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Abstract—Objective: To compare the performance of an
EEG data selection/reduction algorithm for epileptic EEGs on
ambulatory and non-ambulatory recorded data to confirm that
acceptable performance is achievable in ambulatory recordings
despite the presence of overt artifacts. Methods: A total of 167
hours of EEG data containing 899 marked interictal events
is analysed to determine the percentage of events correctly
recorded (the sensitivity) and the amount of data reduction
achieved. Results: A better sensitivity-data reduction trade-
off is found in the ambulatory recorded data. This may be
unexpected as ambulatory recordings are known to contain
large numbers of artifacts, but is accounted for by these
artifacts being easily detected and discarded, improving the
data reduction. Conclusions: Satisfactory performance levels
are found in both data types, no degradation is present with
ambulatory recordings. Significance: Demonstrates that the
processing of EEG data for wearable EEG applications is
feasible without a loss in performance compared to traditional
inpatient EEG usage.

I. INTRODUCTION

The electroencephalogram, or EEG, is a classic method

for measuring a person’s brainwaves. Electrodes are placed

on the scalp and these detect the micro-Volt sized signals

that result outside the head due to the accumulated neuronal

action within the brain. See [1] for an overview.

EEG has long been used in the diagnosis of epilepsy,

a common neurological disorder that affects approximately

1% of the population and is characterised by unprovoked

seizures [2]. These seizures manifest in the EEG allowing

them to be recorded and accurate diagnoses made. Other

features, such as interictal spikes (spike features in-between

seizures) are also present in the EEG of epileptic patients and

these can also be useful in diagnosis and the localisation of

the epileptic loci within the brain. This is not least because

seizures can be rare events and so recording them on a

relatively short EEG can be difficult. Interictal events give

secondary features that can be informative.

The trend in epilepsy diagnosis has thus progressed to-

wards longer EEG recordings. However, this gives a large

amount of data to be analysed by a human and so there has

been a large amount of interest in automating both spike

and seizure detection (see, for example, [3], [4]). At the

same time, long term inpatient EEG recordings are resource

intensive and not universally available [5]. As a result am-

bulatory EEG (AEEG) recordings are also available during

which the patient has their EEG recorded on a portable unit

while undertaking their normal daily life. These recordings
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cost approximately 50% of their inpatient counterparts [5]

and are potentially integrated into body area networks for

personalised medicine applications.

However, as the patient is not restricted to a single location

for the recording of an AEEG there is the possibility for

additional artifacts, not present in an inpatient recording, to

occur. For example the quality of the recording may reduce as

an electrode comes loose over time and there is no technician

present to spot and correct this. Multiple studies, such as [6],

have investigated the human interpretation of ambulatory

and non-ambulatory recordings, demonstrating the clinical

utility of AEEG. However, it is also essential to show that

automated algorithms can perform satisfactorily upon AEEG

data sets.

This is especially important as signal processing begins

to be incorporated into the AEEG recording device. For

example, the battery life of un-cumbersome, wireless, AEEG

units is very limited, [7], and the authors have proposed

the use of an onboard detection algorithm to select only

candidate interesting sections of EEG to be recorded. This

offers significant data reduction and so power savings and

an increased operational lifetime [8].

The feasibility of detection algorithms applied to the

AEEG has been demonstrated in, for example, [9]. This

paper investigates the direct comparison of an algorithm per-

formance when applied to ambulatory and non-ambulatory

recordings. An algorithm developed by the authors for online

epileptic EEG data reduction, described in Section II, is

taken and its performance with both ambulatory and non-

ambulatory recordings investigated. Methods are described in

Section III with the analysis being broken into two parts: one

to measure the number of events correctly recorded and one

to quantify the amount of data reduction, with this approach

allowing more data to be analysed. The results are presented

in Section IV and discussed in Section V where it is found

that AEEG data sets can be analysed without a degradation

of performance. Indeed, despite the potential extra artifacts

present in ambulatory records the algorithm performance is

found to be superior in these data sets and this effect is

commented upon.

