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Abstract

We investigate properties of measures in infinite dimeradigpaces in
terms of Poincaré inequalities. A Poincaré inequalifest that the.? vari-
ance of an admissible function is controlled by the homogesé/ ' norm.
In the case of Loop spaces, it was observed by L. Giogs [1T]titleaho-
mogeneousd ! norm alone may not control the? norm and a potential
term involving the end value of the Brownian bridge is intiodd. Aida,
on the other hand, introduced a weight on the Dirichlet fovie. show that
Aida’s modified Logarithmic Sobolev inequality implies vielaogarithmic
Sobolev Inequalities and weak Poincaré inequalities pidtise estimates
on the order of convergence. The order of convergence in gak\8obolev
inequalities are related to wedk estimates on the weight function. This
and a relation between Logarithmic Sobolev inequalitiesvaeak Poincaré
inequalities lead to a Poincaré inequality on the loop sgaer certain man-
ifolds.

Introduction

A Poincaré inequality is of the form

[ = Ptan) < 5 [ 19 1Putao)

wheref ranges through an admissible set of real valued functiorsspaceV, V
is a gradient type operatqr,a finite measure oV and hence is often normalised
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to have total mass, andf = [ fdu. For N = [0, L], 1 the normalised Lebesgue
measure, the constaftis ‘*LLf for C'* functions satisfying the Dirichlet boundary
or the periodic boundary conditions. More generally\ifis a compact closed
Riemannian manifolddz the volume measure arid the Riemannian gradient
operator, the best constant in the Poincaré inequalityvengoy taking infimum
of the Raleigh quotient

In |df |*dx

[ [Pda

over the set of non-constant smooth functions of zero meaon. tHis reason
Poincaré inequality is associated with the study of thespkproperties of the
Laplacian operator and hence the underlying Riemanniamgey. For quasi
isometric Riemannian manifolds, if a Poincaré inequdiityds for one manifold
it holds for the other.

The Poincaré constart = )\, that is the first non-trivial eigenvalue of
the Laplacian on a compact manifold, is related to the iSoperic constant in
Cheeger’s isoperimetric inequality. Standard isopeniménequalities say that
for an open bounded setin R", the ratio between the area of its boundary
and the volume ofi to the power ofl — % is minimised by the unit ball. IR?, it
means thal? > 47 A whereA and L are respectively the area of an open set and
L the length of its boundary. By the Federer-Fleming theoreenisoperimetric

constant is the same asf yecz HJY“f”,fl :
n—1

In relation to Poincaré inequality, especially in infinitgnensions, the more
useful form of isoperimetric inequality is that of Cheedéullowing Cheeger let

h = inf p(04) .
A" min{u(A), un(M/A)}

where the infimum is taken over all open subsets\ibf Thenh? < 4\, by
Cheegerl[7]. On the other hand I&tbe the lower bound of the Ricci curvature.
Then it is shown by Buser [6] that, < C'(v/Kh + h?) for which M. Ledoux [18]
has a beautiful analytic proof. Versions of isoperimetniequalities for Gaussian
measures in infinite dimensional spaces are explained ialxe[d 9] and Ledoux-
Talagrand[[20].

We take the view that the Poincaré inequality describepgntes of the mea-
surey for a given gradient operator. Poincaré inequality doeshodd for R™
with Lebesgue measure. It does hold for the Gaussian medsor¢he standard
normalised Gaussian measure, the Poincaré constardrid the corresponding
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eigenfunction of the Laplacian is the Hermitian polynomia2. If i is a smooth
functionp a measure which is absolutely continuous with respect tb¢besgue
measure with density~2", for any f in the domain of,

/N df () () = — /N (. Af) (2)ulde) — 2 /N (df, dh) u(d).

The corresponding Poincaré inequality is then relatedh¢oRaleigh quotient of
the Bismut-Witten Laplacial\” := A + 2Ly, on L?(M, e=?"dx). The Bismut-
Witten Laplacian

AM D2 (M, e de) — L2 (M, e *"dx)
is unitarily equivalent to the following linear operator aA(M, dz):
0" = A + (|dh|* + Ah).

The spectral property ak”, hence the validity of the Poincaré inequality fors
determined by the spectral property of the Schrodingeraipe 1" on L?(M; dz).

The state space A number of infinite dimensional spaces have been the ob-
jects of study. They include the space of paths over a firdtie Space, in particu-
lar the space of loops, or more generally space of maps. @rest in path spaces
comes from the desire to understand regularity properfieseasures which are
distributions of important stochastic processes and &béish a related Sobolev
calculus. By path space we mean the space of continuoushitis are not nec-
essarily smooth, of which Wiener spaQewith Wiener measur® is a primary
example. Other natural measures are those induced by stacpeocesses such
as the Brownian Bridge measure. The properties of Browniatigé measures
are non-trivial. They are singular measures with respethéd/Niener measure.
For the Wiener space the gradient operator would be thaereta the Cameron-
Martin space of the measure. Interesting functions on then®fi space such as
stochastic integrals are not in general differentiablesabvalued functions on the
Banach spac€. They are on the other hand often differentiable in the sefise
Malliavin calculus where the functions are differentiatedhe directions of the
Cameron-Martin space, also called H-differentiation. sTWill play the role of
the standard differentiation on a differentiable manifolthe corresponding gra-
dient operator will be used in the formulation of Poincaréquality with respect
to measures on the Wiener space and on more general spaceginfious paths.



