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The unambiguous experimental detection of quantum spin liquids and, in particular, of the long-
sought Kitaev quantum spin liquid (KQSL) with its Majorana fermion excitations remains an out-
standing challenge. One of the major obstacles is the absence of signatures that definitively charac-
terize this phase. Here we propose the Landau levels known to form in the Majorana excitation spec-
trum of the KQSL when certain strain fields are applied as a direct signature of Majorana fermions
with Dirac-like dispersion. In particular, we show that the Majorana Landau level quantization of
strained films of the KQSL can be directly probed by Raman spectroscopy. Such experiments are
feasible in thin films of α-RuCl3, which are a promising place to search for the KQSL.

Introduction. Two of the most prominent – but nor-
mally distinct – routes for the experimental realization of
topologically ordered (TO) phases of matter are 2D elec-
tron gases in strong magnetic fields and frustrated mag-
nets. In the former, the orbital magnetic field leads to
Landau quantization, introducing an extensive number of
degenerate single-particle states. In the presence of inter-
actions, this leads to TO fractional quantum Hall (FQH)
phases. In the latter, geometrically frustrated interac-
tions between the effective magnetic moments lead to a
large classical degeneracy, which can result in so-called
quantum spin liquid (QSL) phases at low temperature.
Strain engineering of certain thin QSL films unifies these
distinct lines of research by inducing pseudo-magnetic
fields [1] for the fractionalized, chargeless quasiparticles
of QSL phases [2]. In this work, we show that for at least
one type of spin liquid the resulting emergent Landau
quantization can be detected experimentally with inelas-
tic light scattering. This allows both identification of the
spin liquid phase and characterization of the band struc-
ture of its fractionalized fermionic excitations, which have
thus far proven experimentally elusive.

Our study focuses on the so called Kitaev QSL
(KQSL), which is the ground state of an exactly solv-
able spin- 1

2 model with frustrated bond-dependent Ising
interactions on the honeycomb lattice [3]. There spins
fractionalize into emergent static Z2 fluxes and dis-
persive Majorana fermions which at low temperatures
(corresponding to few excited fluxes) display a linear
Dirac spectrum similar to graphene. The exact solu-
bility makes this model particularly amenable to theo-
retical study; indeed both static properties (e.g. ground
state degeneracy [4], entanglement entropy [5], and dis-
order [6, 7]) and dynamical correlations (e.g. dynami-
cal structure factor [8, 9], Raman scattering [10, 11], and
global quenches [12]) of this model can be computed.

Exact solubility also allows the effect of strain on the
KQSL to be characterized analytically. It is well known
that lattice strain couples to electronic degrees of freedom
as an effective gauge field [13, 14] which has led to the
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FIG. 1. Schematic plot of a nano-bubble of a α-RuCl3 thin
film is shown in panel (a). The resulting lattice distortion in-
duces a strain pattern that acts as a pseudo-orbital magnetic
field for the Majorana fermions which emerge from spin frac-
tionalization in the QSL of the Kitaev model. The resulting
LL quantization can be directly probed by Raman scattering.
The evolution of the response for finite (s = 0.04) and zero
strain (s = 0) is shown in panel (b).

prediction [1] that suitably strained graphene would dis-
play the characteristic energy scaling En ∝ sgn(n)

√
|n|

of Dirac electrons in an orbital magnetic field. This was
successfully demonstrated in subsequent experiments [15]
where the strain pattern was generated by nano-bubbles
which can form when graphene is grown on a suitable
substrate. Recently, it was shown theoretically that the
Majorana fermions in a strained Kitaev model also expe-
rience pseudo-magnetic fields [2], leading to Landau level
(LL) quantization with the same energy scaling as for
graphene.
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The prediction that certain transition metal oxides
with strong spin orbit coupling and orbital degeneracies
could be dominated by Kitaev spin-exchange interactions
[16] has recently inspired a search for candidate KQSL
materials. Initially, interest was focused on A2IrO3

(A=Na, Li) [17–20] but currently α-RuCl3 [21, 22] ap-
pears to be the best KQSL candidate. Though all of
these compounds show magnetic order at low tempera-
ture [23], it has been argued that dynamical scattering
experiments – inelastic neutron scattering (INS) [24, 25]
and Raman scattering [26, 27] – can, at higher frequen-
cies, naturally be interpreted in terms of the fractional-
ized Majorana fermions [28]. This suggests that α-RuCl3
may be proximate to the KQSL, such that tuning mate-
rial parameters could potentially drive the system into a
QSL. Further, strain engineering in these systems is con-
ceivable in the near future: As the material is highly two
dimensional, thin films can be generated by simple exfoli-
ation techniques [29]. Strain could therefore be generated
by placing these on different substrates or shapes.

