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ABSTRACT. We investigate the effective behaviour of a small transversal perturbation of
order ε to a completely integrable stochastic Hamiltonian system, by which we mean a
stochastic differential equation whose diffusion vector fields are formed from a completely
integrable family of Hamiltonian functions Hi, i = 1, . . . n. An averaging principle is
shown to hold and the action component of the solution converges, as ε → 0, to the
solution of a deterministic system of differential equations when the time is rescaled at
1/ε. An estimate for the rate of the convergence is given. In the case when the perturbation
is a Hamiltonian vector field, the limiting deterministic system is constant in which case
we show that the action component of the solution scaled at 1/ε2 converges to that of a
limiting stochastic differentiable equation.

1. INTRODUCTION

The Model. A smooth 2n-dimensional manifoldM is said to be a symplectic manifold if
it is equipped with a symplectic structure, that is, a closed differential two-form ω which is
nondegenerate in the sense that for each x ∈M, ω(v, w) = 0 for allw ∈ TxM implies v =
0. Equivalently M admits a set of coordinates mapping such that the coordinate changing
maps are symplectic on R2n with the standard symplectic form ω0 =

∑
dpi ∧ dqi.

A family of n smooth Hamiltonians {Hk} on a 2n dimensional symplectic manifold is
said to form a (completely) integrable system if they are pointwise Poisson commuting and
if the corresponding Hamiltonian vector fields XHk are linearly independent at almost all
points. Given such an integrable family and a C1 locally Hamiltonian vector field V com-
muting with the family of vector fields XHk in the sense of ω(XHk , V ) = 0, consider the
following model, which we call a completely integrable stochastic symplectic/Hamiltonian
system:

(1.1) dxt =
n∑
k=1

XHk(xt) ◦ dBkt + V (xt)dt.

Here (Bkt , k = 1, . . . , n) are pairwise independent Brownian motions on a filtered prob-
ability space (Ω,F ,Ft, P ) with the standard assumptions on the filtration and ◦ stands
for Stratonovitch integration. We have suppressed the chance element ω here as is con-
ventional. Note that the customary symbol for the symplectic form is unfortunately the
same as that for the chance variable, however confusion should not arise as the chance
variable will from now on not be explicitly expressed unless indicated otherwise. We call
respectively XHk the diffusion vector fields and V the drift vector field for the stochastic
differential equation.
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In the integrable stochastic Hamiltonian system case, the diffusion vector fields span a
sub-bundle of the tangent bundle, at least locally. The purpose of the present article is to
investigate the effect of a small perturbation to random systems of this type. A solution
to an integrable Hamiltonian system preserves the energies Hk, just as does a solution to
any other stochastic Hamiltonian system and there are corresponding invariant manifolds
(level sets). The Markov solution restricts to each compact level set and the restriction has
generator

L0 =
n∑
k=1

1
2
LXHkLXHk + LV .

Here LV indicates Lie differentiation in the direction of V . If the integrable stochastic
Hamiltonian system is perturbed by a vector field εK for ε > 0 and K a C1 vector field
not necessarily taking values in the span of {XHk , k = 1, 2 . . . n} the solution to the
resulting equation

dyεt =
n∑
i=1

XHk(yεt ) ◦ dBkt + V (yεt )dt+ εK(yεt )dt,

yεt = y0

(1.2)

will not conserve the energies. On the other hand letting ε → 0, the deviation from level
sets of the energies will be small. Consider the solution yε(t/ε) scaled in time by 1/ε,
which has generator given by 1

εL0 + LK . Note that the motion splits into two parts with
the fast component an elliptic diffusion on the invariant torus and the slow motion governed
by the transversal part of the vector field K. The evolution of yε(t/ε) is the skew product
of the diffusion of order 1 across the level sets and the fast elliptic diffusion of order ε−1

along the level sets. The motion on the level sets (thinking of the level sets as the standard
n-torus), which would be quasi-periodic if there were no diffusion terms, is ergodic. The
evolution of the action component of yε(t/ε) will not depend on the angular variable in
the limit as ε → 0 and is shown to be described by a system of n ordinary differential
equations whose right hand sides can be deduced from ω(K,XHi), i = 1, . . . n. Here ω is
the symplectic 2-form. The convergence rate is shown to be of order ε

1
3 .

Furthermore if the vector field K is given by a Hamiltonian function, the average of
ω(K,XHi) over the torus vanishes and we look at the second order scaling to see an
interesting limit. The action component of yε(tε−2) involves a martingale term in the limit
and the asymptotic law of yε(tε−2) across the level sets is shown to be given by a stochastic
differential equation. It remains open to find an estimate for the rate of the convergence of
the law of yε(tε−2) to the law of the limiting diffusion.

Main Results. Suppose that ω(V,XHi) = 0 and V commutes with each vector field
XHi . Let y0 ∈ M be a regular point of H with a neighbourhood U0 the domain of an
action-angle coordinate map. Let T ε be the first time that the solution y t

ε
starting from y0

exits U0. Set Hε(t) = (H1(yεt/ε), . . . ,Hn(yεt/ε)). Then Hε converges to the solution of
the following system of deterministic equations

d

dt
H̄i(t) =

∫
MH̄(t)

ω(XHi ,K)(H̄(t), z) dµH̄t(z),
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with corresponding initial condition: If T 0 is the first time that H̄(t) exits from U0 then
for all t < T0, β > 1, there exists a constant C2 > 0 such that(

E(sup
s≤t
‖Hε(s ∧ T ε)− H̄(s ∧ T ε)‖β)

) 1
β

≤ C2ε
1/3.

Furthermore if r > 0 is such that U ≡ {x : ‖H(x)−H(y0)‖ ≤ r} ⊂ U0 define

Tδ = inf
t
{|H̄t −H(y0)| ≥ r − δ}.

Then for any β > 1, δ > 0 and a constant C depending on Tδ ,

P (T ε < Tδ) ≤ C(Tδ)δ−βεβ/3.

In the case of K being a smooth local Hamiltonian vector field∫
MH̄(t)

ω(XHi ,K)(H̄(t), z) dµH̄t(z) = 0 and hence we could look at the second scaling.
The law of the stochastic process H(yεt

ε2
) stopped at Sε, the first time that the process

yεt
ε2

exits from U0, converges to that of H(zt∧Sε) where zt is the solution to the following
stochastic differential equation

dzjt =
∑
i

σji (zt) ◦ dB
i
t + bj(zt)dt.

Here (σji ) is the square root of the matrices (aij),

aij(a) = −
∫
Ma

ω(K,XHj )L−1
0

(
ω(K,XHi)

)
(a, z) dµa(z),

and
bj(a) =

1
2

∫
Ma

LKL−1
0 (ω(XHj ,K))(a, z) dµa(z).