Main Results. Although a Logarithmic Sobolev inequality holds for the #&ro
nian bridge measure on the Wiener space and for the Browrnéiommeasure on
the path space over a compact manifolds, it may not hold omargkloop space.
As noted by L. Gross| [17], Poincaré inequalities do notrmi the Lie grougs?
due to the lack of connectedness of the loop space. A. Ef£0k gave an exam-
ple of a compact simply connected Riemannian manifold orckvthe Poincaré
inequality does not hold for the Brownian bridge measureivddlohrenz [9]
showed that Logarithmic Sobolev inequalities hold on loopugs for the heat
kernel measure on loop spaces over a compact type Lie graughé& Brownian
bridge measure a positive result was obtained by Aida foHtperbolic spacé!
where he obtained a weak form of Logarithmic Sobolev inegueadith a weight
function. We show here that Aida’s type weak logarithmic &efs inequality
leads to a weak logarithmic Sobolev inequality using the-nomogeneoug/;
norm together with ar’.>° norm. We also show that there is a precise passage
from weak Logarithmic Sobolev inequality to weak Poincaréquality. As a
corollary we obtain a Poincaré inequality for the Brownlaimdge measure on
loop spaces over the hyperbolic space where the Bismutiasgace is defined
using the Levi-Civita connection.

Acknowledgement. We would like to thank Martin Hairer for stimulating
discussions and for pointing to look into the work of Guiléhal. This research
is supported by the EPSRC( EP/E058124/1).

2 The Missing Arguments

On a compact manifold, Poincaré inequality for the LapiBe#trami operator is
proved by showing that

inf |V f|?dx
feHY|fl2=1,[ f=0 /1

is attained, by a non constant function. The main ingredi@nthis method to
work is the Rellich-Kondrachov compact embedding theoréni/b? into L?,
which we do not have in the infinite dimensional situation.e @ther approach
is the dynamic one which we will now explain. It is equivaléntconsider the
corresponding operator on differential 1-forms. By a Riamian manifold we
mean a connected Riemannian manifold.

We give the standard semi-group argument which in princjgeks for mea-
sures on infinite dimensional spaces. For better undersigr@dsume that the
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measure concerned is on a finite dimensional RiemannianfohdnLet M/ be a
smooth complete manifold and fay € M let (Fi(xy,w),t > 0) be the solution
flow to a stochastic differential equation

dry = Z Xi(zy) o dB} + Xo(xy)dt
i=1
with initial valuez,. Here X; are smooth vector fields andthe chance variable.
Let ; be the law ofF}; with initial distribution . It is given by

(4) = /  PUB() € i)

If the system is elliptic theXs induces a Riemannian metric and the infinitesi-
mal generator is of the forrbA + A for A the Laplace-Beltrami operator for the
corresponding Levi-Civita connection anda vector field called the drift. Sup-
pose that the drift is of gradient form given by a potentiaidiion 2. Then the
system has an invariant measwglz) = e*'dx which is finite for example if
Ric, — 2Hess,(h) > p for a positive numbep. Here Ric denotes the Ricci cur-
vature for the intrinsic Riemannian metric. More generdilg finiteness of the
invariant measure holds even if the lower boymtepends on: provided that the
guantity .

sup / Fe— i pE (s gy

zeK Jo
is finite for any given compact subg&t seel[23][22]. In the following we assume
that the system has an finite invariant meaguaaed we assume th&} f converges
in L*(M; ;1) ast goes to infinity. Then

/M(f —[)du = /M (f* = f%) dp=lim [ (f* = (Pif)*)(z)du()

t—o00

M
i 0 2ds d
=~ [ [ g a
t o0
= lim/ / (dP,f)? dp ds:/ /(dPSf)2 dy ds.
t=oo Jo Jm o Jm

Hered* is the L? adjoint of the differential operatetwith respect to the measure
w. Forvy € T, M, let TFi(w)(vy) be the spatial derivative df;(z,wy) in the
direction ofv, which in general only exists in the? sense. Define

0 F(df)(vo) = Edf (T'Fy(w)(vo)).
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This extends to a semi-group on bounded differential 1-foamd under suitable
conditions solves a corresponding partial differentialaepn on differential 1-
forms. Assume thai(P,f) = JP,(df), see[[22] for conditions for this to hold.
The conditionRic, — 2Hess,(h) > p for some constant > 0 implies that the
norm of the conditional expectation of the derivative flonc@antrolled bye**,
see[[21] for more precise estimate, and hence we have céotrélP; f) and

[=irae < [T ] Bl deeis

1 2
= = [ k) d

This proof using the equivalence of Poincaré inequality #re semi-group
inequality| 7|7, < e*". The conditionRic—2Hess(h) is bounded from below is
called Bakry-Emery condition [4]. In the casef = R", the standard Gaussian
measure corresponding to a system witla = 0 and the Bakry-Emery condition
is exactly the log-convexity condition on measures. In daiseh(x) = —% and
the constant in the Poincaré inequalitylisThe Poincaré theorem above can be
considered as a generalisation to the Lichnerowicz Theoaestandard theorem
in Riemannian geometry which gives a lower bound for the @igénvalue of the
Laplacian in terms of the lower bound on the Ricci curvature.

In fact under the assumptions given above the stronger itbgac Sobolev
inequality holds:

/f%g E|f\2“ (dz) < /\Vf\ p(dz).

