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Abstract

It has long been asserted that in univariate location-scale models, when concerned with
inference for either the location or scale parameter, the use of the inverse of the scale parameter
as a Bayesian prior yields posterior credible sets which have exactly the correct frequentist
confidence set interpretation. This claim dates to at least Peers (1965), and has subsequently
been noted by various authors, with varying degrees of justification. We present a simple, direct
demonstration of the exact matching property of the posterior credible sets derived under use
of this prior in the univariate location-scale model. This is done by establishing an equivalence
between the conditional frequentist and posterior densities of the pivotal quantities on which
conditional frequentist inferences are based.
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1 A Brief History

The purpose of this note is to give a detailed and direct account of an exact probability matching

result for the univariate location-scale model, i.e. a result in which a particular choice of prior

for Bayesian inference results in posterior credible sets which have exactly the correct frequentist

confidence set interpretation. The setting we consider is that of an independent and identically

distributed sampleY = {Y1, . . . ,Yn} from the familyσ−1 f {(y− μ)/σ} where f (∙) is a known prob-

ability density function defined onR, −∞ < μ < ∞ andσ > 0. We will consider inference for a

scalar interest parameter, regarding the other parameter as nuisance. Thus we will investigate the

relevant frequentist coverage of the marginal posterior quantiles ofμ andσ, separately.

Various authors, including Fisher (1934) and Fraser (1979), have argued that in location-scale

models, from a frequentist perspective there are strong reasons to draw inferences conditionally on

the observed value of an ancillary statistic. Consequently, as noted by DiCiccio et al. (2012), when

considering probability matching priors, the correct frequentist inference to match is a conditional

one. Suppose thatσ is the interest parameter and denote byσB,1−α ≡ σB,1−α(π(μ, σ),Y) the 1− α

marginal posterior quantile forσ under the priorπ(μ, σ). A conditional probability matching prior,

π(μ, σ), is one which satisfies

Prμ,σ|A=a{σ ≤ σB,1−α|A = a} = 1− α + O(n−m/2)

for all α ∈ (0,1) for m = 2 or 3 which correspond to first- or second-order matching,n is the

sample size andPrμ,σ|A=a is the conditional frequentist probability under repeated sampling ofY,

conditioning on the observed value of an ancillary statisticA. This states that the 1− α quantile

of the marginal posterior density ofσ under priorπ(μ, σ) has conditional frequentist coverage

probability 1− α, to error of orderO(n−m/2). Simple application of the law of iterated expectations

shows that a conditional matching prior is also an unconditional matching prior to the same order.

An identical definition of a conditional probability matching prior whenμ is the interest parameter

results from reversing the roles ofσ andμ in the above.

All smooth priors are probability matching in a weak sense (m= 1 in the above); this is a con-

sequence of the equivalence, toO(n−1/2), of frequentist and Bayesian normal approximation. Datta

and Mukerjee (2004) and Datta and Sweeting (2005) provide thorough reviews of known results,
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including both approximate and exact matching results in the single parameter and multiparameter

settings.

The result that there is exact probability matching for inference about a scalar parameter in the

location-scale model for the priorπ(μ, σ) ∝ σ−1 has been stated by various authors. The earliest

reference is Peers (1965); others include Lawless (1972, 1982) and DiCiccio and Martin (1993).

However, to the best of our knowledge, a direct, general demonstration of this result is missing

from the literature.

Datta and Mukerjee (2004)[p. 26] note that in the univariate normal location-scale model, the

prior π(μ, σ) ∝ σ−1 is exact unconditional frequentist probability matching, regardless of whether

μ orσ is the interest parameter. This is because, under this prior, the unconditional frequentist and

posterior distributions of certain pivots coincide. Earlier references for this observation include

Guttman (1970, Ch. 7), Box and Tiao (1973, Ch. 2), and Sun and Ye (1996). In the present note,

we show that such a result is actually true quite generally.

Severini et al. (2002) proved a related result about exact matching for predictive highest poste-

rior density regions in group transformation models, of which the multivariate location-scale model

is a particular example considered. This result is due to an invariance property of the highest pre-

dictive density region, and is essentially an extension of the invariance results derived in Hora and

Buehler (1966, 1967).

Here we are concerned with the conditional frequentist matching property of posterior credible

sets for a scalar interest parameter, and present a detailed argument confirming the exact matching

property of the priorπ(μ, σ) ∝ σ−1. Note also that in the location-scale model, Jeffreys (1961) rec-

ommended use of this prior instead of the Jeffreys prior,π(μ, σ) ∝ σ−2. Thus the results described

here may be interpreted as support for his recommendation.

2 Demonstrating exactness

Property: The priorπ(μ, σ) ∝ σ−1 yields exact conditional probability matching in the univariate

location-scale model whetherμ or σ is the interest parameter.

We verify the property by establishing an equivalence between, respectively, the marginal con-
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ditional frequentist confidence limits and marginal posterior credible limits for the parameter of

interest. These limits are derived from the joint conditional frequentist and joint posterior densities

of suitable pivotal quantities. The motivation for this approach is that in the conditional frequentist

framework, confidence sets are constructed using the conditional distributions of pivotals. In the

location-scale model, a particular choice of pivotal quantities yields straightforward construction

of confidence sets for either parameter directly from the marginal distribution of the corresponding

pivotal. Bayesian and frequentist procedures for constructing credible and confidence sets using,

respectively, the joint posterior and joint conditional frequentist densities of suitable pivotal quan-

tities, are exactly the same. Thus to establish the result, it is sufficient to demonstrate that the

Bayesian and frequentist frameworks base inference on the same joint density.

