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Abstract—This paper quantifies the performance difference
between custom and generic hardware algorithm implementa-
tions, illustrating the challenges that are involved in Body Area
Network signal processing implementations. The potential use
of analogue signal processing to improve the power performance
is also demonstrated.

I. INTRODUCTION

The intelligent sensor node for use in Body Area Networks

is a well defined concept. A sensor is used to monitor a phys-

iological parameter such as the ECG, EEG or temperature,

and then local signal processing, on the sensor node itself, is

used to effect immediate feedback and closed loop systems or

to reduce the amount of data to store or transmit, allowing

greater operational lifetimes. The heart of the sensor node

thus becomes a signal processing algorithm.

It is well known that the power available from small, easily

wearable, batteries is very limited and for a given size of

battery historically the capacity has doubled only every 5–

20 years [1]. The low power implementation of the signal

processing algorithm thus becomes essential. For example,

it has been shown that for wireless EEG applications com-

pression or data reduction is required to make systems that

operate from small batteries for a day or more feasible, and

that this compression has a maximum power budget of only

a few hundred micro-Watts [2].

To put this power budget in context, [3] investigates

the hardware/software co-design implementation of a lossey

EEG compression algorithm that compresses the data by

98%. However, the lowest power consumption found is

72 mW, over two orders of magnitude above the power

budget for this level of compression for the compression

to be power beneficial. It is clear that implementation of

suitable algorithms will not be a trivial task.

This paper takes an example algorithm (based upon the

one in [4]) and investigates how it can be implemented within

the power budget available, which is found to be 96 µW.

The algorithm is for online data reduction in wireless EEGs

for epilepsy diagnosis and is intended to be simple, giving

a satisfactory performance level at the minimum power

consumption, and so is a good candidate for investigating

the power feasibility of such algorithms.

Two potential algorithm implementations are investigated

here. Firstly the generic approach: essentially in the software

domain using off-the-shelf processor solutions. Here the al-

gorithm is in the digital domain. The second implementation
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considered looks at the fully custom approach, but this time

in the analogue domain.

It is found that it is not possible to achieve anywhere near

satisfactory power performance using the generic approach.

Furthermore, with modest assumptions, it is found that while

a hardware digital domain implementation should be feasible,

in the analogue domain it is feasible using just 24% of the

available power budget. This result illustrates both the power

challenges that must be faced for Body Area Networks to be

truly realised, and that analogue signal processing, which at

the fully custom level is not necessarily more specialised than

a fully custom digital circuit, may be a preferable approach

to tackling these power challenges.

A comparison such as the one carried out here will always

contain a number of high level assumptions and it is obvious

to some extent that dedicated circuits will always outperform

more generic ones. Nevertheless, useful confirmation of this

fact is presented. Also, the large discrepancy between the

digital and analogue domains indicates that even relaxing

some of the assumptions present an analogue approach is

very competitive, and likely preferable.

The remainder of this paper is organised as follows:

Section II summarises the EEG data reduction algorithm

to be investigated and Section III derives the power budget

available. The generic and digital domain power consump-

tions are then found in Section IV, the analogue estimates

in Section V and the results discussed in Section VI.

II. ALGORITHM OVERVIEW AND METHODS

The algorithm to be investigated here is a developed

version of the one proposed in [4]. A high level overview

of the procedure is given in Fig. 1. The overall aim of

the algorithm is to reduce the system power consumption

by recording only interictal (inter-seizure) epileptic events

whilst not recording background signals. This gives a sig-

nificant data reduction, reducing the storage or transmission

power. As the algorithm aim is only data reduction, not event

quantification, significant data reduction can still be achieved

even with a number of false positives present [5].

The algorithm operates by processing all of the EEG

channels recorded, a single channel at a time. A detection

in any one channel causes all of the channels to record a

section of EEG before and after the detection. Figures are

presented here for a high quality 32 channel device (current

portable EEG units typically have 16 channels) although

this is essentially a variable. The zβ parameters control the

operation of the algorithm with β being user set and z being

an automatically generated normalizing parameter to correct
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Fig. 1. A high level overview of the algorithm to be investigated. Detections
in any monitored channel cause the algorithm to start recording.

TABLE I

ANALOGUE AND DIGITAL ESTIMATES FOR A ONE CHANNEL

ALGORITHM.

Component Number
required

Analogue
power / W

Digital
operations

Bandpass filters 2 200 n 46

Lowpass filter 1 20 n 7

Delay 2 200 n 4

Rectifier 1 140 n 1

Magnitude
comparators

2 40 n 6

Multiplier 1 100 n 1

Switch 1 Negligible 1

Total 10 700 n 66

for broad level amplitude differences in different EEG traces.

The effect of any data buffering during the recording process,

so that data both before and after the detection point is

recorded, is not considered here.

