e−tPt(∇f).

The Brownian Bridge measureν0,0 is the law of the Brownian bridge starting
and ending at0, one of whose realisation isBt − t

T
BT . It can also be realised

as solution to the time-inhomogeneous SDEdxt = dBt − xt

T−t
dt. The Brownian

bridge measure is a Radon Gaussian measure and Gaussian measure theory ap-
plies to give the required Logarithmic Sobolev inequality as well as the Poincaré
inequality with Poincaré constant1.

2.2 The Path Spaces

Let M be a smooth finite dimensional Riemannian manifold which is stochas-
tically complete. A Brownian motion onM is the strong Markov processxt

with values inM such that probability density ofxt is the heat kernelpt(x, y).
By stochastically complete we mean that

∫

M
pt(x, y)dy = 1, which holds true if

the lower bound of the Ricci curvature ,Ricx = inf |v|=1 Ricx(v, v), goes to mi-
nus infinity slower than−d2(x), whered(x) denotes the Riemannian distance of
x from a fixed pointx0 ∈ M , or by a result of Grigor’yan [15] if the growth
of the volume of geodesic balls of radiusr has an upper bound of the type:
∫∞ rdr

log vol(Bx0 (r))
= ∞. Fix a numberT > 0. We define the path space onM

based atx0 as

Cx0M = {σ : [0, T ] → M, σ(0) = x0| σ is continuous}.

It is Banach manifold modelled on the Wiener spaceC0R
n for n the dimension of

the manifold. It is also a complete separable metric space with distance function
ρ given by:

ρ(σ1, σ2) = sup
t

d(σ1(t), σ2(t)}.

Fory0 ∈ M , define

Cx0,y0M = {σ ∈ Cx0M | σ(T ) = y0}
Lx0M = {σ ∈ Cx0M | σ(T ) = x0}.

BothCx0,y0M andLx0M are closed subspaces ofCx0M viewed as a metric space.

The Brownian motion measureµx0 onCx0M is the pushed forward measure of
P by the Brownian motion. We view the Brownian motion measure dynamically.
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Define the space of cylindrical functions:

Cyl = {F |F (σ) = f(σt1 , . . . , σtk), f ∈ C∞
K (Mk), t0 < t1 < · · · < tk 6 T}.

Then
∫

Cx0M

f(σt1 , . . . , σtk)dµx0(σ)

=

∫

M

. . .

∫

M

f(x1, . . . , xk)pt1(x0, x1)pt2−t1(x1, x2) . . . ptk−tk−1
(xk−1, xk)Πidxi.

Let evt : Cx0M → R be the evaluation map at timet. The conditional law of
the canonical process(evt, t ∈ [0, T ]) onCx0M givenevT (σ) = y0 is denoted by
µx0,y0, hence for a Borel setA of Cx0M ,

µx0,y0(A) = µx0(σ ∈ A|σT = y0). (1)

Restricted toFt for t < T the two measures are absolutely continuous with respect
to each other with Radon Nikodym derivative given bypT−t(y0,σt)

pT (x0,y0)
. Define

Cylt = {F |F (σ) = f(σs1, . . . , σsk
), f ∈ C∞

K (Mk), 0 < s1 < · · · < sk 6 t < T}.

ForF ∈ Cylt,

pT (x0, y0)

∫

Cx0M

f(σs1 , . . . , σsn
)dµx0,x1(σ)

=

∫

Mn

f(x1, . . . , xn)ps1(x0, x1) . . . psn−sn−1(xn−1, xn)pT−sn
(xn, y0)Π

n
i=1dxi.

That this defines a measure onCx0M due to Kolmogorov’s theorem and the
assumption that forβ > 0, δ > 0,

∫ ∫

d(y, z)β ps(x0, y)pt−s(y, z)pT−t(z, y0)

PT (x0, y0)
dydz 6 C|t − s|1+δ, (2)

whose validity we discuss later. The Brownian bridge measureµx0,y0 starting atx0

and ending aty0 charges only the subspace,Cx0,y0(M). If x0 = y0 the Brownian
bridge measure only charges the loop spaceLx0M .
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2.3 Where is the Problem?