For the standard Gaussian measure the logarithmic Sobotestant is2. The
proofis virtually the same. We apply the same argument téuhetion P, f log P, f,
with limit flog(f), instead of tof on functions bounded below by a positive con-
stant. A Fatou lemma allows the extension to positive fuumsti The final result
is obtained by applying the same argumentficand observe tha¥|f|| = |V f].
Instead of the equilibrium measureon the finite dimensional Riemannian
manifold, we study the law of a stochastic procéBgw),0 < t < T') on the
space of paths oveY/, of which the Wiener measure on the Wiener space is a
special case. To apply the semi-group argument we would teekdve a good
understanding of the semi-group associateti tband corresponding semi-groups
on differential 1-forms which is itself an issue to be regalyexcept in the case of
the classical Wiener space. The semi-group argument isfraddind the standard
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method is the Clark-Ocone formula approach, which combthesproblem of
defining the unbounded operatbwith the investigation of the measure itself.

2.1 Poincag Inequality for Gaussian Measures

First lety be a a Gaussian measure whose support is a finite dimensixtal v
spaceR". It is not surprising that a functiofi differentiable inR™ with df = 0

is a constant on this subspace. Lgtbe a Banach space anda mean zero
Gaussian measure with its topological support and covariance operatoilhe
Cameron-Martin spac# is the intersection of all vector subspacesibf full
measure and it is a dense setif Yet the Gaussian measyredoes not charge
H, n(H) = 0. And p is quasi translation invariant precisely in the directiohs
vectors of . Let f : B — R be anL? function differentiable in the directions
of H and letVf = Vyf, an element off{, be the gradient of defined by
(Vf,hyy = df(h). The square of thé/-norm of the gradienff is precisely
>-:1df (hi)|* whereh; is an orthonormal basis dff. There is a corresponding
quadratic form: [, |V |3 (z)u(dx).

When B is a Hilbert space the Cameron-Martin space is the rangE%of
and[" can be considered as a trace class linear operatds.oif f is a BO!
function, Vi f is defined andvy f = I'Vgf. The associated quadratic form
is [, |T"Y2Vpf|%du(z) and the Poincaré inequality becomes, fowith zero
mean,

1
[ Pann < & [ 079y ffduto)
B
To the quadratic forny, [T~2Vy f|%du(zx) there associates a linear operafor
given by
[ #eadn= [(Vuf.t 1V ug) du

The dynamic of the corresponding semi-group is given by thetion of the the
Langevin equatiodu; = dW; — %utdt, wherelV, is a cylindrical Wiener process
onH.

For T any given positive number, define
Co(R™")=Q={0:10,T7] — R™: 0(0) = 0 continuous.

The standard Wiener meastPeon €2 is a Gaussian measure with Covariance

Pl 1) = / / (5 A t)dpae, ()dpuey (1)
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wherey,, are measures g0, 7'] associated té; € Q*. Its associated Cameron-
Martin space is the Sobolev space Brt consisting of paths if2 with finite
energy

T
H = {h: [0,7] — R™ such that/ |he|2dt < oo}.
0

Denote byCs® the space of real valued functions &iwith compact support. Let

k

-

Cylz{f(wtp7wtk>7f€C?(o(RmXXRm)70<t1<<tk<T}

For the cylindrical functiory,

df(w>(h> = Zaif(wtw s 7wtk)(hti)u

whereo; f stands for differentiation with respect to i-th variableeride

k

VW) () =D 0if (@i, wi AL

i=1

wheret A t; denotesmin(¢,t;). The gradient operator, more precisely the asso-
ciated quadratic form, is associated to the Laplace opertate —%d*d, where

d* : L*(L(Q — H),P) — L?(Q,P) is the adjoint of the differential opera-
tor d. Note thatd* depends on the measureand the norm on the Cameron-
Martin space. It is also called the number operator as it asta multiplica-
tion operator on each chaos of the Wiener Chaos decompositite > space:
L*(Q, ) = &2 Hy. Thend*df =5~ kIx(f), wherel(f) is the orthogonal
projection of f to the k-th chaosH,. The operatorl whose initial domain the
set of smooth cylindrical functions with compact supporkm®wn to be a clos-
able operator. LeID'? be the closure of under the graph norm with the graph
norm|f|2, + [ |V f|*du. These are referred as the Sobolev space (defined by H-
differentiation). The Gaussian Sobolev space structunebeagiven to any mean
zero Gaussian measures and a Poincaré inequality retatbe gradient can be
shown to be valid for all functions ifid>' with Poincaré constarit The classical
approach to this is to use the symmetric property, rotativariance, of the Gaus-
sian measure. It is Gross, |16], who obtained the LogarithBubolev inequal-

ity and notices its validity in an infinite dimensional spao® its relation with
Nelson’s hypercontractivity. A number of simple proofs éaince been given.
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The dynamic argument we outlined earlier also works as tmst®m-Uhlenbeck
semi-group?; for £ has the commutation property:P, f = e 'P,(V f).

The Brownian Bridge measurg is the law of the Brownian bridge starting
and ending ab, one of whose realisation iB;, — %BT. It can also be realised
as solution to the time-inhomogeneous SO = dB; — 7dt. The Brownian
bridge measure is a Radon Gaussian measure and Gaussiamaribasry ap-
plies to give the required Logarithmic Sobolev inequalgyeell as the Poincaré
inequality with Poincaré constant

2.2 The Path Spaces

Let M be a smooth finite dimensional Riemannian manifold whichtéslsas-
tically complete. A Brownian motion o/ is the strong Markov process
with values in)M such that probability density of; is the heat kerneb,(z, y).