This raises the exciting possibility of detecting KQSL
physics by probing the LL quantization of the deconfined
Majorana fermions. This would give a “smoking gun”
signature of the existence of Majorana fermions with a
linear Dirac spectrum characteristic of the KQSL. How-
ever, it is not obvious how to detect the Majorana LLs.
Since these fermions are charge neutral, the LLs can-
not be detected simply by means of scanning tunneling
microscopy as for graphene [15]. Further, probes such as
INS or RIXS cannot produce adequate signal on very thin
films and do not have the necessary spatial resolution.
Here, we show that inelastic light scattering of strained
Kitaev films would probe the Majorana LL quantization
and the characteristic scaling En ∝ +

√
|n| related to the

Dirac dispersion.
Low-energy description and scaling. The Kitaev hon-

eycomb spin model is given by [3]

HK =
∑

〈ij〉α
Jασαi σ

α
j , (1)

with only one spin component α interacting on each of
the three distinct bonds of the honeycomb lattice. Ki-
taev’s solution decomposes spins into products of Ma-
jorana fermions via σαj = ibαj cj , such that HK =∑
〈ij〉α J

αu〈ij〉αicicj where u〈ij〉α = ibαi b
α
j are conserved

Z2 gauge variables. Since the gauge fluxes are gapped
and static we can first focus on the zero-flux ground-
state configuration, e.g. with u〈ij〉α = 1. This re-
duces the problem to that of a quadratic Hamiltonian
of the dispersing c Majorana fermions. For isotropic ex-
change couplings and no strain it gives a linear spec-
trum εk = 2|Γk|, with Γk = Jz + Jxeik1 + Jyeik2 and
ki = k · ai = (±

√
3kx + 3ky)/2, about the two Dirac

points k1 = −k2 = ±2π/3 similar to graphene.
A strain field modifies the parameters Jα in Eq. (1).

At lowest order the correction to the unstrained exchange

couplings is given by [2]

δJαij/J
α = −β

(
|~δij | − 1

)
≈ −β(~δ0 · ~∇)(~U · ~δ0), (2)

where δ0 is the lattice vector in the absence of strain,
~Uj = ~R′j − ~Rj is the displacement field, and ~δij =
~R′i − ~R′j is the strained lattice vector. Expanding the
Hamiltonian around the Dirac points to first order in
strain and wave vector it is easy to show that it cou-
ples just like a vector potential Π = p − e

cA to the
canonical momentum. An out of plane magnetic field
(along the z-axis) is induced by strain fields of the form
B = −β

[
∂xuxy + 1

2∂y(uxx − uyy)
]

[1] and β≡−∂ ln J
∂ ln δ is

the magnetic Grüneisen parameter [30].
Before presenting numerical results for the lattice

model, we give an analytical treatment of the low-energy
physics. We work in the Landau gauge A = B(0, x)
and introduce the low-energy Majorana field operators
Ψ̂ν = (Ψa(r),Ψb(r))

T
. The index ν = ±1 labels the two

valleys while a and b refer to the two sublattices. Now
we can write the Hamiltonian as H =

∑
ν

∫
d2rΨ̂†νĤνΨ̂ν

with

Ĥν = i
3

2
J

(
0 νpx − i(py − νBx)

−νpx − i(py − νBx) 0

)
.