To see where the problem lies we look at the stochastic differential equation repre-
sentation for the Brownian bridge measure. The fundamentaldifference between
the dynamic representation for Brownian bridge measure andthat for the Brown-
ian motion measure is that the SDE for the Brownian bridge is no longer homo-
geneous and a singularity develops ast approaches the terminal time. The con-
ditioned Brownian motion realisation of the Brownian bridge on the other hand
poses a more artificial problem: the conditioned process is not adapted to the orig-
inal filtrationFt of the Brownian motion we started with. It is however adaptedto
the enlarged filtrationGt = Ft ∨ σ{BT}.

Let X : M × R
n → TM be a smooth map withX(x) : R

m → TxM linear
for eachx ∈ M and an isometric surjection. We assume that forv ∈ TxM and
U ∈ ΓTM ,

∇vU = LZvU(x)

whereZv(y) = X(y)Y (x)v. That such a mapX exists and defines the given
connection was discussed in [12]. Consider the following stochastic differential
equation:

dyt = X(yt) ◦ dBt. (3)

Its infinitesimal generator is given by1
2
∆ for ∆ the Laplacian and the solution is

the Brownian motion onM . The SDE perturbation by the gradient of the loga-
rithm of the heat kernel

dyt = X(yt) ◦ dBt + ∇ log pT−t(yt, y0)dt (4)

defines a process(yt, t < T ). Here∇ denotes the Levi-Civita connection. If

∫ T

0

|∇ log pT−t(yt, y0)|dt < ∞, (5)

limt→T yt is well defined.
OnR

n, the time dependent vector field is−yt−y0

T−t
and exert a strong pull on the

Brownian particle towardy0. As the Brownian motion measure and the Brownian
bridge measure are equivalent onFt for t < T , the Brownian Bridge cannot
explode before the terminal time. That the solution gives rise to the measure
ν0,0 on the path space restricted toFt, t < T is the consequence of the Girsanov
transform: Fort < T , the law of{ys : s < t} is absolutely continuous with

11



respect to that of the Brownian motion with Radon-Nikodym derivativeNt onFt

given by

e
R t

0 〈∇ log PT−s(xs),X∗(xs)dBs〉−
1
2

R t

0 |∇ log PT−s(xs)|2ds =
PT−t(xt, y0)

PT (x0, y)
.

Hence they agree on cylindrical functions. To show that theyagree everywhere,
we only need to show thatyt has continuous sample path, i.e. for somep > 0,
δ > 0,

Ed(yt, ys)
p 6 C|t − s|1+δ. (6)

We summarise now all conditions that we need so far

Assumption 2.1 (A.) 1.
∫

M
pt(x, y)dy = 1.

2. For some constantp > 0 andδ > 0,
∫

d(yt, ys)
pdµx0,y0 6 C|t − s|1+δ

3. ∫ T

0

|∇ log pT−t(yt, y0)|dt < ∞, a.s.

4. ∫ ∫

d(y, z)βps(x0, y)pt−s(y, z)pT−t(z, y0)dydz 6 C|t − s|1+δ.

Further gradient estimates on the heat kernel are needed forthe validity of
integration by parts formulae and Clark-Ocone formulae. See e.g. Driver [8] and
Aida [2]. See also Gong-Ma [14] for an alternative formulation of the Clark-
Ocone formula. We summarize the known heat kernel estimateshere.

• Forx not in the cut locus ofy, for smallt

Pt(x, y) = (2πt)−n/2e
−d(x,y)2

2t θy(x)
−1
2 (1 + o(t))

whereθy(x) is Ruse’s invariant. For hyperbolic space,

θ1(x0) =

(
sinh r(x0)

r(x0)

)n−1

.
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• On a compact manifoldM , known estimates on the time dependent vector
fields are:

|∇ log pT−t(x, y0)| 6 C
d(x, y0)

T − t
+

C√
T − t

, t ∈ [0, T ) (7)

For the Hyperbolic space, the above assumption holds. For example it is
shown in Aida [2] that (7) holds on the hyperbolic spaces. He used the iteration
formula for heat kernels forHn, iterated onn.

3 A weak Logarithmic Sobolev Inequality

For any torsion symmetric metric connection∇ on the path space, whose paral-
lel translation along a pathσ is denoted by//·, there is the tangent sub-space to
TσCx0M

Hσ = {//sks : k ∈ L2,1
0 (Tx0M)},

which we call the Bismut tangent space with Hilbert space norm induced from
the Cameron Martin space. The tangent spaceTx0M is identified with a copy of
R

n through a chosen linear frameu0. Let µ be a probability measure onCx0M
including measures which concentrates on a subspace e.g. the loop space. When
there is no confusion of which measure is used, we denote by the integral of an
functionf with respect toµ by Ef , its varianceE(f − Ef)2 by Var(f) and its
entropyEf log f

Ef
by Ent(f).