We give here a somewhat trivial example of a stochastic integrable system of equations
on R4 with the standard symplectic structure:

dx1(t) = x3(t)dBt
dx2(t) = x4(t)dBt + x4dWt

dx3(t) = −x1(t)dBt
dx4(t) = −x2(t)dBt − x2(t)dWt

whereBt andWt are independent 1-dimenaional Brownian motions. Take the perturbation
vector to be K1 = (0, x2

x2
2+x2

4
, 0, 0), K2 = ( x3

(x2
1+x2

3)2 , 0, x1
(x2

1+x2
3)2 , 0) or

K3 = ( x2
3

(x2
1+x2

3)
3
2
, 0,− x1

(x2
1+x2

3)
3
2
, 0). In the case ofK1 we have a non-trivial average; in the

case of K2 and K3 we have trivial averages at first scaling and can proceed to the second
scaling and obtain a SDE in the limit.

Remark On The Model . This work is in the framework of Arnold on averaging prin-
ciple of integrable Hamiltonian system as a stochastic Hamiltonian system can be con-
sidered as a family of ordinary differential equations with time dependent random vector
fields (whose corresponding Hamiltonians are in general neither bounded from below nor
differentiable in time). Averaging of stochastic systems was pioneered by Khasminskii
[17], Papanicolaou, Stroock and Varadhan [23], and has been an active research field on
which there is a rich literature. The structure of the main averaging results are close to that
described in the excellent survey of Papanicolaou [22]. We refer to Abraham-Marsden [3],
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Arnold [4], Hofer-Zehnder [16] and McDuff-Salamon [21] as references for Hamilton-
ian systems on sympletic manifolds, to Givon-Kupferman-Stuart [14] for some physical
models behind these problems and for recent progress in the direction of deterministic
averaging, to Freidlin-Wentzell [10] and Sowers-Namachchivaya [25] for random pertur-
bations to systems with one degree of freedom, and to Eizenberg-Freidlin [8], Borodin-
Freidlin [6], Freidlin-Wentzell[11], Sowers [24], Koralov [19], Khasminskii-Krylov [18],
and Khasminskii-Yin [20] for recent related work on perturbations of stochastic systems
as well as Arnold-Imkeller-Namachchivaya [1] for a discussion on asymptotic expansion
of a damped oscillator of one degree of freedom with small noise perturbation. For the
Lagrangian mechanics and variational principle in stochastic framework we would like to
refer to Bismut’s work [5]. However in this article we do not investigate the stochastic
mechanics related to the SDEs.

The main novelty of this work is the model itself. We also obtained a rate of conver-
gence. The generator of our perturbed system is:

Lε0 =
n∑
k=1

1
2
LXHkLXHk + LV + εLK ,

from which we observe the following aspects of the model: a) The unperturbed random dy-
namical system is a completely integrable system. b) The fast component of the system is
the diffusion term, not the deterministic term. It is also worth noting that the limiting slow
motion scaled at 1/ε has n degrees of freedom and is described by a system of n ordinary
differential equations. It is only at the second scaling, in the case of the perturbation being
Hamiltonian, that we see a limiting n-dimensional non-trivial Markov process. The con-
vergence of the slow motion (H1(yεt

ε
), . . . ,Hn(yεt

ε
)) is in Lp with rate ε

1
3 . At the second

scaling the slow motion converges weakly. The assumptions we make on the Hamiltonian
functions are: the Rn valued function (H1, . . . ,Hn) is proper and its set of critical points
has measure zero.

The following work relates particularly well to ours. We’ll point out the differences
and similarities. In Dolgopyat [7] the following is proved: If ĥ is a first integral of ẏ =
E(F (y, ξ1)), where ξ1 is a random variable of compact support, the piece-wise linear
function hε given by ĥε(ε2n) = ĥ(xεn) converges weakly to the solution of a SDE, under
suitable conditions. This was proved using the martingale method. Here xεn is solution to

xn+1 = xn + εF (xn, ξn) + ε2G(xn, ξn) + ε3H(xn, ξn, ε),

and the ξn’s are i.i.d. random variables. The equation governing xn are very general.
If the perturbation K in (1.2) is given by a Hamiltonian function we may take F ≡ 0
in Dolgopyat’s model and take ĥ = h, a first integral to (1.1); however it is not clear
how the piece-wise linear function ĥε relates to the fast motion h(xt/ε2). In Eizenberg-
Freidlin [8] and Borodin-Freidlin [6], the diffusion part of the motion belongs to the slow
component and the fast motion is deterministic. More precisely the perturbed generator is
LV +εL1+L2 for a vector field V and an interaction termL2. Freidlin and Weber [12] [13]
have a different objective. They are mainly concerned with one conserved quantity H , not
a completely integrable system. The objective there is to obtain a limiting Markov process,
using weak convergence, on the graph homeomorphic to the set of connected components
of the level sets of H .
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2. PRELIMINARIES

2.1. Hamiltonian and Symplectic Vector fields. Every symplectic manifold has a nat-
ural measure, called the Liouville measure. It is in fact ∧nω, differing from the volume
form by a constant. Denote by ιvω the inner product of a tangent vector v with ω. The
map from TM to T ∗M given by v 7→ ιvω is a vector bundle isomorphism, and there is
a one to one correspondence between vector fields and differential 1-forms. A symplectic
vector field V , also called a locally Hamiltonian vector field, is one which preserves the
symplectic structure, i.e. LV ω = 0. Here LV denotes Lie differentiation in the direction of
V . Equivalently ιV ω is a closed differential 1-form. For every C1 function H : M → R
we can associate a Hamiltonian vector field (also called symplectic gradient vector field)
given by:

ιXHω = dH.

The canonical sympletic structure on R2n with coordinates (q1, . . . , qn, p1, . . . , pn) is
ω =

∑n
i=1 dqi ∧ dpi. Darboux’s theorem asserts that any symplectic manifold is locally

R2n with its canonical sympletic structure. If the first de Rham cohomology H1(M ; R)
vanishes, as in the case of R2n, every locally Hamiltonian vector field is given by a Hamil-
tonian function. There are locally Hamiltonian vector fields which are not given by a
Hamiltonian function. Take the two torus T 2 with coordinates x and y periodic in x
and y. The canonical sympletic structure on R2 induces the symplectic structure on T 2:
ω = dx∧dy. A vector fieldX(x, y) = a(x, y) ∂

∂x + b(x, y) ∂∂y with ∂a
∂x + ∂b

∂y ≡ 0 is clearly
locally Hamiltonian: the 1-form ιXω = a(x, y)dy − b(x, y)dx is closed. If a = 1, b = 0,
the vector field is not given by a Hamiltonian function on T 2.