Although not all stages are shown explicitly in Fig. 1 a

total of ten steps are performed each time the algorithm

is run. These are listed in Table I. The overall intent is

that this is a very simple signal processing algorithm that

gives a satisfactory performance level at the minimum power

consumption, and so is a good candidate for investigating the

power feasibility of such algorithms.

In Section IV and Section V the power consumption

of the algorithm is estimated by considering each of the

ten steps in turn and, in the digital domain estimating the

absolute minimum number of fundamental operations that

are required, which is then linked to the power, and in

the analogue domain by finding the power consumption

of a typical, representative integrated component from our

group’s previous work all using the same process technology.

Overall results are summarised in Table I.
+

- ADC

+

- ADC Compression

E1
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Transmitter

Fig. 2. An example two channel wireless EEG system based upon [2].
The compression block can be in either the analogue or digital domain.

III. POWER BUDGET

The power budget estimate here is based around the work

from [2] and is explained by considering the two channel

EEG acquisition system shown in Fig. 2, which can easily

be extended to more channels. The basic architecture simply

contains an instrumentation amplifier, an analogue to digital

converter (ADC), a compression block (which contains the

algorithm being investigated here) and a transmitter. The

compression block can be freely placed either before or after

the ADC for implementation in either the analogue or digital

domain.

The power consumption of the entire system is given by

Psys = NPamp + NPADC + Pc + CPt (1)

where N is the number of channels, C is the compression

ratio giving the ratio of the number of bits that are actually

transmitted to the total number of bits if no compression

was present, Pt is the power consumption of the transmitter,

and the other three terms are the power consumptions of

the amplifier, ADC and compression respectively. Just one

compression stage is present to give the total power available

for compression, but this can be broken down per channel if

wanted.

If the transmitter has a power consumption of J Joules

per bit Pt is given by

Pt = JfsRN (2)

where fs is the sampling frequency and R is the resolution

in bits of the ADC.

If the system is operated with no compression stage

present Pc = 0 and C = 1. In order for the compression

stage to be beneficial the following inequality must thus be

satisfied:

Pc < JNfsR(1 − C). (3)

In practice, of course, Pc must be much lower than this

to make a significant difference to the operating lifetime of

the device, but this is not considered here. The results are

intended to provide the upper bound on the power budget.

To minimize the power consumption fs and R should be

kept as low as possible. Typical values for the recording of

clinical EEGs are given in [6] as fs = 200 Hz and R =
12 bits. [2] gives a conservative estimate of J , which should

be achievable in most situations as 50 nJ/bit, and a more

speculative figure of 5 nJ/bit. This lower figure is used here

so that any compression stage will not become obsolete if this
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figure can be reliably realised. Finally, C is taken as 0.5 (a

50% data reduction), in line with the algorithm performance.

The power budget for the compression stage for its com-

pression to be power beneficial is thus

Pc < 192 µW (4)

although again, the actual power consumption may want to

be an order of magnitude below this to be truly beneficial.

Finally, as a high level assumption without explicit justifica-

tion it is assumed that 50% of the power budget is reserved

for the buffering of data before and after a detection is made

(see Section II). This gives the end power budget for the 32

channel algorithm as 96 µW.

IV. DIGITAL POWER ESTIMATE

A. Assumptions and fundamental limits

The analysis considered here is based around the use

of essentially off-the-shelf micro-controller components. As

a result the dynamic range of the signal processing is

fixed regardless of that actually required. For example, if

a 16 bit microprocessor is used calculations are assumed to

be performed to 16 bit precision, even if this is not strictly

necessary.

It is also noted that the power requirements of digital

implementations are strongly dependent on the technology

used to implement them. A high level model for the dynamic

power (the power used while performing calculations) of a

digital circuit assumes that power is only used to charge and

discharge capacitive loads [1], [7]. The power consumption

is then broadly given by

P = fCT V 2

DD
(5)

where f is the operating frequency, CT is the total capaci-

tance that is switched and VDD is the supply voltage.

This basic model illustrates the high dependence of power

in the digital domain on the supply voltage. Also, both CT

and VDD tend to reduce as the technology feature size is

reduced [7]. However, static power due to leakage currents

tends to increase and it is possible for this to begin to

dominate. This effect is not considered in the calculations

below. It is noted, however, that for highly integrated systems

the front-end, signal processing and transmitter will all be

on the same chip. As a result it is not necessarily possible

to arbitrarily scale the process technology to improve the

performance of the signal processing as the extra leakage

currents may limit the performance of the highly sensitive

analogue front-end.

Finally, unless otherwise stated the calculations below are

based around the number of instructions to be carried and

so are independent of any duty cycling that may be present.

B. Operation count

The counts below illustrate the fundamental number of

operations that are required to carry out each step in the

algorithm each time it is run. These are intended to be very

lower bound estimates and no weighting is applied for the

relative complexity of different operations.