The differential operatord is cloasable whenever Driver’s integration by parts
formula holds. We defineID1,2 ≡ ID1,2(Cx0M) to be the closure of smooth cylin-
drical functionCylt, t < T under this graph norm:

√∫

Cx0M

|∇f |2Hσ
(σ)µ(dσ) +

∫

f 2(σ)dµ(σ).

3.1 Aida’s inequality and weak Poincaŕe inequalities

Consider the Laplace Beltrami operator on a complete Riemannian manifold. A
Poincaré inequality may not hold. By restriction to an exhausting relatively com-
pact open setsUn, local Poincaré inequality always exist. The problem is that
the Poincaré constant may blow up asn goes to infinity. In [11] Eberle showed
that a local Poincaré inequality holds for loops spaces over a compact manifold.

13



However the computation was difficult and complicated and there wasn’t an esti-
mate on the blowing up rate, although it is promising to obtain a concrete estimate
from Eberle’s frameworks. Once a blowing up rate for local Poincaré inequalities
are obtained, we have the so called weak Poincaré inequality and in the case of
Entropy we have the weak Logarithmic Sobolev inequality.

Var(f) 6 α(s)

∫

|∇f |2dµ + s|f |2∞,

Ent(f 2) 6 β(s)

∫

|∇f |2dµ + s|f |2∞.

We assume thatα andβ to be non-decreasing functions from(0,∞) toR+. These
inequalities were studied by Aida [1], Röckner-Wang [26],Barthe-Cattiaux-Roberto
[5], Cattiaux-Gentil-Guillin [25]. The rate of convergence to equilibrium for
the dynamics associated to the Dirichlet form

∫
|∇f |2dµ is strongly linked to

Poincaré inequalities. See Aida-Masuda-Shigekawa [3], Aida [1], Mathieu [24],
and Röckner-Wang [26]. In the case of weak Poincaré inequalities, exponential
convergence is no longer guaranteed. Also the weak Poincar´e inequality holds
for any α is equivalent to Kusuoka-Aida’s weak spectral gap inequality which
states that any mean zero sequence of functionsfn in ID1,2 with Var(fn) 6 1 and
E(|∇f |2) → 0 is a sequence which converges to0 in probability.

Proposition 3.1 Letµ be any probability measure onCx0M with the property that
there exists a positive functionu ∈ ID1,2 such that Aida’s type inequality holds:

Ent(f 2) 6

∫

u2|∇f |2dµ, ∀f ∈ ID1,2 ∩ L∞ (8)

Assume furthermore that|∇u| 6 a and
∫

eCu2
dµ < ∞ for someC, a > 0. Then

for all functionsf in ID1,2 ∩ L∞

Ent(f 2) 6 β(s)

∫

|∇f |2dµ + s|f |2∞, (9)

whereβ(s) = C| log s| for s < r0 whereC andr0 are constants.

Proof. Let αn : R → [0, 1] be a sequence of smooth functions approximating1
such that

αn(t) =







1 t 6 n − 1
∈ [0, 1], t ∈ (n − 1, n)
0 t > n

(10)
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We may assume that|α′
n| 6 2. Define

fn = αn(u)f

for u as in the assumption. Thenfn belongs toID1,2∩L∞ if f does. We may apply
Aida’s inequality (8) tofn. The gradient offn splits into two parts of which one
involvesf and the other involves∇f . The part involving the gradient vanishes
outside of the region ofAn := {ω : u(ω) < n} and onAn it is controlled byg
and therefore byn. The part involvingf itself vanishes outside{ω : n − 1 <
u(ω) < n} and the probability of{ω : n − 1 < u(ω) < n} is very small by the
exponential integrability ofu. We split the entropy into two terms:Ent(f 2) =
Ent(f 2

n)+ [Ent(f 2)−Ent(f 2
n)], to the first we apply the Sobolev inequality (8).

∫

f 2
n log

f 2
n

Ef 2
n

dµ 6

∫

u2|∇fn|2dµ

6

∫

u2 [|∇f |αn(u) + |α′
n||∇u|f ]

2
dµ

6

∫

u<n

2u2|∇f |2α2
n(u)dµ + 4a2

∫

n−1<u<n

u2f 2dµ

6 2n2

∫

|∇f |2dµ + 4a2n2|f |2∞ µ(n > u > n − 1).