The space of smooth functions on M has a Lie algebra structure given by the Pois-
son bracket. The Poisson bracket of two smooth functions is denoted by {F1, F2} and
{F1, F2} = dF1(XF2) = ω(XF1 , XF2). The vector field corresponding to the Poisson
bracket is precisely the Lie bracket of the Hamiltonian vector fields XF1 and XF2 . Two
Hamiltonian functions are Poisson commuting or in involution if their Poisson bracket van-
ishes, in which case their corresponding Hamiltonian flows commute. If {F,H} = 0 we
say that F is a first integral of H . Two Hamiltonian functions are said to be linearly inde-
pendent at x if their associated Hamiltonian vector fields are linearly independent at that
point. A family of n Hamiltonian functions is said to form an integrable system if the
Hamiltonian functions are pairwise Poisson commuting and if they are linearly indepen-
dent on a set of full measure.

2.2. An example of a stochastic Hamiltonian system on R2n. The Hamiltonian vector
field given by an Hamiltonian functionH is given byXH = JdH where J is the canonical
complex structure:

J =
(

0 1
−1 0,

)
where 1 denotes the n by n identity matrix. The corresponding Hamiltonian system thus
takes the familiar form

q̇i =
∂H

∂pi
, 1 ≤ i ≤ n

ṗi = −∂H
∂qi

, 1 ≤ i ≤ n.

For simplicity write p = (p1, . . . , pn) and q = (q1, . . . , qn). An important class of exam-
ples of Hamiltonian functions on R2n is those of the form H(p, q) = 1

2 |p|
2 + V (q) for
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some potential function V . If V is quadratic, e.g. V (q) = 1
2a

2|q|2, we have the standard
harmonic oscillator. The Poisson bracket in R2n is of the following form:

{H,F} =
n∑
i=1

(
∂H

∂pi

∂F

∂qi
− ∂H

∂qi

∂F

∂pi

)
.

A example of an integrable stochastic Hamiltonian system is given by

dqi(t) =
∂K

∂pi
dt+

n∑
k=1

∂Hk

∂pi
◦ dBkt

dpi(t) = −∂K
∂qi

dt+
n∑
k=1

∂Hk

∂qi
◦ dBkt .

where

H1 =
1
2

n∑
i=1

a2
i q

2
i +

1
2

n∑
i=1

p2
i

Hk =
1
2
akq

2
k +

1
2
p2
k

ak
, 2 ≤ k < n,

and K is a smooth function which commutes with all Hi’s, e.g. if K is a smooth function
of Hi’s.

2.3. The invariant manifolds and integrable symplectic Hamiltonian systems. Let
{Hk}nk=1 be an integrable family of smooth Hamiltonian functions, i.e. they are Pois-
son commuting and so the Hk’s are first integrals of each other and they are independent
on a set of full measure. For a = (a1, . . . , an) ∈ Rn denote by Ma the level set of the first
integrals {Hk}:

Ma = ∩ni=1{x : Hi(x) = ai}.

The Liouville-Arnold theorem states that if {Hk}nk=1 are independent on Ma then Ma is
a smooth manifold and furthermore it is diffeomorphic to an n dimensional torus if it is
compact and connected. For such value a, Ma is invariant under the flows of each Hk and
each x inM determines an invariant manifold through the value a = (H1(x), . . . ,Hn(x)),
which we write also as MH(x).

An application of Itô’s formula below shows that the solution flow {Ft(x) : t ≥ 0} of
(1.1) preserves the invariant manifolds {Ma}:

dHi(xt) =
∑
k

dHi

(
XHk(xt)

)
◦ dBkt + dHi

(
V (xt)

)
dt = 0, 1 ≤ i ≤ n.

For simplicity we assume throughout the paper the following:

• The invariant manifolds are compact,

which is the case if the map x ∈ M 7→
(
H1(x), . . . Hn(x)

)
∈ Rn is proper. Note that

the n vector fields {XHi(x)} are tangent to MH(x) and the symplectic form ω vanishes on
the invariant manifolds Ma. Therefore the stochastic differential equation (1.1) is elliptic
when restricted to individual invariant manifolds and the Markovian solution is ergodic.
Denote by µa the unique invariant probability measure on Ma; it can be considered as the
uniform probability measure on the torus.
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2.4. The invariant measure and th divergence operator for semi-elliptic stochastic
symplectic systems. Let {A0, A1, . . . , An} be smooth symplectic vector fields with [Ai, Aj ] =
0 for all i, j. Assume that {A1, . . . , An} spans a sub-bundle E of the tangent bundle TM
of rank n. Consider the following stochastic differential equation:

(2.1) dxt =
n∑
i=1

Ai(xt) ◦ dBit +A0(xt)dt.

If there is a global solution flow {Ft(x0, ω) : t ≥ 0} to equation (2.1), then the solution
flows are stochastic symplectomorphisms, i.e. ω = F ∗t ω, where ω is the symplectic form,
not the chance variable.

For each x ∈M , define a linear map A(x) : R2n → TxM by

A(x)(e) =
n∑
i=1

Ai(x)〈e, ei〉, e ∈ R2n

where {ei} is an orthonormal basis of R2n. The linear map is onto Ex with kernel {0} ×
Rn and gives a positive symmetric bilinear form on E by making {Ai(x)} an orthonormal
basis:

〈Ai(x), Aj(x)〉 = δij .

Then A(x) is an isomorphism from Rn × {0} to Ex. This defines a metric on E: for
u =

∑
i uiA

i and v =
∑
i viA

i,

〈u, v〉 =
n∑
i=1

uivi

and for a function f we define its gradient∇Ef =
∑
i df(Ai)Ai. The symplectic structure

ω restricts to E defines a complex structure on M as following: we first give the tangent
bundle TM any Riemannian metric which agrees with the one constructed on E using the
linear map A. Define Jx : TxM → TxM by

ω(Jxu, v) = 〈u, v〉x.
To see that this identity defines Jx uniquely suppose that for u ∈ TxM there are u1 and u2

satisfies ω(ui, v) = 〈ui, v〉x, i = 1, 2. Then ω(u1 − u2, v) = 0 for all v. Thus u1 = u2.
Existence can be easily seen as direct calculations can be done in R2n.