By stochastically complete we mean tha p;(z, y)dy = 1, which holds true if
the lower bound of the Ricci curvatureRic, = inf), =1 Ric,(v,v), goes to mi-
nus infinity slower than-d?(z), whered(z) denotes the Riemannian distance of
x from a fixed pointzy € M, or by a result of Grigor'yan/[15] if the growth
of the volume of geodesic balls of radiushas an upper bound of the type:
[ m = oo. Fix a numberl’ > 0. We define the path space ar
based at;, as

CopoM = {0 :]0,T] — M,0(0) = x| o is continuous.

It is Banach manifold modelled on the Wiener spégR.™ for n the dimension of
the manifold. It is also a complete separable metric spate distance function
p given by:

plo1,02) = sup d(o1(t), o2(t) }-

Fory, € M, define

Cl’myoM = {U S CZ’OM | U(T) = yO}
L,,M = {oce€C,M|o(T)=ux}.

Both(,, ,,M andL,, M are closed subspaces@f M viewed as a metric space.

The Brownian motion measuye,, onC,, M is the pushed forward measure of
P by the Brownian motion. We view the Brownian motion measuynezsnically.
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Define the space of cylindrical functions:
Cyl = {F|F(0) = f(ot,,...,00), f € C(M") tg <t; < - <t, <T}.

Then
/ f(at17 B 7O-tk>d:ur0(o->
Cag M

= / s f(xh o 7xk)pt1 ('T07 xl)th—tl (1’1, x2) co e Pte—ti—y ('Tk—h 'TI'C)Hld‘TZ
M M

Letev; : C,,M — R be the evaluation map at tinte The conditional law of
the canonical processw;, t € [0,7]) onC,, M givenevr(o) = yo is denoted by
Ixo.40. NENCE fOr a Borel set of C,,, M,

quo,yo(A) = IUSUO(U € A|UT = yO)- (1)

Restricted taF; fort < T the two measures are absolutely continuous with respect
to each other with Radon Nikodym derivative givens ég%‘)t) Define

Cyl, = {F|F(0) = f(0s,...,05), f €CR(M*),0 <51 <---<s, <t <T}
For F' € Cyl,,

— / F(Ours s 00 )tz (0)
Cag M

= f('rla ceey xn)pm (an 1’1) .- -psn—snfl(xn—lv xn>pT—sn (xn, yO)H?ZIde-.
MTL

That this defines a measure 6f), M due to Kolmogorov’s theorem and the
assumption that fo > 0,9 > 0,

//d(y7 Z)ﬁpS(x()vy)pt—S(y>Z)pT—t(ZayO)dde < C‘t _ S|1+5, (2)
Pr(zo,yo)

whose validity we discuss later. The Brownian bridge meagyy,,, Starting atz,
and ending aty, charges only the subspacg, ,,(A). If o = y, the Brownian
bridge measure only charges the loop spagée\/.
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2.3 Where is the Problem?

To see where the problem lies we look at the stochastic difteal equation repre-
sentation for the Brownian bridge measure. The fundameliftatence between
the dynamic representation for Brownian bridge measurdlatdor the Brown-
ian motion measure is that the SDE for the Brownian bridgevitonger homo-
geneous and a singularity developstagpproaches the terminal time. The con-
ditioned Brownian motion realisation of the Brownian bridgn the other hand
poses a more artificial problem: the conditioned processtiagapted to the orig-
inal filtration F; of the Brownian motion we started with. It is however adapted
the enlarged filtratio®, = F, VV o{Br}.

Let X : M x R™ — TM be a smooth map witl (z) : R™ — T, M linear
for eachxz € M and an isometric surjection. We assume thatfa 7,/ and
UelTM,

V.U = Lz U(z)

whereZ"(y) = X(y)Y (x)v. That such a magX exists and defines the given
connection was discussed in [12]. Consider the followirnglsastic differential
equation:

dy; = X (yt) o dB;. 3)

Its infinitesimal generator is given b§A for A the Laplacian and the solution is
the Brownian motion on\/. The SDE perturbation by the gradient of the loga-
rithm of the heat kernel

dyy = X (y¢) o dBy + V1og pr—i(y:, yo)dt (4)

defines a procesy;, t < T'). HereV denotes the Levi-Civita connection. If

T
/ 1V og pr+ (e, o)t < o0, 5)
0

lim,;_, 7y, is well defined.

OnR", the time dependent vector fieldisZ=%> and exert a strong pull on the
Brownian particle towarg,. As the Brownian motion measure and the Brownian
bridge measure are equivalent i for ¢ < T, the Brownian Bridge cannot
explode before the terminal time. That the solution givese tio the measure
10,0 ON the path space restricted®, ¢ < 7' is the consequence of the Girsanov
transform: Fort < T, the law of {ys : s < t} is absolutely continuous with
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respect to that of the Brownian motion with Radon-Nikodymdsive N; on F;
given by

(S (V108 Pr_y(20),X* (2:)dB,) -4 [} ¥ 10g Pp_.(zs)2ds _ Pr=+(Te,90)
PT('TOa y)

Hence they agree on cylindrical functions. To show that thgnee everywhere,
we only need to show that has continuous sample path, i.e. for some 0,
d >0,

Ed(y,, y,)? < C|t — s|*. (6)

We summarise now all conditions that we need so far
Assumption 2.1 (A.) 1. [, pi(x,y)dy = 1.