The results presented here are of course specific to the

algorithm considered, which is designed for the online data

reduction of epileptic EEG traces, but AEEG is also of

critical use in fields such as augmented cognition where the

EEG is processed to determine the user’s cognitive state.

These applications will also require online signal processing

and so the result that the automated analysis of AEEG traces

is not significantly degraded is very significant for these
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Fig. 1. A high level overview of the algorithm to be investigated. Detections
in any monitored channel cause the algorithm to start recording.

fields as well.

II. ALGORITHM OVERVIEW

The algorithm to be investigated here is a developed ver-

sion of the one proposed in [10]. A high level overview of the

procedure is given in Fig. 1. The overall aim of the algorithm

is to correctly record interictal epileptic events as identified

by an expert marker whilst not recording background signals.

This gives a significant data reduction, reducing the amount

of data to be stored and hence reducing the system power

consumption as this data storage is power intensive. In turn

this offers greater operational lifetimes. As the algorithm aim

is only data reduction, not event quantification, significant

data reduction can still be achieved even with a number of

false positives present [8].

The algorithm version considered here operates on 10 EEG

channels in parallel with a detection in any one channel

causing all of the channels to record. The 10 channels for

analysis are selected purely as the channels common to all

of the data sets available and are: F7, F8, Fp1, Fp2, O1, O2,

T3, T4, T5, and T6.

The core of the processing is the extraction of frequency

content in two bands by wavelet based, bandpass filtering.

This information is then thresholded to determine whether

a detection is made. The external detection threshold zβ

is given by a user set parameter β and z which is an

automatically generated normalizing parameter to correct for

broad level amplitude differences in different EEG traces.

The user is free to sweep β to obtain a range of performances

from the algorithm.

III. METHODS

The comparison carried out here is broken down into

two parts corresponding to comparing the two performance

metrics of interest separately. These two metrics are the

sensitivity—the percentage of expert marked events which

are correctly recorded—and the percentage of the total data

that is marked for recording, which is related to the data

reduction. The data available for analysis, which is obtained

from two testing sites, is summarised in Table I. Note that

in general the total data for each patient may be made up

of more than one non-continuous data set, but for the long

term ambulatory recordings (patients 19–21) the records are

continuous to reflect any potential electrode contact issues.

The presence of any medication taken by the patients during

testing is not normalized.

Section IV-A presents the sensitivity analysis using the

data from patients 0–15. The aim of this is to show that

expert marked events can be correctly detected in both

ambulatory and non-ambulatory data. The analysis uses 173

events in approximately 26 hours of AEEG data and 726

events in 9 hours of non-AEEG data. The disparity in

the amounts of data analysed is robustly compensated for

by using a time/event weighted average to calculate the

sensitivity [11]. This is calculated as: if there are M records

and the ith record has a duration Ti, Ni marked events and Di

correctly detected events the time/event weighted sensitivity

is:

Sensitivity =
1

∑
M

i=1

Ti

Ni

M∑

i=1

Di

Ni

·
Ti

Ni

. (1)

This calculation method prevents short records or ones with

large numbers of events from over-weighting the results, nor-

malizing for the amount of data tested. A similar weighting

is applied to the percentage of data transmitted figures.

The results are presented on a ROC curve to illustrate

the trade-off between the sensitivity of the algorithm and

the amount of data reduction that can be achieved as the β

value is varied. This is required as although the aim of this

analysis is only to compare the sensitivity of the algorithm on

the two data types, of course any sensitivity can be achieved

if no data reduction is required, and so this cost must also

be illustrated. A chance performance line is also shown:

if events are randomly distributed it may be expected as a

first pass that sending 10% of the data will result in a 10%

sensitivity, and so the algorithm performance should always

be better than this line.

Nineteen thresholds equally spaced between β2
= {0.1−

1} are used. Following each automated detection a section

of data 1.25 seconds before and afterwards (2.5 seconds in

total) is selected for recording with the remainder of the data

being discarded. An event is deemed to be correctly recorded

if there is a detection within one second of the marked event.