Note that B has opposite sign at the two Dirac points
leaving time reversal symmetry (TRS) unbroken, which
prevents the usual trick of combining the two Majo-
rana cones into a single cone of complex fermions [32].
As long as there is no coupling between the two cones
we can concentrate on only one of them. We intro-
duce the ladder operator a = lB√

2~ (Πx − iΠy) with

l2B = c~
e|B| (in the following we absorb e, c into the

definition of B and set ~ = 1) and expand the
field operators in terms of the standard Landau Level
wave functions Ψa(r) = 1√

2

∑
n,p Φn−1,p(r)ca,n,p and

Ψb(r) = 1√
2

∑
n,p Φn,p(r)cb,n,p, where the Majorana op-

erators cX,n,p (X = a, b) anticommute, with c2 = 1
[note the sign change of momenta from conjugation

Ψ†b(r) =
∑
n,p Φ∗n,p(r)cb,n,−p]. Using the standard prop-

erties of ladder operators, aΦn =
√
nΦn−1 and a†Φn =√

n+ 1Φn+1, we obtain the Hamiltonian

H+ =
3J

2

∑

n,p

cTn,−p


 0 i

√
2

lB

√
n

−i
√

2
lB

√
n 0


cn,p, (3)

where cTn,p = (ca,n,p, cb,n,p). We diagonalize H+

by the complex fermions fn,p with cb,n,p = fn,p +

f†n,−p and ca,n,p = i
(
fn,p − f†n,−p

)
such that H+ =

∑
n,pE(n)

[
f†n,pfn,p − 1

2

]
. The energies [33]

E(n) = ωc
√
n (4)

obey the well known
√
n scaling of Dirac fermions with

ωc = 3J
√

2
lB

= 3
√

2J
√
B and n ∈ N≥0.
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FIG. 2. The DOS and all possible Raman correlation functions for finite strain (s = 0.04) [solid lines] and zero strain (s = 0)
[dotted lines] with r = 50 corresponding to 6∗ (50 + 1)2 = 15606 sites. DOS (a) shows peaks at

√
nωc (gray vertical lines) while

Inon-res (b) features them at (
√
n+
√
n+ 1)ωc and Ires (c) at 2

√
nωc. Ires is the resonant channel, which is anti-symmetric in

polarization, as discussed in Ref. [31].

We are interested in the low-energy behavior of the
Raman response which has been discussed for unstrained
Kitaev models by some of us in the past [10, 11, 31, 34].
The Raman intensity is given by the correlation function
I(ω) =

∫∞
−∞ dteiωt〈R(t)R(0)〉, where the effective Raman

vertices R(t) depend on the in- and out-going polariza-
tion of the scattered photons. We concentrate on strain
patterns that do not alter the symmetries of the Hamil-
tonian such that there are only two independent Raman
intensities, the A1g = Eg channel and the A2g channel
which only couples to incident photons in resonance with
the minimal Mott gap. The main difference between the
non-resonant and resonant Raman vertices is that the
latter can couple sites on the same sublattice, whereas
the former cannot [31]. As we are only interested in the
scaling form of the Raman response we omit the polar-
ization dependent prefactors to obtain

Rnon-res ∝ i
∫

d2rΨ†a(r)(t)Ψb(r)

∝
∑

n,p

[
fn,−p(t)− f†n,p(t)

] [
fn−1,p + f†n−1,−p

]

for the non-resonant processes, and

Rres ∝ i
∫

d2r
[
Ψ†a(r)(t)Ψa(r + δ)−Ψ†a(r)(t)Ψa(r− δ)

]

∝
∑

n,p

sin (pδ)
[
fn,−p(t)− f†n,p(t)

] [
fn,p + f†n,−p

]

for the antisymmetric combination of polarizations in the
resonant processes. Only the non-resonant combination
mixes states which differ by one LL index. From the time
dependence fn,p(t) = fn,pe

−itE(n) and fn,p|0〉 = 0 we can
directly calculate the low-energy Raman responses,

Inon-res ∝
∑

n

δ
[
ω − ωc

√
n− ωc

√
n+ 1

]
,

Ires ∝
∑

n

δ
[
ω − 2ωc

√
n
]
.