Next take Ai = XHi in (2.1), i = 1, 2, . . . n, to be the Hamiltonian vector fields for
an integrable family of Hamiltonian functions {Hi} and A0 = V . We arrive back to
the integrable stochastic sympletic equation (1.1) where V is a symplectic vector field
commuting with all XHi ’s. Under our assumption that

H : x→
(
H1(x), . . . Hn(x)

)
is a proper map, then for almost every point a0 in Rn it is either trvial or a local trivial
fibration in the sense that there is a neighbourhood V of a0 such that H−1(a) is a smooth
sub-manifold for all a ∈ V and that there is a diffeomorphism from H−1(V ) to V ×
H−1(a0). Such a0 is called a regular value of H . Denote by ΣH the set of values in Rn

which are not regular. A point y inM is said to be a critical point ifH(y) ∈ ΣH . By Sard’s
theorem the set of critical values of the function H has measure zero. The 2n-differential
form ωn, as a measure, has a decomposition which gives a measure on each invariant
manifold Ma for regular a value. The decomposition can be chosen in the following way.
First recall that on a neighbourhood of a regular point a0 of H , every component of the
level set Ma0 is diffeomorphic to an n-torus and a small neighbourhood U0 of Ma0 is
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diffeomorphic to the product space Tn × D where D is a relatively compact open set in
Rn, see e.g. [2]. More precisely if V is an open set of Rn such that H−1(V ) does not
contain any critical points of H then it is diffeomorphic to D × Tn. Take an action angle
chart around Ma which is diffeomorphic to D × Tn for some open set D. The measure
(
∑
i dI

i ∧ dθi)n on the product space naturally splits to give us a probability measure, the
Haar measure dθ1∧ . . . dθn on Tn. We take the corresponding one onMa and denote it by
µa. Let U be a section of E. Define the divergences divaE U to be the functions such that∫

Ma

df(U) dµa = −
∫
Ma

fdivaEU dµa

for all smooth functions f on Ma. Note that divE XHi = 0, since∫
Ma

df(XHi)dµa =
∫
Ma

{Hi, f}dµa = 0

for all smooth functions f (see the beginning of section 4 for a calculation). Thus if U =∑
i aiXHi where ai are constant on Ma and is thus divergence free.

Remark 2.1. Let U be a section of E commuting with all XHi the invariant measure for
the SDE (1.1) restricted to the invariant manifold Ma is µa, which varies smoothly with a
in sufficiently small neighbourhoods of a regular value.

Proof. The measure ωn is an invariant measure for the SDE on M due to the fact that
the solution of the SDE leaves invariant the symplectic form. More precisely, since U
commutes with {XHi} and thus can be written in the the form of U =

∑
i aiXHi(x),

where ai are constant on Ma, it is therefore divergence free. Thus the invariant measure of
the SDE restricted to the torus is the same as that of the corresponding SDE without a drift.
From the action angle transformation we see that the measure µa is an invariant measure
for the SDE restricted to Ma. This is in fact the only invariant measure for the SDE on Ma

since the system is elliptic when restricted to each level set and the conclusion follows. �

3. AN AVERAGING PRINCIPLE

Let {Hi}ni=1 be a completely integrable system on a smooth 2n-dimensional symplectic
manifoldM so that the functions {Hi} are constants of motions of each other and that they
are pairwise in involution. We assume that the Rn-valued function H = (H1, . . . ,Hn) is
proper and its set of critical points has measure zero. Note that the vector fields {XHi}
form an integrable distribution and through each point of the manifold there is an integrable
n dimensional manifold.

Take an action-angle coordinate: φ−1 : U0 → D× Tn. In this coordinate, x = φ(I, θ),
I ∈ D, θ ∈ Tn, and (φ−1)∗ω = dI ∧ dθ defines a symplectic structure on D × Tn.
Furthermore if H̃i = Hi

(
φ(I, θ)

)
is the induced Hamiltonian on D × Tn then İki =

−∂H̃i∂θk
= 0 and

(3.1) θ̇ki =
∂H̃i

∂Ik
= ωki (I)

with ωki smooth functions. In fact XH̃i
= (φ−1)∗(XHi) = −

∑n
k=1

∂(Hi◦φ)
∂Ik

∂
∂θk

. For
example the integrable Hamiltonian system in section 2.2 is equivalent to the Hamiltonian
system H1 =

∑n
i=1 aiq̄i, ai > 0, and Hk = q̄k, k = 2, . . . , n, through the action angle



AN AVERAGING PRINCIPLE FOR A COMPLETELY INTEGRABLE STOCHASTIC HAMILTONIAN SYSTEM 9

coordinates change (q, p) 7→ (q̄, p̄):

(q1, . . . qn, p1, . . . , pn)

=
(√

2q̄1

a1
cos p̄1, . . .

√
2q̄n
an

cos p̄n,
√

2a1q̄1 sin p̄1, . . . ,
√

2anq̄n sin p̄n,
)
.

The corresponding Hamiltonian system is the trivial one ˙̄
ip = ai, ˙̄

iq = 0. Since U0 is
diffeomorphic to D × Tn there is a constant r > 0 such that U0 contains the open set
{x :

∑
i |Hi(x)−Hi(y0)|2 ≤ r2}.

LetK be a smooth vector field, transversal in the sense that ω(XHi ,K) are not all iden-
tically zero. Denote by yεt the solution to (1.2), the perturbation of the integrable system
(1.1) starting from a given point y0 in M . Set xt = y0

t , the solution to (1.1) with initial
value y0. If V is a vector field on M denote by Ṽ the induced vector field on D× Tn. We
assume the following of the SDE (1.2):

Condition R: Suppose that ω(V,XHi) = 0 and V commutes with all vector fields XHi .
Let y0 ∈ M be a regular point of H with a neighbourhood U0 the domain of an action-
angle coordinate map: φ−1 : U0 → D × Tn, where D is an open set of Rn.

We adopt the following notation: if f is a function on U0, by f̃ we mean the represen-
tation of f in D × Tn.

Lemma 3.1. Assume condition R holds for (1.2). Let τ ε be the first time that the solution
yεt starting from y0 exits U0. Then for any smooth function f on M ,

(1) [
E
(

sup
s≤t∧τε

|f(yεs)− f(xs)|p
)] 1

p

≤ C1ε(t+ t2),

where C1 = C1(V,K,Hi, f) depends on the upper bounds of the functions |df̃ |,
| ∂

2H̃k
∂Ii∂Ij

|, |dṼ |, |K̃| on D × Tn.

(2) If V ≡ 0, then the estimates above, ε(t+ t2), can be improved to C1ε(t+ t
3
2 ).