2. For some constant> 0 andd > 0,

/d<yt7 ys>pd,umo,yo < C‘t — 8‘1+5

T
/IW%MJ%WW<w, a.s.
0

//d(y7 Z)ﬁps<$07 y)pt—s(y7 z)pT—t(Za yO)dde < C‘t - 8‘1+5-

Further gradient estimates on the heat kernel are needetidoralidity of
integration by parts formulae and Clark-Ocone formulaes &g. Driver([8] and
Aida [2]. See also Gong-Ma [14] for an alternative formwatiof the Clark-
Ocone formula. We summarize the known heat kernel estinmeies

e Forx notin the cut locus of, for smallt

—d(z,y)?

Py(,y) = (2nt) ™2 5" 0,(x) 2 (1+ o(t))

wheref, (z) is Ruse’s invariant. For hyperbolic space,

sinh r(xo))n_l

7 (o)

01 (o) = (

12



e On a compact manifold/, known estimates on the time dependent vector
fields are:

d(._'lj', ?/0) C

|V log pr—i(z,50)| < C T ¢ T —t

;o telo) (@)

For the Hyperbolic space, the above assumption holds. Fampbe it is
shown in Aida[[2] that[(I7) holds on the hyperbolic spaces. Bleduthe iteration
formula for heat kernels fok ™, iterated om.

3 A weak Logarithmic Sobolev Inequality

For any torsion symmetric metric connecti®hon the path space, whose paral-
lel translation along a path is denoted byj/., there is the tangent sub-space to
1,Cpoo M

Hy = {/sks : k € LgH(Tuy M)},

which we call the Bismut tangent space with Hilbert spacemorduced from
the Cameron Martin space. The tangent spggé/ is identified with a copy of
R™ through a chosen linear framg. Let 1 be a probability measure ati,, M
including measures which concentrates on a subspace e.thaj space. When
there is no confusion of which measure is used, we denotedintbgral of an
function f with respect tqu by Ef, its varianceE(f — Ef)? by Var(f) and its
entropyE f log ¢ by Ent(f).

The differential operataf is cloasable whenever Driver’s integration by parts
formula holds. We defin®'* = ID"*(C,, M) to be the closure of smooth cylin-
drical functionC'yl,, t < T under this graph norm:

¢/ WﬂgwM@ﬂ+/ﬁwmmw.
CugM

3.1 Aida’s inequality and weak Poincak inequalities

Consider the Laplace Beltrami operator on a complete Riamammanifold. A
Poincaré inequality may not hold. By restriction to an exdtang relatively com-
pact open set#,,, local Poincaré inequality always exist. The problem itth
the Poincaré constant may blow upragoes to infinity. In[[11] Eberle showed
that a local Poincaré inequality holds for loops spaces aw@mpact manifold.
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However the computation was difficult and complicated amlelwasn’t an esti-

mate on the blowing up rate, although it is promising to abtaconcrete estimate
from Eberle’s frameworks. Once a blowing up rate for locahiearé inequalities

are obtained, we have the so called weak Poincaré inegaald in the case of
Entropy we have the weak Logarithmic Sobolev inequality.

Var(f) < a(s)/|Vf|2dM+5|f|gov
Ent(f?) < 5<s)/|Vf|2du+s|f\io-

We assume that and to be non-decreasing functions frgfm occ) to R.,.. These
inequalities were studied by Aida [1], Rockner-Wang [Hdsthe-Cattiaux-Roberto
[5], Cattiaux-Gentil-Guillin [25]. The rate of convergendo equilibrium for
the dynamics associated to the Dirichlet fofiV f|?dy is strongly linked to
Poincaré inequalities. See Aida-Masuda-Shigekawa [RlaAl], Mathieu [24],
and Rockner-Wang [26]. In the case of weak Poincaré inémsa exponential
convergence is no longer guaranteed. Also the weak Parinaguality holds
for any « is equivalent to Kusuoka-Aida’'s weak spectral gap inedquailhich
states that any mean zero sequence of functigms ID' with Var(f,) < 1 and
E(|Vf|?) — 0is a sequence which convergestm probability.

Proposition 3.1 Letx be any probability measure @, M with the property that
there exists a positive functianc ID"? such that Aida’s type inequality holds:

Ent(f?) < /u2|Vf|2du, VfeID"YN Ly (8)

Assume furthermore th#¥u| < a and [ ¢“**du < oo for someC, a > 0. Then
for all functionsf in D'* N Ly

But(f) < 5(s) [ [P+ 5111 ©
wheref(s) = C|log s| for s < r, whereC andr, are constants.

Proof. Let «,, : R — [0, 1] be a sequence of smooth functions approximating
such that

1 t<n-—-1
an(t) = ¢ €[0,1], te(n—1n) (10)
0 t>n
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We may assume that/, | < 2. Define

fn = an(u)f

for u as in the assumption. Theh belongs tdD™? N L, if f does. We may apply
Aida’s inequality [(8) tof,,. The gradient off,, splits into two parts of which one
involves f and the other involve¥ f. The part involving the gradient vanishes
outside of the region ofl,, := {w : u(w) < n} and onA, it is controlled byg
and therefore by.. The part involvingf itself vanishes outsidéw : n — 1 <
u(w) < n} and the probability ofw : n — 1 < u(w) < n} is very small by the
exponential integrability of.. We split the entropy into two term&Ent(f?) =
Ent(f?) + [Ent(f?) — Ent(f?)], to the first we apply the Sobolev inequaliy (8).

2
[ Froegan < [ Ve P
< [ 1Vt + 10Tl d
</ 2u2|Vf|2ai(u)d,u+4a2/ u? f2dp
u<n

n—l<u<n

< 2712/|Vf|2al,u+4(L2712|f|c2><J w(n >u>n-—1).

