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Abstract

Many different regions of the brain are involved in appetite control. A full understanding

of their function and interaction requires studying neuronal activity at high resolution

simultaneously in space and time. Two Magnetic Resonance Imaging (MRI) methods can

potentially achieve this goal. Manganese-Enhanced (MEMRI) uses the accumulation of

administered Mn2+, which is paramagnetic (hence MRI visible) and taken up by active neurons

through voltage-gated Ca2+ channels during action potentials. Haemodynamic methods use one

or more of many MRI-visible changes that occur to circulating blood in a brain region when it

changes activity. These include blood-oxygenation level dependent (BOLD) and cerebral blood

volume weighted (CBV) MRI. The aim of this project was to further develop, adapt and then use

these methods to study the effects on neuronal activity of stimuli related to appetite and energy

balance. The majority of work went towards adapting MEMRI for this. Amongst many tested

changes, improvements were made to the MRI acquisition protocol (specifically using fast spin

echo rather than spin-echo acquisition) to make it more sensitive to Mn-induced signal changes,

increase spatial coverage from partial to whole brain and rostro-caudal spatial resolution from

1 to 0.4mm, all while maintaining the same temporal resolution. Most importantly, the

neuroimaging analysis framework used in haemodynamic functional MRI was adapted for

use with MEMRI. This included the adaptation of spatial normalization software to handle

Mn-sensitive T1-weighted images dominated by non-brain tissue rather than brain dominated

T2/T∗2-weighted images, and the generation of a signal change model for use in GLM. This

enabled much more objective, reproducible and less laborious data analysis than with previous

hand drawn ROIs. Attempts were made to use BOLD- and CBV-fMRI to study the effects

of potent, appetite-modulating gut hormones on appetite, though these failed to produce a

response.
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Chapter 1

Introduction

1.1 Brief Overview of Appetite and Energy Balance

Regulation

A sense of appetite is one of the basic functions possessed by all higher organisms. It is

normally very accurate at matching energy intake to expenditure, operating in humans with an

accuracy of >99.5% (Friedman, 2004). This stringency is required as just a small defect in our

mechanisms of energy balance can cause a huge cumulative increase in body mass over time,

leading to obesity and its related metabolic disorders. These are major public health problems,

that at a conservative estimate consume 2-7% of total healthcare costs in developed countries

(World Health Organisation, 2004). In England in 2004, 38.9% of adults were overweight and

23% obese (Department of Health, 2004), with the percentage of obese predicted to rise to

31% by 2010 (Zaninotto et al., 2006). This economic burden gives extra impetus to resolving

questions surrounding the mechanisms of appetite and energy expenditure regulation, on top of

their importance to basic biological function.

Observations and experiments dating back to the end of the 19th century, mainly the effect of

pituitary tumours in humans and lesion experiments in rats, determined that energy balance was

regulated in the hypothalamus of the brain (Elmquist et al., 1999). This initial discovery has

since been developed into a modern view of multiple interconnected brain nuclei, mostly in the

hypothalamus but also in other areas such as the brainstem, each with a characteristic pattern
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of receptor and neurotransmitter expression and innervation. The hypothalamus and brainstem

receive many inputs from around the body, indicating energy status, and integrate these with

information from higher centres of the brain. The flow of information continues to the reward

centres, and so the feelings and behaviours of appetite are generated (Wynne et al., 2005).

The energy status inputs can be divided into those from the gut, and those from the energy

depots (Morton et al., 2006). The gut signals are comprised of peptide hormones released from

different parts of the gut as the food bolus moves through the different sections, e.g. ghrelin

from the stomach (Kojima and Kangawa, 2005), CCK mainly from the duodenum and jejunum

(Raybould, 2007), PYY mainly from the ileum, colon and rectum (Wynne and Bloom, 2006)

and neuronal signals carried via the vagus nerve, many of which are triggered by the actions of

gut peptides (Wynne et al., 2005). These provide information relating to the nutritional content

and location of the bolus (Huda et al., 2006). Energy depot signals are primarily the hormones

leptin and insulin, indicating to the brain the levels of adipose fat (Trayhurn and Bing, 2006).

Blood-borne nutrients, most notably free fatty acids (Lam et al., 2005) and glucose (Burdakov

et al., 2005) can also act directly on the hypothalamus.

1.2 Why Use Magnetic Resonance Imaging Rather Than

Other Methods for Brain Activity Measurement in

Nuclei Regulating Energy Balance, and Why Use

Rodents?

A wide range of potentially cheaper, more direct and less invasive techniques are available

for monitoring brain activity involved in energy balance, so some justification is needed for the

use of only MRI in these studies.

The physical connections amongst the appetite centres, and their known role (based on

lesion experiments) in appetite regulation imply that all are in some way involved in the

response to appetite-related stimuli. However, very little is known about how the centres interact

over time following a stimulus, such as elevated levels of a gut hormone. This problem is a
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consequence of the technologies currently used to study the neurobiology of appetite regulation.

With a few exceptions, these are either immunohistochemistry of thin brains sections, or

electrophysiology of either thick slice preparations or an intact brain.

Immunohistochemistry, though of high spatial resolution and coverage, provides only a

single time point per animal, and its traditional reporter of neuronal activation, c-Fos protein,

has a complex temporal profile that takes 90 minutes to peak (Hoffman et al., 1993a,b).

The most direct method of studying brain activity in live animals is using surgically

implanted electrodes to record the electrical activity of neurons. Various elaborations on this

technique can differentiate between the neurotransmitters being used, single and multiple cells,

different depths along the electrode and multiple locations if using wire bundles (Kleinfeld

and Griesbeck, 2005; Lin et al., 2006). Although electrode recording is the method that is

best able to characterise brain activity, it does have a number of disadvantages for some kinds

of study, including those of the nuclei regulating energy balance. These nuclei are mostly

ventral and circumventricular, making electrode implantation in even just one area technically

difficult. Additionally, they are distributed over several parts of the brain. A full understanding

of their operation requires simultaneous observation of all, which would involve implanting

more electrodes than is practically possible.

These limitations can only be overcome through the use of brain imaging technologies.

Although several are available, many, such as magnetoencephalography (Lounasmaa et al.,

1996) and optical tomography (Hielscher, 2005) are inappropriate since they have limited depth

penetration, which precludes them from studying the highly ventral appetite centres. In addition

most of the equipment currently available is limited to human-sized brains.

The only technologies with a depth penetration reaching the ventral side of the rodent

brain, and which can detect changes in brain activity, are Magnetic Resonance Imaging

(MRI), PET (Positron Emission Tomography) and SPECT (Single Photon Emission Computed

Tomography) (van Bruggen and Roberts, 2002). All three detect neuronal activity indirectly. In

brief, PET detects the emission of positrons from a radionucleotide. For neuronal activation

studies, this is usually 18F-fluorodeoxyglucose, whose uptake in different brain regions is

proportional to the metabolic activity of those regions’ neurons, itself proportional to neural
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activity. It is then inferred that areas accumulating more 18F-FDG under an experimental

stimulation are activated during that stimulation. SPECT also uses radionucleotides, but those

that emit gamma rays. For functional brain studies this involves 99Tc-hexamethylpropylene

amine oxime (99Tc-HMPAO). This substance is not taken up by neurons, but instead marks

cerebral blood volume. This is also proportional to neuronal activity, though less directly

than metabolic rate. Finally there is MRI, which uses a powerful external magnetic field and

radiofrequency pulses to detect the presence of various chemical elements, usually hydrogen

in water and fat. For studying neural activity, MRI experiments usually operate on a similar

idea to SPECT, with haemodynamics taken as a proxy for neuronal activity (van Bruggen and

Roberts, 2002). When using MRI there are alternatives to haemodynamics, such as detection of

administered manganese (whose paramagnetism affects the MR signal), which is taken up by

active neurons via voltage-gated Ca2+ channels (Silva et al., 2004).

The study of appetite places a number of constraints that determine which of these

technologies can be used, and with what models. Hunger is a feeling that develops over a

period of hours. This rules out using these technologies to study the timecourse of hunger

development in humans, since all three require the subject to stay still in a claustrophobic

environment. In addition the radiation exposure (when using PET and SPECT) from the large

doses of tracer required for several hours of imaging is unacceptable. Also, the small size of the

human hypothalamus and proximity to air cavities make its activity difficult to detect by MRI.

Instead, it is more appropriate to use rodents, which are well characterised models in the study

of mammalian energy balance (the caveat being that for imaging experiments the animals must

be anaesthetised, blunting neuronal responses).

Through a mixture of positional cloning in obese mutants and knockouts of putative satiety

genes, mice have provided extensive knowledge of the genes underlying appetite control (Butler

and Cone, 2001). Rats are the source of much of our knowledge of appetite physiology, and

were the platform for the discovery of many satiety hormones such as ghrelin (Kojima et al.,

1999; Tschöp et al., 2000) and the orexins (Sakurai et al., 1998). Many of these proteins

have since been shown to have analogous effects in humans (Wynne et al., 2005), e.g. leptin

(Farooqi et al., 1999; Licinio et al., 2004; Montague et al., 1997; Strobel et al., 1998) and the
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melanocortin-4 receptor (Vaisse et al., 1998; Yeo et al., 1998). This does not mean imaging

studies are not possible in humans- but they are more likely to involve stimuli of the primary

senses, and reward tasks (Goldstone, 2006; Kringelbach, 2004). For studies of more autonomic

processes such as the effect of gut hormones, rodents are more appropriate models since it is

here that these processes were discovered and are best characterised.

In humans the hypothalamic and brainstem nuclei are much smaller than the cerebral

regions typically studied by functional neuroimaging. This situation is less extreme in rodents,

where the hypothalamus and brainstem are relatively larger, but is still important (Paxinos and

Franklin, 2004). The spatial resolution of PET and SPECT are inherently limited to around

500µm, too small to resolve individual appetite centres in rodents. This rules them out in favour

of MRI, whose spatial resolution has a practical limit of less than 100µm.

In conclusion, to study the neurobiology of appetite regulation and energy balance, there is a

need to implement technologies that can observe whole brain neuronal activity at high temporal

and spatial resolution, and the most appropriate available is MRI.

1.3 Principles of Magnetic Resonance Imaging

1.3.1 Origin of the MR Signal

1.3.1.1 Behaviour of Atomic Nuclei with an Intrinsic Angular Momentum and Magnetic

Moment in an External Magnetic Field

MRI is a spatially resolved form of nuclear magnetic resonance spectroscopy. NMR

exploits a finding of quantum mechanics that some elementary particles have an intrinsic

angular momentum- they spin. As a consequence, all nuclei with odd numbers of either

protons, neutrons, or both, also spin. 1H is the most abundant of these nuclei occurring in

the environment and in biological organisms, and so is also the most exploited nucleus in

NMR-based methods (McRobbie et al., 2003, note that the majority of information in this

section is derived from this reference and references therein).

Atomic nuclei are positively charged- they contain only positive charges (protons) and

neutrons, with no negatively charged particles to make the nucleus electrically neutral.
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Therefore spinning atomic nuclei (‘spins’) are moving charges, and as with all moving charges

possess a magnetic moment. When placed in an external static magnetic field (B0), these

magnetic spins will respond by aligning their poles to match those of B0, and precess about

the B0 field lines at a frequency (known as the larmor frequency) dependent on the strength of

B0 (Figure 1.1A+B). This is known as the parallel state. At temperatures >0K, the presence of

thermal energy can excite/flip the spins to a higher energy state where they precess with poles

aligned opposite to the field- the antiparallel state (Figure 1.1C). In the presence of a B0 field

and a number of other fixed conditions including T>0K, a group of spins (known as a spin

packet) will reach an equilibrium where at any one time a majority of its members are parallel

to B0 (Figure 1.1D). The excess of parallel spins means the spin packet possesses its own net

magnetic field (M0) in the direction of B0. The proportion of spins in the antiparallel state

rises with temperature, tending to a ratio of 1:1 (Figure 1.1E). Note that when using the xyz

co-ordinate system B0 is by convention in the z-axis.

Spin energy does not vary with phase angle about B0. At any one time it is highly unlikely

any two spins will have the same phase about their axes. Therefore if the spin packet’s individual

members’ magnetic vectors were all represented, they would fan out to appear as a larger

(parallel) and smaller (anti-parallel) cone joined at their apices (Figure 1.1F).

1.3.1.2 Resonance and Continuous Wave NMR

In NMR spectroscopy, radiofrequency (RF) waves emitted by an RF coil are used to

manipulate M0. The response of M0 (detected as an electromotive force, or e.m.f., on the

RF coil) is dependent on- and therefore provides information about- its molecular environment.

The simplest NMR method involves varying the frequency of a continuous wave (CW) of RF

energy at a fixed B0. The application of RF energy creates a second magnetic field, B1, that

rotates about the sample being analysed at the frequency of the CW. Normally the weakness

and rotation of B1 means it has little interaction with the sample. However, when the CW

reaches the larmor frequency, the B1 rotation matches the larmor frequency of the sample. This

matching causes the spins to begin interacting with B1- they precess about it (Figure 1.2A). This

is the resonance condition referred to in the terms NMR and MRI. Since B1 is relatively weak,
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Figure 1.1: basic spin physics. In the absence of an external magnetic field, nuclear particles
possessing a magnetic moment (spins) are randomly oriented, so there is no net magnetic field
produced by them (A). When an external field is applied (B0), any given particle will align with
the field and precess about its field lines- overall the magnetic moment is aligned with B0, but
at any one moment in time the vector is rotating at an angle (B). In the presence of thermal
energy, spins may also align against the field in a higher energy (anti-parallel) state (C). At
a population level (a spin packet), there will always be more parallel than anti-parallel spins,
resulting in a net magnetic moment (M0) from the sample- the sample is magnetised (D). The
proportion of parallel:anti-parallel spins is 1:0 at absolute zero, but rises rapidly towards 1:1
with increasing temperature. At room temperature, the excess of parallel spins is tiny, hence
M0 is very small (E). At any one moment in time the precession of spins’ magnetic vectors in
a spin packet appears as two cones joined at their apices, with the parallel cone possessing a
bigger moment (F).
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Figure 1.2: resonance and relaxation. In the presence of a weak second external magnetic field
(B1) rotating in the x-y plane, the spins making up M0 begin to simultaneously cohere and
precess (resonate) with B1 (at a much lower frequency than B0; A). If the tip of M0 is traced,
it appears as a spherical spiral down towards the x-y plane (B; red line). If B1 was continued,
this would continue down to the -z axis. If ceased after a 90◦ rotation, M0 spirals back up
(relaxes) with an exponential decay (B; blue line). This relaxation behaviour can be detected by
an external receiver (C). The decay is a consequence of dephasing of the cohered spins due to
spin-spin interactions (T2 processes) and field inhomogeneity (T′

2, usually combined with T2 to
form the composite process T∗2).

this precession is much slower than that about B0. These effects combine to make the spins

cohere from a cone into a single vector 90◦ out of phase with the B1 field, spiralling into the x-y

plane and then the -z axis before spiralling back to +z again (Figure 1.2B). This movement of

M0 can be detected as an e.m.f. on the RF coil.

The electrons surrounding a nucleus partially shield against B0. Different chemical groups

provide different levels of shielding. This creates a chemical shift of the larmor frequency in the

affected nuclei. By sweeping the CW frequency across a wide enough range, a signal spectrum

of absorbance is acquired containing this chemical shift information, which can be used to

deduce the molecular structure of sample contents. This type of experiment tends to only be

done for one type of nucleus at a time, e.g. 1H. The same principle can be used for other nuclei

with net spin, e.g. 13C. Simultaneous multinuclear experiments tend not to be performed since

the bandwidth required to cope with the different larmor frequencies would be too large for a

single set of hardware to handle.
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1.3.1.3 Pulsed Wave NMR, T2, T′
2 and T∗2

For imaging, CW NMR is too slow. It also provides a complex noisy signal with more

information about the sample than is often required. It would be better to have some method

that produced a large simple signal quickly.

A different form of NMR that achieves this uses a train of discrete RF pulses, or pulse

sequence, to manipulate M0. The simplest pulse sequence is the 90◦-FID sequence. This single

RF pulse is the same as a CW but calibrated to be applied only for the time required to bring

M0 into the x-y plane (hence 90◦ in the title). M0 does not necessarily become zero in z at

the same time the spins finish cohering and reach a 90◦ rotation about B1; a situation is merely

reached where the balance of magnetizations results in a net M0 vector rotating about z in the

x-y plane. The recovery from this situation involves the line tipping back towards the z-axis

and spreading out into a cone. The spreading out of M0 while it spirals back to alignment with

B0 appears to the RF coil as an oscillating exponential decay (Figure 1.2C). This signal is a

free induction decay (FID), hence the term 90◦-FID. Two factors known as T2 and T′
2 relaxation

contribute to the decay process and hence the shape of the FID. T2 processes influence the decay

of x-y plane magnetization through spin-spin interactions that dephase M0. T2 is defined as the

time required for the x-y component of M0 to drop by a factor of e−1 (approximately 0.37) of

its original magnitude after its initial excitation. T′
2 refers to a mixture of many other factors

including B0 inhomogeneity that can further increase the dephasing. Instead of being described

on its own, it is usually combined with T2 to form the composite parameter T∗2, whose time

definition is of the same form as T2. The relationship between signal, time and T2/T∗2 is shown

in Figure 1.3A.

1.3.1.4 Echo Formation

After the application of an RF pulse, the simplest method of data collection involves just

recording the FID. However, substantial time is required after excitation to apply the magnetic

field gradients used for spatial localization (discussed later). This means FID acquisition would

occur after a significant amount of decay. To avoid this loss, we could rephase the spins and

recover a larger signal to form what is known as an echo. There are two methods to form an
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Figure 1.3: relationships between signal, time and T2/T∗2, as determined by the equation
signal ∝ e−TE/T2). The absolute relationship is shown in graph A: lower TE and longer
T2/T∗2 results in a larger signal. Contrast behaviour between two materials with different T2/T∗2
values is more complex, however (see B). In general, bigger differences between the T2 values
being contrasted gives greater signal contrast (compare 70-30 to 70-40 and 70-50), but for a
given difference in T2 lower T2 values produce greater contrast, due to the larger signals being
contrasted (compare 20-10 with 30-20, both differences in T2 of 10ms).

echo: gradient-echo (GE), in which the spins are rephased using gradients, and spin-echo (SE)

in which this is done using an RF pulse (Figure 1.4).

For GE a gradient is applied to deliberately dephase the spins, and then an opposite one

to rephase and dephase them again. The initial deliberate dephasing may seem illogical, but it

allows the encoding frequencies to efficiently occupy the full extent of the receiver’s bandwidth.

The point of maximum rephase is at the centre of the echo. There will never be total rephasing

due to T∗2 effects (hence GE sequences are T∗2 sensitive). Data is collected in a window extending

either side of the echo centre.

SE uses an RF pulse to rotate dephased spins by 180◦, causing their directions to reverse,

again resulting in an initial rephasing then dephasing. Like with GE, a dephasing gradient is

often applied before the rephasing stage to aid spatial localization. Unlike with GE, the effects

of decay due to field inhomogeneity are eliminated since the spins’ directions are reversed back

upon themselves, so SE is sensitive to T2 effects rather than T∗2.
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Figure 1.4: formation of gradient and spin echoes. Time proceeds from left to right. After
excitation the spins (1) initially dephase (2), forming the FID which is not recorded (often
during this time the phase encoding gradient described in Figure 1.6 is being applied, and this
would dominate the received signal). Either using gradients (3-6, GE) or by applying a 180◦

pulse to invert/swap the order of the dephasing spins (fastest now last and slowest now first; 3,
SE) the spins rephase (4; note how the leading and trailing arrow colours are swapped for SE
compared to GE due to the inversion). The rephasing increases the strength of the magnetic
moment of the spin packet, producing a measurable echo that eventually peaks (though more
weakly than the FID; 5) before dephasing and decaying again (6-7). The inversion used in SE
causes T′

2 effects to cancel each other out, hence SE is influenced by T2 decay only. GE is
influenced by T∗2.
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Figure 1.5: slice selection. Applying a magnetic field gradient during excitation means that only
the spins in a thin slice of the object will be at the correct field strength and hence precessing at
the correct frequency to match that of (and hence resonate with) the applied RF pulse. Hence
only those spins will produce a signal, and in this way slice selection allows spatial resolution
in one dimension.

1.3.2 Spatial Localization

1.3.2.1 Magnetic Field Gradients Can Be Used to Spatially Localise the MR Signal

Most imaging techniques (e.g. confocal microscopy, X-ray CT) acquire data points that

originate in specific regions of the object. Knowledge of which signal came from which region

can then be used to reconstruct the object as an image. This is difficult in MRI since the MR

signal is dependent on an RF excitation that cannot be directed to a point in space. What we

can do is sensitise discrete regions of space in the imaged object to the RF excitation, such that

only those sensitised parts respond with an e.m.f.

Since the MR signal is dependent on the RF pulse matching the magnetic field strength, we

can use a magnetic field gradient briefly applied on top of B0 to achieve selective sensitization of

a slice of the object, as shown in Figure 1.5. This technique of slice selection is used extensively

in MRI to spatially localise or encode the MRI signal in one dimension. However, acquiring

every point in a 3D object this way would be extremely slow, so other methods are needed.

After the application of a 90◦-pulse, the spins underlying M0 have two properties that

could somehow be manipulated to aid spatially localising spin packets in each of the other

two dimensions not spatially encoded by slice selection. These are the frequency and phase of

precession. Magnetic field gradients, on top of their role in slice selection, can also manipulate

frequency and phase, as shown in Figure 1.6A-C. Looking at the figure, it is difficult to conceive
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Figure 1.6: frequency and phase encoding (FE and PE). Spins (A) have two properties than
can be manipulated to create spatial resolution: precession frequency (B) altered by the
constant application of a magnetic field gradient (resulting in a gradient of B0 and hence a
gradient of larmor frequencies), and precession phase (C) altered by a brief application, further
causing a brief gradient in larmor frequency, hence sending spins out of phase with each other
depending upon their location. Spins at different frequencies (B1-3) produce echoes at different
frequencies (D1-3), detected as a single spectrum. A fourier transform can separate these
frequency components to uncover the original signals (D), whose frequencies correspond to
their spatial location. PE is dependent on how spin phase interacts with the underlying spatial
frequency of an object. Spatial frequency is described by the line pair objects in E- it is the
frequency with which regular patterns repeat across space. In this example, white represents
regions made up of matter with spins (e.g. water), black those made up of matter without any
(e.g. air). Any object can be considered to be made up of a mixture of such patterns. The
principle of PE is demonstrated in F using a medium frequency line-pair object If spins are
given 1/2 PE, the two regions producing signal are in phase and the signal is additive. If spins
are given 1/4, the two regions produce signal of opposite phase that are destructive. In this way,
by applying many different levels of phase encoding, the spatial structure of an object can be
determined.

31



exactly how frequency (FE) and phase encoding (PE) of the spin packets’ locations could lead

to an image- different parts of the object now have different spin states (and so are in a sense

spatially encoded), but how do these affect the MR signal and can these effects be used to derive

information about the object? With careful manipulation both FE and PE of MR signals can

be used in combination with each other, on their own and (in both cases) even absent of slice

selection to acquire 3D information about objects.

1.3.2.2 Frequency Encoding of Spatial Position

In FE, as can be seen in Figure 1.6C, a gradient of different larmor frequencies is created

across the object. Since spin packets oscillate at the larmor frequency, the signals produced by

them now exist in different frequency bands corresponding to their position along the gradient.

Modern RF equipment is capable of recording the e.m.f. from all these bands simultaneously.

The resulting spectrum is a mixture of several different frequency bands representing spin

packet signals from different locations (Figure 1.6D). These bands can be resolved by the fourier

transform, a mathematical operation that can separate the individual members of a mixture of

sinusoidal waves, and in this way FE can be used to spatially localise the MR signal in one

dimension.

1.3.2.3 Phase Encoding of Spatial Frequency

The operation of PE is less obvious. Signals from the different positions along the PE

gradient will be phase-offset with each other, so phase could indicate location. However, these

different phases cannot be readily isolated by the RF detection equipment.