1) Bandpass filters: The generation of the two bandpass

filter transfer functions required is detailed in the s domain

in [8] where they have seven poles and two zeros. Converting

these to the z domain using the MATLAB c2d function

results in a filter with seven poles and six zeros. The filtering

operation thus requires 12 multiplications and 11 additions

or subtractions. These are all taken as elementary operations

giving 23 operations per filter per filtering operation to be

carried out.

2) Lowpass filter: Similar to the above, the z domain filter

has two poles and one zero to implement. This thus requires

7 basic operations per filtering operation.

3) Delay elements: It is assumed that just two operations

are required to implement a delay: one to store the current

value and one to retrieve a previous value.

4) Rectifier: This is taken as just one operation to remove

any sign bit which may be present.

5) Magnitude comparators: Similar to the above, two

operations are assumed to remove any sign bits and then

one further operation to perform the comparison. Thus three

operations are needed in total.

6) Multiplier: This is taken as one basic operation.

7) Switch: Again this is taken as one operation.

C. Power consumption

The above estimates give a total of 66 operations to be

performed each time the algorithm is run. Note that in

practice it is highly likely that each algorithm block will

require more than this bare minimum number of operations,

each operation will correspond to a number of instructions

and each instruction may take more than one clock cycle to

execute. It may also be possible to perform more than one

instruction per clock cycle. Preliminary results on a high per-

formance Texas Instruments (TI) C6000 series Digital Signal

Processing chip indicate that 2000 cycles per algorithm run

are required, a factor of 30 more than the minimum number

of operations, but this is not considered at this point.

An analogue version of the algorithm (see Section V) runs

in continuous time and so to be comparable the digital one

must be run each time a new sample is taken, at fs which

is taken as 200 Hz. It must also be run on all 32 channels

meaning it must be run 6400 times a second giving 422 400

operations to be performed a second. This can now be related

to the power consumption in several different ways. It is

assumed here that each basic operation considered above is

equivalent to one instruction to again give a lower bound

solution.

Firstly, modern Intel processors, designed of course for

computers rather than portable medical equipment, have an

energy per instruction of approximately 10 nJ [7]. At 422 400

instructions per second this results in a power consumption

of 4.2 mW, well above the 96 µW power budget. To operate

within this power budget only 200 pJ/instruction is available.

To operate within a power budget of 23 µW (see Section V)

only 50 pJ/instruction is available.

Of course, these Intel processors aren’t particularly suited

to the portable situation in hand. As a more representative
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TABLE II

ACTIVE MODE POWER CONSUMPTION FOR A TI MSP 430

MICROPROCESSOR WITH 2.2 V SUPPLY [11].

Clock speed / kHz Current supply / µA Power consumption /
µW

1000 270 594

100 60 132

4 5 11

example the classic ARM7 processor has a performance

of approximately 3.3 mW/MIPS (Millions of Instructions

per second) on a 0.35 µm, 3.2 V process [9]. In reality a

performance of 230 µW/MIPS is required, a factor of 14

improvement. The more modern ARM cortex-M3 processor

is stated to be 70% (a 1.7 factor) more efficient [10], so this

is still insufficient.1

As a final comparison, and one which allows a link

to fully custom digital design, the popular for biomedical

applications TI MSP430 microprocessor is considered, and

this incorporates some of the overheads present in an actual

implementation. Table II shows its typical power consump-

tion [11]. Lower power operation is achieved by using lower

clock speeds but it is clear that for operation at 96 µW

the device would have to be clocked at under 100 kHz

and so there simply aren’t enough clock cycles available to

implement the required 422 400 operations per second.

It is thus clear that at this point in time it isn’t realistic

to use a generic approach to the signal processing. To link

the current performance with that required the following

argument is considered. The TI MSP430 is a 16 MIPS

processor with a power consumption of 594 µW, giving a

performance of 37 µW/MIPS. If the 430 duty cycled such

that it has a 1 MHz clock and is in active mode 42%

of the time to give sufficient clock cycles to perform the

algorithm if the performance level of one operation per cycle

can be achieved, the power consumption becomes 250 µW.

To fulfil the 96 µW power budget an improvement by a

factor of 2.6 to 14 µW/MIPS is required. However, taking

the factor of 30 from the preliminary DSP implementation

this figure becomes approximately 0.5 µW/MIPS which is

inline with the performance of fully-custom ASICs which

are of the order of 1 µW/MIPS [12]. Thus, although the

improvement factor with the assumptions present is fairly

modest in practice it is highly likely that the performance of

a fully custom implementation will be needed, but such an

implementation should be feasible.