Next we compute the difference betweent(f?) andEnt( f2).

Ent(f2) — Ent(f2) = / (f2log—2—fﬁlog /i )du

E 12 Ef?
_ r* R O)
_/(1—ai(u)) f21ogEf2du+/f2 2(u )<1OgE—f2—logEa2( )f2)
= [I+1I.
Observe that

2
I= /(1 — ai(u)) f? logEf—fzdu
<

15



By the elementary inequalityg + < = and Cauchy-Schwartz inequality

I<2|f|§o/> ) (%) dy

<2f§JE<vi>NM{u>nu>
<2 f 12V p(u >n—1).

For the second term of the sum, with the convention@hiag 0 = 0,

IE 2.2
n-- [  padlogadwdi+ [ f202 (u) log 2 _0a(®) 4,
n—l<u<n u<n Iaf2

l:]smg the fact thatog EfEO}Q = < 0froma2(u) < 1andzlogz > —1, we see
that

1

IT < —/ fzdu< (|f|oo) uwn —1<u<n).
€ Jn—1<u<n

Finally adding the three terms together to obtain
/f2 log gz < 20° / IV 2dp + (da*n® + %)mgo wn—1<u<n)
Hf vV mlu>n—1)
which can be further simplified to the following estimate:
/f2log B dp < 2n° /|Vf|2du+ (4a’n® + é + D)2V (u>n —1).

(11)
The exponential integrability of will supply the required estimate on the tail

probability,
plu>n—1) < e T (=1 \/EeCw
Defineb(r) = (4a%r% + L 4+ 1)e= 51", Then

[ 108 it <20 [ 195+ b
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Forr sufficiently largep(r) is a strictly monotone function whose inverse function
is denoted byb—'(s) which decreases exponentially fasto Define 3(s) =
b~1(2s?). For anys small choosex(s) to be the smallest integer such that
b(n). Then

[ 108 < ) [19 5+ s
Here((s) is of order| log s| ass — 0. O

Note that in the above proof we only needed the weak intelifsabif the
functionu?, or the estimate(u > n — 1). This leads to the following :

Remark 3.2 If 8) holds foru € ID*' with the property| <7 u| < a,« > 0 and
p(u® > s%) < m?(s),

for a non-increasing functiomn of the ordero(s=2), then by [(I1), the weak
Poincaé inequality holds with3(s) of the order of the inverse function 6f* +
2)m(s).

3.2 Relation between various inequalities

The functional inequalities for a measure describes how.ther other norms of
a function is controlled by its derivatives with a universahstant. They describe
the concentration of an admissible function around its m@amell chosen gradi-
ent operator is used to give these control. On the other hamokatration inequal-
ities are related intimately with isoperimetric inequabt For finite dimensional
spaces it was shown in the remarkable works of Cattiauxi=@nillin [25] and
Barthe-Cattiaux-Roberto [5] for measures in finite dimenal spaces one can
pass from capacity type of inequalities to weak LogarithBobolev inequalities
and vice versa with great precision. Similar results hotitsifeak Poincaré in-
equalities. This gives a great passage between the twoaliges. We give here a
direct proof that this works wonderfully in infinite dimenosial spaces. The proof
is somewhat standard and is inspired by the two previousiorerd articles and
that of Ledoux[[18].

Proposition 3.3 If for all f bounded measurable functionsio*!(C,, M), the
weak logarithmic Sobolev inequality holds fok s < ry, some givemy > 0,

Ent(/?) < / IV P+ | £

17



whereg(s) = C’log% for some constan®’ > 0, Then Poincaé inequality

Var() <a [ |9 fPdu
holds for some constant > 0.

Proof. By the minimizing property of the variance for any real numhbe
Var(f) < [ (7= m)*auc+ [((F = m) 12)

We choosen to be the median of such thaf(f —m > 0) < 5 andu(f —m <
0) < 3.

Let g be a positive function ifD>" such that/ g’dyu = 1 andu{g # 0} < 1.
Here we takey = ¢, or g = g, for

g = (f - m)+ or g = (f - m)_ ) (13)
VI = m)*)2du

Fordp > 0andd > 1 and0 < &y < 9; < 9y < ... with §,, = §pd",

+oo
By’ — / 251(]g| > 5)ds
0

n+1
:/ 2s,u|g\>sds+2/ 2s5u(|g| > s)ds

0
n+1
</ 2$,u(|g|/\51>sd8+2/ 2spu(|g| > s)ds
0

Consequently we have,

n+1
E(g A 01) +Z/ 2su(lg| > s)ds (14)

Define

n+1
I :=E(gAé&)%, I := Z/ 2spu(|g| > s)ds

18



Recall the following entropy inequality. p : Q@ — [—o0, 00) is a function
such thate¥ < 1 andG is a real valued random function such thais finite on
the support of7, then

/ngpdu < Ent(G?).

Here we take the convention th@tp = 0 whereG? = 0 andy = co. Let

~Jlog2 if g >0,
" ]-c otherwise.

athen| e?du = 2u(g # 0) < 1. Hence

Ent((g A 5))?) > / (9 A 61 oy
so that

E((g A 6)?) < @Em«g AGLY2).

We apply the weak logarithmic Sobolev inequality
Ent(f*) < S(r)E|V [ +7[f[%

to g A 9, to obtain, for some < rq,

G(r
20 [ 1991y, i+

2
r- 07

E(gné)? < .
(g 1) 10g2

(15)

Now we are going to estimatlg. Forn = 0,1, ..., let
gn = (9= 03)" A (On41 — 0n)-
Theng, € D"?, Eg2 < 1 and
IVgn| < [V3lls,<g<b,i1-
Fromg, > (0n+1 — 6n)Ig>6,,1)

Eg?