Instead, the effect of spatial frequency on the PE signal is used. To understand how this

works we need to consider what a spatial frequency is. The simplest example of an object

with uniform spatial frequency is an x-ray line-pair object (Figure 1.6E). Line-pair objects have

increased spatial frequency if there is an increase in the frequency of switching from dark to

light bands as we move across the line-pair object, and vice-versa. Thus spatial frequency is a

measure of how often a structure is repeated over space. A complex image can be considered

to be made up of several simpler spatial frequency components (e.g. bands similar to those in

32



a l.p.o). The mechanism by which PE detects spatial frequency is shown in Figure 1.6F. Light

regions represent tissues that produce a signal of large amplitude, and dark regions the opposite.

If the spatial frequency in the object matches the level of PE, the signal will be large; if not, it

will be small. Thus the application of several levels of PE can be used to acquire information

on the presence of several different spatial frequencies in an object. The same fourier transform

used for FE data can then be used to reconstruct the 1D projection along the PE direction from

this raw spatial frequency data.

This is an inherently slow process since rather than applying a gradient once (like with FE)

and recording all the necessary data in one readout window, the PE has to be done multiple

times, with a corresponding increase in scan duration.

1.3.2.4 k-space Representation

Both FE and PE signals are converted to spatial locations using the fourier transform. Hence,

the FE gradient effectively also encodes spatial frequency, and so raw FE and PE data can be

plotted on the same graph since they both represent the same type of data. This is k-space-

a raw data spatial frequency image of an object (Figure 1.7). In the FE PE data acquisition

scheme already described, one axis would be of FE, the other of PE. The signal intensity (SI)

is determined by the magnitude of the echo produced for each FE PE combination. The order

in which MR data is acquired is best visualised by seeing how k-space filled up. A typical

MR image slice encodes one dimension with FE and the other with PE. In this scheme k-space

is filled up FE line by FE line, since all the FE data values for one value of PE are acquired

simultaneously. The PE gradient is stepped with every RF pulse from a negative gradient

through zero to a positive gradient to allow all the necessary FE PE combinations to be acquired

sequentially.

1.3.3 Other Imaging Considerations

1.3.3.1 Repeated Pulse Sequences and T1

Using PE means the RF pulse has to be repeated in order to fill up the whole of k-space

(i.e. acquire all the information necessary for image formation). Waiting until M0 has fully
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Figure 1.7: k-space. Signal intensities represent the amplitudes of signals produced for a given
frequency and level of PE. The centre is bright since this represents the centre of the echo in the
FE direction, and the lowest levels of PE in the PE direction (these tend to produce the largest
signals since most objects possess more low spatial frequencies than high ones). After fourier
transforming in both directions, the image on the right is produced. In standard imaging, one
FE line is produced per excitation and echo.

recovered to repeat the RF pulse would use up a lot of time. Instead, we can repeat the pulse

sequence prematurely. This reduces the available signal, but the reduction in acquisition time

is often much greater. The level of signal reduction is dependent on what are known as T1

processes. These influence the regrowth of longitudinal magnetization in the z-axis through the

interaction of the spinning nuclei with unexcited nuclei and electric fields in the environment.

T1 is defined as the time required for the z-axis component of M0 to be restored by a factor

of 1 − e−1 (approximately 0.63) to its original magnitude. The relationship between signal,

pulse sequence repetition time (TR), T1 and the total available imaging time (which defines

the number of averages that could be made for a given TR) is shown in Figure 1.8A. Thus the

reduced signal can usually be more than made up for by repeating the pulse sequence further to

acquire signal averages.
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Figure 1.8: relationships between signal, time and T1, as determined by the equation signal ∝
e−TR/T1). As TR lengthens and T1 shortens, signal increases (A). However, the increase is not
linear, and this makes contrast behaviour between two T1 values for a range of acquisition time
and TR values more complex. Signal increases ∝

√
2 of the number of averages (the number

of averages being dependent on the available acquisition time), which depending upon the TR
and T1, may be a more or less efficient way of acquiring greater signal. The TR-time tradeoff
for a given pair of T1 values is shown in B, in this case 3s and 1s. Peak contrast for any given
number of averages is achieved with a TR slightly less than the lower T1. In general this result
holds true for other T1 pairs too.

1.3.3.2 T1, T2 and T∗2 Contrast

The usual aim of imaging is to differentiate biological states and tissue types. Acquiring

maximum signal would do this based on spin density. However, this parameter does not vary

substantially amongst tissue types or change much in normal or abnormal biological situations.

Conversely the T1, T2 and T∗2 parameters do vary greatly. By altering the TR and echo collection

time (TE) of the pulse sequence, we can alter its sensitivity to those parameters.

The growth of M0 along the z-axis is described by the equation shown in Figure 1.8. Also

plotted in Figure 1.8B are the changes with TR of signal difference (contrast) between two

objects of different T1 values, according to that equation. Hence to differentiate between two

regions with different T1 values, the TR should be set to a little below the lower T1 value. In

practice most objects to be imaged possess a wide variety of T1 values, making the choice of

TR a complex decision. It must also be noted that there are further complications if the pulse

sequence uses partial excitation- that is not fully 90◦. This is often done in gradient-echo based

pulse sequences to increase acquisition speed, as although there will be less signal, M0 recovery

will be much faster. There is a nonlinear interaction between the tip angle and TR, making
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optimization of signal and signal contrast difficult (Busse, 2005; Haselhoff, 1997; Neelavalli

and Haacke, 2007; Pelc, 1993).

The decay of M0 in the x-y plane is described by the equation in Figure 1.3. The graph

in Figure 1.3B is analogous to that in Figure 1.8B, but for T2/T∗2: for maximum contrast, the

TE should be set about half-way between the T2/T∗2 values of the objects to be differentiated.

Similarly to the situation for T1, most objects possess a wide variety of T2/T∗2 values, making

TE choice complex.

1.4 Using MRI to Measure Brain Activity

1.4.1 Changes That Occur During Neuronal Activity

Many events and processes occur during neural signalling, several of which alter tissue

properties such as T1 whose changes can be detected by MRI. The two that are most commonly

exploited are outlined below.

1.4.1.1 Haemodynamic

Neurons expend energy to maintain a resting level of discharge (tone). This generates a

resting level of energy expenditure. Neurons store very little energy, so when there is an increase

in neuronal activity, and hence energy expenditure, there is an immediate requirement for an

increased energy supply. This can be met by an increase in blood flow to supply the extra

necessary oxygen (and glucose). In practice there is overcompensation in blood flow for the

extra oxygen required, so in addition to a flow increase, the concentration of oxyhaemoglobin

rises too. The elasticity of blood vessels means there is also an increase in blood volume (van

Bruggen and Roberts, 2002). These changes are summarised in Figure 1.9.

1.4.1.2 Ca2+ Channel Opening

Entry of Ca2+ into cells and or cell compartments is a common stage in cell signalling

processes. This includes neuronal signalling. When an action potential reaches the presynaptic

terminal, it triggers the opening of voltage-gated Ca2+ channels. The influx of Ca2+ triggers
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Figure 1.9: haemodynamics during basal and stimulated neuronal activity. Activation results
in increased blood flow and volume, overcompensating for the increased oxygen usage. This
causes an increase in the oxyhaemoglobin:deoxyhaemoglobin ratio, reducing the magnetic field
inhomogeneity caused by deoxyhaemoglobin (lengthens T′

2 and hence T∗2). The combination
of increased flow, volume and oxygenation increases signal. Figure inspired by that of Peter
Jezzard (http://www.fmrib.ox.ac.uk/education/fmri/brief-introduction-to-fmri-physiology)

neurotransmitter release into the synaptic cleft, hence Ca2+ channel opening and influx is

essential to neuronal activity, except in the case of electrical synapses where there are gap

junctions between the pre- and postsynaptic terminals (Purves, 2001).

1.4.2 Detection of Haemodynamic Changes in the Brain

As explained above, there are three haemodynamic events during neuronal activation:

a change in cerebral blood flow (CBF), volume (CBV) and oxygenation (BOLD- blood

oxygenation level dependent). These factors between them affect T1, T2 and T∗2, and so in

principle can be detected by MR. There are many schemes to detect these changes. The most

common are set out below.

1.4.2.1 Bolus Tracking/DSC-MRI

CBF and CBV changes can be detected and then quantified using dynamic susceptibility

contrast (DSC-MRI), also known as bolus tracking MRI. Here, a bolus of blood pool contrast

agent (does not diffuse out of the vascular space) which rapidly passes out of the body (e.g.

Gd-DTPA) is injected intravenously (Figure 1.10A+B). A fast imaging sequence is then used

to acquire a timecourse of images that are sensitive to the drop in T2/T∗2 as the agent perfuses
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Figure 1.10: signals produced by DSC-MRI (B), CBV-weighted MRI (C) and BOLD (D). The
signals are all examples of timecourses that could be produced from the voxel highlighted in
A if this region were affected by the stimulus. In DSC-MRI the bolus injection of a rapidly
excreted blood pool contrast agent (rapidly excreted agents normally generate positive contrast,
hence the rise in signal) produces a complex curve that can be used to determine both blood
volume and flow. In CBV the bolus is of a slowly excreted blood pool contrast agent (these are
usually negative contrast agents, hence the signal drop). The signal is now largely weighted to
blood volume, so injection of a stimulus will cause a signal drop due to an increase in blood
volume. BOLD MRI is much simpler, with the stimulus causing an increase in signal via the
full composite BOLD effect outlined in Figure 1.9.
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through the brain. This was the first technique used in fMRI (Belliveau et al., 1991). By

measuring some input parameters, and making certain assumptions, both CBF and CBV can be

quantified from this data (Østergaard, 2005).

DSC-MRI has an inherently low temporal resolution since time has to be given for the

injected agent to flow in and wash out completely. Without full washout, contrast agent

accumulation would cause CBF estimation difficulties due to a changing baseline SI, and

the circulating dose would begin to reach toxic levels. The low temporal resolution is not

necessarily a problem since the haemodynamic changes in response to neuronal activity relating

to energy balance stimuli have a low temporal frequency- they occur over long periods of time

(minutes) relative to other classes of stimuli such as somatosensory (seconds). However, despite

typical DSC-MRI contrast agents such as Gd-DTPA clearing much more rapidly in rodents

than in humans, the time required is still far too long- upwards of 30 mins between injections

(Rudin and Sauter, 1991). Another insurmountable problem with DSC-MRI is that it relies on

equivalent circulation between the animals being studied. Many animal models used in the study

of energy balance have varied body weight (mostly due to altered fat mass) and composition,

and such changes can result in altered circulation in both humans (Bolinder et al., 2000; Jansson

et al., 1992, 1998; Summers et al., 1996) and rats (West et al., 1987). This could be accounted for

by altering the model relating DSC-MRI signal changes to CBV, but making the model flexible

enough to accept wide variations in body composition is a very large undertaking, especially

given how complex the model is already.

1.4.2.2 ASL

CBF can also be measured relatively non-invasively using arterial spin labelling (ASL).

This technique acquires a pair of images, known as the control and label. The labelled

image is different in only one way from the control- an RF pulse is applied that inverts the

magnetization of the tissue that is the source of the blood flowing into the region of the brain

to being studied (Figure 1.11). Inversion attenuates the blood’s signal, such that it acts as an

endogenous tracer in a similar manner to contrast agents in DSC-MRI, but with the T1 dropping

instead of T2/T∗2. Both control and label images are acquired with a maximally T1-, minimally
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Figure 1.11: ASL. Images are acquired in pairs. First a control image, using a normal rapid
T1-weighted sequence, except for the pre-acquisition application of an off-resonance RF pulse
in tissue where the blood flowing into the imaged region originates (usually the neck). The
second image of the pair is the same except it is tagged by making the extra RF pulse on
resonance. This attenuates the signal of blood flowing into the imaged region. Hence the
subtraction of the two images will be different where the most blood is flowing- that is perfusion
weighted. The timecourse will now be similar to that of BOLD images (see Figure 1.10D)
except that the use of image pairs inherently corrects for any baseline signal drift, making the
technique much more powerful for observing stimuli with long cycle times.
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T2/T∗2-weighted sequence to maximise sensitivity to the inversion’s effect on T1 and reduce

sensitivity to CBV and BOLD effects on T2/T∗2. Subtracting the labelled image from the control

yields a perfusion-weighted image (Williams et al., 1992). As with DSC-MRI, making some

assumptions and knowledge of certain input parameters can help quantify the change (Liu and

Brown, 2007; Wong et al., 1997).

ASL is a promising alternative to DSC-MRI for CBF measurement. Since it relies on an

endogenous contrast agent (labelled blood), there are no dosing problems and the temporal

limiting factor of washout is gone. Circulation is still a potential confound, but this is unlikely

to have much effect since magnetization inversion is typically done at the neck, so the blood

does not have to pass though much tissue before reaching the brain. ASL is particularly suited

to observing slow changes as it inherently corrects for a drifting baseline signal by acquiring

a control image for every tagged one. This gives it great statistical power when the stimuli

have low temporal frequency (Aguirre et al., 2002). Drifting baseline signal is a great problem

for CBV and BOLD measures for differing reasons, and with different solutions that will be

discussed later. Unfortunately ASL has numerous implementation problems, mainly relating to

the RF inversion pulse and model of CBF quantification. These can be overcome, leaving the

main issue of low SNR- signal changes are often only a few percent (Wong et al., 1997).

1.4.2.3 IRON

Relative changes in CBV can be monitored by injecting a large volume of a blood pool

contrast agent that remains in the body for a substantial amount of time (e.g. Endorem, which

reduces T2/T∗2). Changes in CBV will alter the concentration of contrast agent in tissue, altering

signal levels (Figure 1.10A+C). As long as the contrast agent levels are high enough, any effect

that simultaneous changes in CBF or BOLD have on signal intensity will be swamped by those

from CBV. This has been dubbed the IRON technique (Chen et al., 2001; Jenkins et al., 1993),

meaning increased relaxation with iron oxide nanoparticles. Methods for CBV measurement in

the absence of an exogenous contrast agent exist (Gu et al., 2006; Lu et al., 2003), though these

are quite recent developments and in the case of VASO doubts remain about its mechanism (Lu

et al., 2003).
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The large contrast agent concentrations used in IRON provide very large signal changes,

and hence increased CNR (Jenkins et al., 1993; Mandeville et al., 1998, 2004) compared to

the BOLD technique (discussed later). This is especially pronounced at low B0. This effect

diminishes at higher B0, though experimental evidence indicates it lasts up to at least 9.4T, and

should continue indefinitely (Mandeville et al., 2004). There are two main problems with IRON.

First, a very large concentration of agent (much more than would be approved of in humans)

is required to achieve blood volume weighting (Mandeville et al., 1998). As a consequence,

there may be subtle effects on physiology (Sharma et al., 1999), and the animal MRI data

becomes less comparable to human data where non-IRON methods have to be employed (Lu

et al., 2007). Second, it is thought that CBV responds relatively slowly compared to other

haemodynamic parameters (Buxton et al., 1998; Mandeville et al., 1999), though it has been

proposed that this may be an effect of anaesthesia and species difference (Frahm et al., 2008;

Martin et al., 2006). A relatively minor problem is that blood pool contrast agents gradually

wash out of the body, resulting in baseline drift. However, this drift is predictable, and can be

factored out with appropriate modelling (Schwarz et al., 2003).

1.4.2.4 BOLD Effect

The blood oxygenation level dependent (BOLD) effect refers to how the change in blood

oxygenation during neuronal activity affects the MR signal, due to the longer T2/T∗2 of

oxygenated than deoxygenated blood (Barth and Moser, 1997; Lee et al., 1999; Meyer et al.,

1995; Ogawa et al., 1993a; van Zijl et al., 1998). Unfortunately blood oxygenation cannot

be measured directly and/or quantified by one MR method alone, as there is no known pulse

sequence, MR parameter, contrast agent or combination of the above that is sensitive to only

oxygenation. To observe a pure BOLD effect a BOLD-sensitive sequence (i.e. haemoglobin

oxygenation sensitive- T2/T∗2-weighted) has to be interleaved with both CBF and CBV measures

so that their effects can then later be subtracted out (Gu et al., 2005; Shen et al., 2008; Yang

et al., 2004). This is usually not carried out for practical reasons. Instead, the composite BOLD

measure, using a simple T2/T∗2-weighted sequence alone is employed (Figure 1.10A+D). It has

a higher sensitivity than measuring CBF, CBV or pure BOLD alone, since all three measures

42



theoretically change signal from a T2/T∗2-weighted imaging sequence in the same direction

during changes in neuronal activity- blood flow, volume and oxygenation all increase during

periods of heightened activity, increasing signal, and vice-versa. The BOLD effect’s relative

sensitivity and simplicity of implementation make it the most widely employed haemodynamic

proxy for imaging neuronal activity.

The BOLD effect technique has many shortcomings. The most dramatic is a poor correlation

between the centre of BOLD response and that of the neuronal activity that caused it. The cause

is BOLD’s relatively high sensitivity to changes in deoxyhaemoglobin levels in large blood

vessels. This shifts the position of the response from the capillaries close to the active neurons

towards draining veins. This effect is dramatic at typical clinical field strengths such as 1.5T

(Duyn et al., 1994; Frahm et al., 1994; Hoogenraad et al., 2001; Lai et al., 1993; Oja et al., 1999;

Song et al., 1996) and also 3T (Olman et al., 2007). At higher field strengths it starts to diminish

since the BOLD effect in capillaries is theorised to vary quadratically with field strength, but

only linearly in larger vessels (Ogawa et al., 1993b)- hence at higher fields the BOLD response

will be weighted more towards capillaries, a prediction that has been confirmed experimentally

(Duong et al., 2000a, 2003; Gati et al., 1997; Krüger et al., 2001; Lu and van Zijl, 2005).

However, it still persists- for example even at 9.4T there will be bias towards surface vessels

unless less sensitive T2-weighted spin-echo pulse sequences are employed (Lee et al., 1999,

2002).

1.4.3 Manganese-Enhanced MRI (MEMRI) is Sensitive to Voltage-Gated

Ca2+ Channel Opening, and Hence Brain Activity

1.4.3.1 Principles of MEMRI

Manganese (Mn) is an essential trace element in animals, primarily since it is the cofactor

for many classes of enzyme (Aschner et al., 2007). Experiments in tissue culture (Drapeau

and Nachshen, 1984; Hallam and Rink, 1985; Narita et al., 1990) and isolated neuromuscular

junctions (Meiri and Rahamimoff, 1972) indicate that at supraphysiological concentrations Mn

is able to enter cells through voltage-gated Ca2+ channels. Since the opening of these channels
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is essential for synaptic transmission (Purves, 2001), it is plausible that when administered at

high doses Mn accumulation could mark neuronal activity. This is relevant to MRI since the

+2 oxidation state of Mn forms the paramagnetic Mn2+ ion. Paramagnetism will alter the MRI

signal, and in the case of Mn2+ this leads to a shortening of both T1 and T2 in solution and tissue

(Kang and Gore, 1984; Mendonça-Dias et al., 1983). Thus Mn2+, when administered at a large

enough dose, could be used as an MRI-visible reporter of changes in or differential neuronal

activity.

Early studies using vascular administration of Mn2+ (as MnCl2) showed that glutamate

(Aoki et al., 2002; Lin and Koretsky, 1997) and electrical forepaw stimulation (Aoki et al., 2002;

Duong et al., 2000b; Lin and Koretsky, 1997) were able to influence Mn2+ uptake in the brain to

a large enough extent to cause changes in the signal intensity of T1-weighted MR images in the

expected brain regions. Further studies of Mn2+ transport following focal injection into discrete

brain regions showed signal intensity enhancement patterns that could only be explained by

Mn2+ uptake at synapses and axonal transport to connected brain regions (Pautler et al., 1998).

Hence at high concentration Mn2+ is taken up by neurons in live animals in proportion to those

neurons’ activity. Although it is currently unknown what proportion of the Mn2+ is being taken

up by neurons due to action potentials as opposed to one of the many other possible mechanisms

(Aschner et al., 2007), the combination of a viable mechanism and a visible robust response

mean MEMRI is a valid and potentially useful method for visualising brain activity.

MEMRI can also be used for generating anatomical contrast (Burnett et al., 1984; Cory

et al., 1987; Fornasiero et al., 1987; Geraldes et al., 1986) and, as alluded to above, tract tracing.

Further discussion of these subjects can be found elsewhere (Pautler, 2004; Wadghiri et al.,

2004; Watanabe et al., 2002).

1.4.3.2 Manganese Formulation and Toxicity

The simplest way of delivering Mn2+ is as a solution of the chloride salt MnCl2. Although

other formulations have been tried, MnCl2 remains the most commonly used (Silva et al., 2004)

since it is cheap, widely available and none of the other possible formulations (all of which are

more expensive and less available) have shown any obvious advantage.
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The primary concern when administering Mn, including as MnCl2, is toxicity. Chronic

overexposure to Mn in humans leads to a wide variety of psychiatric and motor disturbances

(Aschner et al., 2007; Crossgrove and Zheng, 2004). These effects exclude most Mn

formulations from use in humans. Exceptions would include chelated forms, such as

mangafodipir trisodium (Federle et al., 2000), a contrast agent approved for use in human

hepatic MRI studies. Chelation improves safety (Elizondo et al., 1991) but also reduces the

efficacy of Mn as a contrast agent, hence it is not suitable for use in functional MEMRI studies.

Acute administration in animals also has a number of dangers, primarily cardiovascular and

breathing rate depression (Wolf and Baum, 1983). As a consequence it is important to make a

very careful compromise regarding MnCl2 dose. High doses will provide a large signal contrast

level that will make observation of experimentally induced changes in Mn concentration more

robust. Low doses will reduce the physiological confound of MnCl2 toxicity. Many other factors

interact here including administration route and rate, solution concentration, temperature and

anaesthetic levels (Silva et al., 2004).

1.4.3.3 Variables in MEMRI Experiments

Most functional MEMRI experiments to date are variations on the intravenous (i.v.)

administration scheme presented in Figure 2.1 on page 51. There are a very large number

of variables here, and for most of these their effects have not been fully explored.

The experiment starts with a baseline acquisition from which changes in SI will be

measured. Too few baseline acquisitions will result in an inaccurate baseline estimation and

hence erroneous determination of SI change. Too many acquisitions will waste time.

The Mn administration itself is subject to many variables. The concentration and volume

of the solution, its rate of infusion in terms of both volume and concentration, plus the total

length of the infusion time and the related variable of total dose are all likely to affect the

amount of Mn that can be administered before toxicity becomes a substantial confound. A

demonstration of this is the large discordance between reported MnCl2 LD50 values of 38 and

121mg kg-1 (Sigma-Aldrich Company Ltd., 2006; Silva et al., 2004), and the much higher doses

of up to 175mg kg-1 i.v. (1hr infusion) that have been given to animals in recent MEMRI
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experiments (Lee et al., 2005). Something about the differences in administration method are

likely to have caused this discrepancy, although it is possible that other factors such as the strain

and general health of the animals could have been an influence too. The difference is important

since providing higher doses spread out over longer periods of time increases the signal and time

available for an experiment, increasing its power and potentially doing so without confounds

from toxicity.

A crucial choice to be made is whether or not to degrade the blood-brain barrier (BBB). Mn

is able to cross it, but at a low rate. This limits the availability of Mn to neurons and hence

MEMRI’s ability to detect neuronal activity. It also biases the sensitivity of MEMRI towards

nuclei located close to circumventricular organs where the BBB is relatively weak and where

Mn initially accumulates in the brain. Breaking open the BBB overcomes this problem, but also

acts as a physiological confound. This is especially the case where the stimuli involve drugs

acting on the brain- these would no longer have their access impaired by the BBB. This includes

agents involved in energy homeostasis, many of which normally have to access the brain via

saturable mechanisms, e.g. insulin (Banks, 2004) and leptin (Banks et al., 1996).

The stimulus timing and duration are also very flexible. The very first study of functional

MEMRI demonstrated that this was the case by providing a glutamate stimulus both before and

during a scan, and in both cases glutamate’s excitatory effect was visible as increased Mn uptake

(Lin and Koretsky, 1997). Since Mn takes approximately 24 hours to fully disperse throughout

the brain (when the BBB is not disrupted), the possibility also exists to provide the stimulus

after Mn administration.