Proof. In the proof below C stands for an unspecified constant. We denote the flows in
action-angle coordinates by xt = φ(It, θt) and yεt = φ(Iεt , θ

ε
t). Set f̃ = f ◦ φ. Then

|f(yεt )− f(xt)| = |f̃(I(yεt ), θ(y
ε
t ))− f̃(I(xt), θ(xt))|

≤ C|I(yεt )− I(xt)|+ C|θ(yεt )− θ(xt)|,

using the fact that ∂f̃∂I and ∂f̃
∂θ are bounded on Tn ×D as D is relatively compact. In the

local chart, ∂Ṽ∂θi = 0 and we can write V (I, θ) = Vj(I)∂Hj∂I (I, θ) = ωj0(I) ∂
∂θj

for some

smooth functions ωj0 onD. The perturbation vector field can be written as (Kθ,KI) where
Kθ = (K1

θ , . . . ,K
n
θ ) and KI = (K1

I , . . . ,K
n
I ) be respectively the angle and the action

component of the vector field K̃ on Tn×Dn. The result is now clear from the form of the
SDE on Tn ×D:

dIε,it = ε Ki
I(I

ε
t , θ

ε
t) dt,

dθε,it =
n∑
k=1

ωik(Iεt ) ◦ dBkt + ωi0(Iεt ) dt+ εKi
θ(I

ε
t , θ

ε
t) dt,
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where ωik, i, k = 1, . . . n, are defined by (3.1). Indeed, then

sup
s≤t∧τε

|Iεs − Is| = ε sup
s≤t∧τε

|
∫ s

0

∣∣KI(Iεs , θ
θ
I )
∣∣ds ≤ εt sup

D×Tn
|KI |,

and for s < τ ε,

θε,is − θis =
n∑
k=1

∫ s

0

(
ωik(Iεr)− ωki (Ir)

)
◦ dBkr

+
∫ s

0

(
ωi0(Iεr)− ωi0(Ir)

)
dr + ε

∫ s

0

Ki
θ(I

ε
r , θ

ε
r) dr.

As the Stratonovitch correction for the SDE vanishes, we may replace the Stratonovitch
integration by Itô integration:∫ s

0

(
ωik(Iεr)− ωik(Ir)

)
◦ dBkr =

∫ s

0

(
ωik(Iεr)− ωik(Ir)

)
dBkr .

Consequently,∣∣∣θi(yεs)− θi(xs)∣∣∣ ≤ ∣∣∣ n∑
k=1

∫ s

0

(
ωik(Iεr)− ωki (Ir)

)
dBkr

∣∣∣
+ sup
D×Tn

|dωi0| ·
∫ s

0

∣∣Iεr − Ir∣∣ dr + εs sup
D×Tn

∣∣∣Ki
θ

∣∣∣
≤

∣∣∣ n∑
k=1

∫ s

0

(
ωik(Iεr)− ωki (Ir)

)
dBkr

∣∣∣
+ε

s2

2
sup
D×Tn

|KI | · sup
D×Tn

|dω0
i |+ εs sup

D×Tn

∣∣∣Ki
θ

∣∣∣.
Summing up over i, we have

E sup
s≤t∧τε

|θεs − θs|p

≤ C1 sup
s≤t

( n∑
i,k=1

E
∫ s

0

∣∣∣ωik(Iεr)− ωik(Ir)
∣∣∣2)p/2 + C2(K̃)ε(t+ t2)p

≤ C1

(∑
i,k

(|dωik| ∨ 1)p
)
εpt

3p
2 + C2(K̃)εp(t+ t2)p

by Lp inequalities for martingales. Combining the estimates we obtain

E sup
s≤t∧τε

|f(yεs)− f(xs)| ≤ C3ε(t+ t2)

for some constant C3.
(ii) If the drift V ≡ 0 then ω0 = 0 and the calculation above shows that the estimate is

of the order ε(t
3
2 ∧ 1). �

If the stochastic dynamical system (1.1) is subjected to a small non-Hamiltonian per-
turbation, the slow variable is in the direction transversal to the energy surfaces while the
stochastic components are the fast variables. The lemma shows that the first integrals of
the perturbed system change by an order ε(t + t2) over a time interval t and so the slow
component accumulates over a time interval of the size t/ε and we obtain a new dynamical
system in the limit: as ε goes to zero the motion along the torus is significantly faster com-
pared to the motion in the transversal direction and thus the action component of yεt/ε has
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a limit as the randomness in the fast component is averaged out by the induced invariant
measure, as shown below. Recall that H(x) = (H1(x), . . . ,Hn(x)).

We first prove a lemma:

Lemma 3.2. Assume condition R holds. Let g be a real-valued function on M , which
is considered in the action angle co-ordinates as a function from D × Tn to R. Define
Qg : D ⊂ Rn → R to be its average over the torus:

(3.2) Qg(a) =
∫
Tn
g̃(a, z) dµ(z).

Suppose that g is C1 on U0. Set

Hε
i (s) = Hi(yεs/ε), Hε(s) = (Hε

1(s), . . . ,Hε
n(s)).

Then

(3.3)
∫ (s+t)∧T ε

s∧T ε
g(yεr/ε)dr =

∫ (s+t)∧τε

s∧τε
Qg
(
Hε(r)

)
dr + δ(g, ε, t)

with the following rate of convergence: for any β > 1,

(3.4)
(
E sup
s≤t

∣∣δ(g, ε, s)∣∣∣β) 1
β ≤ C(t)ε

1
3 .

where T ε is the first time that yεt/ε exits from U0 and τ ε = T ε/ε.

Proof. The idea is to approximate g(yεr) by g(yr) on sufficiently small intervals and to
apply the law of large numbers to each integral bearing in mind that the cost to replace yεr
by yr is of order εδ on an interval of size δ, assuming that δ → ∞ as ε → 0, and that the
error term for replacing time average by space average is of order 1√

δ
.

Let τ ε be the first time that yεt exits fromU0. For q ∈ (0, 1), let ∆t = (t+s)
εq ∧ τ

ε − s
εq ∧ τ

ε,
which is of order ε−q , and set N ≡ N(ε) = [εq−1] + 1 which is of order εq−1. Here [εq−1]
is the integer part of εq−1 and all terms may depend on the sample paths of ω. Take
tn = s

ε ∧ τ
ε + n∆t, 1 ≤ n ≤ N − 1, so that

s

ε
∧ τ ε = t0 < t1 < · · · < tN−1 <

s+ t

ε
∧ τ ε.