Next we compute the difference betweenEnt(f 2) andEnt(f 2
n).

Ent(f 2) − Ent(f 2
n) =

∫ (

f 2 log
f 2

Ef 2
− f 2

n log
f 2

n

Ef 2
n

)

dµ

=

∫
(
1 − α2

n(u)
)
f 2 log

f 2

Ef 2
dµ +

∫

f 2α2
n(u)

(

log
f 2

Ef 2
− log

α2
n(u)f 2

Eα2
n(u)f 2

)

dµ

= I + II.

Observe that

I =

∫
(
1 − α2

n(u)
)
f 2 log

f 2

Ef 2
dµ

6

∫

u>n−1

f 2(1 − α2
n(u)) log

f 2

Ef 2
dµ

6 2|f |2∞
∫

u>n−1

log
|f |
√

Ef 2
dµ.

15



By the elementary inequalitylog x 6 x and Cauchy-Schwartz inequality

I 6 2|f |2∞
∫

u>n−1

(

|f |
√

Ef 2

)

dµ

6 2|f |2∞

√
√
√
√

E

(

|f |
√

Ef 2

)2
√

µ({u > n − 1})

6 2|f |2∞
√

µ(u > n − 1).

For the second term of the sum, with the convention that0 log 0 = 0,

II = −
∫

n−1<u<n

f 2α2
n(u) log α2

n(u)dµ +

∫

u<n

f 2α2
n(u) log

Ef 2α2
n(u)

Ef 2
dµ

Using the fact thatlog Ef2α2
n(u)

Ef2 6 0 from α2
n(u) 6 1 andx log x > −1

e
, we see

that

II 6
1

e

∫

n−1<u<n

f 2dµ ≤ 1

e
(|f |∞)2 · µ(n − 1 < u < n).

Finally adding the three terms together to obtain

∫

f 2 log
f 2

Ef 2
dµ 6 2n2

∫

|∇f |2dµ +
(
4a2n2 +

1

e

)
|f |2∞ µ(n − 1 < u < n)

+|f |2∞
√

µ(u > n − 1)

which can be further simplified to the following estimate:

∫

f 2 log
f 2

Ef 2
dµ 6 2n2

∫

|∇f |2dµ +
(
4a2n2 +

1

e
+ 1
)
|f |2∞

√

µ(u > n − 1).

(11)
The exponential integrability ofu will supply the required estimate on the tail
probability,

√

µ(u > n − 1) 6 e−
C
2

(n−1)2
√

EeCu2

Defineb(r) = (4a2r2 + 1
e

+ 1)e−
C
2

(r−1)2 . Then

∫

f 2 log
f 2

Ef 2
dµ 6 2n2

∫

|∇f |2dµ + b(n)|f |2∞.
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Forr sufficiently large,b(r) is a strictly monotone function whose inverse function
is denoted byb−1(s) which decreases exponentially fast to0. Defineβ(s) =
b−1(2s2). For anys small choosen(s) to be the smallest integer such thats >

b(n). Then
∫

f 2 log
f 2

Ef 2
dµ 6 β(s)

∫

|∇f |2dµ + s|f |2∞

Hereβ(s) is of order| log s| ass → 0.

Note that in the above proof we only needed the weak integrability of the
functionu2, or the estimateµ(u > n − 1). This leads to the following :

Remark 3.2 If (8) holds foru ∈ ID2,1 with the property| ▽ u| 6 a, u > 0 and

µ(u2 > s2) < m2(s),

for a non-increasing functionm of the ordero(s−2), then by (11), the weak
Poincaŕe inequality holds withβ(s) of the order of the inverse function of(s2 +
2)m(s).

3.2 Relation between various inequalities

The functional inequalities for a measure describes how theL2 or other norms of
a function is controlled by its derivatives with a universalconstant. They describe
the concentration of an admissible function around its mean. A well chosen gradi-
ent operator is used to give these control. On the other hand concentration inequal-
ities are related intimately with isoperimetric inequalities. For finite dimensional
spaces it was shown in the remarkable works of Cattiaux-Gentil-Guillin [25] and
Barthe-Cattiaux-Roberto [5] for measures in finite dimensional spaces one can
pass from capacity type of inequalities to weak LogarithmicSobolev inequalities
and vice versa with great precision. Similar results holds for weak Poincaré in-
equalities. This gives a great passage between the two inequalities. We give here a
direct proof that this works wonderfully in infinite dimensional spaces. The proof
is somewhat standard and is inspired by the two previous mentioned articles and
that of Ledoux [18].