Linked to this is the possibility of providing the stimulus and Mn to awake, freely moving

animals, removing the anaesthesia confound (a factor which itself is subject to the variables of

anaesthetic choice and depth). The scan would then be conducted after a delay determined by

a compromise between the duration of the stimulus and how dispersed we wanted the Mn to

be- i.e. how homogenous we would need its sensitivity to be across the whole brain. A number

of recent MEMRI studies of the auditory system have taken this idea and married it with i.p.

injection (Yu et al., 2005, 2007, 2008), which is technically easier than i.v. injection or infusion.

This scheme is shown in Figure 2.2 on page 52. The one big disadvantage of this is that there
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is no longer any temporal resolution, since Mn flux 24 hours post-administration is very slow.

Any images acquired are snapshots of overall activity over the previous 24 hours, as encoded by

Mn uptake. This disadvantage can be turned into an advantage- the low Mn flux means a much

longer time can be spent acquiring images since our marker of neuronal activity is being held

static rather than rapidly changing as it would do during an i.v. infusion. Longer scan durations

allow the acquisition of images with much higher spatial resolution and SNR.

One possibility not alluded to in Figure 2.1 or Figure 2.2 is performing MEMRI more than

once on the same animal over time- a longitudinal study. Such studies are particularly valuable

since they can reduce animal use and reduce inter-animal variance by taking advantage of the

non-lethality of MRI. For these we need to consider an issue as important as administration and

uptake- Mn2+ release, a much slower process. Indeed, it is so slow that until recently it had

been thought that Mn2+ was permanently sequestered in the brain, since although the MEMRI

signal completely decays after a few weeks (Aoki et al., 2004), biochemical assays indicated

there is still a presence of Mn2+ with a half-life of upwards of 52-74 days (Gavin et al., 1990,

1992). However, a recent study using in parallel both MRI and inductively coupled plasma

mass spectrometry (ICP-MS) showed that the near total loss of MEMRI signal in the brain

during the 5-6 weeks post-administration does correlate with the actual Mn2+ concentration in

tissue, giving a half-life closer to 14 days, hence Mn2+ is substantially cleared out of the brain

within a month. This is still a slow pace, and means that MEMRI experiments are necessarily

measuring cumulative uptake in the short-term, therefore knowledge of the precise rate of efflux

is not essential for experimental planning. However, for longitudinal studies of the same animal

the rate needs to be taken into consideration to avoid performing MEMRI on an animal that

still has residual Mn2+ present and hence residual MEMRI signal. Such experiments have only

been performed and published twice, and in both of these cases the aim was to map connections

between regions rather than measure changes in activity (Soria et al., 2008; Van Meir et al.,

2004).
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1.4.4 Analysis of Haemodynamic and MEMRI fMRI Data

Despite both being 4D datasets (3D image timecourses) of the same object, where we are

interested in analysing signal changes over time at each and every voxel, haemodynamic and

MEMRI data have traditionally been processed differently. Haemodynamic image processing

is highly automated, based on a framework developed from the early 1980s (Fox et al., 1988;

Friston et al., 1991, 1995a,b; Turner et al., 1998). An overview of the general principle is shown

in Figure 3.1 on page 85. Firstly, images are spatially normalised- that is brains are motion and

position corrected to bring them into the same space. A GLM (general linear model) of the

hypothesised signal change is then fitted to each voxel and statistical maps produced of the

fit. Region of interest (ROI) data can also be automatically extracted based on standardised

atlases of brain anatomy if a certain region is of particular interest. There are a number of

software suites available that implement these methods with straightforward interfaces (Cox,

1996; Smith et al., 2004; The FIL Methods Group, 2005).

Surprisingly, MEMRI data tends to be analysed manually, using hand-drawn ROIs to extract

signal time courses which are then analysed on a per-region basis (Aoki et al., 2002; Lin

and Koretsky, 1997; Parkinson et al., 2009). This is more laborious, less objective, and also

wasteful since for labour-saving purposes it is common for many brain regions with potentially

interesting data to be left unextracted. Even where more automated methods have been applied

to MEMRI data, they have tended to require some substantial degree of manual intervention,

and made use of proprietary tools (Yu et al., 2008).

1.5 Overview of fMRI Studies of Energy Balance in Rodents

Given its importance, there have been surprisingly few fMRI studies of energy balance

or appetite in rodents. There are just five studies published using haemodynamic methods.

One involved acute stimulation with an amino acid after chronic deprivation of that amino

acid (Yokawa et al., 1995). Two involved glucose stimulation- of these, one via the i.p. route

(Mahankali et al., 2000), the other oral (Tabuchi et al., 2002). Another two studies involved

the hypophagic and hypolocomotive serotonergic agonist mCPP (Stark et al., 2006, 2008)).
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Amongst MEMRI studies, there are just five publications- all from the same laboratory, using

stimuli of fasting (Kuo et al., 2006), gut hormones and other pharmacological stimuli (Chaudhri

et al., 2006; Kuo et al., 2007; Parkinson et al., 2009) and diet (So et al., 2007).

1.6 Aims

The dearth of studies makes using fMRI for studying areas of the brain involved in energy

balance a potentially fruitful area for discovery. There were three broad aims of this project,

which correspond to the three Results chapters that follow.

• Make any possible MR acquisition and MnCl2 administration protocol improvements to

those used in previous appetite MEMRI studies (Chaudhri et al., 2006; Kuo et al., 2006,

2007; Parkinson et al., 2009; So et al., 2007) and use these to better characterise brain

activity in response to gut hormones.

• Bring the statistical analysis of MEMRI data into the framework used in analysis of

human fMRI in order to make analyses less laborious and more objective.

• Determine if it is possible to use haemodynamic MRI methods to observe responses to

gut hormones.
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Chapter 2

Manganese-Enhanced MRI

2.1 Introduction

MEMRI has the potential to make substantial contributions to the study of neuroscience.

It is a relatively non-invasive method for observation of whole brain activity at reasonably

high spatiotemporal resolution, and has been tested for efficacy with a variety of different

stimuli including electrical forepaw stimulation (Aoki et al., 2002; Duong et al., 2000b; Lin and

Koretsky, 1997), audition (Yu et al., 2005, 2007, 2008) and gut hormone injection (Chaudhri

et al., 2006; Kuo et al., 2007; Parkinson et al., 2009). It does not directly measure the electrical

activity of neurons, so it must be regarded as a proxy measure. Nevertheless, its observation

mechanism- detecting the accumulation of Manganese in active neurons- is much more direct

than haemodynamic measures, and more resistant to physiological perturbation (Van der Linden

et al., 2007).

The concern of this thesis is using MRI to study appetite-related stimuli, and in this field

MEMRI has demonstrated an ability to detect the effect of a wide variety, including fasting (Kuo

et al., 2006), gut hormones (Chaudhri et al., 2006; Kuo et al., 2007; Parkinson et al., 2009) and

diet (So et al., 2007). The same MEMRI protocol was used in these five studies. As with

any MEMRI protocol, it can be split into two semi-independent parts- the Mn administration,

and the imaging sequence. The Mn administration part used in these studies is outlined in

Figure 2.1.
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Figure 2.1: schematic of dynamic MEMRI protocol (Chaudhri et al., 2006; Kuo et al., 2006,
2007; Parkinson et al., 2009; So et al., 2007). Acute stimuli are usually hormones, but have
included other agents such as hypertonic saline and the nauseant LiCl. Prior to a scan, chronic
stimuli- such as altered diet and genetic modification- may have been applied. After three
baseline acquisitions, MnCl2 is infused at a dose proportional to body weight for a finite period
lasting 19-20 acquisitions. In addition, an acute stimulus may be administered, usually at the
start of the MnCl2 infusion. The timecourse is continued until 66 images have been acquired.
The infusion results in signal intensity changes in the images (see Kuo et al. (2006) for details)
that are proportional to neural activity.

There are three potential difficulties with this method. The most important, especially with

appetite-related studies, is the adjustment of MnCl2 dose. Ideally this should be done such

that the amount of Mn reaching any given part of the brain will be identical across animals.

Assuming the brain vasculature is similar across animals, another way of describing this is that

we want the concentration of Mn in the blood vessels supplying the brain- the internal carotid

arteries- to be similar. The most direct way of achieving this is administering the Mn directly

into those vessels. This is technically very difficult, and it is preferable to administer MnCl2

through peripheral surface vessels. The lateral tail veins are the easiest vessels to access, but are

also the most distant from the internal carotid arteries, so the Mn has to pass through much of

the rest of body before reaching the brain. Different parts of the body have different Mn uptake

properties (Ni et al., 1997; Spiller et al., 1988; Takeda et al., 1998). Fortunately, within any given

group of genetically inbred rodents of similar ages and/or weights, there is not much substantial

variance in body tissue composition (Nagy et al., 2002; Reed et al., 2007). Consequently, under

these circumstances, it is reasonable to assume that adjusting Mn dose by total body weight

will ensure the amount of Mn reaching the brain will be similar in all animals. However, in

many appetite-related experiments this assumption does not hold. The most important example

of this is with altered diets. These can cause many organs and body tissues to change size, most

dramatically the levels of adipose tissue. This will change the amount of Mn removed from
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Chronic stimulus High spatial resolution acquisition (~2hrs) 

i.p. MnCl2 

Approx 24 hours 

Figure 2.2: schematic of generic static MEMRI protocol (Yu et al., 2005, 2007, 2008). MnCl2
is injected i.p., and 24 hours later an anatomical scan is acquired to measure Mn uptake. The
chronic stimulus is best applied evenly across the entire Mn uptake period, usually the 24h prior
to the scan.

circulation before it reaches the brain. For example, consider a fat, heavy animal- if dosed by

body weight, it would be given a large amount of Mn compared to a lighter lean one. Since

much of the extra weight is adipose tissue which does not take up much Mn (A. Koretsky, pers

comm, Lee et al., in prep), the Mn would be highly concentrated in the circulation and its brain

would receive an inappropriately high dose of Mn compared to the lean animal. The resulting

increased Mn enhancement could lead to the potentially erroneous conclusion that the animal’s

adiposity was due to increased neuronal activity, to the detriment of other possibilities such

as reduced energy expenditure- ironically something potentially caused by reduced neuronal

activity.

The second difficulty with the method outlined in Figure 2.1 is the pulsed nature of the

MnCl2 administration. This leads to relatively complex signal intensity timecourses that form

curves rather than straight lines (see Figure 2.3C on page 54 for an example). This makes it

difficult to judge whether changes in Mn uptake at a particular timepoint are due to the stimulus

or the pulsed administration. A rapid bolus of MnCl2 provided at the start of the scan, or even

better a steady infusion throughout the whole scan, would produce signal intensity timecourses

that are much easier to interpret.

The third difficulty is that i.v. cannulation and scanning of a mouse during MnCl2

administration must be done under anaesthesia to avoid large amounts of stress being placed

upon the animal. Anaesthesia works by attenuating neuronal activity (Franks, 2008), which

will include that of any systems under stimulation, reducing our ability to observe any

responses. Unlike haemodynamic methods, there are MEMRI schemes which can circumvent

the anaesthesia when studying neuronal activity. The principle is outlined in Figure 2.2.

It involves administering the MnCl2 outside the scanning environment, during a period of
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stimulus. Mn is allowed to distribute throughout the brain over a period of time, with

differential accumulation marking the effect of the given stimulus. A scan is then acquired

whose results represent cumulative neuronal activity over the period of time between the MnCl2

administration and the image acquisition. Although first suggested as far back as 1997 (Lin and

Koretsky, 1997), this scheme has only recently been exploited (Yu et al., 2005, 2007, 2008).

It has two big advantages: 1) there is no anaesthesia confound since Mn accumulation and

stimulus occur while the animal is conscious and freely-moving; 2) the image acquisition does

not have to be rapid, so more emphasis can be put on acquiring high spatial resolution data

with high Mn sensitivity. It does, however, have two big disadvantages: 1) there is no longer

any temporal resolution, since the scan is conducted after the stimulus has finished and during

a period of little or no Mn flux; 2) there is no equivalent of the baseline from which to judge

Mn uptake. Instead, regions have to be found that are not affected by the stimulus in order to

normalise images prior to comparison with each other. In addition, there is still the issue of how

to administer an appropriate dose.

There are also a number of shortcomings with the simple 2D multislice spin-echo image

acquisition protocol used in the five studies mentioned earlier (Chaudhri et al., 2006; Kuo et al.,

2006, 2007; Parkinson et al., 2009; So et al., 2007). Despite the mouse brain being around

15mm long in the rostro-caudal axis (Paxinos and Franklin, 2004), images are only acquired

along 10mm of it. In addition, these slices are 1mm thick, giving very low spatial resolution.

In combination with the ROI-based image analysis these studies used, this gives it a spatial

resolution no better than live animal electrophysiology. Additionally, the TR is set at 600ms,

much lower than the T1 of any part of the mouse brain, even after shortening following MnCl2

administration (Kuo et al., 2005). This is not optimal for detecting Mn-induced changes in SI

in the hypothalamus.

A final issue is that although a timecourse is acquired, the data are so noisy that temporal

resolution is not possible. To demonstrate this, it is useful to look at graphs of signal change

from a CBV experiment of an i.v. cocaine stimulus (Figure 2.3E), and also from a MEMRI

experiment of an i.a. NaCl stimulus where the BBB had been compromised (Figure 2.3A),

and one of an i.p. NaCl stimulus where it had not been (Figure 2.3C). The MEMRI graphs
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Figure 2.3: example data on MEMRI temporal sensitivity to an acute NaCl stimulus with
(Morita et al., 2002) and without (Kuo et al., 2007) BBB compromise in rats and mice
respectively, plus a comparison to a pharmacological CBV experiment in the rat (Schwarz et al.,
2003). Ideally the same model would have been used but no suitable data were available. The
MEMRI data represents cumulative Mn uptake whereas neuronal activity is proportional to rate,
so these datasets have been converted to graphs of change in signal (B+D) to provide a fairer
comparison to CBV (E). Mannitol (A+B) was used to degrade the BBB. In panels C and D
the low dose control stimulus is also shown to make it clearer that most of the signal change
is due to Mn infusion. Data from panels A-D is derived from the whole PVN, E from a single
striatal voxel. It is quite clear that CBV has by far the highest temporal sensitivity, with MEMRI
performing well when the BBB is broken but poorly when not.
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have additionally been converted to show change of Mn uptake over time (Figure 2.3B+D).

This is a fairer and more direct comparison to CBV, since neuronal activity is supposed to

be proportional to the rate of Mn uptake, not the cumulative Mn uptake. As can be seen in

the MEMRI experiments with a compromised BBB, even large responses fail to translate into

graphs of signal change whose noise levels are low enough to be able to easily resolve at what

timepoint a stimulus began and its effects ended. Without BBB compromise, the situation is

even worse, with little visible difference when looking at a graph of change in signal intensity.

The robust performance of CBV is even more remarkable given that the CBV data here was

acquired from a single voxel of one animal, while the MEMRI data came from whole ROIs,

of one animal in the case of the compromised BBB experiment, and averaging a group of four

in the case of the intact BBB experiment. Ideally, identical stimuli would have been used in

all three experiments, but no such data was available. The principles demonstrated here are,

however, generally applicable, and in these experiments the different stimuli used are highly

unlikely to have been the cause of such variable responses.

The aim of this series of experiments was to investigate methods that could deal with these

shortcomings. With respect to MnCl2 administration, specifically to try out administering the

MnCl2 dose according to lean mass, as determined by MRS. This should be much more closely

correlated to circulation volume than whole body mass. This was tested in experiments on

genetically obese ob/ob mice (Bray and York, 1979; Ingalls et al., 1950), where dosing by

whole body weight leads to a high intra-scan mortality rate (5/5 animals tested). Also tested

were two new infusion methods- one where the current dose is spread over the length of the

entire scan (same dose given by the end, but more slowly), and one where the rate is continued

across the entire scan (leading to a higher dose by the end). These should both provide simple

linear signal change backgrounds, in addition to ensuring useful levels of Mn enhancement.

Finally, the possibility of using i.p. administered Mn as a rapid anaesthesia-free method of

assessing neuronal activity (Yu et al., 2005, 2007, 2008) in response to gut hormone injections

was investigated.

With respect to changing the imaging sequence, two new methods were tried. The first, 3D

gradient-echo, is slow and thus has poor temporal resolution, but due to increased SNR and
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much reduced partial volume effects, may produce a very high CNR to which models of Mn

uptake may be fitted with high enough accuracy to infer when changes in Mn uptake took place.

Also tried was fast spin echo, similar to the spin-echo method previously used (Chaudhri et al.,

2006; Kuo et al., 2006, 2007; Parkinson et al., 2009; So et al., 2007) but acquiring multiple

echoes per excitation. This allows multiple lines of k-space to be acquired per TR, rapidly

increasing acquisition speed. There is a reduction in signal due to acquiring some of the data

after more relaxation has taken place, but this should more than be made up for by increased

signal from being able to employ a longer TR, which is more efficient both in terms of signal

and contrast. With both sequences an aim was to acquire whole brain images at reasonably high

isotropic resolution. This aids in using automated spatial normalization software that allow

more objective and reproducible image analysis, and is discussed further in Chapter 3.

2.2 Materials and Methods

2.2.1 Reagents

Molecular biology grade 1M MnCl2 (Sigma-Aldrich, cat# M1787) was dissolved in sterile

ddH2O to form more dilute solutions. Ghrelin (Bachem cat# H-4864) was dissolved in sterile

ddH2O before aliquotting into vials with 9nmol (30µg) each. These were freeze-dried and

stored at -20◦C before reconstitution in water at the moment of use.

2.2.2 Non-MR Equipment

Anaesthesia equipment and heating pads were supplied by Vet Tech Solutions Ltd. Syringe

pumps were supplied by Harvard Apparatus (model# PHD 2000). Physiological monitoring

and warm air heating equipment were supplied by SA Instruments. Low density polyethene

(LDPE) tubing to allow administration of substances over distance to animals within the MRI

system was supplied by Smiths Medical (cat# 800/100/120). Metabolic cage measurements

were conducted using a Columbus Instruments Comprehensive Lab Animal Monitoring System

(CLAMS).
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2.2.3 Animals

All experiments complied with the United Kingdom Animals (Scientific Procedures) Act

1986. Apart from the animals derived from a dietary study (see below), mice were all C57BL/6

WT or ob/ob males aged 8-12 weeks (Harlan UK). Upon arrival, they were acclimatised for at

least 7 days prior to any experimentation. Mice were kept grouped in individually ventilated

cages (IVCs) at 22◦C, 70% humidity, and a 12:12 (6.30am-6.30pm) light-day (LD) cycle.

Unless otherwise stated, mice had free access to water and a standard mouse diet (RM3, Special

Diets Services Ltd., Essex, UK). The afternoon before the start of any procedures, animals were

transferred to a local holding room where they were housed singly near the MRI system to

reduce the effect of transit stress on any subsequent experiment.

The animals used to show the effect of diet on MEMRI were derived from a dietary study

(n=8 normal fat, n=9 high fat fed; raw data kindly provided by Jelena Anastasovska). Animals

were similar to those described above, the main difference being that the mice were not supplied

directly from Harlan; they were offspring of purchased breeding pairs, with MR performed at

around 14 weeks. Instead of RM3, normal (3.6%) or high fat (12.4%) diets supplied by Harlan

were provided from weaning.

2.2.4 Metabolic Cage Measurements

Mice (n=6 per group, total=24) were sorted into four groups of equal body mass, and

housed singly in CLAMS cages. After overnight acclimatization, by group mice were each

injected i.p. with 200µl of either 0.9% saline, or MnCl2 at a dose of 40, 60 or 100mg kg-1

(0.318, 0.477 and 0.795µmol g-1 respectively). For six hours following injection, optical beams

monitored ambulatory and rearing activity, while respiration rate was monitored by O2 and

CO2 measurements. Telemetry was processed into 30min time bins. CLAMS conditions were

otherwise the same as for IVCs. These experiments were kindly performed and analysed by

Jim Parkinson.
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2.2.5 Static MEMRI Injection Regimen

For two days prior to imaging, mice were injected i.p. twice daily (6am and 6pm) with either

7µl g-1 0.9% saline (n=6) or 7µl g-1 45µM ghrelin (n=7; 0.315nmol g-1, from reconstitution of

the 9nmol freeze-dried ghrelin in 200µl water). At 8am on the second day 6.36µl g-1 50mM

MnCl2 (0.318 µmol g-1, 40mg kg-1) was injected i.p.

2.2.6 Animal Preparation for MRI

Unless otherwise specified, MRI was commenced between 7am and 10am to reduce

circadian physiological variance. Anaesthesia was induced in a small transparent chamber with

3% isoflurane delivered in O2 at 2L min-1. During anaesthesia maintenance, breathing rate was

monitored with a pressure transducer, and temperature monitored using a rectal probe. If i.v.

substance administration was to be required at any point, anaesthesia was maintained at 2-2.5%

isoflurane in 1L min-1 O2 delivered via a custom-made snug snout mask, during which time

the tail was cannulated with a 27G butterfly needle, and temperature maintained by clickable

sodium ethanoate heating pads. For MR acquisitions mice were either laid prone on a bed and

placed in a custom-made head restraint for head scanning or laid prone without restraint for

whole body. Anaesthesia was then maintained at 1.5% isoflurane in 1L min-1 O2, also delivered

via a snug snout mask. Temperature was maintained by a computer controlled warm air heating

system receiving feedback from the rectal probe.

2.2.7 MEMRI Acquisitions

All 3D gradient-echo images were acquired at 9.4T using a Varian Unity INOVA console

running VnmrJ 1.1D software and a 40mm long 30mm i.d. quadrature birdcage transmit-receive

RF coil. Whole head shimming was performed manually. Images were converted from VnmrJ

FDF to NIfTI-1 format (Cox et al., 2004) using ImageJ (Rasband, 1997-2008). Fast spin

echo image acquisitions were similar, but used a Varian DirectDrive console and VnmrJ 2.2B

software, with image reconstruction and conversion to NIfTI-1 format (Cox et al., 2004) carried

out using custom written code in MATLAB (The Mathworks, Natick, MA, USA).
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2.2.7.1 3D gradient-echo timecourses for dynamic MEMRI

A ge3d sequence was used with the following parameters: TR=25ms, TE=2ms, flip

angle=20◦, matrix=256×128×128, FOV=38.4×19.2×19.2mm (voxel size=150µm isotropic)

and 2 averages, volume acquisition time=13m 39.2s. Eight volumes were acquired, giving a

total acquisition time of 1hr 49m 13.6s. From the beginning of the second acquisition, unless

otherwise stated 100mM MnCl2 was infused i.v. by a syringe pump at a rate of 8µl g-1 body

weight hr-1 using an infusion pump, to a total volume of 5µl g-1 (i.e. 0.8µmol g-1 hr-1 for 37m

30s, total dose 0.5µmol g-1).

2.2.7.2 2D fast spin echo timecourses for dynamic MEMRI

An fsemsp sequence was used with the following parameters: TR=1800ms, TEeff=5.6ms

(echo spacing=5.6ms, 6 echoes, k-space centre=1), matrix=192×192, FOV=25×25mm, 46

axial slices of 0.4mm thickness (voxel size=130×130×400µm) and 2 averages, volume

acquisition time=1m 55.2s. 66 volumes were acquired, giving a total acquisition time of 2hrs

6m 43.2s. Where dosed by whole body mass, MnCl2 administration was the same as for 3D

gradient-echo timecourses, but from the beginning of the fourth acquisition. Where dosed by

lean body mass, infusion was at a rate of 8.70µl g-1 lean body mass hr-1, to a total volume of

5.42µl g-1 (i.e. 0.736µmol g-1 hr-1 for 37m 30s, total dose 0.542µmol g-1).

2.2.7.3 3D gradient-echo for static MEMRI

A ge3d sequence was used with the following parameters: TR=54ms, TE=2ms, flip

angle=24◦, matrix=256×128×128, FOV=36×18×18mm (voxel size 141µm isotropic) and

2 averages, volume acquisition time=29m 29s. Four volumes were acquired, giving a total

acquisition time of 1hr 57m 56s.