> 0pt1) <
1(g > On+1) A

5
Next we observe that for > 1,

19



5n+1
/5 25 u(lgl > 8)ds < pulg > 62) - (52,1 — 62)
(16)

0+1

Next we computdEg?. We'll chose a functionp,, which can be used to esti-
mate theL! norm of g2 by its entropy. Define

logd? if g > 4y,
On = .
—oo  otherwise.

Then [ e?rdu = 62u(g > 6,) < 1, hence

Ent(g?) > / 92 ondp.

Thus,
1

— —Ent Ent(g2). 17
log 62 (g2) < 2log 6 + 2nlog d nt(g,) (37

By (16) and[(3.R) the second termliy? is controlled by the entropy of the func-
tions g2 to which we may apply the weak logarithmic Sobolev ineqyalith
constants,, < ry. The constant,, are to be chosen later.

Ons2
/ 2 u(lg| > s)ds

Eg2 <

5n+1
0+1 1
< Ent (g’
5—1 2logdy +2nlogd (92)
0+1 1
< 2 . " 2] d g 2 ]
d 0—1 210g50—|—2n10g5<6(r )/|Vg| bn<g<bnp i+ T |g |oo)
(18)
Note that|g, |~ < d,41 — J, and summing up im we have,
52 5 +1)
2 S Z log50 +nlog5 / IV9I*Ls, <q<surdp
(19)

52n+2

21
Zlog50+nlog5 "

20



Denote

LB, PG4 B
T log2” M 2(6—1) log by + nlogd
and , -
_ n+
e = 1 Z 0 -
log 2 log 50 +nlogd

Finally combining [(1b) with[(19) we have

Z bn, /‘vg‘ 1{5n 1<g<6n}d,u+ Z Cn,

n=-—1 n=-—1

We'll next chooser,, so that) "¢, < 1/2 and that the sequendg has an upper
bound. This is fairly easy by choosing thatof the orde—"" Takingg = g1,
we see that

1=Eg; < sup(bn)/IVgl\zdu+ch

< sup(bn)m/IVf|21{f>m}du+ch-

n

Hence
BI(f = m) [ < 250p(0) [ 1941 i
BI(f — m) [ < 25up() [ 1941 e
The Poincaré inequality follows. O

Remark 3.4 We could optimize the constant in the Poireanequality. For ex-
ample when, = 1/2, we lete = 1/8,0 = /2, §, = 22, the Poincaé constant is
approximatelyl0.82C', which is smaller than that given in Cattiaux-Gentil-Gunll
[25]. However we do not expect to have a sharp estimate ondhstant.

Proof. We need to choose the, 4, d, carefully to optimise on the constant. As-
sume thaEg? = 1 for simplicity. We choose suitable constanis J, € satisfying
=57 < 1o and taker = 5 in b_; and recall that}(s) = C'log  here. Then

0 0

(20)

C- log 60 i
L =E(gné)*< /|V9| lg<s,

log 2 lo g2
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Next we take

log 62 1 1

02 - 62n+2(log 8y + nlog0)2 62 - 022 (1log5§ 02

Ty 1=

Chooséjy, 0 so thatr,, < r for eachn > 0, andloglog dp > 0. For simplicity we

denoted := £%. Note that3(s) = C'log  in (11) and

1
log — = 2log dp + 2(n + 1) logé + 21log(A + n)

Tn

It follows that

S+1 1 log(n+A) 1 /
<O —— . 2
L O 5 ; iy Ry logé) V9l L5, <o<ninydit
62— 1 1
2logd = (n+ A)?
0+1 1 logA 1 5 -1 1
<06 — = il L 2 _
e s+ g+ b@f/WMQMWW+m%5(A—W
(21)
et o0+1 1 logA 1
g2 9T Lo, egAa
Cu(6,00,0) = OF - = (1 3+ = o)
C -log (52 52)
0,0 = 7
02( ) 07€> 10g2
21 1
(6,60, €) = ° ‘

Alogs (A—1)? * log 2
So from [20) and{21) and the assumptigg? = 1, we have:

C1(5, 8, €) + Co(8, 8o, €
Eg” < ’ ’ ? 22
g < SO 009 [1ogpa, 22

provided we choose suitable constant, e to makeCs (4, dg, €) < 1. Apply the
above estimate tg,, g» and these together with ([12) give the required inequality.

O
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When the function3(s) in weak logarithmic Sobolev inequality is of order
greater tharog 1, we no longer have a Poincaré inequality, but a weak Poéncar
inequality is expected. In fact there is the following redat The finite dimen-
sional version can be found in/[5]). We give here a direct preithout going
through any capacity type inequalities.

Remark 3.5 If for all bounded measurable functiorfsn ID*?(C,, M), the weak
logarithmic Sobolev inequality holds fer< r,, some givem, > 0 and a non-
increasing functiors : (0,7¢) — R,

Ent(f*) < B(s)E[Vf]> + s|fI%,

Then there exist constants > 0,C4,C, such that for alls < r;, the weak
Poincaté inequality

16} (C’gs log %)

V. <
ar(f) C log %

E(|Vf*) + sl fI5

holds.