We first make some pathwise estimates. For any C1 function g on M ,∣∣∣∣∣
∫ (s+t)∧T ε

s∧T ε
g(yεu/ε)du

∣∣∣∣∣ =

∣∣∣∣∣ε
∫ s+t

ε ∧τ
ε

s
ε∧τε

g(yεr)dr

∣∣∣∣∣
≤ ε

∣∣∣∣∣
N−1∑
n=0

∫ tn+1

tn

g(yεr) dr

∣∣∣∣∣+ ε

∣∣∣∣∣
∫ s+t

ε ∧τ
ε

tN

∣∣∣∣∣ g(yεr) dr

Since g is bounded onU0, the second term on the right hand side of the above expression
converges to zero with rate ε1−q:

ε
∣∣∣ ∫ (s+t)

ε ∧τ
ε

tN

g(yεr) dr
∣∣∣ ≤ Cε∆t ≤ Ctε1−q.
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For the remaining terms we use the splitting

ε

N−1∑
n=0

∫ tn+1

tn

g (yεr) dr = ε

N−1∑
n=0

∫ tn+1

tn

[
g(yεr)− g

(
Fr−tn(yεtn ,Θtn(ω))

)]
dr

+ε
N−1∑
n=0

∫ tn+1

tn

g
(
Fr−tn(yεtn ,Θtn(ω))

)
dr.

where ω denotes the chance variable, Θt the shift operator on the canonical probability
space: Θt(ω)(−) = ω(− + t) − ω(t), and {Ft(x, ω), t ≥ 0} the solution flow of the un-
perturbed stochastic differential equation (1.1) with starting point x. Write the summation
as the sum of A1 and A2 and the second term is:

A2(t, ε) ≡ ε

N−1∑
n=0

∫ tn+1

tn

g
(
Fr−tn(yεtn ,Θtn(ω))

)
dr.

The law of the large numbers says that for any function f on a compact manifold con-
verging to infinity as t converges to infinity, 1

t

∫ s+t
s

f(xr)dr converges to
∫
M
f(z)dz when

t → ∞ with rate 1√
t

and the convergence is uniform on compact time intervals in Lp for
all p > 1. Here dz is the volume measure. The easiest way to see that this holds is to
first assume that

∫
fdz vanishes and let h be the function solving ∆h = 2f and apply

Itô’s formula to h(xt) on the time interval [s, s + t]. Note that the intervals [ti, ti+1] are
either constant intervals or intervals of zero length with the exception of one bad interval
of the form [a, τ ε] of size at most ∆t. Let M be the integer such that [ti, ti+1] are constant
intervals for i < M . For the bad interval [tM , τ ε), the following term in A2

ε

∫ τε

tM

g
(
Fr−tn(yεtn ,Θtn(ω))

)
dr

is of order ε∆t. On each constant interval [ti, ti+1], i < M , the corresponding term in A2

is:

ε

∫ tn+1

tn

g
(
Fr−tn(yεtn ,Θtn(ω))

)
dr = ε

∫ ∆t

0

g
(
Fr(yεtn ,Θtn(ω))

)
dr.

Denote by µHε(εtn), or µyεtn , the invariant measure on the invariant manifold MHε(εtn) ≡
Myεtn

. We apply the law of large numbers to such terms and use the Markov property of
the flow to obtain the following estimates, for all sufficiently small ε,[

E sup
u≤t

(
A2(u, ε)− ε∆t

N−1∑
n=0

∫
MHε(εtn)

g(Hε(εtn), z)dµHε(εtn)(z)
)β] 1

β

≤ Cε∆t+

N sup
n

[
E
(
ε

∫ ∆t

0

g
(
Fr(yεtn ,Θtn(ω))

)
dr − ε∆t

∫
MHε(εtn)

g(Hε(εtn), z)dµHε(εtn)(z)
)β] 1

β

≤ Cε∆t+

(ε∆t)N sup
n

(
E sup
u≤t

∣∣∣ 1
∆t

∫ ∆t

0

g
(
Fr(yεtn ,Θtn(ω))

)
dr −

∫
MHε(εtn)

g(Hε(εtn), z)dµHε(εtn)(z)
∣∣∣β) 1

β

≤ Ctε1−q + C
ε∆tN√
t/εq

=≤ Ctε1−q + C
1√
t
ε
q
2
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On the other hand letting sn = εtn so ∆s = ε∆t and consider s0 < s1 · · · < sN . As ∆s
is of order O(ε1−q), the following pathwise estimate follows:∣∣∣∣∣∆s

N−1∑
n=0

∫
MHε(sn)

g(Hε(sn), z) dµHε(sn)(z)−
∫ (s+t)∧τε

s∧τε

∫
MHε(s)

g(Hε(sn), z) dµHε(r)(z) dr

∣∣∣∣∣
≤ C(g)tε1−q

where C(g) = maxU0 |dg|. To summarise:

(3.5)
∫ (s+t)∧τε

s∧τε
g(yεr/ε)dr =

∫ (s+t)∧τε

s∧τε
Qg(Hε(r)) dr + δ(g, ε, t)

where

|δ(g, ε, t)|

≤ Cε1−q + |ε
∫ (t+s)

ε ∧τ
ε

tN

g(yεr) dr|+ |A1(t, ε)|+

|A2(t, ε)−
∑

ε∆t
∫
MHε(εtn)

g(Hε(εtn), z)dµHε(εtn)(z)|

+|
∑

∆s
∫
MHε(sn)

g(Hε(sn), z)dµHε(sn)(z)−
∫ (s+t)∧τε

s∧τε

∫
MHε(s)

g(Hε(s), z) dµHε(s)(z) ds|

and

A1(t, ε) = ε

N−1∑
n=0

∫ tn+1

tn

[
g(yεr)− g

(
Fr−tn(yεtn ,Θtn(ω))

)]
dr.

By the previous estimates:

|δ(g, ε, t)| ≤ Ctε1−q + Ct−
1
2 εq/2 + |A1(t, ε)|.

To show that |A1| is reasonably small, we apply Lemma 3.1 and Hölder’s inequality(
E sup
s≤t

(A1(s, ε))β
) 1
β

≤ Ctε1−q + ε
[
E sup
s≤t

(N−1∑
n=0

∫ tn+1

tn

∣∣g(yεr)− g
(
Fr−tn(yεtn ,Θtn(ω))

)∣∣ dr)β] 1
β

≤ Ctε1−q + ε ·N1−1/β
(N−1∑
n=0

E
[

sup
s≤t

∫ tn+1

tn

∣∣g(yεr)− g
(
Fr−tn(yεtn ,Θtn(ω))

)∣∣ dr]β) 1
β

≤ Ctε1−q + εN1−1/β ·N
1
βC · ε(∆t+ (∆t)2)

≤ C(t+ t2)ε1−q + Ctε.

Consequently,(
E sup
s≤t

∣∣∣δ(g, ε, s)∣∣∣β) 1
β ≤ C(t+ t2)ε1−q + Ct−

1
2 εq/2 + Ctε

and finally take q = 2/3 to obtain:

(3.6)
∥∥∥ sup
s≤t

δ(g, ε, s)
∥∥∥
Lβ
≤ C(t+ t2)ε

1
3 + Cε

1
3 t−

1
2 .

�
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Theorem 3.3. Consider the stochastic differential equation (1.2) satisfying condition R.
Let T ε be the first time that the solution y t

ε
starting from y0 exits U0. Set

Hε
i (t) = Hi(yεt/ε).

(1) Let H̄(t) ≡ H̄t ≡ (H̄1(t), . . . H̄n(t)) be the solution to the following system of
deterministic equations.