2.2.8 Measurement of Adiposity and Lean Body Mass Using MRS

1H spectra were acquired at 4.7T using a Varian DirectDrive console running VnmrJ 2.2B

software and a 100mm long 40mm i.d. quadrature birdcage transmit-receive RF coil. Whole

body shimming was performed manually. An spuls sequence (the standard supplied pulse
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sequence for acquiring 1H spectra) was used with the following parameters: TR=10s, spectral

width=20kHz, 4 averages. Raw data were then exported to MestRe-C software (Santiago de

Compostela University, Spain). Here, it was fourier transformed, an exponential line broadening

of 1.5Hz applied, then manual phase and baseline correction. The lipid peak was determined

by integration in reference to the water peak. Lean mass and adiposity were determined using a

standard formula (Mystkowski et al., 2000):

%adiposity =
100× integrallipid

integrallipid + integralwater + (0.38× integralwater)

2.2.9 Animal Numbers Used in Infusion MEMRI Experiments

2.2.9.1 Optimization of Image Acquisition Protocol

sems vs ge3d vs fsems comparison: n=4 per group, sems data was kindly provided by Owais

Chaudhri, total=8/12

ge3d fed vs. fasted experiment: n=4 fed and n=5 fasted, total=9

2.2.9.2 Effects of Changing Infusion Rate and Duration

n=3 per group for dose of 0.3µmol g-1 hr-1, n=5 for 0.8µmol g-1 hr-1, total=8

2.2.9.3 Effects of Adjusting MnCl2 Dose by Lean Mass in Animals of Varying Adiposity

dosing regime fed fasted ob/ob

whole body mass 4 5 3

lean body mass 4 5 9
Whole body mass raw data kindly provided by Mohammed Hankir, total=21/30

2.2.10 MRI Data Analysis

SNR was determined by dividing signal in a particular ROI by the average of 4 measures of

standard deviation of noise, each of these taken from a corner of the image filled with air (i.e.

no signal) and free from artefacts. CNR was determined similarly but using signal difference

in the ROI between pre- and post-contrast. A full treatment of functional data analysis methods
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is given in Chapter 3. Briefly, timecourses (dynamic MEMRI images) were motion corrected

using SPM5 and normalised using a combination of tools from FSL and AFNI to a standard

mouse brain template (Dorr et al., 2008), or in the case of 3D gradient-echo images, to each

other. Mn uptake was assessed in individual mice by a GLM analysis in the FSL tool FEAT,

using a Gaussian smoothing kernel of 0.5mm and two models of Mn uptake (outside and inside

the BBB) as independent explanatory variables. These models were derived from a brain-only

2-dimension constrained MELODIC analysis of separately acquired dynamic MEMRI data.

Unless otherwise stated parameter estimate images were thresholded at Z>2.3 and the resulting

clusters tested for significance at p<0.05 using random field theory, correcting for multiple

comparisons. Group analysis of Mn uptake across mice was also performed within FEAT, with

the same thresholding parameters. For AP normalization, timecourses were adjusted such that

all had an AP signal enhancement of 40%.

Static MEMRI analysis was simpler. A mean of the four images acquired from each single

scanning session was calculated and these means were normalised to an in-house brain template.

The in-house brain template was a manually segmented Mn-enhanced ge3d brain-only image

derived from a head image similar to the one shown in the middle column of Figure 2.4 on

page 63. Images were then signal intensity (SI) normalised by making the SI of either the

whole brain, pituitary gland or scalp muscle the same across all animals. Voxel-voxel statistical

analysis was then performed within AFNI.

2.2.11 Other Statistical Methods

T-tests were performed in Microsoft Excel 2007. Group body weights are given as

mean±SEM (standard error of the mean). Metabolic cage data was analysed using a 2-way

ANOVA within GraphPad Prism (GraphPad Software, CA, USA) with time and injection group

as factors.
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2.3 Results

2.3.1 Optimization of Image Acquisition Protocol

2.3.1.1 3D gradient-echo

Previous MEMRI data was acquired using a simple 2D multislice spin-echo (sems) sequence

with a very coarse spatial resolution. Since hypothalamic appetite centres are small and

irregularly shaped, this creates a risk of substantial partial volume artefacts. In addition, the

images only had a rostro-caudal FOV of 10mm (Chaudhri et al., 2006; Kuo et al., 2006, 2007;

Parkinson et al., 2009; So et al., 2007).

The adult mouse brain is approximately 15mm long in the rostro-caudal axis, so depending

upon positioning the olfactory bulbs, cerebellum or brainstem would be cut off. To maintain

high spatial resolution in all three dimensions is difficult since slice selection becomes very

inefficient at low slice thicknesses. So it is better to use an imaging method based purely on

fourier encoding (frequency and phase) for all three dimensions (usually frequency encoding

one direction and phase encoding two). Full excitation with spin-echoes, although more

T1-sensitive and less susceptible to distortion from field inhomogeneity, is far too slow for

fully 3D imaging, so it is best to switch to partial excitation with gradient-echoes.

A change in the extent of partial volume artefacts and a lower temporal resolution can

cause changes in the ability to observe T1 changes in relevant anatomical areas. These changes

cannot be predicted based on MR signal equations and existing data. Hence not only must we

ensure that any new 3D gradient-echo imaging protocol is Mn-sensitive, but the fundamental

experiment to determine if a protocol has any capability to observe the effects of appetite related

stimuli- a fed-fasted experiment (Kuo et al., 2006)- also needs to be repeated.

A comparison of 3D gradient-echo images to the previous 2D multislice spin-echo

acquisition protocol (n=4) both before and after MnCl2 infusion is presented in Figure 2.4.

Image acquisition parameters, SNR and CNR data from these images are presented in Table

Table 2.1. The 3D gradient-echo images have much greater spatial coverage (whole brain

rather than partial) and resolution (3.375 vs. 12.74 10-6 mm3 voxel volume) plus better SNR

(20.8±1.6 vs. 12.7±1.0) and CNR (5.8±0.6 vs. 4.4±0.3) compared to the 2D multislice
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Figure 2.4: examples of unprocessed single timepoint dynamic MEMRI images acquired using
the previous (sems, left column) and two new MR sequences (ge3d, middle column, fsems
right column) in sagittal (top row) and coronal orientation before (middle, first timepoint) and
after (bottom, final timepoint) MnCl2 administration. sems and fsems images were taken with a
saline phantom placed above the head- none was included in the ge3d acquisitions as at the time
these images were acquired there were problems shimming the system that could only be solved
by removing the phantom. The red square indicates the location of the region used for SNR and
CNR measurements described in Table Table 2.1, and roughly corresponds to the location of
the VMH. Raw data for the sems images kindly provided by Owais Chaudhri.
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Parameter sems ge3d fsems
Acquisition time 1m 55.2s 13m 39.2s 1m 55.2s
Timepoints in ≈2hr scan 66 8 66
Spatial coverage (mm) 25×25×10 19.2×19.2×38.4 25×25×18.4
Voxel dimensions (µm) 98×130×1000 150×150×150 130×130×400
Voxel volume (×10-6µm3) 12.74 3.375 6.76
SNR 12.7±1.0 20.8±1.6 11.3±0.5
CNR 4.4±0.3 5.8±0.6 5.1±0.5

Table 2.1: comparison of old (sems) and new (ge3d, fsems) acquisition protocols. SNR and
CNR were determined using the ROI of fixed size described in Figure 2.4

spin-echo method. The pattern and extent of enhancement appears to be the same or better. The

temporal resolution of this protocol was very low (13m 39.2s vs. 1m 55.2s acquisition time),

but given the higher CNR and smaller voxel size, it was felt that as long as the Mn infusion

profile across animals was stable then there would be enough images to accurately assess Mn

uptake in brain nuclei, whether by an ROI-based analysis or a voxel-voxel one.

To test this improved acquisition protocol in an appetite environment, mice were either

fed normally (n=4) or fasted (n=5) for 12-16hrs overnight prior to MEMRI using the 3D

gradient-echo dynamic MEMRI protocol. The images were spatially normalised to each other

and analysed using FEAT. A t-test map of differences in Mn uptake between fed and fasted

groups is presented in Figure 2.5 (uncorrected for multiple comparisons). Even with these

low sample sizes, differences in Mn uptake between fed and fasted mice can be seen in

many areas such as the posterior hypothalamic and periaqueductal areas, hippocampal fimbrae,

paraventricular hypo- and thalamic nuclei, prelimbic cortex, olfactory bulb glomerular layer

and the medial and ventral orbital cortices. However, these areas are mainly associated with

olfaction (Purves, 2001), emotion and stress (Herman et al., 2005; Morgane et al., 2005; Vertes,

2006) rather than control of appetite. Lowering of the statistical threshold, or even completely

removing it failed to reveal any trend towards differences in Mn uptake in the appetite centres

of the hypothalamus. Not seeing fed-fasted differences in the ventral hypothalamus was

disappointing, and in disagreement with previous findings using a different MR sequence (Kuo

et al., 2006).
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Figure 2.5: t-test map showing fasted>fed differences in enhancement (none were detected
for fed>fasted) after a 3D gradient echo dynamic MEMRI experiment between overnight
fasted (n=5) and fed (n=4) mice. Colours represent Z-scores according to the scale bar and
are thresholded at p<0.05 without correction for multiple comparisons. Coronal, sagittal and
transverse sections are shown, sliced at the positions indicated by the white notches.

65



2.3.1.2 2D fast spin echo

One application where the 3D gradient-echo protocol would have far too low a temporal

resolution is imaging the response to peptide injections. These occur over short timescales,

possibly within the acquisition period of just one volume. Therefore an alternative is required

for more rapid imaging. The previous 2D multislice spin-echo protocol only acquired one echo

per excitation. In principle, more echoes can be acquired during relaxation. Limiting factors

to this idea include the gradient duty cycle which determines how rapidly the frequency- and

phase-encoding gradients can be applied, and heating from RF pulses.

The sems sequence made very little use of the full capabilities of the available hardware,

so there was tremendous scope for using these capabilities to improve the sequence in terms

of spatial resolution and coverage, Mn-sensitivity and temporal resolution. It was decided to

use a set of sequence parameters that would make no compromises in any of these terms, and

hopefully make substantial improvements in all four.

The parameters of the new fast spin echo sequence (fsems), which aquires data more rapidly

than sems by collecting multiple echoes per excitation, is described in section Section 2.2.7.2

of the Materials and Methods on page 59. A direct comparison of the two sets of parameters

is shown in Table Table 2.1. The resulting images, before and after MnCl2 administration, are

shown in Figure 2.4. As with ge3d, the pattern and extent of enhancement appears the same or

better than that for sems. Temporal resolution was kept the same (1m 55.2s acquisition time),

while spatial coverage (whole brain rather than partial) and resolution in the rostro-caudal axis

(0.4 vs. 1mm thick slices) was vastly improved. Mn sensitivity (CNR) also increased (5.1±0.5

vs. 4.4±0.3) due to the choice of a more appropriate TR (1800 rather than 600ms), placed

between the pre- (≈1900ms) and post- (≈1700ms) Mn T1 times of the hypothalamus (Kuo

et al., 2005). Ideally it would have been lower than the pre-Mn time, but this was not possible

given the time required by the pulse sequence to acquire data from all the slices and echoes.

Figure 2.6 shows the results of a t-test between fed (n=4) and 12-16hr overnight fasted

(n=5) mice scanned by MEMRI using this fsems sequence, with the images normalised before

analysis in FEAT. Despite a much greater Mn-induced signal change in the fasted group
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Figure 2.6: statistical maps showing the Mn-induced signal change in fed (n=4) and overnight
fasted (n=5) mice scanned by fsems. Also shown is a t-test of fasted>fed differences in
enhancement. Colours represent z-scores according to the scale bar, thresholded at Z>2.3 and
the resulting clusters tested for significance at p<0.05 using random field theory, correcting for
multiple comparisons.
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compared to the fed, these differences were not judged to be significant. Manipulation of

thresholds in the same manner as the previous section failed to ameliorate this situation.

2.3.2 Effects of Changing Infusion Rate and Duration

Based on previous ROI-based analyses (Chaudhri et al., 2006; Kuo et al., 2006, 2007;

Parkinson et al., 2009; So et al., 2007), the current pulsed infusion protocol produces two quite

distinct patterns of Mn intake in the rodent head. One is very responsive to the Mn intake,

occurring outside of the brain and in the cerebrospinal fluid (see Figure 3.3 on page 91). The

other is much less responsive, occurring within the brain. This can be confirmed across the

whole brain with a MELODIC analysis (for details see Chapter 3, specifically Figure 3.4 on

page 92). If a peptide were to be injected as part of a MEMRI experiment, these complex

profiles would make it very difficult to assess what the Mn uptake response to the peptide was,

independent of the background signal increase caused by the pulsed MnCl2 infusion. It would

be better to have a simple background of a straight line increase. These two experiments were

designed to test two ways of achieving this.

2.3.2.1 Continuing the 0.8µmol g-1 hr-1 MnCl2 Infusion for the Entire Post-Baseline

Period Leads to a High Mortality Rate

The 3D gradient-echo dynamic MEMRI protocol was used on three mice with the following

change to the MnCl2 infusion: 8µl g-1 hr-1 (0.8µmol g-1 hr-1) for the entire duration post-baseline

(approximate total volume of 12.7µl g-1, total dose 1.27µmol g-1) rather than a pulse of 8µl g-1

hr-1 (0.8µmol g-1 hr-1) for 37m 30s. Unfortunately the MnCl2 infusion, despite being within

that which should be tolerated by rodents (Lee et al., 2005), produced a very high mortality

rate (5/5 animals died before the end of the scanning period). This is a very small number of

animals for a formal toxicology study, but given that the primary purpose of this study was to

determine what dose regimen produces good contrast, as opposed to what doses are tolerable

without substantial mortality, it was felt that the number of deaths was enough to discontinue

any further attempts at using this dose regimen.
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2.3.2.2 Stretching the MnCl2 Dose Across the Entire Post-Baseline Period Leads to Poor

Enhancement

The 3D gradient-echo dynamic MEMRI protocol was used on three mice with the following

change to the MnCl2 infusion: 3µl g-1 hr-1 (0.3µmol g-1 hr-1) for the entire duration post-baseline

(approximate total volume of 4.78µl g-1, total dose 0.478µmol g-1) rather than a pulse of 8µl g-1

hr-1 (0.8µmol g-1 hr-1). A typical timecourse of images is shown in Figure 2.7. Although this

protocol had a perfect survival rate, the enhancement was very poor. Again, this is based on a

very small sample size, but as before it was felt continuing any further would waste animals.

2.3.3 Effects of Adjusting MnCl2 Dose by Lean Mass in Animals of

Varying Adiposity

The primary confounding factor in MEMRI experiments of energy balance or appetite

control is the possible difference in body weight caused by appetite-related stimuli. The main

contributor to that weight difference is usually altered adiposity. Since this tissue is relatively

inert with respect to Mn uptake (A. Koretsky, pers comm, Lee et al., in prep), if MnCl2 was

administered proportional to body weight, fatty animals would receive an inappropriately high

dose of Mn, and leaner animals the opposite. The effects of this can be seen in Figure 2.8.

Here, two groups of animals were fed different diets; the first group a normal fat diet (NF; body

weight 22.5±0.7g; n=8), the second group a high fat diet (HF; 24.9±1g; n=9; t-test p=0.06).

The mice were then scanned using the fsems dynamic MEMRI protocol and enhancement

represented by statistical maps of signal change due to Mn uptake. Despite the consequent

analysis complications, a pulsed MnCl2 dose was used based on the results of experiments in

section Section 2.3.2.

As can be seen the HF mice had greater enhancement than the NF group, a difference that

reached statistical significance in numerous parts of the brain including parenchymal areas such

as the paraventricular nucleus of the hypothalamus, olfactory bulb and cerebellum. This greater

enhancement could have been due to higher neuronal activity. However, it is also seen in many

non-parenchymal brain regions such as the lateral ventricles. Unless these non-parenchymal
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Extended MnCl2 infusion Pulsed MnCl2 infusion 

Figure 2.7: timecourse of images from ge3d acquisitions with a low extended 3µl g-1 hr-1 MnCl2
infusion rate and a 8µl g-1 hr-1 pulse for 37m 30s (both provide a 4.78µl g-1 total dose). Images
run from top to bottom. The first image is a baseline when no MnCl2 was being infused. The
infusion began at the start of the 2nd acquisition. Each timecourse covers a total of 1hr 49m
13.6s.
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Figure 2.8: coronal, sagittal and transverse section statistical maps showing signal changes due
to Mn uptake after an fsems dynamic MEMRI experiment in mice fed a normal diet (n=8, top
left), high fat diet (n=9, top right), and t-test maps of differences in uptake between those two
groups before and after MnCl2 dose correction by normalization of the signal change in the
AP (a surrogate of MnCl2 dose). Colours represent Z-scores according to the respective scale
bars, thresholded at Z>2.3 and the resulting clusters tested for significance at p<0.05 using
random field theory, correcting for multiple comparisons. Raw data kindly provided by Jelena
Anastasovska.
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areas receive similar levels of enhancement between groups of animals, it must be concluded

the results are confounded by MnCl2 dose. The same mice had their adiposity measured by

MRS, and this reveals a possible source of the dosing error: the NF group had a mean adiposity

of 15.1±1.6%, the HF group an unsurprisingly higher level of 20.8±2.1% (t-test p=0.04). Thus

the HF group may have received a higher dose into the brain as a consequence of having a

greater proportion of adipose tissue. It should be noted that there is a marked degree of laterality

in these images, with the source probably being the mean HF image. The larger enhancement

on its left side than right would explain the laterality in the subsequent t-test images. Lateral

MR artefacts in 1-2 mice can cause laterality in the detected mean MR enhancement maps of

small groups of animals; however, manual inspection of the raw MR data did not reveal any

obvious laterality in any of the mice, hence an explanation for the emergence of laterality at the

group level cannot be given.

One possible way to remove this confound is to normalise the images to a region that we

are confident is not influenced by the stimulus under test, and which can act as an accurate

indicator of what the MnCl2 dose was. Energy balance is of so much importance to the survival

of an animal that appetite-related stimuli can potentially influence the activity of any brain

region, so we must look to outside regions. One possible structure is the pituitary gland, which

lies ventral to the hypothalamus and whose signal intensity is not modulated significantly by

appetite-related stimuli (Kuo et al., 2006, 2007). It has the added advantage of being flush

with the ventral side of the brain- thus during spatial normalization of the brain the pituitary

gland becomes spatially normalised too, allowing automated and objective measurement of

its signal intensity change. Presented in Figure 2.8 is a t-test conducted after images had been

adjusted such that their signal increase in the pituitary gland anterior lobe had been fixed at 40%.

Unfortunately, even with this correction, there is still a substantial amount of non-parenchymal

difference in enhancement, primarily in the lateral ventricles.

Thus the problem must be tackled at source by infusing an appropriate dose of MnCl2 in the

first place. An easy metric which if measured could aid in preventing this problem is lean mass,

which can be assessed by MRS. The aim of this experiment was to determine if dosing MnCl2

in proportion to lean mass results in similar levels of enhancement in non-parenchymal areas
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regardless of adiposity. This was tested in two situations, 1) the standard fed-fasted experiment

discussed earlier (to ensure anaesthesia for MRS does not act as a confound in appetite-related

experiments), and 2) an extreme adiposity scenario- mice that became fat for genetic reasons

(ob/ob), whose percentage adiposity is several-fold higher than wild type mice (Bray and York,

1979; Ingalls et al., 1950). In the case of ob/ob mice, dosing by lean mass is especially important

since dosing by whole body mass for MEMRI in 5 animals of 8-10 weeks age weighing 40-42g

resulted in 5/5 animals dying. This is admittedly a low sample size, but such high mortality is

more likely to be due to inappropriate dosing than any other factor. Figure 2.9 shows statistical

maps of Mn uptake in these three groups of mice after a 2D fast spin echo dynamic MEMRI

experiment. Also presented are t-test maps of differences in Mn uptake between the three

groups. The Mn uptake maps indicate that despite there being no systematic difference in lean

mass between fed (19.3±0.6g; n=4) and 12-16hr overnight fasted (19.4±0.9g; n=5) groups

(t-test p=0.95), and in fact no significant difference in pre-fast body weight, upon which a whole

body weight MnCl2 dose would have been based (20.5±0.6g vs. 20.5±0.7g, t-test p=1.00)

fasted mice still had more enhancement in non-parenchymal ventricular regions than fed. The

ob/ob group (n=9, whole body mass 43.7±0.9g, lean mass 22.4±0.7g) is more enigmatic, with

a peak intensity of Mn uptake similar to the fasted group, but an extent of Mn uptake similar to

the fed group. Despite this, the only significant differences found were between fed and fasted

groups. These were all in parenchymal areas associated with modulation of olfaction (Purves,

2001), emotion and stress (Herman et al., 2005; Morgane et al., 2005; Vertes, 2006) rather than

control of energy balance: periaqueductal area, hippocampal fimbrae, paraventricular thalamic

nuclei, prelimbic cortex, olfactory bulb glomerular layer and the medial and ventral orbital

cortices. This is a similar pattern to the previous 3D gradient-echo fed-fasted experiment (see

Figure 2.5), but lacking hypothalamic regions.

The enhancement pattern in the fed and fasted mice of Figure 2.9 is much stronger than

that in Figure 2.6, which is surprising given that it is a similar experiment, with the only

substantial difference being the dosing regimen. This should not produce such great differences

in enhancement since the two sets of mice were of the same age and strain, and both lean.

T-tests between the two t-test maps, between the two fed enhancement maps (n=4 vs. n=4) and
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Figure 2.9: statistical maps of mean signal enhancement (left) and t-tests (right) in a fsems
dynamic MEMRI experiment in groups of mice fed normally (n=4), fasted overnight (n=5)
or which are leptin deficient (ob/ob; n=9), and dosed by lean mass. Colours represent
Z-scores according to the scale bars, thresholded at Z>2.3 and the resulting clusters tested
for significance at p<0.05 using random field theory, correcting for multiple comparisons.
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between the two fasted maps (n=5 vs. n=5) did not produce any significant differences, though

given the low sample size this is not surprising. The most likely explanation for these results is

variance consequent of low sample size.

2.3.4 i.p. MEMRI for Appetite Studies is Confounded by Weight Loss

The studies presented so far all suffer from one major confound- the use of anaesthesia to

prevent motion artefacts. The alternative is restraint or neuromuscular blockade of conscious

animals (Peeters et al., 2001). This is very stressful, and so best avoided, especially when

studying behaviours such as appetite that are sensitive to stress.

One of the disadvantages of MEMRI can be turned into an advantage that removes the

anaesthesia confound. Unlike with haemodynamic markers and contrast agents, Mn has a very

low flux through the brain. This limits its temporal resolution, both because of a slow response

time, and the long duration required for Mn to flush out before an experiment is repeated in

the same animal. However, it also means that effects on Mn uptake last throughout the whole

of a chronic stimulus. Hence, in conjunction with MnCl2 administration, a stimulus could be

applied outside of the magnet while the animal is freely moving and conscious. The effect of the

stimulus would be left as an increase in Mn accumulation, something which could be imaged

later without risk that the Mn would disperse. Temporal resolution is lost, though a simple

non-lethal method of measuring brain activity such as this one is still valuable, especially if it

can be applied many times over an animal’s lifetime to track longitudinal effects.

The principle of this static (as opposed to dynamic) MEMRI was demonstrated in the first

paper of functional MEMRI (Lin and Koretsky, 1997), though it was not fully exploited until

2005. The more recent studies (Yu et al., 2005, 2007, 2008) exploited it to investigate the

function of the auditory cortex in mice. This system was particularly suited for study by

static MEMRI for three reasons: 1) auditory stimuli can be applied constantly and without

restraint after MnCl2 administration; 2) scanner noise, which would present substantial practical

difficulties in a dynamic MEMRI experiment, should have no effect on a static MEMRI

experiment due to little potential Mn flux at the time of acquisition; and 3) parts of the brain

could be found that were not modulated by auditory stimuli, and hence could be used to
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normalise the signal intensity of images prior to any comparisons. Normalization substantially

reduces inter-animal variability in signal intensity from sources such as differences in gain and

SNR between scanning sessions. The authors were able to observe different patterns of Mn

uptake in response to different sound tones in a manner that matched the known tonotopy of the

auditory cortex as determined by electrophysiological studies.

As with dynamic MEMRI studies, dose could be an important confound. In the auditory

study, this was adjusted to body weight. Since these mice were lean and had similar body

weights both within and between groups, this was an adequate method of adjustment. However,

as explained in the previous section, in an appetite experiment where body composition can

differ between groups, this can lead to biased results. Thus if this technique was ever to be used

on animals with systematic differences in body weight and composition, dosing would have to

be given more careful consideration.