Proposition 3.3 If for all f bounded measurable functions inID2,1(Cx0M), the
weak logarithmic Sobolev inequality holds for0 < s < r0, some givenr0 > 0,

Ent(f 2) 6 β(s)

∫

|∇f |2dµ + s|f |2∞
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whereβ(s) = C log 1
s

for some constantC > 0, Then Poincaŕe inequality

Var(f) 6 α

∫

|∇f |2dµ.

holds for some constantα > 0.

Proof. By the minimizing property of the variance for any real number m,

Var(f) 6

∫

((f − m)+)2dµ +

∫

((f − m)−)2dµ. (12)

We choosem to be the median off such thatµ(f −m > 0) 6 1
2

andµ(f −m <
0) 6 1

2
.

Let g be a positive function inID2,1 such that
∫

g2dµ = 1 andµ{g 6= 0} 6 1
2
.

Here we takeg = g1 or g = g2 for

g1 =
(f − m)+

√
∫

((f − m)+)2dµ
or g2 =

(f − m)−
√
∫

((f − m)−)2dµ
. (13)

For δ0 > 0 andδ > 1 and0 < δ0 < δ1 < δ2 < . . . with δn = δ0δ
n,

Eg2 =

∫ +∞

0

2sµ(|g| > s)ds

=

∫ δ1

0

2s µ(|g| > s)ds +
∞∑

n=1

∫ δn+1

δn

2sµ(|g| > s)ds

6

∫ ∞

0

2s µ(|g| ∧ δ1 > s)ds +

∞∑

n=1

∫ δn+1

δn

2sµ(|g| > s)ds

Consequently we have,

Eg2 6 E(g ∧ δ1)
2 +

∞∑

n=1

∫ δn+1

δn

2sµ(|g| > s)ds (14)

Define

I1 := E(g ∧ δ1)
2, I2 :=

∞∑

n=1

∫ δn+1

δn

2sµ(|g| > s)ds.

18



Recall the following entropy inequality. Ifϕ : Ω → [−∞,∞) is a function
such thatEeϕ 6 1 andG is a real valued random function such thatϕ is finite on
the support ofG, then ∫

G2ϕdµ 6 Ent(G2).

Here we take the convention thatG2ϕ = 0 whereG2 = 0 andϕ = ∞. Let

ϕ :=

{

log 2 if g > 0,

−∞ otherwise.

a then
∫

eϕdµ = 2µ(g 6= 0) 6 1. Hence

Ent((g ∧ δ1)
2) >

∫

(g ∧ δ1)
2ϕdµ

so that

E((g ∧ δ1)
2) 6

1

log 2
Ent((g ∧ δ1)

2).

We apply the weak logarithmic Sobolev inequality

Ent(f 2) 6 β(r)E|∇f |2 + r|f |2∞

to g ∧ δ1 to obtain, for somer < r0,

E(g ∧ δ1)
2 6

β(r)

log 2
·
∫

|∇g|21g<δ1 dµ +
r · δ2

1

log 2
. (15)

Now we are going to estimateI2. Forn = 0, 1, . . . , let

gn = (g − δn)+ ∧ (δn+1 − δn).

Thengn ∈ ID1,2, Eg2
n 6 1 and

|∇gn| 6 |∇g|1δn6g6δn+1.

Fromgn > (δn+1 − δn)I{g>δn+1},

µ(g > δn+1) 6
Eg2

n

(δn+1 − δn)2
.

Next we observe that forn > 1,
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∫ δn+1

δn

2s µ(|g| > s)ds 6 µ(g > δn) · (δ2
n+1 − δ2

n)

6
δ2
n+1 − δ2

n

(δn − δn−1)2
Eg2

n−1

= δ2 δ + 1

δ − 1
Eg2

n−1.

(16)

Next we computeEg2
n. We’ll chose a functionϕn which can be used to esti-

mate theL1 norm ofg2
n by its entropy. Define

ϕn :=

{

log δ2
n if g > δn,

−∞ otherwise.

Then
∫

eϕndµ = δ2
nµ(g > δn) 6 1, hence

Ent(g2
n) >

∫

g2
nϕndµ.