(3.7)
d

dt
H̄i(t) =

∫
MH̄(t)

ω(XHi ,K)(H̄(t), z) dµH̄t(z),

with initial condition H̄(0) = H(y0). Let T 0 be the first time that H̄(t) exits from
U0. Then for all t < T0, β > 1, there exists a constant C2 > 0 such that(

E(sup
s≤t
‖Hε(s ∧ T ε)− H̄(s ∧ T ε)‖β)

) 1
β

≤ C2ε
1/3,

(2) Let r > 0 be such that U ≡ {x : ‖H(x)−H(y0)‖ ≤ r} ⊂ U0 and define

Tδ = inf
t
{|H̄t −H(y0)| ≥ r − δ}.

Then for any β > 1, δ > 0 and a constant C depending on Tδ ,

P (T ε < Tδ) ≤ C(Tδ)δ−βεβ/3.

Remark 3.4. To see that (3.7) is a genuine system of ordinaray differential equations, take
the canonical transformation map xa : Ma → Tn. The pushed forward measure x∗(µa) is
the Lebesque measure µ on the torus and (3.7) becomes:

d

dt
H̄i(t) =

∫
Tn
ω(XHi ,K)

(
x−1
H̄t

(H̄t, z)
)
dµ(z).

Proof. By Itô’s formula, for t < T0 ∧ T ε.

Hε
i (t) = Hi(y0) +

∫ t

0

ω(XHi ,K)(yεs
ε
)ds.

For i fixed, write

(3.8) gi = ω(XHi ,K)

We only need to estimate

(3.9) |Hε
i (t)− H̄i(t)| =

∣∣∣ ∫ t

0

gi(yεs/ε)ds− H̄i(t)
∣∣∣

Using the notation of the previous lemma then equation (3.7) can be written as

d

dt
H̄i(t) = Qgi(H̄t)

H̄0 = H(y0).

Apply (3.3) to the functions gi we have for any t < T ε,

|Hε
i (t ∧ T ε)− H̄i(t ∧ T ε)| ≤

∫ t∧T ε

0

|Qgi(Hε(s))−Qgi(H̄(s))|ds+ δ(gi, ε, t)

≤ C(g, φ)
∫ t

0

‖Hε(s))− H̄(s)‖ds+ δ(gi, ε, t).
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By Gronwall’s inequality,(
E( sup

s≤t∧T ε
‖Hε(s)− H̄(s)‖β)

) 1
β

≤ C(t)ε
1
3 ,

concluding part (1) of Theorem 3.3.
Part (2) of the theorem easily follows. By definition Tδ is the first time that√∑

i

|H̄i(s)−Hi(y0)|2 ≥ r − δ

then

P (T ε < Tδ) ≤ P

(
sup

s≤Tδ∧T ε

∥∥H̄s −Hε(s)
∥∥ > δ

)
≤ δ−βE

(
sup

s≤Tδ∧T ε

∥∥H̄i(s)−Hε
i (s)

∥∥β)
≤ Cδ−βε

β
3 .

�

4. PERTURBATION BY A HAMILTONIAN VECTOR FIELD

If the perturbationK to the stochastic Hamiltonian system (1.1) is a Hamiltonian vector
field, i.e. LXω = 0, then

∫
Mc

ω(XHi ,K)dµc vanishes if c is not a bifurcation value. In
fact let (U0, φ) be an action angle coordinate around Mc. We can write K = Xk for some
smooth function k,∫

Mc

ω(XHi ,K)(z)dµc(z) =
∫
Tn
d (k ◦ φ)

(
−

n∑
k=1

∂(Hk ◦ φ)
∂Ik

∂

∂θk

)
dθ

= −
n∑
β=1

ωiβ(I)
∫
Tn

(
∂

∂θβ

)
(k ◦ φ) dθ = 0,

where dθ is the standard measure on the n-torus. The ordinary differential equation (3.7)
governing limε→0Hi(yεt/ε) has thus a constant solution. In this case we may consider
the second order scaling yεt/ε2 and the accumulation of the perturbation over a large time
interval of order ε−2. The proof is inspired by a proof in Hairer-Pavliotis [15] and this also
benefited from the articles by Khasminski, Papanicolau-Stroock-Varadhan and Freidlin.

Let

L0(I) =
1
2

∑
LXHiLXHi + LV

be the restriction of the elliptic operator on the invariant manifold with value I . If f on
MI has

∫
fdµ = 0 then the Poisson equation

(4.1) L0h = f

is solvable. We denote byL−1f the solution to the Poisson equation satisfying
∫
L−1fdµ =

0.
Since L0 is elliptic on each level set manifold Ma and {Hi, k} is centered there, the

Poisson equation has a unique solution hi. Note that the functions LK{Hi, k} and that
LXHihi are well defined.
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Note that if K = Xk then the matrix with (i, j)-th entry given by

−dHi(K)L−1
0

(
dHj(K))

)
is positive definite.

Theorem 4.1. Assume condition R and suppose that K is a smooth local Hamiltonian
vector field so that K = Xk for some smooth function k in the chart U0. Define the
matrices (aij) by

aij(a) = −
∫
Ma

ω(K,XHj )L−1
0

(
ω(K,XHi)

)
(a, z) dµa(z), a ∈ D ⊂ Rn

and let (σji ) be its square root. Set

bj(a) =
1
2

∫
Ma

LKL−1
0 (ω(XHj ,K))(a, z) dµa(z).

Let zt be the solution to the following stochastic differential equation

dzjt =
∑
i

σji (zt) ◦ dB
i
t + bj(zt)dt.

Then the law of the stochastic process H(yεt
ε2

) stopped at Sε, the first time that the process

yεt
ε2

exits from U0, converges to that of H(zt∧Sε).

Remark: The limiting measure is clearly well defined as aij and bj are invariant with
different choices of the inverse to L0.

Proof. In the following calculation we restrict ourselves on the event {t < Sε}, equiva-
lently consider the relevant processes stopped at Sε. Set

ŷεt = yεt
ε2
∧Sε ,

Ĥε(t) ≡ (Ĥε
1(t), . . . , Ĥε

n(t)) =
(
H1(ŷεt ), . . . ,Hn(ŷεt )

)
.

Then

Ĥε
i (t) = Hi(y0)− ε

∫ t
ε2
∧Sε

0

ω
(
K,XHi

)
(yεs)ds.

We first show that the family of the laws µε, distribution of Ĥε(t ∧ Sε), is tight. It
follows, by Prohorov’s theorem, that {µε} is relatively compact in the space of probability
measures with the topology of weak convergence and hence has a weak limit µ̄. To see the
tightness of the family µε, we show that for any a, η > 0 there is a δ > 0 with

P
(

sup
|s−t|<δ

‖Ĥε(t)− Ĥε(s)‖2 ≥ a
)
≤ η.