Here, it was decided to first try out static MEMRI on lean animals given a three-day short

course of injections with the potent orexigenic hormone ghrelin, with a control group given

injections of a similar volume of vehicle (saline). Ghrelin is an endogenous orexigenic hormone

secreted by a number of organs and tissues, most importantly the stomach, whose secretions

achieve peak concentration prior to a meal (Kojima and Kangawa, 2005; Kojima et al., 1999;

Tschöp et al., 2000), hence ghrelin has a putative role in meal initiation. It acts via the arcuate

nucleus Kojima and Kangawa (2005) and has previously been shown to affect the signal in

MEMRI experiments (Kuo et al., 2007).

Unlike with the dynamic MEMRI, there was no prior information available on what effect

the MnCl2 dosing regime would have on the appetite-related behaviours of the mice (Kuo

et al., 2007). This is important to determine since although high MnCl2 doses produce the

greatest T1 change (and hence make available a larger signal for modulation by a stimulus),

they can also have confounding neurotoxic effects. To achieve this mice (n=6 per group,

total=24) were assigned to one of four MnCl2 dose groups (saline, 40, 60 and 100mg kg-1).

After acclimatization to metabolic cages, they were injected i.p. and monitored over period of

several hours for ambulatory movements and respiratory activity. The results are presented in

Figure 2.10. It appears that there is no difference amongst the dose groups, including saline
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Figure 2.10: metabolic cage data showing the effect of different doses of MnCl2 administered
i.p. RER is the respiratory exchange ratio (CO2/O2 inspired, normally 0.8). Error bars are of
SEM. XAMB is ambulatory activity in the surface of the cage. The dotted line represents the
time of injection. Data collection, analysis and graphing courtesy of Jim Parkinson.
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Figure 2.11: schematic of static MEMRI protocol used here (compare to Figure 2.2). MnCl2 is
injected i.p., and 24 hours later an anatomical scan is acquired to measure Mn uptake.

(injection group effect for RER data p=0.67, XAMB p=0.83). Although this would indicate

that the highest dose should be chosen, it was decided to use a low 40mg kg-1 dose that had

previously been used very successfully in the auditory study (Yu et al., 2005).

The setup of the experiment is described in Figure 2.11. The injection regime was chosen to

minimise the total number of injections required, but still allow enough injections to acclimatise

the mice to the stress of i.p. injection, thus removing the confound of injection stress during the

period of Mn uptake.

The ghrelin-injected group should experience changes in neuronal activity in the

hypothalamus relative to the saline, and an associated increased food intake over the period

of injection. This should also result in a systematic body weight difference between the two

groups. However, it is likely to be a very small difference, so it was decided to dose MnCl2 by

total body weight rather than lean mass. This may seem to contradict the principles behind the
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Figure 2.12: body weight changes during
the static MEMRI experiment. Each
coloured line represents an individual
animal. Weights were measured around
8am, apart from on Day 0 when they
were measured in the late afternoon (hence
these are lower). Not all mice had their
weights measured, and not all timepoints
were measured for each mouse. MEMRI
occurred in Day 3. Arrows highlight the
two mice whose body weight did not drop
on Day 3.

experiments of the previous section, but dosing by lean mass is not devoid of problems. The

foremost is that animals have to be anaesthetised for MRS. This is a potentially confounding

mild stressor, and if it can be avoided it should be. Since the systematic body weight differences

found here were small (Day 2 saline 24.5±0.7g vs. ghrelin 26.1±0.4g, t-test p=0.07), it was

decided that dosing by body weight was a more reasonable course to take than subjecting the

animals to MRS in order to dose MnCl2 by lean mass.

Figure 2.12 shows the changes in body weight of all the animals over the period of the

injection regimen. As can be seen, the animals tolerated the injections on Day 1 well, but not

those on Day 2, with a consistent drop in body weight of around 10% in most of the animals by

Day 3 (25.4±0.5g vs. 23.7±0.6g, 1.7g drop, paired t-test p=1.78×10-5). Anecdotal observation

implicated the MnCl2 injection, which led to visible lethargy in most animals minutes after

administration. Supporting this idea were the two mice whose weight did not drop- the MEMRI

data collected the next day indicated that they had not taken up any MnCl2

An example of pre- and post- enhancement images is shown in Figure 2.13. No difference

in enhancement was found between saline and ghrelin-injected groups (now n=5 vs n=6

respectively rather than n=6 vs. n=7 since the two mice that did not take up Mn2+ were

excluded) under any of the tested normalization schemes (to whole brain, pituitary gland or

scalp muscle SI).
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Figure 2.13: example pre- and post-
i.p. MnCl2 images from two mice, both
scanned using the protocol described in
Section 2.2.7.3 and Section 2.2.5 using
saline as the stimulus, but with MnCl2 only
administered to the mouse on the right.
Coronal, sagittal and transverse sections
are presented. Red arrows indicate areas of
substantial enhancement, often on just one
side for clarity.

2.4 Discussion

The experiments described in this chapter aimed to correct a number of deficiencies in the

protocols previously used for MEMRI studies. The first set of changes aimed to alter the image

acquisition to collect data on the whole brain at higher spatial resolution. The first attempt,

using 3D gradient-echo, achieved this with a great deal of compromise in temporal resolution.

The protocol did enable differences to be observed between fed and fasted mice (a strong

appetite-related stimulus), but not in the hypothalamic regions that should be most responsive.

Instead, differences were found mainly in areas related to stress and emotion. Given the low

sample size (n=4 fed, n=5 fasted), firm conclusions cannot be drawn from this. However,

fasting is also a very strong reliable stimulus, and producing this curious result deserves

some consideration. It is entirely plausible that stress and emotional centres are stimulated by

fasting. What is puzzling is that hypothalamic and brain stem centres sensing appetite are not

affected, which they should be given 1) they were shown be strongly stimulated before (Kuo

et al., 2006), 2) are directly affected by the stimulus and 3) are circumventricular so receive

more Mn which makes any Mn uptake difference more likely to be observed. The increased

uptake in stress centres is an indicator that animal handling stress could have confounded the

experiment, although this is unlikely as great effort was put into reducing this, and there is

no reason to believe it should systematically have affected the fasted mice more. Another
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possibility is that in the previous study (Kuo et al., 2006) there were strong differences in

the same non-hypothalamic areas identified here- however the ROI-based analysis used was

inherently unable to find them. If these were stronger than the hypothalamic differences,

one interpretation of the current results is that the experiment was too insensitive to detect

hypothalamic differences, but could detect non-hypothalamic ones.

Another alternative, especially given so many differences were found in periventricular

regions, is that this experiment is sensitive to brain volume changes during fasting as opposed

to just activity. Even mild osmotic stressors are able to induce brain volume changes in both

animals and humans (McManus et al., 1995), including in regions such as the cerebral cortex

(Cserr et al., 1991) and ventricles (Puri et al., 1999). Fasting reduces water consumption and

blood glucose levels (Apostolou et al., 1976), so it could plausibly alter brain volume too. An

experiment to test for this would involve acquiring images in both fed and fasted animals but

without the MnCl2 infusion.

The statistical maps displayed in Figure 2.5 are uncorrected for multiple comparisons.

Although this is an undesirable situation, both voxel and cluster-level correction eliminated

any significant difference between fed and fasted groups. One strategy that could ameliorate

this is the use of adaptive thresholding with anatomical pre-masks (for examples see Hammers

et al. (2002, 2003)). The pre-mask excludes volumes where no change is expected (e.g. if one

was interested in ventricular size change, it would be a mask only covering the ventricles and

periventricular regions), reducing the size of the multiple-comparisons problem, and increasing

the chances that small differences in signal can be detected. This is a valid strategy in infusion

MEMRI, where large parts of the brain do not take up Mn and hence no difference in MEMRI

signal can be observed in the first place- any pre-mask for MEMRI would exclude these regions.

In any case, it appears that the great reduction in temporal resolution is too much of a

compromise. Hence, the alternative of using fast spin echo was explored. This acquisition

made no compromises, had a higher spatial resolution and coverage than the previous protocol

and higher Mn-sensitivity with the same temporal resolution. However, none of these changes

increased the SNR and CNR substantially, so the temporal noise problem (described in the

introduction to this chapter and Figure 2.3) that prevents functional temporal resolution was
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not resolved. One possible reason for not achieving better results with sequence changes is

that a systematic analysis and computer simulation of available sequence parameters such as

that carried out by Cleary et al. (2009) for phenotyping cardiac defects in ex vivo murine

embryos was not performed here. Instead, parameters were chosen based around estimates

of what should maximise contrast given the known T1 and T2 times of the pre- and post-Mn

hypothalamus given constraints of acquisition time, FOV and required spatial resolution. Thus,

optimal parameters may well have been missed, and as such the sequence comparison here is

not an objective general comparison of sems vs ge3d vs fsems, but more a narrow comparison

between the three unoptimised acquisition protocols chosen here. Since the ge3d acquisitions

did not include a phantom, it was not possible to conduct an objective noise comparison

across all three sequences. However, looking at the sems and fsems images, the fsems

phantom and background do seem considerably noisier than that of the sems images, rather

than approximately equal as the ROI data suggest. This is not contradictory, since while the

ROI data is based on an ROI of equal size across all acquisitions, the fsems voxel volume

is approximately half that of the sems, i.e. not equal size, reducing the available signal and

thus appearing to increase the noise level. Thus this jump in visible noise is likely caused

more by reduced slice thickness than a deficiency of fsems per se. Nonetheless, it is still a

large increase, and even the SNR data indicate that the fsems sequence used here has a lower

SNR than sems, albeit with a higher CNR. This deficiency could have negatively influenced the

ability of subsequent experiments using fsems to observe changes in Mn uptake. Such problems

are unlikely to have affected the ge3d sequence, whose background noise levels appear similar

to those of fsems, in line with the results of the ROI SNR data.

The next set of changes was to the infusion profile. These stretched the dose across the

whole timecourse, or continued the dose rate for the entire duration. Unfortunately, neither of

these strategies was successful; the dose stretching resulted in poor enhancement apart from

towards the latter stages, and the continued dose rate had high mortality rates, despite being

within the range that should prevent this from happening (Lee et al., 2005). It appears the

current pulsed infusion protocol (Chaudhri et al., 2006; Kuo et al., 2006, 2007; Parkinson et al.,

2009; So et al., 2007) is a good compromise between providing the high concentration of Mn
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required to encourage rapid uptake of Mn across the BBB, and a low enough total dose to

prevent toxicity. Hence it was decided to continue with this old dosing regimen.

The next study used MRS measurements of lean mass the day prior to the MEMRI scan

to more appropriately adjust the MnCl2 dose, rather than using whole body mass, a measure

which can confound experiments where there are systematic differences in body composition

(and hence Mn uptake per unit of non-brain body mass) between groups. Note that this assumes

similar brain weight between these groups. The protocol was tested in the extreme situation of

fed vs. ob/ob, plus the fed vs. fasted experiment. The only differences found were between

fed and fasted groups, and these were mild and in non-hypothalamic areas, although this could

be due to low sample size. Unfortunately similar Mn enhancement was not observed across

groups in non-parenchymal regions such as lateral ventricles. Given that dosing by lean mass

should prevent this happening, it may in fact be the case that the stimuli involved were so

powerful that they did indeed cause genuine changes in Mn uptake in non-parenchymal areas.

This is certainly a possibility with ob/ob mice. These are deficient in the hormone leptin,

encoded by the ob/ob gene (Zhang et al., 1994). The ob/ob phenotype is largely reversible

by leptin administration (Campfield et al., 1995; Halaas et al., 1995; Pelleymounter et al., 1995;

Weigle et al., 1995), implying that leptin’s primary role is to signal to the brain the levels

of adipose tissue. Hence without leptin the energy balance mechanism behaves as if there

was no adipose tissue, the response to which is hyperphagia, reduced energy expenditure and

increased adiposity- the ob/ob phenotype. Leptin also holds roles outside of adipose tissue,

including on brain development. A consequence of this is that the brains of ob/ob mice have

reduced weight, altered composition and development compared to wild-type (Ahima et al.,

1999; Bray and York, 1979). This is the equivalent of non-adipose body composition being

altered, meaning that dosing MnCl2 by lean mass is not enough to ensure a fair dose reaches

the brain of ob/ob mice- the earlier stated assumption of similar brain weight between groups

is violated. Any conclusions made about Mn uptake in ob/ob mice are confounded by this,

and could explain any differences in uptake of Mn in non-parenchymal areas when compared to

WT. How fasting could cause such differences is less certain, though a 12-hour fast induces such

profound changes in physiology that it should not be surprising that this happens. Regardless of
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which of these hypotheses is true, dosing MnCl2 based on MRS results of lean mass may not be

fully robust since in addition to the inherent error of MRS (Mystkowski et al., 2000), there can

also be differences in lean mass composition that alter Mn uptake (as with ob/ob mice). Thus

it appears the most appropriate arena for this method would be where only diet varies between

groups- and hence any difference in body composition will be dominated by adipose tissue.

Unfortunately it was not possible here to test this method on mice that had been fed different

diets.

The final study used the static MEMRI method which removes anaesthesia confounds at the

cost of having no temporal resolution. Unfortunately the MnCl2 injection on Day 2 proved to

be an even bigger confound, producing a robust weight loss in most of the animals injected.

This was puzzling given that the metabolic cage studies and previous reports (Yu et al., 2005,

2007) had provided no indication that this would happen. Animals being injected for MEMRI

visibly looked lethargic and unhealthy for the post-MnCl2 injection period, although systematic

behavioural analysis was not conducted. The behavioural changes are unlikely to be due to

injection stress since the two injections on Day 1 never caused such a loss of body weight. In

addition, the third injection on Day 2 did not cause behavioural changes. It is possible that

having two i.p. injections in such close temporal proximity caused the problem though unlikely

since there were two mice that were injected with MnCl2 but had no body weight loss and with

no Mn uptake. This implies that it is Mn uptake in the brain that causes the lethargy. Great

effort was put into reducing i.p. injection stress, such as rapid and gentle handling of the mice,

minimal needle insertion, small injection volumes of 7µl g-1, habituation to the same handler

(the candidate) and prior to MnCl2 injection, habituation to needle insertion (via the saline and

ghrelin injections). Weight loss could also have been due to i.p. presence of the acidic MnCl2

irritating the peritoneal cavity, though no post-mortem was carried out to confirm this.

An alternative to i.p. injection, despite the technical difficulty, would be to use i.v. injection,

though the dose would have to be much lower if given as a bolus due to potential acute toxic

effect. Another would be to anaesthetise the animal and infuse a large dose of MnCl2 though

this adds the anaesthesia confound back, albeit in a much milder form.
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Chapter 3

Automated Analysis of MEMRI Data

3.1 Introduction

One of the primary advantages of using MRI for studying brain activity is that unlike many

other methods, it is able to capture information across the whole brain. This creates a large

amount of information, and ideally all of it should be used otherwise interesting phenomena

may be overlooked.

A framework for semi-automated and relatively unbiased whole brain analysis of

neuroimaging data was originally developed for PET images (Fox et al., 1988; Friston et al.,

1991). The advent of haemodynamic fMRI coincided with both an increased availability of

computational power and improved image manipulation and statistical methods. These were

quickly adapted for fMRI since many of the principles are the same as for PET (Friston et al.,

1995a,b; Turner et al., 1998). An overview of the framework is presented in Figure 3.1. It can

be split into two independent processes- spatial normalization and statistical analysis, with the

latter taking its input from the former.

Automated statistical analyses necessarily assume that any given image co-ordinate is

comparable across images- i.e. it represents the same anatomy across those images. This

means that images must be spatially normalised otherwise co-ordinates will represent different

anatomies, making any comparison incorrect, or at least increasing variance due to spatial

error. This is what spatial normalization of images is for, and it functions well for rodent

haemodynamic fMRI studies. This is because the images are very similar to those from

84



 

MOTION 
CORRECTION  
(6P RIGID BODY) 

COREG/ 
NORMALIZATION 
(12P AFFINE) 

mean image/ 
anatomical 

template 

MODEL-FITTING AT 
EACH VOXEL 

signal model and 
single voxel timecourse 

SPM 

Figure 3.1: overview of automated data analysis framework. Image timeseries are first motion
corrected using 6 transformation parameters (3 translations and 3 rotations) before 12 parameter
spatial normalization (additional 3 scalings and 3 skews) to a standard space template. There
are many different combinations of registration processes that can be used to achieve this;
whichever way, the aim is the same- to produce timeseries that are all in the same space. This
data is then fed into statistical analyses where models of signal change are fitted at each voxel
to produce statistical parametric maps (SPMs).
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Figure 3.2: comparison of a typical T∗2-weighted rat BOLD-fMRI image acquired using a
surface coil (left) with a T1-weighted image acquired for a MEMRI experiment in the mouse
using a volume coil (right). Images are both of a slice through the hypothalamus. The rat image
is 0.5mm thick, the mouse one 0.4mm. More problematic areas in the rostro-caudal extremities
are not shown.

human haemodynamic fMRI, with the majority of signal originating from the brain, and a clear

separation from the scalp (Figure 3.2, left). Also presented in Figure 3.2 on the right is a raw

MEMRI image. The T1-weighting means these properties are no longer true- the majority of

signal originates from outside of the head, and there are a number of areas where it is not

very clear where the boundary is between the brain and the scalp. Towards the rostro-caudal

extremities of the brain, the situation can become much worse, with no separation between

the olfactory bulbs, nasal cavities and trigeminal nerve, or between the cerebellum and the

back of the skull. Much of the tissue outside of the brain is non-rigid. In principle this

should not be problem for registration, since the standard registration algorithms do not always

assume a body is rigid (i.e. can only be rotated or translated)- they can handle the other linear

transforms of scalings and skews too. Except in the case of gross anatomical deformities, linear

transformation is likely to be adequate for rodent brains, since there is little nonlinear deformity

between brains of the same age and strain (Chen et al., 2006; Kovacevi et al., 2005). However,

the rest of the head can experience nonlinear transforms, such as dilation of the oesophagus, and

the movement of the jaw about its hinge. These changes violate the assumptions of the standard

registration methods. Nonlinear registration could be used, but is computationally expensive

and often requires a substantial investment in teaching software what a head ’looks like’ so

that it can automatically segment out different structures and ensure that both local and global

registrations are correct. Alternatively all it has to do is identify and segment out the brain, but

since there is little brain scalp separation, this may fail too.
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In principle the statistical analysis should not suffer from so many problems. All that is

required is a model of signal intensity change over time in a MEMRI experiment. Changes

in Mn uptake due to a stimulus would cause changes in SI over time, altering the parameters

required to fit the model. However, no such model currently exists, and needs to be developed.

Thus there were two main aims to this series of studies. Firstly, to adapt pre-existing spatial

normalization software to deal with the complications of MEMRI images. Secondly, to devise

a model of signal change during a MEMRI experiment that could be fitted to the data in order

to assess the magnitude and extent of signal changes. The effect of these changes on inference

would then be tested against manual ROI-based analyses that they are intended to replace.

3.2 Materials and Methods

3.2.1 Spatial Normalization

Most neuroimaging software analyses, such as those used in functional imaging analysis

competition, FIAC (Poline et al., 2006) rely on a single integrated suite of tools. Spatial

normalization of rodent head images, which are mostly of non-brain tissue (see Figure 3.2)

requires weighting of motion correction and template registration to the brain. The large amount

of high signal non-brain tissue means that this cannot be done by simple thresholding. Instead

the brain extraction has to be done by edge detection based segmentation. In addition, because

the individual images are so noisy, it is better to create a mask for weighted motion correction

rather than to inaccurately brain extract each individual noisy image.

There is no available fMRI analysis suite that can sequentially perform weighted rigid body

motion correction, brain extraction and affine registration to a template. Hence a mixture

individual tools from a number of suites were used.

Baseline images in each timecourse were averaged (in the case of all the MEMRI

timecourses presented in this chapter, this means the first three images), and the brain extracted

using the FSL tool bet2 (Smith, 2002; Smith et al., 2004) with centre co-ordinates defined

by manually locating the centre of the central medial thalamic nucleus. In addition, since

bet2 expands a sphere, to improve the performance of the program the mean baseline image
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was made more spherical (and thus human-shaped) by stretching the image 2-fold in the

dorsal-ventral axis and 2/3 (i.e. compression) in the rostral-caudal direction. After running bet2

the extracted brain had these deformations reversed before further use. A mask was created

from the extracted brain and used for weighted motion correction of the data in SPM5 (The FIL

Methods Group, 2005). The brain extracted mean baseline image was 9-parameter normalised

(translation, rotation, stretch/compress) to a standard (Dorr et al., 2008) or in-house mouse brain

template using the AFNI tool 3dWarpDrive (Cox, 1996). The in-house brain template was a

manually segmented Mn-enhanced ge3d brain-only image derived from a head image similar

to the one shown in the middle column of Figure 2.4 on page 63, which provided much better

registration performance for the thick-sliced sems images than the template from Dorr et al.

(2008). The calculated normalisation parameters were then applied to the motion corrected

data to create the spatially normalised timecourse.

3.2.2 sems Fed/Fasted Data

This data came from a previous study, and its collection has been described elsewhere

(Kuo et al., 2006). Briefly, reagents, equipment, animal handling and preparation were

similar to those described in Sections 2.2.1 to 2.2.3 and 2.2.6 on pages 56 to 58. The

differences were in animal age (16-24wks rather than 8-12), time of day for image acquisition

(around 9am-12pm rather than 7am-10am), maintenance temperature (35.5◦C rather than

37◦C), anaesthesia induction (1.5% at 1.5-2L min-1 rather than 3% at 2L min-1) and maintenance

(1% rather than 1.5%). Note that this previous MEMRI anaesthesia regimen (Kuo et al., 2006)

was, in the opinion of and in the hands of the candidate, not reliable enough at producing

balanced anaesthesia- hypnosis, analgesia and muscle relaxation (Flecknell, 1996), hence

a stronger one was used for other collecting other MEMRI data presented in this thesis.

For the fasted group food was removed 12-16h prior to MEMRI. On the morning of the

experiment fed mice weighed 27.6g±0.7 (n=4), fasted 29.3g±1.6 (n=5). Dynamic MEMRI

acquisitions were performed at 9.4T using a Varian Unity INOVA console running VnmrJ

1.1D software. Whole head shimming was performed manually. A sems sequence was used

with a 45mm long 25mm i.d. quadrature birdcage transmit-receive RF coil and the following
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parameters: TR=600ms, TE=10ms, matrix=256×192, FOV=25×25mm, 10 axial slices of 1mm

thickness (voxel size=98×130×1000µm) and single averages. From the beginning of the fourth

acquisition, 62.3mM MnCl2 was infused i.v. by a syringe pump at a rate of 200µl hr-1 using an

infusion pump, to a total volume of 5µl g-1 (around 37mins). Images were spatially normalised

(see section Section 3.2.1) to an in-house mouse brain template.

3.2.3 Exploratory Data Analysis for Generation of MEMRI Signal

Change Model

The animals used here (n=29) were from a dietary study (raw data kindly provided by

Jelena Anastasovska). Briefly, reagents, equipment, animal handling and preparation were

similar to those described in Sections 2.2.1 to 2.2.3 and 2.2.6 on pages 56 to 58 with two

main differences. Firstly, the mice were not supplied directly from Harlan; they are offspring

of purchased breeding pairs. Second, and most importantly, the mice were subjected to varying

dietary conditions during gestation, lactation and weaning (diets supplied by Harlan). Some

of their mothers received a low protein diet during gestation. Shortly after birth mice were

cross-fostered for lactation to mothers receiving a different diet to the one the mice experienced

(via their mother) during gestation. For weaning, some mice received a high fat diet. This

resulted in mice with a mixture of different body weights and compositions. MEMRI was

performed at around 14 weeks with the same fsems image acquisition protocol as in section

Section 2.2.7.2 on page 59 but with a Varian INOVA console running VnmrJ1.1D software, and

the infusion protocol described for sems MEMRI in the previous section (Section 3.2.2).