Proof. As a Poincaré inequality is not expected, we need to cuhefintegrand
at infinity. We keep the notation of the proof of Proposifio8.3_etd,, = d, - 0"
for somed, > 1, 6 > 1 and the functiory as in [13). We have

N+1 a1
Eg> =E(gA6)) +Z/ 2sp(g > s)ds
2N+1 i1 oo (23)
+ Z / 28ug>sd5+/ 2su(g > s)ds
n=N+1 02N +2
First fromEg? = 1, we have the following tail behaviour:
" sy > s)ds = B(g — bansa)? < [gl%alg > darsa) € peilol’
s Sulg s)as = g 2N+2)4+ X goo:ug 2N+2 \6864N+4goo
2N+2
(24)

We now consided*”** to be of orderl /s. For the first two terms of (23), we use
estimates from the previous proof. First recalll(15),

r- 62
log 2

E(gA6)? < 1yes, dp+
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Next by (18), we have:

N+1

n+1
/ 2s51(g > s)ds
On
N 9] 52n
du + C Ty
:0 nx n+1 :u 2;:0 n_'_ C3

Here C,, (s are some constants depending @nandé and C3 = ﬁg;;. For
n=0,1,..., N, take
1

52" . (n+ Cg)

We may assume that(r) is an increasing function of order greater tHag(?)
for » small, in which case

Tp =

1
B mran)
n+ Cs
is an increasing function of for n sufficiently large. Hence

N+1 5,00 B <W) C,
; /5 25p(g > s)ds < Ca— fr c, 2 /|V9| L5y <g<sy o dit + 1
(25)
If we apply this estimate to the whole range< 2N, % would be the
order of 5( =2 Toas ‘) However to make the estimate more precise, we take a ciffere

rate functionr,, for N +1 < n < 2N. Letr, = =% in (26) and we will give a
more precise estimate dg,|... Apply (18) again to the sum frony + 1 to 2V

in 23)

2N+1

Z /n+12$ug>sd

n=N+1

(26)

2N

B( m T
< 02 Z |vg| I5n<g<5n+1d/’l’ _'_ C2 Z + C ‘gn‘2 .
n:N
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Sinceyg is bounded, there is such that, < |g|. < 0.1 for some integek.

k—1

Z|gn|2 Z n+1 _5n)2+(|g|oo_5k)2
n=0
k—1 2
< <Z<5n+1 - 5n) + |g‘oo - 5k>
n=0
= (|gloc — %)*

Hence
o0
> lgnlZ < gl
n=0

Recall thatr,, = 5%,

2N+1

n+1
/ 2s5u(g > s)ds
on

B (5
< 02 . N 64N /|Vg| 16N<g<521\r+1dlu + 54N|g|2

Now adding estimates to all terms in {23) together][(24-2Ry rearrange the
constants. We also note tHat? = 1 and obtain forV large enough

n=N+1

(27)

<P [\Voldus ol + pob 2y (@9

Here we use the monotonicity 6f 3(:3%) > ﬁ(m). Taker small andy,

= siv in (28), the required result follows.

O

Corollary 3.6 Let i, be a probability measure. Suppose that there is a positive
functionu(u® > s*) ~ m?(s) some increasing functiom of ordero(s~2) for s
small and such thgVu| < a,a > 0 and for all f € D>,

But() < [ 9= (9 fPdy (29)
Then fors small,

Var(f) < (%] logr| + ——)m(r|logr|) / 1V fPagi + sl fI%

2
|log 7|
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Remark 3.7 The results in this section hold for any Hilbert norm&p including
that used in Elworthy-Li[[13]. It also works for a measure & tiree path space
CM = UgyemCry M in the following sense. i, is a probability measure on
C,, M andv a probability measure o/, we consider o’ M the measure, =

fM Moo dV.

4 Poincaré Inequality on Hyperbolic Space

Aida, [2], showed that, foi/ the standard hyperbolic space, of constant negative
curvature. We may assume that the curvature is Take the gradienV to be
that related to the Levi-Civita connection.

[ P € [ COIVIdn0) @0
Clog H™

log |f|L2 CaoH™

for C(v) = C1(n) 4+ Ca(n) supgg,<; d*(v:, yo). His method of proof is the Clark-
Ocone formula approach. From an integration by parts foanhel obtained the
following Clark-Ocone formula by the integration repretsgion theorem:

t
B0 {F|G,} = Bfeon F + / (H(y), W),
0

wherelV, is the anti-development of the Brownian bridge and

H(5,7) = B0 {L(3) L9 P ()(5)]6.)

almost surely with respect to the product measitre® 4, ,,. Hereg; is the
filtration generated byF; and the end point of the Brownian bridge. The main
obstruction here is thdt is random and careful estimates breads to[(3D).

Theorem 4.1 Let M = H", the hyperbolic space of constant curvataré. Then
Poincaré inequality holds for the Brownian bridge measurg .

Proof. Just note that by the time reversal of the Brownian bridgdtgrsymmetric
property and the concentration property of the Brownianiomaneasure

/ eCL@m gy, o (0) < oo
CogM
Hence by Propositidn 8 and Propositionl 3.3 (30), we fithistproof. O
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Remark 4.2 Aida has shown that inequalitj/|(8) holds for the loop spacd an
each homotopy class of the free loop space over a compactaReam mani-
fold of constant negative curvature. Our discussion east@ws that Poinca
inequality holds in this case.

A compact Riemannian manifold of constant negative cureatsi of the form

M = G/H™ whereG is a discrete subgroup of the isometry group of the hyper-
bolic space. The free loop space is the collection of all foopee Aidal[2] for
precise formulation.
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