For this, observe that

‖Ĥε(t)− Ĥε(s)‖2 =
n∑
i=1

∣∣∣− ε∫ t
ε2
∧Sε

s
ε2
∧Sε

ω
(
K,XHi

)
(yεr)dr

∣∣∣2.
Set hi to be the solution to the Poisson equation:

L0hi = ω
(
K,XHi

)
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with
∫
Ma

h0 = 0 for any a ∈ Rn. Then

‖Ĥε(t)− Ĥε(s)‖2

=
n∑
i=1

∣∣∣ε n∑
j=1

∫ t
ε2
∧Sε

s
ε2
∧Sε

LXHj hi(y
ε
r)dB

j
r + ε2

∫ t
ε2
∧Sε

s
ε2
∧Sε

LKhi(yεr)dr − εhi(ŷεt ) + εhi(ŷεs)
∣∣∣2.

Applying Lemma 3.2 with ε replaced by ε2, one see that the drift term has a nice bound in
|t− s|:

ε2
∫ t

ε2
∧Sε

s
ε2
∧Sε

LKhi(yεr)dr

=
∫ t∧τε

s∧τε

∫
Ĥε(r)

LKhi(z)dµ(z)dr + δ(LKhi, ε, t− s),

This gives us a comfortable estimates since δ(LKhi, ε, t − s) is of the order
√
ε(t − s).

Similarly the quadratic variation of each of martingale terms also converges with the same
rate of convergence:

E
〈∫ t

ε2
∧Sε

s
ε2
∧Sε

LXHj hi(y
ε
r)dB

j
r

〉
= ε2

∫ t∧ε

s∧τε

∫
E|LXHj hi(y

ε
r)|2dr.

Applying Burkerholder-Gundy inequality to obtain an estimate on the Lβ norm of

sup
|s−t|<δ

ε
∣∣∣ n∑
j=1

∫ t
ε2
∧Sε

s
ε2
∧Sε

LXHj hi(y
ε
r)dB

j
r

∣∣∣,
which is a constant multiple of |s− t| plus an error term of the order

√
ε(t− s).

Finally it is clear that

sup
|s−t|<δ

|εhi(ŷεt )− εhi(ŷεs)|2 ≤ Cε→ 0.

To identify the limiting measure let h be the solution to the Poisson equation,

h =
1
2

n∑
i=1

∂iF (H)L−1
0

(
ω(K,XHi)

)
,

where L−1
0 is considered to act on the angle variable only and

∫
Ma

h = 0 for each a. For
any smooth function F on Rn, we have

F
(
Ĥε(t))

)
− F (Ĥε(0))

= −ε
n∑
i=1

∫ t
ε2
∧Sε

0

∂iF (H(yεs))ω(K,XHi)(y
ε
s)ds

= ε

n∑
j=1

∫ t
ε2
∧Sε

0

LXHj h(yεs)dB
j
s + ε2

∫ t
ε2
∧Sε

0

LKh(yεs)ds+ ε
(
h(y0)− h(ŷεt )

)
.

The first term on the right hand side is a martingale and the last term converges to zero as
ε → 0. We first identify LKh in terms of the function F . By assumption the functions
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ω(K,XHi) are centred and L−1
0 has no effect on functions of H and so

LKh =
1
2
LKL−1

0

( n∑
i=1

∂iF (H) ω(K,XHi)
)

=
1
2
LK
( n∑
i=1

(∂iF )(H) L−1
0

(
ω(K,XHi)

))
= −1

2

n∑
i=1

∂j∂iF (H)ω(K,XHj )L−1
0

(
ω(K,XHi)

)
+

1
2

( n∑
i=1

∂iF (H)LKL−1
0 (ω(XHi ,K))

)
.

Set

L̄ = −1
2

∑
i,j

ω(K,XHj )L−1
0

(
ω(K,XHi)

)
∂i∂j +

1
2

n∑
i=1

LKL−1
0 (ω(K,XHi))∂i,

to see

F
(
Ĥε(t))

)
− F (Ĥε(0))

= ε

n∑
j=1

∫ t
ε2
∧Sε

0

LXHj h(yεs)dB
j
s + ε2

∫ t
ε2
∧Sε

0

L̄F ◦H(yεs)ds+ ε
(
h(y0)− h(ŷεt )

)
.

Mimicking Papanicolaou-Stroock-Varadhan, we define FHs ≡ σ{Ĥε
r∧Sε : r ≤ s} and so

{FHs : s ≥ 0} is the filtration generated by Ĥε
·∧Sε . We need the following estimates:

ε2
∫ t

ε2
∧Sε

a∧T ε
L̄F (H(yεs))ds

=
∫ t∧T ε

a∧T ε

(∫
MĤε(s)

L̄F ◦H(z) dµĤε(s)(z)
)
ds+ δ(L̄F, ε2, t− a)

=
∫ t∧T ε

a∧T ε
LF ◦ Ĥε(s) ds+ δ(L̄F ◦H, ε2, t− a),

where in the action-angle local coordinate,

LF (a) = −1
2

n∑
i,j=1

∂j∂iF (a)
∫
Ma

ω(K,XHj )L−1
0

(
ω(K,XHi)

)
(a, z) dµI(z)

+
1
2

n∑
i=1

∂iF (a)
∫
Ma

LKL−1
0 (ω(XHi),K)(a, z) dµ(z).
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Then for any FHs - measurable L2 random function G, using again Lemma 3.2,

EG
[
F
(
Ĥε(t ∧ Sε))

)
− F

(
Ĥε(s ∧ Sε))

)
−
∫ t∧Sε

s∧Sε

∫
MĤε(r)

(L̄F )(z)dµĤε(r)(z)dr
]

= EG
[
ε

n∑
j=1

∫ t
ε2
∧Sε

s
ε2
∧Sε

LXHj h(yεs)dB
j
s

]
+EG

[
δ(L̄F, ε2, t− s) + ε

(
h(yεs

ε2
∧Sε)− h(yεt

ε2
∧Sε)

)]
= EG

[
δ(L̄F, ε2, t− s) + ε

(
h(yεs

ε2
∧Sε)− h(yεt

ε2
∧Sε)

)]
→ 0.

Consequently

E
{
F
(
Ĥε(t∧Sε))

)
−F

(
Ĥε(s∧Sε))

)
−
∫ t∧Sε

s∧Sε

∫
MĤε(r)

(L̄F )(z)dµĤε(r)(z)dr
∣∣FHs }→ 0,

and so any weak limit of the law Ĥε
· is the solution to the martingale problem for the

second order differential operator L.
�
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