After spatial normalization (see section Section 3.2.1) using a standard mouse brain template

(Dorr et al., 2008) data were subjected to EDA using the FSL tool MELODIC (Beckmann and

Smith, 2004; Smith et al., 2004). After masking out non-brain tissue using the template mask,

group ICs thresholded at p>0.95 were created using tensor ICA (Beckmann and Smith, 2005).

3.2.4 Other Statistical Analyses

ROI timecourses were extracted using AFNI and exported to the statistical programming

environment R, where all subsequent analysis and plotting took place. Statistical images were
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generated using the FSL tool FEAT with a Gaussian smoothing kernel of FWHM 0.5mm

(i.e. approximately 2 voxels, as recommended by Turner et al. (1998) as the minimum for

SNR enhancement, reducing inter-individual differences in anatomy and ensuring the datasets

constitute a Gaussian random field) and a pre-threshold brain mask applied (derived from

the template). Statistical images were thresholded at Z>2.3 and the resulting clusters tested

for significance at p<0.05 using random field theory, correcting for multiple comparisons

(Benjamini and Hochberg, 1995; Friston, 1997; Genovese et al., 2002; Worsley et al., 1996).

3.3 Results

3.3.1 Generation of MEMRI Signal Change Model

To run GLM analysis of signal change in an image timeseries usually requires a time-varying

covariate model of what the signal change should be. This can be an equation, though in the

case of fMRI data it is usually entered as a vector of numbers (or matrix if there are many

models to be fitted). When this is fitted to the data, and assuming that noise levels are similar

across voxels and timeseries, the strength of fit will be a representation of the magnitude of

response according to the model.

The pulsed Mn infusion is likely to lead to a complex signal change profile. To investigate

this, ROI timeseries were measured in 8 different head regions of a single fed mouse subjected

to sems MEMRI. The results are presented in Figure 3.3. The timecourses appear to fall into

two classes. The first class, made up of the 4V, AP, D3V and ME, has a signal that rises rapidly

during the MnCl2 infusion then levels off and slowly declines shortly after it ends. The second

class, made up of the Arc RHS, Pe RHS, PVN RHS and VMH RHS has a signal that slowly

rises after the infusion starts. The regions in the first class all have an incomplete or no BBB

at all, so a signal that rises rapidly with the infusion and starts to decline can be considered to

indicate a region outside the BBB. Conversely, the regions in the second class are all inside the

BBB.

To see if this relationship extended across the whole brain, 29 image timeseries of fsems

MEMRI data from a dietary study in mice (raw data courtesy of Jelena Anastasovska) were
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Figure 3.3: timecourses of signal
change over baseline during a MEMRI
experiment in various different ROIs
(see Figure 3.5 for their definition and
location). The grey area indicates the
period of the MnCl2 infusion. The
timecourses appear to fall into two
classes; those that rise rapidly upon the
start of MnCl2 infusion with a slow
decline after it stops (4V, AP, D3V,
ME) and those that simply rise slowly,
reaching a moderate level of signal
enhancement at the end (Arc RHS,
Pe RHS, PVN RHS and VMH RHS).
Raw data from which timecourses
were derived kindly provided by
Yu-Ting Kuo.

subjected to exploratory data analysis using tensor ICA (Beckmann and Smith, 2005). This

method pattern searches data for non-Gaussian spatio-temporal signal sources (components).

The results of this analysis are presented in Figure 3.4. The software used, the FSL tool

MELODIC (Beckmann and Smith, 2004) includes a dimensionality estimation algorithm that

estimated the data could be best explained by six independent components. These are presented

in the top section of the figure. In total they explain 71% of the total variability in the data.

Examination of these also produces two classes. Components 1 and 3 are very similar to each

other, both being of the OBBB sort. Components 2 and 4-6 are similar to the IBBB regions

in terms of timecourse and spatial location. Thus it was decided to rerun the analysis, but this

time constrained to two dimensions. The results of this are presented in the lower section of

Figure 3.4. These two components are very similar to the IBBB (upper component explaining

46% variability) and OBBB (lower explaining 20%) sorts respectively, with a total explained

variability of 65%. Their associated timecourses are probably good models of signal change in

a pulsed infusion dynamic MEMRI experiment. The most important is the IBBB model, since

this relates to parenchymal tissue.
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Figure 3.4: group tensor ICA analysis of dynamic MEMRI data from 29 mice. Images are of a
slice through the hypothalamus. Each image-timecourse pair represents an IC. The timecourse
vertical axis is of normalised response. The grey areas in each timecourse indicate the period
of the MnCl2 infusion. Inset in each is that component’s percent contribution to the total and
(explained) variance. The top six components are from an unconstrained analysis, the bottom
two from one constrained to two dimensions. Raw data kindly provided by Jelena Anastasovska
.
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Figure 3.5: comparison of a single timepoint sems image to the mean of all the spatially
normalised sems timecourses, plus locations of ROIs used to generate data in Figure 3.4 and
Figure 3.6. Zoom images are of the corresponding highlighted region in the mean image. The
arrow indicates an example DC offset artefact. Slice1 is the most caudal. See Figure 2.4 for
a sagittal image showing the rostro-caudal location of the slices. Raw data kindly provided by
Yu-Ting Kuo.

3.3.2 Effect of Spatial Normalization on Analysis of MEMRI Data

This section is a reanalysis of previously reported data (Kuo et al., 2006). The aim was to

analyse whole brain data automatically rather than using manually drawn ROIs. The sems fed

and fasted data sets were spatially normalised to an in-house mouse brain template. Judging the

quality of the spatial normalization is difficult, since registration metrics are normally based on

the root mean square (r.m.s.) difference between images or on the sharpness of joint histograms.

Since most of the image voxels are in unregistered (non-brain) tissues, and also given how little

contrast is present within the rodent brain, these measures will not work. Instead it is best to

judge by looking at image overlays, and also seeing the effect of the normalization on the ability

to extract similar mean timecourses to before.

A mean of the normalised images images is presented in the second row of Figure 3.5. Much
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Figure 3.6: timecourses of mean group signal change measured manually (Fed, Fasted) or
automatically on spatially normalised images (Fed-sn, Fasted-sn) in the ME and Arc RHS in fed
(n=4) and fasted (n=5) groups of mice subjected to sems MEMRI. The grey areas indicate the
period of the MnCl2 infusion. Raw data from which timecourses were derived kindly provided
by Yu-Ting Kuo.

ME (inc OBBB covariate) Arc RHS (inc IBBB covariate)
fed vs. fed-sn 0.3557 0.3637
fasted vs. fasted-sn 0.8036 0.3642
fed vs. fasted 0.0683 0.2605
fed-sn vs. fasted-sn 0.0404 0.2942

Table 3.1: p-values for various comparisons of data presented in Figure 3.6, calculated using
linear mixed-effects modelling, with the covariates generated by the tensor ICA analysis in
Figure 3.4, and the mouse experimented on as a random effect.

of the image is fuzzy since it is not registered. However, the brain outline and internal structure

are very sharp, hence it appears the spatial normalization was able to accurately overlay brain

images.

As examples of the effect of spatial normalization on timecourse extraction focus has been

placed on the ME and Arc RHS, which represent OBBB and IBBB regions respectively. Mean

timecourses from a sems dynamic MEMRI experiment on groups of fed and fasted mice are

presented in Figure 3.6. Visually it appears that the data from ROIs in spatially normalised

images is very similar to that from manually drawn ROIs. This similarity is confirmed by the

results of statistical tests presented in Table Table 3.1. The fasted vs. fasted-sn and fed vs. fed-sn

comparisons test manual signal measurement against automated, and in both cases they are very

similar, with neither comparison revealing significant differences (p<0.05). Similar analyses

were undertaken at other ROIs, and all produced similar results, with the measurements from
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spatially normalised data being very similar to that from manually placed ROIs. This indicates

that the spatial normalization procedure functions well- otherwise with such small sample sizes

as we have here the results would be very different between manual and automated data, adding

to the evidence in Figure 3.5 that the registrations are of good quality.

Looking at the fed-fasted results, the spatial normalization has produced a significant

difference in signal change in the ME which did not occur when the ROIs were placed manually.

The ME ROI here is spatially the equivalent of the ROI named Ärcüsed in Kuo et al. (2006) from

where this data is derived. This region is renamed in this thesis to M̈Eäs anatomically it is the

median eminence, not the arcuate nucleus (Paxinos and Franklin, 2004). In Kuo et al. (2006),

the combination of those authors’ manual ROI placements and the different statistical modelling

method of generalised estimating equations (GEE) also found no significant difference in signal

change between fed and fasted groups in the ME (p=0.22), agreeing with the non-significance

found here using manual ROI placement. This implies that the spatial normalisation procedure

has uncovered a significant difference in signal change between fed and fasted groups that would

not otherwise have been observed. However, given that the fed-sn vs. fasted-sn result p-value

of 0.0404 is only just under the arbitrary significance level of p=0.05, and that the experiment

was based on small sample sizes of n=4 vs. n=5, this is too strong a conclusion to make.

A major aim of spatial normalization is to enable the generation of voxel-level activity

maps rather than to merely aid ROI-based analyses by making them more automated and

objective. The combination of a good Mn uptake model generated in the previous section,

and a working spatial normalization used here allows this to be done. The results of such an

analysis are presented on the sems fed/fasted data in Figure 3.7. Three models of signal change

are presented. The first is simply a pre vs. post model of signal change. Here, most of the

timepoints are discarded. The Mn uptake is assessed by what amounts to a voxel-voxel t-test

between the baseline and last 15 images. The choice of baseline period is fixed by the point

at which the Mn infusion starts. The period to compare it against is more arbitrary, and is a

compromise between the greater accuracy of using more images, and reduced sensitivity due to

the lower average Mn intake the further back it extends. The period of 15 images was chosen

previously as it was thought this represented some kind of ’steady-state’ period (Kuo et al.,
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Figure 3.7: statistical maps of a slice through the hypothalamus showing Mn uptake in fed
(n=4) and fasted (n=5) groups of mice during sems MEMRI. The colours are z-scores of Mn
infusion-induced signal change (thresholded at Z>2.3) corresponding to the scalebar. Uptake
was determined using either a simple baseline vs. last 15 model of signal change, or using the
OBBB and IBBB models generated in Figure 3.4. Raw data kindly provided by Yu-Ting Kuo.

2006). The other two models are the OBBB and IBBB profiles derived in the previous section

and shown in Figure 3.4.

The uptake maps for both fed and fasted groups of mice are presented. For the baseline

vs. last 15 model, differences in uptake can be seen at the brain edge, in the lateral ventricles,

circle of Willis and in the hypothalamus surrounding the 3rd ventricle. For the OBBB model,

very little difference can be seen. The IBBB model produced similar results to the baseline vs.

last 15, but without any uptake at the brain edge. Also the increased uptake proximal to the

dorsal 3rd ventricle in the fasted group is more prominent. Voxel-voxel t-tests were carried out

between the fed/fasted uptake maps generated using each model, but in all three cases these

failed to identify clusters of significant differences.

3.4 Discussion

The work presented in this chapter was aimed at bringing analysis of infusion MEMRI data

into the framework of data analysis used in human fMRI since the early 1990s (Fox et al.,
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1988; Friston et al., 1991, 1995a,b) and presented in Figure 3.1- that is, spatial normalization

of all images followed by mass univariate (voxel-voxel) GLM statistics. This has the advantage

of removing the subjectivity and laboriousness of manual ROI placement, while also allowing

a whole brain analysis. In addition, the use of standard space templates allows anatomical

locations to be compared across studies from different laboratories.

T1-weighted MEMRI images have low within-brain contrast, brain/scalp separation and

high contribution of non-rigid non-brain tissue. This makes it very difficult to objectively

judge or describe with a summary metric the quality of the brain-weighted registrations used for

spatial normalization. There are however two other admittedly poorer but still useful methods.

The first is creating a mean image of all the spatially normalised data from a study (i.e. mean

of all timepoints from all timecourses). Such images are presented for sems MEMRI data in

Figure 3.5. As expected, much of the tissue outside of the brain is fuzzy, since this tissue was

not included in the motion correction weights or the registration. However, the brain itself

is sharp, especially the brain/scalp boundary. The Mn enhancement shows a symmetrical

pattern and the ventricles are clearly visible. This indicates the spatial normalization is

accurate. An additional source of evidence is that the timecourses measured using manual ROI

analysis are similar to those measured automatically using template-derived ROIs on spatially

normalised images (Figure 3.6). This demonstrates that the registration software is able to

colocate accurately even tiny regions from different timepoints and different mice. That this

occurs with only a 9-parameter registration is due to the great homogeneity of inbred rodent

strains. Linear transformation is certainly not adequate for human brains (Ashburner et al.,

1999; Heckemann et al., 2006; Klein et al., 2009; Steinmetz et al., 1990). Rodent brains

are much more homogenous; however, even within strains for the same age group there are

significant non-linear deformations up to hundreds of microns, including in the hypothalamus

(Chen et al., 2006; Kovacevi et al., 2005). Thus although the spatial normalization procedure

appears accurate, subtle registration errors caused by non-linear deformation could substantially

degrade normalization quality, reducing the chances of observing signal changes in group data.

It should be noted that an alternative or complimentary strategy to software spatial

normalization would be to use a stereotaxic frame with both tooth and ear bars to firmly fix the
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mouse head in position. This would both minimise motion to the extent that motion correction

software would not be so crucial, and potentially also allow accurate image piloting to minimise

even the amount of position correction required. However, such equipment was not available to

software correction methods had to be used on the acquired images.

The ability to spatially normalise images is a substantial achievement, regardless of which

sort of statistical analysis is used afterwards to analyse the signals. A first minor advantage

is related to dealing with partial voxel movements. Especially during motion correction,

structures can move fractions of a voxel in distance. Image registration software deals with

this by interpolating the signal intensity between the voxels concerned. Most software for ROI

measurement cannot do the equivalent for an ROI- i.e. move it fractions of a voxel and then

only have that fraction’s signal contribute to the overall ROI signal measurement. Hence the

ROI has to be shifted only when it is judged that the structure has moved more than half a voxel.

This can lead to inaccurate measurements, especially with small structures close to large signal

boundaries, such as those involved in appetite sensing in the hypothalamus.

The main purpose of spatial normalization of images is that it enables independence from

manually drawn ROIs- entities that effectively restrict one’s ability to extract useful information

from whole brain datasets. They also bias potential discoveries to whichever ROIs are chosen.

An alternative would be to draw every possible ROI on every mouse, but this assumes it is

known what ROIs are worth drawing and is also extremely laborious. ROIs still have an

important role- many scientific hypotheses about changes in brain activity refer to specific

regions and nuclei, and it is useful to be able to extract ROI data to view in detail the effect

that specific stimuli have on those regions. In this way ROI analysis is complementary to that of

voxel-voxel. In this case spatial normalization helps too- rather than having to custom draw an

ROI for each fMRI session, the ROI only has to be drawn once for the whole experiment. An

even better alternative is to take advantage of the fact that many brain templates such as the one

used here (Dorr et al., 2008) come with carefully segmented brain atlases. In this situation, the

ROI has already been drawn, saving the investigator time, and allowing standardisation of ROI

definitions across different laboratories. One context in which manually-drawn ROIs would

still be necessary is in the case of gross anatomical distortion. In this case automated spatial
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normalization, both in the direction of warping brains to a standard or warping atlases to the

individual, would become unreliable.

This alludes to one of the biggest advantages of all- time saving. The sems fed/fasted data

reanalysed here came from a broader study of hormone action involving 23 mice. There are

potentially around 13 ROIs that one would want to measure in an appetite study. To carefully

draw these manually on each of 23 mice takes a very long time, upwards of 1-2 hours per

mouse. Shifting them to account for motion can extend this requirement even further. Thus

placing ROIs manually for a 23 mouse study can take several days. This should ideally be

repeated at least once by the same investigator a month later to freshly check for mistakes

made the first time ROIs were drawn. To ensure the greatest objectivity, a separate investigator

has to carry out the same procedure, so to complete manual ROI drawing on a single mouse

takes a total of one day’s worth of work. Thus a 23 mouse study can occupy a month of time

simply drawing ROIs. The spatial normalization described here takes only a minute to set up

per mouse- specifying data location and the brain centre co-ordinates. Once this has been done,

the processing itself takes about 10-20 mins per mouse. This is of course computer time, so

in practice spatially normalising 23 mice takes only 30mins to set up and can be left for the

computer to process overnight, or while doing something else. This is a great time saving, and

compels the use of spatial normalization wherever possible. Additionally, it frees data from the

potential mistakes or biases of the investigators who draw the ROIs.

Once spatially normalised, for mass univariate GLM signal analysis we need a model of

signal change. Based on previous data there were likely to have been two models needed- one

for Mn uptake outside, and another for inside the BBB. Ironically, the best way to find such

a model is EDA, a multivariate methodology. The one used here, tensor ICA as implemented

in the FSL tool MELODIC (Beckmann and Smith, 2005), was readily able to find them. A

note of caution is required however. The underlying cause of the signal changes in an infusion

MEMRI experiment, and to some extent the images themselves, demonstrate that it is a great

simplification to use a single simple model for assessing Mn uptake. Mn does not spread into

the brain evenly- it is initially biased to regions near the ventricles, from where it spreads to

gradually occupy the whole brain (Aoki et al., 2004). The relative importance of the various
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different circumventricular organs to the transport of Mn across the brain-CSF barrier (on

top of any entry across the BBB) is unknown. Depending upon their location relative to the

ventricles, each brain region will experience different rates of Mn influx and efflux, the absolute

magnitudes and ratios of which will be shifting over time depending upon the timing and

duration of the Mn infusion. This would explain why the unconstrained tensor ICA analysis

produced six components rather than just the two predicted- there probably genuinely are more

than two Mn uptake profiles. In fact, there should be one for every bilateral pair of voxels.

Accounting for this situation would require the building of a complex model of Mn influx and

efflux at each voxel in the brain and how these interact with the nature of the Mn infusion. This

model could then be used to assess and create more accurate statistical maps of Mn uptake in

each mouse (which are later fed into a group analysis) that currently are instead created here

using FEAT.

The model derived from tensor ICA also has the disadvantage in the context of acute stimuli

that its shape remains invariant. Hence it is assumed that the acute stimulus evenly affects Mn

uptake across the entire post-baseline period. Such a situation is unlikely to be true.

A final issue is how these two tools, spatial normalization and a Mn uptake model, alter

inference in a basic appetite experiment. The most basic, and that which was used here, is

the stimulus of fasting. The data in Figure 3.6 and Table Table 3.1 at least indicate that they

do not destroy observations which were made previously about the effect of fasting on Mn

uptake in the ME. However, the fed/fasted results are puzzling. Yet again, as with experiments

presented in Chapter 2, fasting has stimulated Mn uptake changes in unexpected areas, and not

the ventral hypothalamus. The primary site seems to be the lateral ventricles, and ventricular and

circumventricular regions in general. Although t-tests could not uncover statistically significant

differences between the two groups regardless of which Mn uptake model was used, this is likely

to be more down to the high variability of Mn uptake and the stringent sample size requirements

of a mass univariate experiment rather than because differences between the two groups do not

exist.

The uncovering of these puzzling differences is a good showcase for the principle of

using mass univariate statistics on spatially normalised data, as opposed to using manual
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ROI placement: interesting phenomena have been observed that would otherwise have gone

unnoticed. The more contentious issue is whether the Mn uptake models derived from tensor

ICA are useful. It is difficult to tell here, but it is very likely to be the case since they can

use information from every single timepoint to be fitted- in the sems MEMRI case 66 points

rather than the 18 used for the baseline vs. last 15 analysis. Using more data should allow a

more accurate fitting. This is of course only as long as the Mn uptake profiles are similar across

mice- any shape changes would compromise the goodness of fit.
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Chapter 4

Haemodynamic fMRI

4.1 Introduction

The majority of work presented in this thesis relates to using MEMRI to assess brain

function. This method uses the exogenous contrast agent Manganese (usually as MnCl2)- a

paramagnetic agent that increases the MR signal and which is also taken up preferentially by

active neurons (Silva et al., 2004)- as a marker of neuronal activity. Although this method is

considered by some to be more direct, easier to use and less physiologically perturbed than

haemodynamic methods (Van der Linden et al., 2007), it suffers from toxicity problems that

both compromise physiological relevance and prevent translation into humans. In addition,

the tendency of Mn to accumulate in tissue and disperse slowly makes it relatively difficult to

observe rapid temporal changes as opposed to cumulative changes over time. Hence despite

their numerous flaws it is worth considering using haemodynamic methods. These are well

established at observing brain function in rodents. Some of the earliest experiments using MRI

to study blood flow in the brain were conducted in rats, and have a much longer history than

MEMRI (Ogawa et al., 1993a,b; Rudin and Sauter, 1991). Since then, haemodynamic responses

have been recorded in response to an extensive range of stimuli including somatosensory and

pharmacological interventions (Van der Linden et al., 2007).

One exception to this is appetite related responses. Almost no literature exists on

haemodynamic responses of any sort to any kind of appetite related intervention, whether

fasting, diet, genetic modification or hormone injection. The first three are pre-scan chronic
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interventions. These are particularly difficult to study using haemodynamic methods since they

induce gross changes in circulation, usually by changing body composition and physiology

in such a way as to undermine the assumptions of the models that translate MR images from

CBV/CBF experiments into measures of blood flow and volume (Østergaard, 2005). The one

technique that could circumvent this is ASL, which is in principle immune to the problem of

contrast agent dosing for CBV/CBF measurement, as well as the temporal drift which affects

any sequence primarily weighted towards detection of the BOLD effect (Aguirre et al., 2002).

Unfortunately ASL is not very sensitive, and is also difficult to set up, especially so for whole

brain acquisitions, so it was not used here.

The most fruitful route in haemodynamic studies is to apply within-scan acute intervention

on animals with similar starting physiologies and body compositions. Giving the intervention

within the scan enables normalization to conditions on the day, whatever these might be.

Chronic treatments can also now be studied albeit indirectly via their modulatory effect on

the acute intervention. The aim of this series of experiments was to see if such methods were

viable in the context of appetite studies.

Since ASL could not be used to measure CBF, these studies concentrated on using simpler

sequences to measure BOLD and CBV instead. Both have been used extensively to assess the

effect of acute pharmacological stimuli (Martin and Sibson, 2008; Shah and Marsden, 2004;

Steward et al., 2005). For reasons explained earlier, they cannot be used to look directly at the

effects of fasting, diet or genetics, though they could be used indirectly by observing the effects

of those three stimuli on responses to an acute stimulus.

The hormonal stimuli chosen were ghrelin and exendin-4. Ghrelin is an endogenous

orexigenic hormone secreted peripherally mainly by the stomach (Kojima et al., 1999; Tschöp

et al., 2000). It acts via the arcuate nucleus (Kojima and Kangawa, 2005) and has previously

been shown to affect the signal in MEMRI experiments (Kuo et al., 2007). Exendin-4 is a

mimetic of the endogenous anorexigenic hormone GLP-1, but is far more potent (Young et al.,

1999) due to its resistance to proteolytic degradation (Parkes et al., 2001). It also acts via the

arcuate nucleus (Ma et al., 2007). Hence these two hormones are both relatively strong and
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reliable pharmacological appetite-related stimuli, that should both alter the haemodynamic MR

signal in the arcuate nucleus.

4.2 Materials and Methods

4.2.1 Hormones

Ghrelin (Bachem cat# H-4864) was dissolved in sterile ddH2O before aliquotting into vials

with 9nmol (30µg) each. These were freeze-dried and stored at -20◦C before reconstitution in

200µl water at the moment of use. Exendin-4 (Phoenix Peptide cat# 070-94) was dissolved in

sterile ddH2O and aliquotted into 250µl volumes of 0.215nmol (0.9µg) each. These were stored

at -80◦C and thawed to room temperature at the moment of use.