Thus,

Eg2
n 6

1

log δ2
n

Ent(g2
n) 6

1

2 log δ0 + 2n log δ
Ent(g2

n). (17)

By (16) and (3.2) the second term inEg2 is controlled by the entropy of the func-
tions g2

n to which we may apply the weak logarithmic Sobolev inequality with
constantsrn < r0. The constantrn are to be chosen later.
∫ δn+2

δn+1

2s µ(|g| > s)ds

6 δ2 δ + 1

δ − 1
· 1

2 log δ0 + 2n log δ
Ent(g2

n)

6 δ2 δ + 1

δ − 1
· 1

2 log δ0 + 2n log δ

(

β(rn)

∫

|∇g|2Iδn6g<δn+1dµ + rn · |gn|2∞
)

.

(18)

Note that|gn|∞ 6 δn+1 − δn and summing up inn we have,

I2 6
δ2(δ + 1)

2(δ − 1)

∞∑

n=0

β(rn)

log δ0 + n log δ

∫

|∇g|2Iδn6g<δn+1dµ

+
δ2 − 1

2

∞∑

n=0

δ2
0 · δ2n+2

log δ0 + n log δ
· rn

(19)
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Denote

b−1 =
β(r)

log 2
, bn =

δ2(δ + 1)

2(δ − 1)

β(rn)

log δ0 + n log δ

and

c−1 =
r · δ2

1

log 2
, cn =

δ2 − 1

2

∞∑

n=0

δ2
0 · δ2n+2

log δ0 + n log δ
· rn

Finally combining (15) with (19) we have

Eg2 6

∞∑

n=−1

bn

∫

|∇g|21{δn−16g<δn}dµ +
∞∑

n=−1

cn

We’ll next choosern so that
∑

cn < 1/2 and that the sequencebn has an upper
bound. This is fairly easy by choosing thatrn of the orderδ

−(2n+2)

n
. Takingg = g1,

we see that

1 = Eg2
1 6 sup

n
(bn)

∫

|∇g1|2dµ +
∑

cn

6 sup
n

(bn)
1

E[(f − m)+]2

∫

|∇f |21{f>m}dµ +
∑

cn.

Hence

E[(f − m)+]2 ≤ 2 sup
n

(bn)

∫

|∇f |21{f>m}dµ,

E[(f − m)−]2 ≤ 2 sup
n

(bn)

∫

|∇f |21{f>m}dµ.

The Poincaré inequality follows.

Remark 3.4 We could optimize the constant in the Poincaré inequality. For ex-
ample whenr0 = 1/2, we letǫ = 1/8, δ =

√
2, δ0 = 2

9
2 , the Poincaŕe constant is

approximately40.82C, which is smaller than that given in Cattiaux-Gentil-Guillin
[25]. However we do not expect to have a sharp estimate on the constant.

Proof. We need to choose thern, δ, δ0 carefully to optimise on the constant. As-
sume thatEg2 = 1 for simplicity. We choose suitable constantsδ0, δ, ǫ satisfying

ǫ
δ2
0 ·δ

2 < r0 and taker = ǫ
δ2
0 ·δ

2 in b−1 and recall thatβ(s) = C log 1
s

here. Then

I1 = E(g ∧ δ1)
2 6

C · log
( δ2

0 ·δ
2

ǫ

)

log 2
·
∫

|∇g|21g<δ1 dµ +
ǫ

log 2
(20)
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Next we take

rn :=
log δ2

δ2
0 · δ2n+2(log δ0 + n log δ)2

=
1

δ2
0 · δ2n+2

· 1

( log δ0
log δ

+ n)2
.

Chooseδ0, δ so thatrn < r0 for eachn > 0, andlog log δ0 > 0. For simplicity we
denoteA := log δ0

log δ
. Note thatβ(s) = C log 1

s
in (11) and

log
1

rn
= 2 log δ0 + 2(n + 1) log δ + 2 log(A + n)

It follows that

I2 6 Cδ2 · δ + 1

δ − 1

∞∑

n=0

(
1 +

1

n + A
+

log(n + A)

n + A
· 1

log δ

)
∫

|∇g|2I{δn6g<δn+1}dµ

+
δ2 − 1

2 log δ

∞∑

n=0

1

(n + A)3

6 Cδ2 · δ + 1

δ − 1

(
1 +

1

A
+

log A

A
· 1

log δ

)
∫

|∇g|2I{δ06g}dµ +
δ2 − 1

4 log δ
· 1

(A − 1)2

(21)