(5)

This is the central result of the paper: the Raman re-
sponse (5) is a direct probe of the LL quantization. The

two different scalings of the resonant and non-resonant
intensities in Eq. (5) originate from the sub-lattice selec-
tivity of the two vertices.
Lattice calculation. We follow Refs. [1, 2, 35] to study

a honeycomb flake subject to triaxial strain preserving
the C3v symmetry. The strain pattern defined by the
displacement field

~U(x, y) = C̄
(
2xy, x2 − y2

)
(6)

leads via uij = (∂iUj + ∂jUi)/2 to a uniform pseudo-
magnetic field with magnitude B = −4βC̄. We numeri-
cally construct the honeycomb flake as r rings of honey-
combs placed around an initial single one [2, 36]. We let
C̄ = C̄(r) depend on system size so that the fractional
stretch in the maximal direction s = δL

L =
√

3(r + 1
2 )C̄

is fixed. Then B ≈ − 4β√
3r
s decays with system size. This

also fixes the maximum magnetic response: For linear

elasticity to hold δJ/J � 1, or s �
√

3
2β independent of

system size.
For concreteness we use β = 10 which gives for optimal

parameters strain of s = 0.01–0.04 in systems of flake
size r = 10–50 unit cells. The pseudo-magnetic field
needs to be sufficiently strong that the Landau levels are
easily distinguished from finite-size effects in the Raman
response; for these system sizes this requires at least B ≈
0.03 or strains of s = 0.02 if β = 10.

In Fig. 1 (b) we show how the characteristic Raman
response for an unstrained thermodynamically large sys-
tem transforms under strain. Without strain the linear
slope at low energies from the Dirac density of states
(DOS) [10] is apparent. The Figure also shows that the
non-resonant response of a strained flake obeys the char-
acteristic discrete scaling predicted by our low-energy
theory [Eq.(5)], which is a direct consequence of the emer-
gence of Landau quantization. In Fig. 2 we concentrate
on the low-frequency window and compare the evolution
of the Majorana fermion DOS [Fig. 2 (a)], non-resonant
[Fig. 2 (b)] and resonant Raman response [Fig. 2 (c)]. We
recover the distinct scaling of the resonant and non-
resonant processes (5).
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FIG. 3. A set of density plots showing the progression of Landau level peaks as a function of (a) strain s, (b) system size r,
and (c) temperature T . Where not specified we used parameters s = 0.04 and T = 0 with the system sizes (a) r = 30 and (c)
r = 15. The temperature of the crossover in (c) agrees well with the expected spinon-confinement transition for non-interacting
fluxes at T ∗ ≈ 0.02J (s = 0.04, r = 15).

In order to make contact with possible future experi-
ments, Fig. 3 traces the evolution of the LL peaks as a
function of strain and flake size in panels (a) and (b).
They follow the expected behaviour of the effective mag-
netic field |B| ≈ 4β√

3r
s. Panel (c) shows the evolution

with temperature. For a fixed finite system size, there
is a cross-over temperature T ∗ > 0 above which the
fluxes destroy the low-energy Dirac spectrum, washing
out the sharp LL quantization. A uniform thermal den-
sity ρ of fluxes effectively confines the Majorana spinons
on a length scale `C ∼ ρ−1/2; it is therefore natural to
expect that when `C approaches the system’s effective
magnetic length the Landau levels dissappear. However,
as the strain grows with the radial coordinate, there turns
out to be significant spatial anisotropy in the flux gap [2]
causing the fluxes to first appear near the edge of the
system (see the supplemental material [37]). This allows
the Landau levels to persist to an appreciable flux den-
sity of around ρ ≈ 0.1 at s = 0.04. For a fixed value
of strain s and the magnetic response β the spatial flux
anisotropy is expected to be independent of system size,
following the spatial strain anisotropy. We can therefore
predict a crossover temperature of around T ∗ ≈ 0.02J
for any system size with this strain pattern at s = 0.04
and β = 10 based on our numerical results. Details of
the finite temperature calculation, including comparison
to known results [27, 38], are relegated to the supplemen-
tary material [37].

Discussion. Our calculation of the Raman response in
a strained KQSL shows that it can be used to directly
observe the LL quantization and the corresponding low-
energy scaling. This gives direct evidence for the Dirac
dispersion of the Majorana fermions in the KQSL. This
distinctive signature is remarkable because in general it is
notoriously difficult to measure asymptotic low temper-
ature (or low frequency) properties that can definitively
identify the QSL type in candidate materials.