4.2.2 BOLD-Weighted Acquisitions

Equipment, animal handling and preparation were similar to those described in

Sections 2.2.1 to 2.2.3 and 2.2.6 on pages 56 to 58 respectively. The main modification was

maintenance of isoflurane anaesthesia in a 7:3 N2O:O2 mix (0.7:0.3L min-1 respectively) rather

than pure O2, with the concentration varied throughout between 1-1.5% to maintain a breathing

rate of approximately 130bpm. In addition an i.p. cannula was implanted during animal

preparation. The reason for the anaesthesia change was that although supplemental oxygen

is beneficial to animals undergoing anaesthesia (Flecknell, 1996), pure O2 can raise the partial

pressure of oxygen (pO2) in blood to 400mmHg, much higher than the normal physiological

range of 100-200mmHg. At 400mmHg there is little deoxyhaemoglobin left, and hence no

BOLD effect. A much smaller supplementation level of 30-40% O2 with either air, nitrogen or

(least ideally, since it is an anaesthetic and vasodilator) N2O making up the remainder of the

gas supply avoids saturating the blood with oxygen. N2O was used here for the remainder as at

the time it was the only one for which delivery equipment was available, was recommended as

being an adequate substitute (W. Gsell, pers comm) and it has been used successfully elsewhere

(Duong et al., 2000a).
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Images were acquired at 9.4T using a Varian Unity INOVA console running VnmrJ 1.1D

software and a 40mm long 30mm i.d. quadrature birdcage transmit-receive RF coil. Whole

head shimming was performed manually. An fsems sequence was used with the following

parameters: TR=4834ms, inter-echo spacing=5.6ms, echo train length=8, k-space centre=7,

matrix=192×96, FOV=38.4×19.2mm, 2 averages, 42 coronal interleaved overlapped Gaussian

profile slices of 0.4mm thickness, gap -0.2mm (negative due to overlap; voxel size 200µm

isotropic) acquired in 1m 56s, 124 volumes acquired giving a total session time of four hours.

The use of overlapped Gaussian profile slices halves the effective TR and leads to a degree of

through plane blurring, though it provides a slice width of 200µm that would otherwise not be

possible (Noll et al., 1997). Image reconstruction and conversion to NIfTI-1 format (Cox et al.,

2004) was carried out using custom written code in MATLAB (The Mathworks, Natick, MA,

USA).

Injections (saline n=6, ghrelin n=6, exendin-4 n=4) were made i.p. 20mins after the start of

the scan during the 11th acquisition, at a dose of 7µl g-1 (0.3nmol or 1µg g-1 and 6pmol or 25ng

g-1 for ghrelin and exendin-4 respectively). This ghrelin dose is able to induce adiposity and

weight gain when injected daily (Tschöp et al., 2000), as well as hypothalamic MEMRI signal

increases (Kuo et al., 2007). Exendin-4 has not been used in fMRI experiments before, but the

dose used here was enough to induce substantial weight losses and reduction in food intake in

mice and rats (Mack et al., 2006).

4.2.3 CBV-Weighted Acquisitions

Equipment, animal handling and preparation were similar to those described in

Sections 2.2.1 to 2.2.3 and 2.2.6 on pages 56 to 58 respectively, the main modification being

that isoflurane anaesthesia was maintained using 5:1 medical air:O2 (33% O2 in air; 1:0.2 L

min-1 respectively). This anaesthesia regime was used as it exactly (Mandeville et al., 2004)

or closely (Liu et al., 2007; Mandeville et al., 2007; Marota et al., 2000) matches that used

in other successful CBV/IRON experiments. Images were acquired at 9.4T using a Varian

DirectDrive console running VnmrJ 2.2C software and a 40mm long 30mm i.d. quadrature

birdcage transmit-receive RF coil. Shimming was performed using FASTMAP (Gruetter,
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1993; Gruetter and Tkac, 2000) on a 4×4×4 mm voxel placed at the centre of the brain

(special thanks to Vladimir Mlynarnik for providing code and installation advice, and Marzena

Wylezinska-Arridge for installation and setup). Linewidth was measured using PRESS and

ranged from 25-50Hz. A gems sequence was used with the following parameters: TR=390ms,

TE=5ms, matrix=128×128, FOV=19.2×19.2mm, 2 averages, 50 interleaved transverse slices

of 0.2mm thickness (voxel size 150×150×200m) acquired in 1m 40s, 72 volumes acquired

giving a total session time of 2 hours. Images were converted from VnmrJ FDF to NIfTI-1

format (Cox et al., 2004) using ImageJ (Rasband, 1997-2008).

Endorem (Guerbet) supplied at 11.2mg ml-1 was diluted 2-fold in sterile ddH2O to 5.6µg

l-1. After 10 pre-contrast baseline acquisitions, at the beginning of the 11th acquisition the

diluted endorem was injected i.v. at a dose of 4.1µl g-1 (23µg g-1). The endorem was allowed

to equilibrate for 5 acquisitions, after which 15 post-contrast baseline images were acquired.

After these 30 acquisitions, any intervention was given at the beginning of the 31st acquisition.

For the N2O challenge experiment (n=3), anaesthesia was changed to 2:1 N2O:O2 (0.8:0.4L

min-1) at the beginning of the 31st acquisition for the rest of the scan. For ghrelin experiment,

during animal preparation an i.p. cannula was implanted. Saline (n=3) or ghrelin (n=3)

injections were made i.p. at the beginning of the 31st acquisition, at a dose of 7µl g-1 (0.3nmol

or 1µg g-1 ghrelin dose).

4.2.4 Image Analysis

NIfTI-1 format images (Cox et al., 2004) were spatially normalised according to the scheme

described in section Section 3.2.1 on page 87. Briefly, images were motion corrected using

SPM5 and normalised using a combination of tools from FSL and AFNI to a standard mouse

brain template (Dorr et al., 2008). ROI analyses and timecourse extractions were carried out

using MRIcron (Rorden et al., 2007). The striatal ROI was extracted from the atlas supplied

with the mouse brain template (the atlas is composed of 62 structures drawn manually on the

template, which itself is a composite of 40 normalised C57BL/6 mouse brain images). The

Arc LHS was drawn based upon comparisons with a standard mouse brain atlas (Paxinos and

Franklin, 2004). Timecourses were plotted using Microsoft Excel 2007.
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4.3 Results

4.3.1 BOLD Timecourses Exhibit Substantial Drift, are Noisy and Show

No Response to Ghrelin or Exendin-4 Injections

The BOLD effect offers a promising method for visualising (albeit indirectly) the effect

of various stimuli on neuronal activity in the brain. It is widely used in humans, so results

can readily be compared to those from human fMRI. In addition, it does not require the

administration of any exogenous agent. To test its efficacy in responding to hormones

controlling energy balance, it was decided to acquire BOLD timecourses and observe their

response to the administration of two potent hormones involved in energy balance- ghrelin, and

exendin-4. Both act on the arcuate nucleus, but with opposite effects- ghrelin increases food

intake (Tschöp et al., 2000) while exendin-4 reduces it (Mack et al., 2006). In addition, ghrelin

has a half-life of minutes (Kojima and Kangawa, 2005) compared to hours for exendin-4 (Parkes

et al., 2001). Both were injected i.p. at concentrations known to induce a response- 0.3nmol g-1

for ghrelin (Kuo et al., 2007) and 6pmol g-1 for exendin-4 (Mack et al., 2006). Figure 4.1 shows

a typical single timepoint BOLD image acquired using the protocol here.

Since there was no precedent for what the signal change should be in response to hormones

related to energy balance, the initial analysis was ROI-based, rather than the voxel-voxel GLM

approach advocated in Chapter 3. The targetted ROI was the left arcuate nucleus (Arc LHS),

whose activity is modulated by both hormones. Its location is indicated in Figure 4.1.

Arc LHS BOLD timecourses for saline (n=6), ghrelin (n=6) and exendin-4 (n=4) injected

groups of mice are shown in Figure 4.2. All three timecourses exhibited a substantial amount

of downward signal drift. The saline group signal declined by around 4% shortly after 2 hours

of imaging, rising back up to a decline of around 2% by the 4 hour end point. The ghrelin group

had similar behaviour up until just after 2 hours, when it diverged, levelling off before a further

decline, finishing around 5% lower than at the start. The exendin-4 group diverged from the

saline and ghrelin groups at around 45mins after the commencement of the scan, with signal

spiking back up to baseline levels and remaining steady up until 1h 48m. At this point signal
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 Figure 4.1: example single timepoint BOLD image with location of Arc LHS ROI shown in
red. Clockwise from left, transverse, coronal/axial and sagittal planes are shown. This image
has been motion corrected and normalised, hence some areas towards the extremities may be
filled with black due to reslicing of regions that were outside of the acquired FOV.

108



 

Figure 4.2: BOLD signal changes in the Arc LHS of the mouse brain in response to saline
(n=6), ghrelin (n=6) or exendin-4 (n=4) i.p. injections. The arrow indicates the timepoint of
injection (20 mins into the timecourse during the 11th acquisition). The baseline is defined as
the mean of the first 10 (pre-injection) acquisitions.
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plummets to slightly less than 2% below baseline, before continuing a slow steady decline down

to slightly more than 2% below baseline.

4.3.2 N2O Challenge Does Not Affect CBV-Weighted Signal

The poor performance of the BOLD method was not entirely unexpected since BOLD is

known not to have much statistical power beyond a stimulus cycle time of 1min (Aguirre et al.,

2002). However, the substantial amounts of signal drift and noise were a surprise.

To deal with this, an alternative haemodynamic method was tried. This was cerebral blood

volume weighted (CBV) MRI. Here, a blood pool contrast agent, usually iron oxide based,

such as SPIOs and USPIOs (Weissleder et al., 1990) is used to weight the MR signal to blood

volume. Although involving the administration of an exogenous agent, it has proven to be much

more sensitive than BOLD, and because it involves much larger signal changes, less prone to

background drift. This method has also been dubbed IRON, for increased relation with iron

oxide nanoparticles (Chen et al., 2001; Jenkins et al., 1993).

An initial test of whether a CBV protocol is working well enough to detect a

pharmacological stimulus is to see the effect of nitrous oxide on the CBV signal (Mandeville

et al., 2007). N2O is a potent vasodilator that readily crosses the BBB, producing large increases

in both CBF and CBV (Lorenz et al., 2002). Hence in a CBV-weighted experiment there should

be a large drop in signal upon N2O administration (Lorenz et al., 2002; Mandeville et al., 2007).

Three mice were subjected to CBV, with nitrous oxide administered approximately half-way

though the scan. The effect of CBV was measured in the striatum, where a previous study had

shown its effects should be quite potent. The location of the striatal ROI is shown in Figure 4.3.

A timecourse of CBV images acquired with the protocol used here is shown in Figure 4.4. Upon

endorem administration in timepoint 11, there is an expected large global drop in signal. The

drop is not even, with the greatest drops unsurprisingly occurring at the location of large vessels,

such as the circle of Willis. The agent gradually washes out, leading to increasing signal as the

experiment continues.

N2O is an example of an agent where the relationship between haemodynamics and neuronal

activity is decoupled- N2O is an anaesthetic, producing reductions in neuronal activity. This is
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STRIATUM Arc_LHS 

Figure 4.3: location of ROIs (marked in red) used during CBV studies, overlaid onto a
pre-injection image.

 

61=1:40:00 71=1:56:40 41=1:06:40 51=1:23:20 

1=0:00:00 11=0:16:40 21=0:33:20 31=0:50:00 

Figure 4.4: timecourse of images at a slice through the hypothalamus during a CBV experiment.
Numbers indicate timepoint and time in h:mm:ss. Contrast agent injection is made at the
beginning of timepoint 11. The images have been motion corrected and normalised, hence
some areas towards the extremities may be filled with black due to reslicing of regions that
were outside of the acquired FOV.
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E N2O 

Figure 4.5: change in breathing rate during a
CBV experiment with N2O challenge (n=3).
Error bars are of SEM. Arrows indicate
administration times. E=endorem.

 

E N2O 

Figure 4.6: change in signal in the striatum
during a CBV experiment with N2O
challenge (n=3). Error bars are of SEM.
Arrows indicate administration times.
E=endorem.

despite the fact that it also causes increases in CBF and CBV (Lorenz et al., 2002)- which in

haemodynamic fMRI are considered proxies of increased neuronal activity. One consequence

of this anaesthetic action is that breathing rate drops substantially. Figure 4.5 demonstrates

this physiological effect. Prior to N2O administration, the breathing rate holds steady at

around 85 bpm. As soon as N2O is provided, it drops substantially to just above 50bpm, thus

demonstrating that N2O is being provided at a high enough concentration to produce profound

physiological changes, and hence one would hope changes in CBV too.

Figure 4.6 shows CBV timecourses of signal in the striatum during this experiment. The

effect of the endorem administration is clear, with a sharp drop in signal. However, very

surprisingly the N2O has no noticeable effect on the timecourse.

4.3.3 Ghrelin Injection Does Not Affect CBV-Weighted Signal

Nitrous oxide administration is a very unusual pharmacological intervention. Although it

was disappointing that it was not able to detect any CBV changes in the striatum, it is possible

that this is more a function of using this stimulus than the failure of the technique.
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E saline/ghrelin 

Figure 4.7: change in signal in the Arc LHS during a CBV experiment with either saline or
ghrelin administered i.p (n=3 per group). Error bars are of SEM. Arrows indicate injection
times. E=endorem.

Hence despite the failure of the N2O challenge, the effect of an i.p. ghrelin stimulus on CBV

signal was tested, the results of which are shown in Figure 4.7 for an ROI covering the Arc LHS

(see Figure 4.3 for its location). The dose was that same as that used for the BOLD-fMRI study

(0.3nmol g-1). Unfortunately, as can be seen, ghrelin administration had no obvious effect on

the CBV signal compared to one of saline. The timecourse was considerably less steady and

noisier than that for the N2O challenge experiment. This is probably a consequence of using the

Arc LHS ROI, which has a far smaller volume than that of the striatum.

4.4 Discussion

This series of studies aimed to use haemodynamic fMRI to observe responses to hormones

involved in energy balance in rodents. Unlike MEMRI, haemodynamic methods have a definite

potential for longitudinal use at frequent intervals since the toxic contrast agent MnCl2 does not

have to be administered.
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4.4.1 Effects of Protocol Choices on Observing a BOLD Response

The first attempt involved observing the BOLD response to administration of the potent

orexigenic hormone ghrelin and the anorexigenic hormone exendin-4. The BOLD effect is

the simplest to observe in terms of both the MR acquisition, and also no exogenous contrast

agent needs to be administered- the blood itself is the contrast agent. The protocol used here

was unusual for rodent fMRI in four ways- it used mice rather than rats, spin rather than

gradient-echoes, very high resolution (especially through-plane) and isoflurane anaesthesia

rather than α-chloralose or urethane. Each of these could have inhibited the ability to see a

change in BOLD signal, but can all be justified.

The first unusual aspect that requires justification is the choice of mice over rats. Rats are

used in the vast majority of rodent fMRI studies- their larger size (but not so large as to be

inconvenient) produces a greater MR signal and makes surgery for physiological monitoring,

maintenance and substance administration more practically possible than in mice. Previously,

there were only four published mouse BOLD fMRI studies, two of which involved hindpaw

electrical somatosensory stimulation (Ahrens and Dubowitz, 2001; Nair and Duong, 2004), and

the other two olfactory stimulation (Xu et al., 2003, 2005). Only three studies existed for CBV

fMRI, the first a pharmacological proof of principle using bicuculline administration (Mueggler

et al., 2001), then in the background of an Alzheimer’s disease (AD) model (Mueggler et al.,

2002) and one of hindpaw stimulation also in a background of an AD model (Mueggler et al.,

2003), all from the same laboratory. There have also been two mouse CBV mapping studies

(Moreno et al., 2006; Wu et al., 2003). The AD studies indicate a crucial motive to use mice

despite the practical difficulties- there are far more mouse models of disease, especially genetic

models, than for rats, and this includes the field of obesity and appetite (Speakman et al., 2008).

Recently, mouse haemodynamic fMRI has been extended beyond simple blunt stimuli into more

subtle pharmacological studies, specifically the effect of serotonergic (5-HTergic) agents on a

mouse behavioural model of early life stress (Razoux et al., 2008), and a genetic one of a

5-HT1A receptor inactivation (Gozzi et al., 2008), although these were CBV-based studies rather

than BOLD.
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The second is the use of spin- rather than gradient-echoes. Spin-echo has in the past been

primarily advocated for field strengths typical of clinical settings such as 1.5 and 3T, where

GE BOLD is highly susceptible to draining vein and large vessel effects (Duyn et al., 1994;

Frahm et al., 1994; Hoogenraad et al., 2001; Lai et al., 1993; Oja et al., 1999; Olman et al.,

2007; Song et al., 1996). However, these effects continue to the higher field strengths typical

of animal studies (Duong et al., 2003; Lee et al., 1999; Yacoub et al., 2005), hence despite the

greater BOLD responses produced by gradient-echoes, spin-echoes were used here, an approach

advocated elsewhere (Steward et al., 2005).

The part of the protocol with the least precedent is the use of such high spatial resolution.

The in-plane resolution of 200µm is in the range of most previous studies; it is the through-plane

resolution that was particularly high- most studies have not reduced slice thickness much below

1mm. This is mainly for reasons of SNR, since signal can drop off with reduced slice thickness

with a rapidity that does not affect in-plane resolution. However, increased SNR achieved

through lowered spatial resolution can be outweighed by the reduced CNR caused by increased

partial volume artefacts. Dissecting pathways involved in appetite-related responses requires

being able to resolve different hypothalamic nuclei. Their small size and irregular shape would

make a slice thickness of 1mm very inefficient, since many of the voxels would now include

non-parenchymal matter. Hence despite the lack of precedent and lowered SNR, there is a need

to use high spatial resolution to enable the method to be scientifically useful.

The final unusual part of the protocol is the use of isoflurane anaesthesia rather than

α-chloralose or urethane, which are commonly used anaesthetics for neurophysiological

studies (Flecknell, 1996). This orthodoxy dates back to a 1992 study indicating that

functional-metabolic coupling in the brain was better maintained under α-chloralose

anaesthesia than with many other anaesthetics (Ueki et al., 1992). This situation is thought

to be a consequence of α-chloralose inducing a lowered baseline state of brain activity (Hyder

et al., 2002; Maandag et al., 2007), although it must be stressed these studies only used one

functional model- electrical forepaw stimulation (Hyder et al., 1994). Also note that no similar

work has been carried out with urethane. Unfortunately since α-chloralose causes acidosis and

involuntary excitement and urethane is a potent carcinogen (Flecknell, 1996), neither can be
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used for longitudinal studies. This substantially limits scientific usefulness, and so other agents

must be considered.

A promising candidate is the α2-adrenoreceptor agonist medetomidine whose only

downsides are substantial diuresis and interference with studies of adrenoreceptors (Weber

et al., 2006). Unfortunately in our hands this anaesthetic was unable to maintain anaesthesia in

mice or rats. Three C57BL/6 mice weighing around 25g each were tested with medetomidine,

each over the course of 2 hours. The first was scanned under a similar protocol to Weber et al.

(2006)- initial induction with isoflurane (not halothane since this is carcinogenic and not readily

available), followed by a 100µg kg-1 hr-1 i.p. infusion (not s.c. since this is technically difficult

in mice, and no bolus was given since i.p. administration has much faster kinetics than s.c.).

The isoflurane was then turned off; however any attempt to reduce the concentration below

0.25-0.5% caused the mouse to wake up. Injection of 2-3 boli of 50µg kg-1 each followed by a

10-fold increase in the infusion rate to 1mg kg-1 hr-1 eventually prevented the mouse waking up,

but it still had a pedal pinch reflex and hence was not fully anaesthetised. In a second mouse,

after initial induction with isoflurane, a 200µg kg-1 bolus was followed up with a 400µg kg-1

hr-1 i.p. infusion (a four-fold increase over that use by Weber et al. (2006) and using the faster

i.p. route rather than s.c.). 15 minutes after the start, it was possible to completely turn off

the isoflurane without the mouse waking up. However, the mouse still displayed spontaneous

blinking of the eyelids, and hence was not fully anaesthetised. A third mouse was tried with

a similar protocol to the second, but further increasing the initial bolus and infusion doses to

250µg kg-1 and 500µg kg-1 hr-1 respectively. This mouse stayed still, but again was not fully

anaesthetised after withdrawing isoflurane, with occasional twitching of the tail, hindleg and

eyelids. In addition at all the doses used here there was substantial diuresis, with the mice

losing 2-3g weight in fluid. It would not be surprising that mice require a different dose level to

rats; what is surprising is that such large increases in dose failed to produce anaesthesia. These

increases were also well above the recommended range in mice of 30-100µg kg-1 s.c. (Lukasik

and Gillies, 2003) just for an induction bolus. Interestingly, an independent attempt to replicate

the protocol of Weber et al. (2006) in three rats of similar weight and the same strain failed

to produce anaesthesia (B. Alonso, pers comm). Based on these difficulties, determining the
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best dose range for medetomidine would have required large numbers of animals, and was not

considered worthwhile given the primary purpose of this study was to observe haemodynamic

responses to appetite-related stimuli.

Two other anaesthetics were also considered- firstly propofol, which has been used

successfully in animal BOLD-fMRI experiments before using electrical forepaw (Kennan et al.,

1998; Scanley et al., 1997) and hindpaw stimulation (Lahti et al., 1999). Unfortunately propofol

is formulated in soy bean oil as it cannot dissolve easily in water (see Banaszczyk et al.

(2002) and references therein); this gives it a nutritional load, and hence it is not suitable

for experiments studying energy balance. The second anaesthetic tried was saffan, which

has no history of use in fMRI. Unfortunately, in 3 C57BL/6 mice of around 25g each, at the

recommended dose of 10-15mg kg-1 i.v. (Lukasik and Gillies, 2003), there was a substantial

level of apnoea. Given these problems with using other anaesthetics, and that isoflurane and

halothane have been used successfully in BOLD fMRI before (Austin et al., 2005; Masamoto

et al., 2007), it was considered reasonable to use them here.

The two main problems in the BOLD experiment conducted here were signal noise and

drift- therefore the limiting factors are imaging at high spatial resolution and using mice rather

than the use of spin-echoes and isoflurane anaesthesia. Drift is thought to be caused by scanner

instability rather than physiological changes (Smith et al., 1999). This is a difficult problem

to solve. Noise levels could be reduced by using a higher SNR sequence such as EPI, but this

would require compromises in spatial resolution due to hardware limitations. Given that the

problems with BOLD appear intractable, it is best to use a method such as CBV-weighted MR

whose signal changes are much larger than BOLD (Chen et al., 2001; Mandeville et al., 2004)

and so should overwhelm drift and noise.

4.4.2 Factors Influencing Observation of a CBV Response

The failure of the CBV experiments to observe a response to either nitrous oxide or ghrelin

was very surprising. There was so little response it was not considered worth converting the

CBV timecourses to rCBV using the formula:

117



rCBV (t) =
ln( S(t)

SPOST
)

ln(SPOST

SPRE
)

(t=time, S(t) is signal at time t, SPOST is post-contrast baseline signal, and SPRE is the

pre-contrast baseline signal)

or detrending the timecourse (Schwarz et al., 2003).

As with BOLD, there were some unusual aspects to the CBV protocol used here that

could have prevented any chance of observing CBV responses. Unlike BOLD there were

only two rather than four, since the choice of MR sequence and anaesthesia were based on

a recommended protocol that has been used successfully before (Mandeville et al., 2004, 2007).

Imaging mice at high spatial resolution was justified earlier. So other areas need to be explored

to explain why these experiments failed.

Low sample sizes were used on the assumption that CBV experiments would produce

such large responses that even in individual animals they should be visible. However, there

is substantial inter-individual variability in response even in experiments where physiological

parameters such as breathing and heart rate are strictly controlled (Schwarz et al., 2007). Thus

performing this experiment on more animals may be productive.

A more contentious point is the level of physiological monitoring that is worthwhile. The

monitoring of blood pressure, gases and acidity requires the catheterization and blockage of

major blood vessels, hence the experiment becomes terminal due to the blood supply to several

tissues being cut off. This prevents longitudinal studies, and since cerebral blood pressure is

well regulated over a large range of input pressure (Gozzi et al., 2007; Zaharchuk et al., 1999),

at least monitoring this parameter is not essential to successfully observing a CBV response.

Experiments with appetite hormones usually require supporting evidence that the hormones

used are active- i.e. can change feeding behaviour. No such studies were carried out here,

though the ghrelin used was from a batch that had induced increased feeding in other studies.