Let

C1(δ, δ0, ǫ) := Cδ2 · δ + 1

δ − 1

(
1 +

1

A
+

log A

A
· 1

log δ

)

C2(δ, δ0, ǫ) :=
C · log

( δ2
0 ·δ

2

ǫ

)

log 2

C3(δ, δ0, ǫ) :=
δ2 − 1

4 log δ
· 1

(A − 1)2
+

ǫ

log 2

So from (20) and (21) and the assumptionEg2 = 1, we have:

Eg2 6
C1(δ, δ0, ǫ) + C2(δ, δ0, ǫ)

1 − C3(δ, δ0, ǫ)

∫

|∇g|2dµ (22)

provided we choose suitable constantsδ, δ0, ǫ to makeC3(δ, δ0, ǫ) < 1. Apply the
above estimate tog1, g2 and these together with (12) give the required inequality.

22



When the functionβ(s) in weak logarithmic Sobolev inequality is of order
greater thanlog 1

s
, we no longer have a Poincaré inequality, but a weak Poincaré

inequality is expected. In fact there is the following relation. The finite dimen-
sional version can be found in [5]). We give here a direct proof without going
through any capacity type inequalities.

Remark 3.5 If for all bounded measurable functionsf in ID1,2(Cx0M), the weak
logarithmic Sobolev inequality holds fors < r0, some givenr0 > 0 and a non-
increasing functionβ : (0, r0) 7−→ R+,

Ent(f 2) 6 β(s)E|∇f |2 + s|f |2∞

Then there exist constantsr1 > 0, C1, C2 such that for alls < r1, the weak
Poincaŕe inequality

Var(f) 6
β
(
C2s log 1

s

)

C1 log 1
s

E(|∇f |2) + s|f |2∞.

holds.

Proof. As a Poincaré inequality is not expected, we need to cut off the integrand
at infinity. We keep the notation of the proof of Proposition 3.3. Letδn = δ0 · δn

for someδ0 > 1, δ > 1 and the functiong as in (13). We have

Eg2 = E(g ∧ δ1)
2 +

N+1∑

n=1

∫ δn+1

δn

2sµ(g > s)ds

+

2N+1∑

n=N+1

∫ δn+1

δn

2sµ(g > s)ds +

∫ ∞

δ2N+2

2sµ(g > s)ds

(23)

First fromEg2 = 1, we have the following tail behaviour:
∫ ∞

δ2N+2

2sµ(g > s)ds = E(g2 − δ2N+2)
2
+ 6 |g|2∞µ(g > δ2N+2) 6

1

δ2
0δ

4N+4
|g|2∞

(24)
We now considerδ4N+4 to be of order1/s. For the first two terms of (23), we use
estimates from the previous proof. First recall (15),

E(g ∧ δ1)
2 6

β(r)

log 2
·
∫

|∇g|21g<δ1 dµ +
r · δ2

1

log 2
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Next by (18), we have:

N+1∑

n=1

∫ δn+1

δn

2sµ(g > s)ds

6 C2

N∑

n=0

β(rn)

n + C3

∫

|∇g|2Iδn6g<δn+1dµ + C2

∞∑

n=0

rn · δ2n

n + C3

Here C2, C3 are some constants depending onδ0 and δ and C3 = log δ0
log δ

. For
n = 0, 1, . . . , N , take

rn =
1

δ2n · (n + C3)
.

We may assume thatβ(r) is an increasing function of order greater thanlog(1
r
)

for r small, in which case
β( 1

δ2n·(n+C3)
)

n + C3

is an increasing function ofn for n sufficiently large. Hence

N+1∑

n=1

∫ δn+1

δn

2sµ(g > s)ds 6 C2

β
(

1
δ2N ·(N+C3)

)

N + C3

∫

|∇g|2Iδ06g<δN+1
dµ +

C2

C3 − 1
.

(25)
If we apply this estimate to the whole rangen ≤ 2N , β(r2N )

2N
would be the

order ofβ( s
| log s|

). However to make the estimate more precise, we take a different

rate functionrn for N + 1 ≤ n ≤ 2N . Let rn = N
δ4N in (26) and we will give a

more precise estimate on|gn|∞. Apply (18) again to the sum fromN + 1 to 2N
in (23)

2N+1∑

n=N+1

∫ δn+1

δn

2sµ(g > s)ds

6 C2

2N∑

n=N

β(rn)

n + C3

∫

|∇g|2Iδn6g<δn+1dµ + C2

2N∑

n=N

rn

n + C3
· |gn|2∞.