Section IV-B then presents an analysis of long term data

sets for which only a total data reduction (the weighting

factor given above is not applied) is calculated. In all other

respects the setup is the same as above. The aim of this analy-

sis is to illustrate on larger data sets, which more accurately

reflect the long term use of the algorithm, that acceptable

levels of data reduction can be achieved with the two data

types. Sixty-six hours of ambulatory data is analysed with 68
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TABLE I

THE DATA AVAILABLE FOR ANALYSIS. NOTE THAT THE DATA FOR EACH PATIENT MAY BE MADE UP OF MORE THAN ONE NON-CONTINUOUS TEST.

Patient Age at test Gender Type of recording Testing sitea Marked interictal events Recording duration

0 Unknown Unknown Non-AEEG NSE 644 00:36:55

1 24 Male Non-AEEG NSE 49 03:58:15

2 47 Female AEEG NSE 7 02:00:11

3 33 Female AEEG NSE 52 06:00:33

4 51 Unknown AEEG NSE 12 04:00:22

5 23 Female AEEG NSE 11 04:00:22

7 43 Male Non-AEEG NSE 2 00:18:30

8 46 Male AEEG NSE 26 02:00:11

9 45 Male Non-AEEG NSE 30 04:00:22

10 23 Female AEEG NSE 45 04:00:22

11 53 Female AEEG NSE 8 02:00:11

13 21 Female AEEG NSE 12 02:00:12

15 33 Unknown Non-AEEG NSE 1 00:10:53

16 33 Female Non-AEEG Freiburg N/A 23:10:05

17 56 Female Non-AEEG Freiburg N/A 34:18:41

18 41 Female Non-AEEG Freiburg N/A 11:00:00

19 Unknown Unknown AEEG NSE N/A 22:57:05

20 Unknown Unknown AEEG NSE N/A 22:06:23

21 Unknown Unknown AEEG NSE N/A 21:05:43

aNSE is the National Society for Epilepsy in the UK and Freiburg is the Freiburg University Hospital in Germany.

hours of non-ambulatory data. It is known that some marked,

interictal events are present in the analysed data but this is

ignored and the data is analysed essentially prospectively: the

data reduction is found regardless of what actually happens

in the data set, exactly as if the algorithm was being used

online. The data for patients 16, 17 and 18 was provided in

approximately hour long epochs with some discontinuities

present. Only continuous, seizure free epochs have been

considered for analysis.

IV. RESULTS

A. Sensitivity comparison

The results from the sensitivity comparison are shown in

Fig. 2. In general a high sensitivity with a small percentage

of data being transmitted is wanted so lines should be as far

to the top left of the graph as possible. It is clearly seen that

better performance is obtained with the ambulatory data than

with the non-ambulatory data, with (as may be expected) the

analysis of all of the data lying between the two. At first this

result seems counter-intuitive, better performance is expected

with the non-ambulatory data, but a range of explanations are

possible and these are discussed in Section V.

B. Data reduction comparison

Table II shows the amount of data that is transmitted

when the long term data is analysed for several different

β2 threshold levels, although not all of the thresholds used

in Fig. 2 are shown. To achieve a reasonable sensitivity-data

reduction trade-off it is anticipated that values of β2 between

0.2 and 0.3 would be most suitable for use. At these threshold

levels it is again found that the ambulatory data achieves a

better data reduction than the non-ambulatory data, although

the non-ambulatory data does give better performance when

high thresholds are used.

Two important conclusions can be drawn from this. Firstly,

the level of data reduction that is achieved by the algorithm
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Fig. 2. Results for the sensitivity comparison show that a better sensitivity-
data reduction trade-off is achieved when ambulatory data is analysed.

TABLE II

RESULTS ILLUSTRATING THE DATA REDUCTION ACHIEVED WITH THE

LONG TERM DATA SETS ANALYSED.