We emphasize that this LL quantization – which pro-
duces a distinctive signature in the Raman response up to
energy scales that are an appreciable fraction of the band-

width (see Fig. 1) – is a feature of the low-temperature
crossover region T < T ∗ proximate to the zero tempera-
ture quantum spin liquid phase. This is in contrast to the
broad continuum observed in unstrained α-RuCl3 [26],
which compares favorably with the predictions for the Ki-
taev model even in samples with low-temperature mag-
netic order. For pure Kitaev interactions such a con-
tinuum is present even at relatively high temperatures
T � T ∗ throughout the correlated paramagnetic regime
up to a temperature set by the value of the Kitaev ex-
change [27]. In contrast, the sensitivity of the LL degen-
eracy to flux disorder means that it disappears at tem-
peratures where fluxes proliferate in the bulk and destroy
the low-energy Dirac dispersion of the spin liquid.

In order for these Landau levels to be observable, it is
crucial that the LL quantization is a feature of the KQSL
phase, rather than of the finely-tuned Kitaev Hamilto-
nian. Adding additional spin-spin interactions to the
model introduces dynamical bound pairs of Z2 fluxes in
the ground state, with a characteristic binding length lF ,
and characteristic time scale τF . Since the LL quanti-
zation essentially stems from the fact that our fermions
perform cyclotron orbits whose size is set by lB , with
a characteristic time τB , LL quantization is expected to
persist as long as lF � lB and τF � τB such that the
fermions can on average still perform cyclotron motion.
Additionally, our finite-temperature data indicates that
the LL peaks persist up to a small but finite thermal
flux density of approximately ρflux ≈ 0.1. This suggest
that the LL quantization may be more robust than this
naive limit suggests: flux pairs will tend additionally to
be bound to the sample’s edges where the flux gap is
reduced.

Finally, we discuss the experimental feasibility of our
proposal. Currently, different routes for the realization
of α-RuCl3 thin films are being pursued, both via exfo-
liation of individual planes and by direct growth on sub-
strates [29]. Strain could be generated either via spon-
taneously formed nano-bubbles, as for graphene [15], or
by direct application of mechanical strain [39–41]. RuCl3
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flakes corresponding to our simulation would have diam-
eters of 30–60nm. For larger systems with β = 10 the
value of s = 0.04 is expected to produce sharp LL peaks
at a frequency that decays with the system size as in
Fig. 3(a). While standard Raman experiments average
their q = 0 response over large areas of the sample, mak-
ing observations challenging on small systems, it is pos-
sible to achieve a higher resolution by using a so called
Raman microscope with spatial resolution sufficient for
larger nano-bubbles.

Our conservative estimate of a cross-over tempera-
ture, together with an estimated Kitaev coupling of
J ≈ 100K [24, 26], yields detectable LL peaks (see
Fig.3(c)) at temperatures below roughly one Kelvin for
the pure Kitaev model. At these scales the separation
of the LL peaks would be easily discernible with current
energy resolution better than one meV in Raman experi-
ments [42]. However, if the KQSL phase can be achieved
in these materials they will not be strictly at the Kitaev
point and we expect the required energy and temperature
scales to be further reduced.

Summary. We have shown that Raman scattering can
detect the quantized LLs that arise in strained honey-
comb flakes of the Kitaev spin liquid, enabling a direct
probe of the Dirac dispersion of the underlying Majo-
rana fermions. Carrying out such an experiment on α-
RuCl3 thin films is challenging – but achievable – with
current technology. Given that bulk α-RuCl3 is believed
to be proximate to the KQSL phase [24], it is not unrea-
sonable to expect that thin films are free of the resid-
ual long-ranged magnetism because of their increased
two-dimensionality, making the prospect of identifying
a KQSL an exciting possibility in these systems.
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[14] J. L. Mañes, Phys. Rev. B 76, 045430 (2007).
[15] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui,

A. Zettl, F. Guinea, A. H. C. Neto, and M. F. Crommie,
Science 329, 544 (2010).

[16] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102,
017205 (2009).