Regardless of the ghrelin’s quality, there is still the question of why the nitrous oxide

stimulus did not produce a CBV response. One final possibility is poor contrast agent

administration and washout. The doses used here are based on CBV-optimization data from
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rats (Lu et al., 2007; Mandeville et al., 2004). However, for reasons of availability the contrast

agent used was not a USPIO but a SPIO. These have higher relaxivities than USPIOs but also

a greater washout (Wang et al., 2001; Weissleder et al., 1990). Despite this, good contrast or

CBV-weighting was still available at the point where nitrous oxide or ghrelin was administered.

However, in successful mouse phMRI experiments that used SPIOs the doses used have been

much higher than here, 3.75µl g-1 of undiluted Endorem in 22-26g mice (Gozzi et al., 2008)

rather than the 4.1µl 2-fold diluted Endorem used here (2.05µl g-1 undiluted; 1.8-fold more)

and 150µl undiluted Endorem in 25-40g mice (Razoux et al. (2008); 2.25-fold more). This

implies that CBV experiments in mice require higher contrast agent doses than in rats; however

another possible reason is that these two studies used spin-echoes which are less sensitive than

gradient-echoes to SPIO contrast, and so need higher doses to produce the same contrast level.

Against this is that the group which used the 3.75µl g-1 Endorem dose in mice uses 2.67µl g-1

for experiments in rats (Gozzi et al., 2007), similar to the 2.05µl g-1 dose used here in mice and

doses recommended elsewhere, but for rats (Lu et al., 2007; Mandeville et al., 2004). Thus for

CBV experiments in mice it may be necessary to use a higher contrast agent dose than used

here.

4.4.3 Concluding Remarks

Although ghrelin and exendin-4 are considered potent agents in the field of energy balance,

in the field of neuroscience as a whole they are not exceptional. Pharmacological MRI

experiments often concentrate on agents that are involved in depression disorders, and produce

large responses in either BOLD or CBV experiments (Martin and Sibson, 2008). A recent

study using a ghrelin stimulus found only tentative responses in rats despite tight control of

animal physiology (Gozzi et al., 2007). It may be that appetite hormones induce haemodynamic

responses that are too weak to be observed with current protocols and technology. Seen in this

context, it is not surprising that with the low sample sizes, noisy images and uncontrolled animal

physiology experienced in these experiments, a BOLD or CBV response to either ghrelin or

exendin-4 could not be observed.
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The lack of response to nitrous oxide is puzzling, and no explanation can be offered as to

why this happened.
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Chapter 5

Overall Discussion and Future Work

5.1 Summary of Developments

This thesis had three primary aims. The first was to make any possible improvements to the

MEMRI protocol and test their efficacy before implementation in dissecting the mechanisms

of appetite control. The second was the adaptation and implementation of image processing

techniques widely used in haemodynamic fMRI for the analysis of infusion MEMRI data. The

third was to see if it was possible to observe a haemodynamic response to appetite modulating

hormones.

The first aim was covered in Chapter 2, where a series of modifications- covering the MR

acquisition, MnCl2 infusion and an anaesthesia-free alternative- were explored. One of the

tested acquisition methods, fsems, provided higher spatial resolution and Mn sensitivity than the

previous sems protocol, with no compromise in temporal resolution. Another possible positive

development was adjusting the dose of Mn to fat-free rather than whole body mass to account for

mice with varied adiposity levels. Unfortunately appropriate mice (i.e. of the same strain but fed

different diets) on which to test this method were not available. Due to time limitations it was

not possible to implement any of these modifications in an experiment designed to investigate

mechanisms of appetite control.

Chapter 3 covered the second aim, and was the most productive study. Spatial normalization

and voxel-voxel statistics increased the speed and objectivity of MEMRI analysis to a great level

not possible when using ROIs placed individually on datasets.
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The third aim was covered in Chapter 4. Unfortunately neither BOLD-weighted or

CBV-weighted fMRI were able to observe a response to potent appetite-modulating hormones.

5.2 Limitations of Methods and Techniques Used

One characteristic of many of the experiments performed here has been low samples size,

typically with n<8. This was based on previous precedents, especially in appetite MEMRI,

where typical sample sizes ranged from 4 to 6 (Chaudhri et al., 2006; Kuo et al., 2006,

2007; Parkinson et al., 2009; So et al., 2007). For normally-distributed biological data it is

recommended to use sample sizes of n≥30 if possible (Crawley, 2005). This is logistically

difficult for animal experiments, so a compromise has to be reached. Given the variability of

responses observed in these experiments, especially for the infusion MEMRI data, e.g. the fed

vs fasted comparisons in Figure 2.9 on page 74, it would have been wise to increase the number

of animals used rather than terminate the experiment with a low sample size. The effect of

sample size on fMRI statistics is not a well-explored area for animal fMRI in general, including

MEMRI. Based on human BOLD-fMRI data, sample sizes of at least 20 are required to generate

robust and reproducible responses (see Thirion et al. (2007) and references therein). A large

volume of animal MEMRI data was already available in the research group, and indeed some

of this was used to generate the MEMRI signal change models shown in Figure 3.4 on page

92, and a separate dataset to demonstrate the efficacy of the spatial normalization procedure

(see Figure 3.6 on page 94. A potential use of these datasets would have been to simulate

the interaction between sample size and MEMRI signal response magnitude on the output of

statistical maps and ROI data. The results of such an analysis would have been invaluable for

determining the sample sizes that could have been used in the MEMRI experiments conducted

here, and should be used in the future.

Such datasets were not available for performing simulations of haemodynamic studies.

However, there is a much larger literature on animal haemodynamic fMRI than on MEMRI.

The Discussion of the Chapter 4 went into extensive detail about how the protocol choices made

here affected the likelihood of observing a response to gut hormones. The overall conclusion

was that it was not surprising that no responses were observed to the acute stimuli of ghrelin or
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exendin-4 injection given the combination of protocol choices made. This conclusion was based

on results derived from the literature. An especially important point is the use of isoflurane

as an anaesthetic. Although this enables recovery experiments, its few successful uses have

often involved large increases in the magnitude of the stimuli used in order to generate the

same response as that seen in experiments using anaesthesia with α-chloralose (Masamoto

et al., 2007). A more careful consideration of the pre-existing literature and more extensive

consultation with experts in the field may have yielded the same conclusions as this thesis

without having to perform the experiments.

A substantial amount of the time used to produce this thesis was occupied with formulating

and refining the spatial normalization procedure demonstrated in Chapter 3. Originally this

was not supposed to occupy a large amount of time; the majority of time was to be devoted

to using MEMRI to investigate the mechanisms of energy balance. A more effective use of

time may have been to collaborate with experts in fMRI analysis software who may have been

able to more efficiently adapt the pre-existing fMRI analysis suites to MEMRI timecourses.

This would have freed up time for such activities as increasing the sample sizes used in the

experiments here, or as mentioned before, using MEMRI to investigate the mechanisms of

energy balance.

5.3 Future Work and Prospects for Animal fMRI

The ideal scenario for functional MRI is to be able to observe neuronal activity in the whole

brain at high temporal and spatial resolution with minimal intervention and without bias.

Improving spatial and temporal resolution is conceptually relatively simple. The MR

acquisition protocols used in fMRI are no different to those used in other areas of MR. Hence

any general developments made in MR sequence design or hardware such as parallel imaging

(Pruessmann et al., 1999) can be applied to fMRI.

Minimal intervention is a greater problem. It is difficult to conceive how MRI could operate

on freely-moving animals, so they have to be immobilised. This effectively means anaesthesia

since it is much less stressful than the alternatives of physical restraint or neuromuscular

blockade (Peeters et al., 2001). Anaesthesia of course alters neuronal activity (Franks, 2008), so
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we now have a compromised situation where our tool of observation is substantially affecting

the situation it is meant to be observing. Unfortunately there are no known ways out of this

conundrum, aside from using the static MEMRI method described in Chapter 2, but which has

no temporal resolution. It just has to be hoped that anaesthesia is not a substantial confound.

This is conceivable, since anaesthesia can be likened to sleep (Franks, 2008), and many neuronal

processes operate during sleep reasonably close to how they would during unconsciousness. For

MEMRI there is an intervention problem additional to anaesthesia - MnCl2 toxicity. As with

anaesthesia one can hope that this is not such a substantial confound as to make any experiments

using it fatally flawed. However, unlike with the anaesthesia confound there is a conceivable

solution to this problem- finding an alternative to MnCl2 which is much less toxic or not toxic

at all. What this agent might be and how it would be developed is not clear though. Such an

agent would likely have to permeate both the BBB, plus the various voltage-gated channels for

Ca2+ Na+ and K+ that, depending upon the neuron type, are present and open during action

potentials.

The most intractable problem in fMRI is that of bias- no currently available fMRI method

measures activity evenly across the brain. There are many underlying causes of this. The most

widespread contributor is that there is a great variance in T1 (Kuo et al., 2005) and T2 times

(Ahrens and Dubowitz, 2001; Grüne et al., 1999a,b; Kuo et al., 2005) across the brain. Hence

any given MRI sequence will be unevenly sensitive to signal changes in different brain regions

in a manner dependent on the TR (in the case of T1) and TE (for T2) of the sequence used.

Fortunately this bias is predictable and can be factored out of images using information from

T1 and T2 maps. However this tends not to be done due to the resulting signal loss and because

appropriate maps acquired at the correct field strength and spatial resolution are not necessarily

available.

MEMRI and haemodynamic methods also suffer from their own specific bias problems. In

the case of the MEMRI infusion protocol used here, Mn does not enter the brain evenly- it is

biased towards the ventricles (Aoki et al., 2004), and so early on in the infusion the detection

of changes in neuronal activity is biased towards these regions. There are two ways to solve

this problem. The first is to continue the MnCl2 infusion until a steady state of Mn influx and
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efflux across the brain is reached, and then start fMRI measurements. Exactly how this would

be achieved without a toxic overdose is unclear. In addition, in the absence of BBB compromise

it may take upwards of 24 hours before such a state is achieved, posing substantial welfare and

life support demands. If a less toxic alternative to MnCl2 was available, this solution would

be more viable, especially if the agent reached an infusion equilibrium position more rapidly

than MnCl2 does. An even better method would use a hypothetical agent whose location stays

static but whose relaxivity changes in response to Ca2+ concentration. In this case as long as the

agent was evenly spread throughout the brain, or the bias in its spread was known, experiments

could be conducted soon after anaesthesia induction. Such agents are under active development

(Angelovski et al., 2008; Dhingra et al., 2008a,b; Mishra et al., 2008).

Haemodynamic methods suffer bias due to their relatively indirect observation mechanism-

under many circumstances the haemodynamic response to neuronal activity can be attenuated,

obliterated and/or decoupled- such as in the presence of caffeine (Chen and Parrish, 2009). This

in itself is an interesting effect to observe, though it still leaves us with the unsolved problem of

how to measure the electrical activity of neurons. An additional problem is that although ideally

we want to observe haemodynamics in the capillaries, much of the signal is derived from larger

vessels located further away (Lee et al., 1999, 2002), thus shifting the location of any apparent

activity change. This can be ameliorated by using higher field strengths and MR sequences

that attenuate large vessel signal, though the more stringent hardware requirements and reduced

signal means this approach is not widely implemented.

The challenge to fMRI lies in resolving and implementing solutions to all these biases.

If they cannot be resolved, fMRI will not be able to give us any more information useful to

the neuroscientist than more orthodox methods such as electrophysiology can. Many of the

experiments conducted in this thesis can be considered to be attempting to reduce bias, and

future work should continue in this direction.
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M. Tschöp, D. L. Smiley, and M. L. Heiman. Ghrelin induces adiposity in rodents. Nature,

407:908–913, Oct 2000. 22, 76, 103, 105, 107

R. Turner, A. Howseman, G. E. Rees, O. Josephs, and K. Friston. Functional magnetic

resonance imaging of the human brain: data acquisition and analysis. Exp Brain Res, 123:

5–12, Nov 1998. 48, 84, 90

M. Ueki, G. Mies, and K. A. Hossmann. Effect of alpha-chloralose, halothane, pentobarbital

and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta

Anaesthesiol Scand, 36:318–322, May 1992. 115

C. Vaisse, K. Clement, B. Guy-Grand, and P. Froguel. A frameshift mutation in human MC4R

is associated with a dominant form of obesity. Nat. Genet., 20:113–114, Oct 1998. 23

N. van Bruggen and T. Roberts. Biomedical imaging in experimental neuroscience. CRC Press,

2002. 21, 22, 36

A. Van der Linden, N. Van Camp, P. Ramos-Cabrer, and M. Hoehn. Current status of functional

MRI on small animals: application to physiology, pathophysiology, and cognition. NMR

Biomed, 20:522–545, Aug 2007. 50, 102

V. Van Meir, M. Verhoye, P. Absil, M. Eens, J. Balthazart, and A. Van der Linden. Differential

effects of testosterone on neuronal populations and their connections in a sensorimotor

brain nucleus controlling song production in songbirds: a manganese enhanced-magnetic

resonance imaging study. Neuroimage, 21:914–923, Mar 2004. 47

148



P. C. van Zijl, S. M. Eleff, J. A. Ulatowski, J. M. Oja, A. M. Ulu, R. J. Traystman, and R. A.

Kauppinen. Quantitative assessment of blood flow, blood volume and blood oxygenation

effects in functional magnetic resonance imaging. Nat. Med., 4:159–167, Feb 1998. 42

R. P. Vertes. Interactions among the medial prefrontal cortex, hippocampus and midline

thalamus in emotional and cognitive processing in the rat. Neuroscience, 142:1–20, Sep

2006. 64, 73

Y. Z. Wadghiri, J. A. Blind, X. Duan, C. Moreno, X. Yu, A. L. Joyner, and D. H. Turnbull.

Manganese-enhanced magnetic resonance imaging (MEMRI) of mouse brain development.

NMR Biomed, 17:613–619, Dec 2004. 44

Y. X. Wang, S. M. Hussain, and G. P. Krestin. Superparamagnetic iron oxide contrast agents:

physicochemical characteristics and applications in MR imaging. Eur Radiol, 11:2319–2331,

2001. 119

T. Watanabe, O. Natt, S. Boretius, J. Frahm, and T. Michaelis. In vivo 3D MRI staining of

mouse brain after subcutaneous application of MnCl2. Magn Reson Med, 48:852–859, Nov

2002. 44

R. Weber, P. Ramos-Cabrer, D. Wiedermann, N. van Camp, and M. Hoehn. A fully noninvasive

and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage, 29:

1303–1310, Feb 2006. 116

D. S. Weigle, T. R. Bukowski, D. C. Foster, S. Holderman, J. M. Kramer, G. Lasser, C. E.

Lofton-Day, D. E. Prunkard, C. Raymond, and J. L. Kuijper. Recombinant ob protein reduces

feeding and body weight in the ob/ob mouse. J. Clin. Invest., 96:2065–2070, Oct 1995. 82

R. Weissleder, G. Elizondo, J. Wittenberg, C. A. Rabito, H. H. Bengele, and L. Josephson.

Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents

for MR imaging. Radiology, 175:489–493, May 1990. 110, 119

D. B. West, W. A. Prinz, A. A. Francendese, and M. R. Greenwood. Adipocyte blood flow is

decreased in obese Zucker rats. Am. J. Physiol., 253:R228–233, Aug 1987. 39

149



D. S. Williams, J. A. Detre, J. S. Leigh, and A. P. Koretsky. Magnetic resonance imaging of

perfusion using spin inversion of arterial water. Proc. Natl. Acad. Sci. U.S.A., 89:212–216,

Jan 1992. 41

G. L. Wolf and L. Baum. Cardiovascular toxicity and tissue proton T1 response to manganese

injection in the dog and rabbit. AJR Am J Roentgenol, 141:193–197, Jul 1983. 45

E. C. Wong, R. B. Buxton, and L. R. Frank. Implementation of quantitative perfusion imaging

techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed,

10:237–249, 1997. 41

World Health Organisation. Obesity: preventing and managing a global epidemic, chapter

Economic costs of overweight and obesity. World Health Organisation, 2004. 19

K. J. Worsley, S. Marrett, P. Neelin, A. C. Vandal, K. J. Friston, and A. C. Evans. A Unified

Statistical Approach for Determining Significant Signals in Images of Cerebral Activation.

Hum. Brain Mapp., 4:58–73, 1996. 90

E. X. Wu, K. K. Wong, M. Andrassy, and H. Tang. High-resolution in vivo CBV mapping with

MRI in wild-type mice. Magn Reson Med, 49:765–770, Apr 2003. 114

K. Wynne and S. R. Bloom. The role of oxyntomodulin and peptide tyrosine-tyrosine (PYY) in

appetite control. Nat Clin Pract Endocrinol Metab, 2:612–620, Nov 2006. 20

K. Wynne, S. Stanley, B. McGowan, and S. Bloom. Appetite control. J. Endocrinol., 184:

291–318, Feb 2005. 20, 22

F. Xu, N. Liu, I. Kida, D. L. Rothman, F. Hyder, and G. M. Shepherd. Odor maps of aldehydes

and esters revealed by functional MRI in the glomerular layer of the mouse olfactory bulb.

Proc. Natl. Acad. Sci. U.S.A., 100:11029–11034, Sep 2003. 114

F. Xu, M. Schaefer, I. Kida, J. Schafer, N. Liu, D. L. Rothman, F. Hyder, D. Restrepo, and G. M.

Shepherd. Simultaneous activation of mouse main and accessory olfactory bulbs by odors or

pheromones. J. Comp. Neurol., 489:491–500, Sep 2005. 114

150



E. Yacoub, P. F. Van De Moortele, A. Shmuel, and K. Uurbil. Signal and noise characteristics

of Hahn SE and GE BOLD fMRI at 7 T in humans. Neuroimage, 24:738–750, Feb 2005. 115

Y. Yang, H. Gu, and E. A. Stein. Simultaneous MRI acquisition of blood volume, blood

flow, and blood oxygenation information during brain activation. Magn Reson Med, 52:

1407–1417, Dec 2004. 42

G. S. Yeo, I. S. Farooqi, S. Aminian, D. J. Halsall, R. G. Stanhope, and S. O’Rahilly. A

frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat.

Genet., 20:111–112, Oct 1998. 23

T. Yokawa, E. Tabuchi, M. Takezawa, T. Ono, and K. Torii. Recognition and neural plasticity

responding to deficient nutrient intake scanned by a functional MRI in the brain of rats with

L-lysine deficiency. Obes. Res., 3 Suppl 5:685S–688S, Dec 1995. 48

A. A. Young, B. R. Gedulin, S. Bhavsar, N. Bodkin, C. Jodka, B. Hansen, and M. Denaro.

Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic

(ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca

mulatta). Diabetes, 48:1026–1034, May 1999. 103

X. Yu, Y. Z. Wadghiri, D. H. Sanes, and D. H. Turnbull. In vivo auditory brain mapping in mice

with Mn-enhanced MRI. Nat. Neurosci., 8:961–968, Jul 2005. 46, 50, 52, 53, 55, 75, 77, 83

X. Yu, D. H. Sanes, O. Aristizabal, Y. Z. Wadghiri, and D. H. Turnbull. Large-scale

reorganization of the tonotopic map in mouse auditory midbrain revealed by MRI. Proc.

Natl. Acad. Sci. U.S.A., 104:12193–12198, Jul 2007. 46, 50, 52, 53, 55, 75, 83

X. Yu, J. Zou, J. S. Babb, G. Johnson, D. H. Sanes, and D. H. Turnbull. Statistical mapping of

sound-evoked activity in the mouse auditory midbrain using Mn-enhanced MRI. Neuroimage,

39:223–230, Jan 2008. 46, 48, 50, 52, 53, 55, 75

G. Zaharchuk, J. B. Mandeville, A. A. Bogdanov, R. Weissleder, B. R. Rosen, and J. J. Marota.

Cerebrovascular dynamics of autoregulation and hypoperfusion. An MRI study of CBF and

changes in total and microvascular cerebral blood volume during hemorrhagic hypotension.

Stroke, 30:2197–2204, Oct 1999. 118

151



P. Zaninotto, H. Wardle, E. Stamatkis, J. Mindell, and Head J. Forecasting obesity to 2010.

Technical report, National Centre for Social Research and Department of Epidemiology and

Public Health at the Royal Free and University College Medical School, 2006. 19

Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman. Positional

cloning of the mouse obese gene and its human homologue. Nature, 372:425–432, Dec

1994. 82

152


	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Contributions of Others to this Thesis
	Acknowledgements
	Introduction
	Brief Overview of Appetite and Energy Balance Regulation
	Why Use Magnetic Resonance Imaging Rather Than Other Methods for Brain Activity Measurement in Nuclei Regulating Energy Balance, and Why Use Rodents?
	Principles of Magnetic Resonance Imaging
	Origin of the MR Signal
	Behaviour of Atomic Nuclei with an Intrinsic Angular Momentum and Magnetic Moment in an External Magnetic Field
	Resonance and Continuous Wave NMR
	Pulsed Wave NMR, T2, T2' and T2*
	Echo Formation

	Spatial Localization
	Magnetic Field Gradients Can Be Used to Spatially Localise the MR Signal
	Frequency Encoding of Spatial Position
	Phase Encoding of Spatial Frequency
	k-space Representation

	Other Imaging Considerations
	Repeated Pulse Sequences and T1
	T1, T2 and T2* Contrast


	Using MRI to Measure Brain Activity
	Changes That Occur During Neuronal Activity
	Haemodynamic
	Ca2+ Channel Opening

	Detection of Haemodynamic Changes in the Brain
	Bolus Tracking/DSC-MRI
	ASL
	IRON
	BOLD Effect

	Manganese-Enhanced MRI (MEMRI) is Sensitive to Voltage-Gated Ca2+ Channel Opening, and Hence Brain Activity
	Principles of MEMRI
	Manganese Formulation and Toxicity
	Variables in MEMRI Experiments

	Analysis of Haemodynamic and MEMRI fMRI Data

	Overview of fMRI Studies of Energy Balance in Rodents
	Aims

	Manganese-Enhanced MRI
	Introduction
	Materials and Methods
	Reagents
	Non-MR Equipment
	Animals
	Metabolic Cage Measurements
	Static MEMRI Injection Regimen
	Animal Preparation for MRI
	MEMRI Acquisitions
	3D gradient-echo timecourses for dynamic MEMRI
	2D fast spin echo timecourses for dynamic MEMRI
	3D gradient-echo for static MEMRI

	Measurement of Adiposity and Lean Body Mass Using MRS
	Animal Numbers Used in Infusion MEMRI Experiments
	Optimization of Image Acquisition Protocol
	Effects of Changing Infusion Rate and Duration
	Effects of Adjusting MnCl2 Dose by Lean Mass in Animals of Varying Adiposity

	MRI Data Analysis
	Other Statistical Methods

	Results
	Optimization of Image Acquisition Protocol
	3D gradient-echo
	2D fast spin echo

	Effects of Changing Infusion Rate and Duration
	Continuing the 0.8mol g1.655-1 hr1.655-1 MnCl2 Infusion for the Entire Post-Baseline Period Leads to a High Mortality Rate
	Stretching the MnCl2 Dose Across the Entire Post-Baseline Period Leads to Poor Enhancement

	Effects of Adjusting MnCl2 Dose by Lean Mass in Animals of Varying Adiposity
	i.p. MEMRI for Appetite Studies is Confounded by Weight Loss

	Discussion

	Automated Analysis of MEMRI Data
	Introduction
	Materials and Methods
	Spatial Normalization
	sems Fed/Fasted Data
	Exploratory Data Analysis for Generation of MEMRI Signal Change Model
	Other Statistical Analyses

	Results
	Generation of MEMRI Signal Change Model
	Effect of Spatial Normalization on Analysis of MEMRI Data

	Discussion

	Haemodynamic fMRI
	Introduction
	Materials and Methods
	Hormones
	BOLD-Weighted Acquisitions
	CBV-Weighted Acquisitions
	Image Analysis

	Results
	BOLD Timecourses Exhibit Substantial Drift, are Noisy and Show No Response to Ghrelin or Exendin-4 Injections
	N2O Challenge Does Not Affect CBV-Weighted Signal
	Ghrelin Injection Does Not Affect CBV-Weighted Signal

	Discussion
	Effects of Protocol Choices on Observing a BOLD Response
	Factors Influencing Observation of a CBV Response
	Concluding Remarks


	Overall Discussion and Future Work
	Summary of Developments
	Limitations of Methods and Techniques Used
	Future Work and Prospects for Animal fMRI

	References