V. ANALOGUE POWER ESTIMATE

A. Assumptions and fundamental limits

The power consumption of an analogue implementation

is taken by considering the power consumption of typical

1It is noted that [10] also gives the ARM7 power consumption as
0.28 mW/MHz and the cortex-M3 as 0.19 mW/MHz. If the processor could
be operated at 422 kHz, with one high level operation per processor clock
cycle these imply that acceptable power performance may be possible. Given
the other analyses present here however this is currently deemed unrealistic.
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Fig. 3. The fundamental limits on the power requirements of analogue and
digital signal processing versus dynamic range. From [15], [16].

components from our group and applying suitable safety

factors. In general these components only have a dynamic

range of around 45 dB (between 7 and 8 bits). This is

considerably lower than the recommended EEG resolution of

12 bits [6]. However, it is noted that a typical diagnosis by

a human from a digital EEG is performed with 16 channels

on a screen with 1024 vertical pixels giving just 6 bits of

resolution [13]. It is thus highly likely that this dynamic

range is sufficient for the algorithm operation and this is

confirmed by recent results by the authors [14].

This is significant due to the well known results from [15],

[16] which are illustrated again in Fig. 3.2 The results

illustrate the fundamental limit for the power required for

signal processing in the analogue and digital domains. It

is derived principally for filter circuits (the core of the

algorithm considered here) but is applicable in some other

cases. It is found that the power consumption of a digital

circuit is essentially independent of the dynamic range while

that of an analogue circuit is a strong function of it. Thus

at low dynamic ranges analogue circuits can give a better

power performance. Of course, practical values are generally

significantly above the fundamental limits, but this does give

an expectation that dedicated analogue signal processing

could outperform its digital counterpart. Also, it is noted

from [15] that reducing the supply voltage of an analogue

signal processing solution doesn’t drastically improve the

power performance as is the case for digital circuits.

B. Block power estimates

1) Bandpass filters: The power estimate here is based

upon the performance of the 6th order bandpass filter in [17]

which has a power consumption of 70 nW. Taking an

arbitrary safety factor of 1.4 to account for requiring a

2Note that absolute values in Fig. 3 depend upon the model used and the
definition of dynamic range, but the qualitative result is unchanged.
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higher order filter, needing lower centre frequency and not

necessarily being able to replicate this performance, the

power estimate is 100 nW per filter. Preliminary work on

this filter indicates that this figure is achievable.

2) Lowpass filter: The low pass filter from [18] should

be almost directly applicable and so no safety factor is taken

giving an analogue power estimate of 20 nW.

3) Delay elements: In the analogue domain a delay ele-

ment is essentially just a high order filter and so the estimate

is again taken as 100 nW.

4) Rectifier: The power estimate is again taken from [18]

which describes a roughly compatible rectifier with a 100 nW

power consumption. Again taking a 1.4 safety factor the

analogue power estimate is taken as 140 nW.

5) Magnitude comparators: In analogue it is possible

to avoid the use of two rectifiers by using an inverting

amplifier and two comparators. Based upon clocking down

the comparator from [19], the complexity of this is assumed

to be roughly equivalent to the low pass filter stage giving a

power estimate of 20 nW.

6) Multiplier: An analogue multiplier is essentially the

same as the transconductor used in the filters required and

so should be readily achievable within the 100 nW power

budget given to them.

7) Switch: The power consumption of this simple stage

is assumed to be negligible.

C. Total power consumption

Combining all of the analogue figures gives a total power

consumption estimate of 700 nW. The algorithm must be

implemented for each channel and so for a 32 channel system

the total power is 23 µW; just 24% of the available power

budget. This is provides plenty of margin for error in the

high level calculations that have been carried out here and

also offers the possibility of longer system lifetimes because

the compression occurs at such a low power level.

VI. DISCUSSION AND CONCLUSIONS

This paper has investigated a signal processing algorithm

with just ten steps, incorporating lower bound figures when-

ever possible and applying safety factors to ensure that the

estimated power consumptions are achievable. Nevertheless,

it is clear that a generic digital implementation is not

currently feasible from a power perspective, and indeed the

performance of a fully custom design is required before the

power budget can begin to be realised. In contrast, however,

the custom analogue solution requires just 24% of the power

budget.

Whilst it is obvious to some extent that a specialised

implementation will always outperform a generic one, the

difference between the two performance levels has been

illustrated, and is significant. Further demonstration of the

potential use of analogue signal processing has also been

given, quantifying its performance benefit.

Given this, in future work it is proposed to investigate the

implementation of the algorithm in the analogue domain,

against the traditional trend of digital solutions. This has

been shown to be capable of giving a very high performance

level. While a digital implementation could be done at the

Hardware Description Language level and re-synthesised to

reap the benefits of technology scaling, this is not arbitrarily

possible as doing so decreases the performance of the front-

end system. Such a custom digital approach is also not

intrinsically easier than the analogue approach.

Finally, it is likely that similarly limited power budgets

apply to other Body Area Network applications and custom

analogue approaches may be significant in meeting the power

challenges presented.
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