[17] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale,
W. Ku, S. Trebst, and P. Gegenwart, Phys. Rev. Lett.
108, 127203 (2012).

[18] R. Comin, G. Levy, B. Ludbrook, Z.-H. Zhu, C. N. Veen-
stra, J. A. Rosen, Y. Singh, P. Gegenwart, D. Stricker,
J. N. Hancock, D. van der Marel, I. S. Elfimov, and
A. Damascelli, Phys. Rev. Lett. 109, 266406 (2012).

[19] A. Biffin, R. D. Johnson, I. Kimchi, R. Morris, A. Bom-
bardi, J. G. Analytis, A. Vishwanath, and R. Coldea,
Phys. Rev. Lett. 113, 197201 (2014).

[20] T. Takayama, A. Kato, R. Dinnebier, J. Nuss, H. Kono,
L. S. I. Veiga, G. Fabbris, D. Haskel, and H. Takagi,
Phys. Rev. Lett. 114, 077202 (2015).

[21] K. W. Plumb, J. P. Clancy, L. J. Sandilands, V. V.
Shankar, Y. F. Hu, K. S. Burch, H.-Y. Kee, and Y.-
J. Kim, Phys. Rev. B 90, 041112 (2014).

[22] Y. Kubota, H. Tanaka, T. Ono, Y. Narumi, and
K. Kindo, Phys. Rev. B 91, 094422 (2015).

[23] R. Schaffer, E. K.-H. Lee, B.-J. Yang, and Y. B. Kim,
Reports on Progress in Physics 79, 094504 (2016).

[24] A. Banerjee, C. A. Bridges, J.-Q. Yan, A. A. Aczel, L. Li,
M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu,
J. Knolle, S. Bhattacharjee, D. L. Kovrizhin, R. Moess-
ner, D. A. Tennant, D. G. Mandrus, and S. E. Nagler,
Nat. Mater. 15, 733 (2016).

[25] A. Banerjee, J. Yan, J. Knolle, C. A. Bridges, M. B.
Stone, M. D. Lumsden, D. G. Mandrus, D. A. Tennant,
R. Moessner, and S. E. Nagler, arXiv:1609.00103 (2016).

[26] L. J. Sandilands, Y. Tian, K. W. Plumb, Y.-J. Kim, and
K. S. Burch, Phys. Rev. Lett. 114, 147201 (2015).

[27] J. Nasu, J. Knolle, D. L. Kovrizhin, Y. Motome, and
R. Moessner, Nat. Phys. 12, 912 (2016).

[28] The low-frequency regime is, of course, governed by the
long-range order.

[29] M. Ziatdinov, A. Banerjee, A. Maksov, T. Berlijn,
W. Zhou, H. B. Cao, J.-Q. Yan, C. A. Bridges, D. G.
Mandrus, S. E. Nagler, A. P. Baddorf, and S. V. Kalinin,



6

Nature Communications 7, 13774 (2016).
[30] G. K. White, Proc. Phys. Soc. 86, 159 (1965).
[31] B. Perreault, J. Knolle, N. B. Perkins, and F. J. Burnell,

Phys. Rev. B 94, 060408 (2016).
[32] X.-Y. Song, Y.-Z. You, and L. Balents, Phys. Rev. Lett.

117, 037209 (2016).
[33] Rammal, R., J. Phys. France 46, 1345 (1985).
[34] B. Perreault, J. Knolle, N. B. Perkins, and F. J. Burnell,

Phys. Rev. B 94, 104427 (2016).
[35] M. Neek-Amal, L. Covaci, K. Shakouri, and F. M.

Peeters, Phys. Rev. B 88, 115428 (2013).
[36] Note that system size r corresponds to N − 1 in Ref. [2].

[37] For further details see the supplemental material.
[38] J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. B

92, 115122 (2015).
[39] S. Zhu, J. A. Stroscio, and T. Li, Phys. Rev. Lett. 115,

245501 (2015).
[40] F. Guinea, A. K. Geim, M. I. Katsnelson, and K. S.

Novoselov, Phys. Rev. B 81, 035408 (2010).
[41] M. Vozmediano, M. Katsnelson, and F. Guinea, Phys.