(26)
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Sinceg is bounded, there isk such thatδk < |g|∞ 6 δk+1 for some integerk.

∞∑

n=0

|gn|2∞ =
k−1∑

n=0

(δn+1 − δn)2 + (|g|∞ − δk)
2

6

( k−1∑

n=0

(δn+1 − δn) + |g|∞ − δk

)2

= (|g|∞ − δ0)
2

Hence
∞∑

n=0

|gn|2∞ 6 |g|2∞.

Recall thatrn = N
δ4N ,

2N+1∑

n=N+1

∫ δn+1

δn

2sµ(g > s)ds

6 C2 ·
β( N

δ4N )

N + C3

∫

|∇g|2IδN 6g<δ2N+1
dµ +

C2

δ4N
|g|2∞

(27)

Now adding estimates to all terms in (23) together, (24-27),and rearrange the
constants. We also note thatEg2 = 1 and obtain forN large enough

1 6 C1

β( N
δ4N )

N

∫

|∇g|2dµ +
C2

δ4N
|g|2∞ +

rδ2
1

log 2
+

C2

C3 − 1
(28)

Here we use the monotonicity ofβ: β( N
δ4N ) > β( 1

δ2N ·(N+C3)
). Taker small andδ0

large so thatrδ2
1

log 2
+ C2

C3−1
< 1. Let s = 1

δ4N in (28), the required result follows.

Corollary 3.6 Let µ be a probability measure. Suppose that there is a positive
functionµ(u2 > s2) ∼ m2(s) some increasing functionm of ordero(s−2) for s
small and such that|∇u| 6 a, a > 0 and for allf ∈ ID2,1,

Ent(f 2) 6

∫

g = u2|∇f |2dµ (29)

Then fors small,

Var(f) 6 (r2| log r| + 2

| log r|)m(r| log r|)
∫

|∇f |2aµ + s|f |2∞.
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Remark 3.7 The results in this section hold for any Hilbert norm onHσ including
that used in Elworthy-Li [13]. It also works for a measure on the free path space
CM = ∪x0∈MCx0M in the following sense. Ifµx0 is a probability measure on
Cx0M andν a probability measure onM , we consider onCM the measureµ =
∫

M
µx0dν.

4 Poincaŕe Inequality on Hyperbolic Space

Aida, [2], showed that, forM the standard hyperbolic space, of constant negative
curvature. We may assume that the curvature is−1. Take the gradient∇ to be
that related to the Levi-Civita connection.

∫

Cx0Hn

f 2 log
f 2

log |f |2L2

dµx0,y0(γ) 6

∫

Cx0Hn

C(γ)|∇f |2dµx0,y0(γ) (30)

for C(γ) = C1(n) + C2(n) sup06t61 d2(γt, y0). His method of proof is the Clark-
Ocone formula approach. From an integration by parts formula he obtained the
following Clark-Ocone formula by the integration representation theorem:

E
µx0,y0{F |Gt} = E

µx0,y0F +

∫ t

0

〈Hs(γ), dWs〉,

whereWt is the anti-development of the Brownian bridge and

H(s, γ) = E
µx0,y0{L(γ)

d

ds
∇F (γ)(s)|Gs}

almost surely with respect to the product measuredt ⊗ µx0,y0. HereGt is the
filtration generated byFt and the end point of the Brownian bridge. The main
obstruction here is thatL is random and careful estimates onL leads to (30).

Theorem 4.1 LetM = Hn, the hyperbolic space of constant curvature−1. Then
Poincaŕe inequality holds for the Brownian bridge measureµx0,x0.

Proof. Just note that by the time reversal of the Brownian bridge andits symmetric
property and the concentration property of the Brownian motion measure

∫

Cx0M

eCd2(σ,y0)dµx0,y0(σ) < ∞.

Hence by Proposition 8 and Proposition 3.3 and (30), we finishthe proof.
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Remark 4.2 Aida has shown that inequality (8) holds for the loop space and
each homotopy class of the free loop space over a compact Riemannian mani-
fold of constant negative curvature. Our discussion earlier shows that Poincaŕe
inequality holds in this case.

A compact Riemannian manifold of constant negative curvature is of the form
M = G/Hn whereG is a discrete subgroup of the isometry group of the hyper-
bolic space. The free loop space is the collection of all loops. See Aida [2] for
precise formulation.
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