Percentage of total data transmitted / %

Threshold (β2) AEEG data:
Patients 19–21

Non-AEEG data:
Patients 16–18

0.10 66.3 71.1

0.15 48.9 55.6

0.20 37.1 43.1

0.25 29.1 33.3

0.30 23.3 25.9

0.35 19.2 20.4

0.40 16.2 16.3

0.45 13.8 13.2

0.50 12.0 10.7

5887



is maintained across testing sites indicating that different

test procedures and equipment do not unduly affect the

results. Secondly, the ambulatory data again achieves better

performance than the non-ambulatory data which may not

be initially expected. This is discussed in Section V.

V. DISCUSSION

The results from the previous section clearly indicate that

the algorithm can achieve good results for both ambulatory

and non-ambulatory recorded data: overall approximately

90% of marked events are correctly recorded while trans-

mitting only 30% of the total data. This performance level is

confirmed with similar data reductions being achieved in the

long term analysis. It is also seen that in most cases a better

data reduction is achieved when ambulatory data is used, a

potentially unexpected result.

There are several potential explanations, however. Firstly,

and it cannot be ruled out entirely, the algorithm is currently

implemented in MATLAB code and a simple coding error

may be present. However, the algorithm has been checked

at multiple levels of abstraction and as the result appears in

data from two testing sites, and is essentially independent

of which data is analysed, it is unlikely that a coding

error would result in such a systematic error in the results.

Similarly the amount of data tested is not identical between

the two cases but this has been corrected for by the weighting

applied, as have systematic differences in the recording

process (different equipment is necessarily used for the two

types of recording) by analysing data from two testing

sites. Different markers may interpret the EEG differently,

potentially affecting the sensitivity results, but this would not

affect the data reduction one. The result is thus deemed to

be a real effect, rather than an artifact of a non-ideal testing

procedure.

The explanation proposed here is quite simply that as

expected ambulatory recordings have lots of obvious arti-

facts. However, these obvious bad recording periods are

readily identified by the algorithm and so not recorded,

giving a large data reduction. In turn this readily leads to the

improved performance of the ambulatory data over the non-

ambulatory data. This is a good result for the data reduction

algorithm proposed by the authors: good data reduction is

achieved in all cases, and is better in the ambulatory case

where the algorithm is intended to be used. However, it

does raise questions as to whether interictal events can be

correctly identified if they were to occur in a bad recording

period which relates to the overall clinical utility of AEEG

monitoring. At this point, however, this is not in doubt:

AEEG has been shown to be clinically useful in 75% of

patients tested with it, abnormalities are found in 12–25% of

patients where the initial EEG was normal or non-diagnostic

and this costs just 50% of traditional inpatient monitoring [5].

From these results two important conclusions can be

drawn. Firstly, it is possible to achieve good sensitivity-

data reduction trade-offs when using ambulatory data. Any

comparatively poor quality of the recordings due to the

presence of artifacts or electrode connection issues does

not affect the ability to correctly identify candidate events.

Indeed, in some respects this is beneficial as these artifacts

are easily detected and removed so that less data needs to be

saved, reducing power consumption. The second conclusion

is that it is valid to test the algorithm on non-AEEG data as

well as AEEG data, greatly increasing the amount of data

that is available. If non-ambulatory data is analysed the actual

results on ambulatory data should only be better than the ones

found. Although these conclusions are inevitably application

specific, it is a good result for further demonstrating the

feasibility of the online signal processing of the AEEG which

may be of use in many other applications.

VI. CONCLUSION

This paper has investigated the performance of an

EEG signal processing algorithm on ambulatory and non-

ambulatory recorded data. In general ambulatory recordings

are less controlled than non-ambulatory ones with more

artifacts expected to be present, and this may affect the signal

processing performance. It is found, however, that superior

performance is achieved on the ambulatory recordings, po-

tentially as any additional artifacts are easily identified. This

indicates that the automated analysis of ambulatory EEGs,

possibly online in the AEEG device, is feasible without a

loss in performance.
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