Rep. 496, 109 (2010).
[42] T. P. Devereaux and R. Hackl, Rev. Mod. Phys. 79, 175

(2007).



Supplemental Material for
Majorana Landau Level Raman Spectroscopy

Brent Perreault,1 Stephan Rachel,2, 3 F. J. Burnell,1 and Johannes Knolle4

1School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
2Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany

3Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
4Department of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.

Finite Temperature Formalism

By the simple form of the canonical ensemble we can write

I(ω) ∝
∑

flux patterns M

e−βE
M
0 IM (ω, β) (1)

where EM0 is the energy of the lowest-energy state in the flux-configuration M , and IM (ω, β) is the spectrum due
to the band fermionic excitations in the flux background M , at temperature β. The proportionality constant is the

partition function Z =
∑

flux patterns M e−βE
M
0 ZM with ZM being the free fermion partition function in a given flux

background. For a given flux-configuration M the Hamiltonian can be written after Kitaev fermionization as

H =
1

2

∑

〈rr′〉
Jαuα〈rr′〉icrcr′ ≡

1

2

∑

r,r′

Hrr′crcr′ , (2)

where uα〈rr′〉 = ibαr b
α
r′ = ±1. In terms of these Majoranas H has a chiral symmetry S that flips sign of cr on one of

two sublattices (so that {S,H} = 0). In the basis where S is diagonal H takes the block-off-diagonal form

H = i

(
0 G
−G† 0

)
. (3)

In this case the diagonalization of H can be obtained from the singular value decomposition of G [1] (Supplemental
Material). Given unitary u and v such that u†Gv = ε/4, then

U =
1√
2

(
u u
−iv iv

)
. (4)

Now

U†HU = Ω =

[
diag(~ε) 0

0 −diag(~ε)

]
, (5)

with εµ ≥ 0. We can define operators aλ = U†λλ′c′λ for λ = 1, ..., n/2 to get the set of n/2 fermionic quasiparticles,

where n is the number of unit cells, {a†λ, aλ′} = δλ,λ′ so the Hamiltonian becomes

H =
1

2

∑

λ

εµ
[
2a†λaλ − 1

]
. (6)

Therefore the excitation created by a†µ has energy εµ. These quasiparticles correspond to twice the positive-energy
branch of the usual Dirac-fermions.
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Following Ref. [2] the Raman operator for the Kitaev model is given by

R =
∑

α=x,y,z

∑

〈ij〉α

(εin · dα) (εout · dα) JαSαSα (7)

=
∑

〈rr′〉
(εin · dα) (εout · dα)Hrr′crcr′ (8)

=
1

2

(
cA
cB

)T
i

(
A B
−B† A′

)(
cA
cB

)
(9)

=
1

2

(
a

(a†)T

)†(
C D
D† −C

)(
aλ′

(a†λ′)T

)
. (10)

Here C = u†Bv + v†B†u and D = −u†Bv + v†B†u for a Raman operator that is symmetric w.r.t. swapping in and
out polarizations and C = i

(
u†Au+ v†A′v

)
and D = u†Au− v†A′v for an antisymmetric channel. dα is the bond

vector for a bond of type α = x, y, z, and εin and εout are the in and out light polarizations in the experimental setup.
Then finally,

IM (ω, β) ∝
∑

λλ′

[
2|Cλλ′ |2f(ελ, β)[1− f(ελ′ , β)]δ(ω + ελ − ελ′)

+|Dλλ′ |2[1− f(ελ, β)][1− f(ελ′ , β)]δ(ω − ελ − ελ′)
]
, (11)

where B and therefore C and D depend on the gauge chosen for each flux configuration M , and f(ε, β) is the familiar
Fermi distribution. The gauge chosen in each case is obtained by creating the shortest-distance gauge string from the
nearest edge plaquette for every flux in the desired configuration. Of course, all measurable quantities discussed here
are independent of the gauge choice [3].

We evaluate the sum (1) using Markov Chain Monte Carlo (MCMC) of the usual kind, which we review now. The
Markov chain is a series of flux configurations that represent ones taken from the Boltzmann distribution for a fixed
temperature. The chain is built by proposing steps that either (1) flip a random plaquette, (2) move a single plaquette
to another empty space, (3) flip a plaquette that is a neighbor or next-nearest-neighbor (NNN) of one of the current
fluxes (including the fluxes themselves) and (4) shuffle the fluxes to a random pattern with the same number. If a
proposed flux configuration is accepted, it is appended to the chain, otherwise it is denied, and the current state is
appended to the chain again. To recreate the correct distribution, the probability of acceptance is set to be

P(p′|p) = min

(
e−(E0

p′−E
0
p)Q(p|p′)
Q(p′|p) , 1

)
, (12)

where Q(p′|p) is the probability of proposing configuration p′ given that you are in configuration p. For proposals (1),
(2) and (4) Q(p′|p) = Q(p|p′), but for the case of NNNs (3) the new configuration p′ can have a different number of
plaquettes that are NNNs of fluxes, making the probability of flipping the same plaquette slightly different. In this
case the term can be interpreted as a relative entropy of possible proposals before and after the given proposal.
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FIG. 1. Plots of unstrained Raman and DOS to compare with Ref. [2] Fig. 3(a) and Ref. [4] Fig. 3(a). resp. The comparisons
appear quite favorable, although the present study did not involve the superlattice treatment that allowed Ref. [4] to suppress
the finite-size effects that are large in our plot of the DOS. The system sizes used were r = 11 and r = 7 chosen to most closely
mimic the ones used in those references.
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FIG. 2. The nature of the crossover out of the KQSL phase is demonstrated for (A) an unstrained flake and (B) a strained
flake with s = 0.04. For uniform non-interacting fluxes the flux density in (1) is expected to follow a Fermi-Dirac distribution
at energy (ln 2)∆ where ∆ is the flux gap [3]. (2) shows the flux density resolved over the radial coordinate as a function of
temperature. (3) plots the single-flux gap as a function of position on the honeycomb flake [1]. (4) give the expectation value
of the flux operator as a function of position for one particular run at temperatures T = 0.057J in (A,4) and T = 0.020J in
(B,4), both corresponding to the critical flux density of the strained flake ρc ≈ 0.12. Although there is significant noise in (4)
we see that the flux distribution is largely random without strain (A,4) and it becomes focused away from the center under
stain. This effect is responsible for the appreciable critical flux density ρc ≈ 0.12 for Landau levels in the strained flake, for
which Landau orbits can form within the ‘clean’ center region.

The error in the result is analyzed using Geyer’s initial convex sequence estimator (ICSE) g for the variance along a
Markov chain.[5] This measure takes into account the local correlation between events, thereby producing a reliable,
tight upper-bound estimate for the sample variance given the data. Then the error in the mean for a given observable
can be computed as

√
(g(X)/N), where X is the Markov chain of that observable, N is the length of the chain.

The ICSE was computed using the initseq function implemented in R by Geyer in the mcmc contributed package on
CRAN, translated to Matlab for this project. In addition, the autocorrelation time, or the number of steps/proposals
required to achieve an effective independent sample can be estimated by τ(X) = g(X)/Var(X) where Var computes
the usual variance of the values in the chain X.

The algorithm was run until either the mean error relative to the mean value of each observable was below 1/65,
or 50,000 proposals steps were made. The mean expected error relative to the mean value for a given temperature
was below 2% in all cases. Comparison with previous work at zero strain is made in Fig. 1.

Finally, in Fig. 2 we compare the character of the finite temperature crossover at zero strain to that of the strained
system. The role of the spatial flux-gap anisotropy (shown in panel (3) of each subfigure) is apparent: at zero strain
where the flux gap is essentially uniform away from the sample boundaries, the crossover entails a proliferation of
fluxes with a uniform spatial probability distribution; the temperature scale for this cross-over is set by the bulk flux
gap. In the strained system, the flux gap depends strongly on position within the honeycomb flake, and fluxes first
proliferate predominantly near the sample boundaries, only reaching a uniform distribution at significantly higher
temperature. The temperature scale fo this initial increase in flux density is set by the flux gap near the flake’s
boundary, which is considerably lower than that of the un-strained system.
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