We first summarize the procedure for exact conditional frequentist inference as suggested by

Fisher (1934) and more thoroughly examined by Fraser (1979, Ch. 6); additional details and

references may be found in Lawless (1982, Appendix E) and Pace and Salvan (1997, Ch. 7). The

joint density of the sample for given values of (μ, σ) is defined as

py(y; μ, σ) = σ−n
n∏

i=1

f {(yi − μ)/σ}.

It is assumed that the maximum likelihood estimators for (μ, σ), denoted by (ˆμ, σ̂), are unique and

exist with probability one. The configuration statistic,

A = (A1, . . . ,An) =
(Y1 − μ̂
σ̂
, . . . ,

Yn − μ̂
σ̂

)
.

is an exact ancillary. This statistic is distribution constant, in the sense that its distribution does

not depend on any unknown parameters, and onlyn− 2 elements of this random vector are func-

tionally independent. To appreciate this last property, simply write the likelihood in the form

L(μ, σ; μ̂, σ̂, a), that is, in terms of the minimal sufficient statistic ( ˆμ, σ̂, a), and observe that the

likelihood equations give two constraints involving the ancillary. In particular,An−1 andAn may be

expressed in terms of (A1, . . . ,An−2). Moreover, the quantity

(Q1,Q2) =
( μ̂ − μ
σ̂
,
σ̂

σ

)

is pivotal with respect to the parameters (μ, σ) in the sense that the joint distribution of (Q1,Q2),

conditional on the ancillary statistic, does not depend on (μ, σ).
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Standard joint density manipulations involving transformations from the joint density of (Y1, . . . ,Yn)

to the joint density of ( ˆμ, σ̂,A1, . . . ,An−2) shows that the exact joint conditional frequentist density

of (Q1,Q2), givenA = a, is of the form

pQ1,Q2|A=a(q1,q2|A = a) = c(a)qn−2
2 pQ1,Q2(q1,q2)

= c(a)qn−1
2

n∏

i=1

f (q1q2 + q2ai), (1)

where the normalizing constantc(a) depends ona only and is defined by

c(a)
∫ ∞

0

∫ ∞

−∞
qn−1

2

n∏

i=1

f (q1q2 + q2ai)dq1dq2 = 1. (2)

Exact conditional frequentist inference makes use of (1) to construct a confidence set for, respec-

tively, μ or σ. Let q1,F,α denote theα quantile of the conditional frequentist marginal distribution

of q1. That is,
∫ q1,F,α

−∞

∫ ∞

0
pQ1,Q2|A=a(q1,q2|A = a)dq2dq1 = α. (3)

Similarly let q2,F,α denote theα quantile of the conditional frequentist marginal distribution ofq2,
∫ q2,F,α

0

∫ ∞

−∞
pQ1,Q2|A=a(q1,q2|A = a)dq1dq2 = α. (4)

Fix (μ, σ). Conditioning onA = a, the event{q1 ≥ q1,F,α} is equivalent to the event{μ̂−σ̂q1,F,α ≥ μ}.

Also, the event{q2 ≥ q2,F,α} ≡ {σ̂/q2,F,α ≥ σ}. Thus, an upper 1− α one-sided conditional

frequentist confidence limit forμ, sayμF,1−α may be found directly from the corresponding limit for

q1 and similarly the limit forσ, sayσF,1−α, may be obtained from the limit forq2. Formally, under

repeated sampling ofY, Prμ,σ|A=a{μ ≤ μ̂ − σ̂q1,F,α|A = a} = 1 − α and Prμ,σ|A=a{σ ≤ σ̂/q2,F,α|A =

a} = 1− α.

Turning to the Bayesian perspective, inference is conditioned on the full datay. The joint

posterior densityπ(μ, σ|Y = y) is defined by

π(μ, σ|Y = y) =
π(μ, σ)p(y; μ, σ)

∫ ∞
0

∫ ∞
−∞
π(μ′, σ′)p(y; μ′σ′)dμ′dσ′

.

Expressing the likelihood in the formL(μ, σ; μ̂, σ̂, a) yields

π(μ, σ|Y = y) ∝ π(μ, σ)σ−n
n∏

i=1

f {
σ̂

σ
(ai +

μ̂ − μ
σ̂

)},
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and using the priorπ(μ, σ) ∝ σ−1, we have the joint posterior density of the parameters

π(μ, σ|Y = y) = sσ−n−1
n∏

i=1

f {
σ̂

σ
(ai +

μ̂ − μ
σ̂

)}, (5)

where the normalizing constants is determined by

s
∫ ∞

0

∫ ∞

−∞
σ−n−1

n∏

i=1

f {
σ̂

σ
(ai +

μ̂ − μ
σ̂

)}dμdσ = 1. (6)

We now find the joint posterior density of (Q1,Q2) which, conditional on the data, is a one-to-one

transformation of the parameters (μ, σ), treated as random quantities in the Bayesian framework.

In order to show that the posterior density of (Q1,Q2) is exactly equal to the conditional frequentist

density given by (1), the relationship between the normalizing constants must be discovered. We

could start with the posterior density in (5), find the posterior density of (Q1,Q2) via the usual

route and finally solve for the relationship between normalizing constants, but we instead choose

to do everything at once.

We integrate (6) using the substitution (Q1,Q2) = ϕ(μ, σ) = ((μ̂ − μ)/σ̂, σ̂/σ) and, by setting

this equal to (2), establish a relationship betweens andc(a). Explicitly,

1 =

∫ ∞

0

∫ ∞

−∞
π(μ, σ|Y = y)dμdσ = s

∫ ∞

0

∫ ∞

−∞
σ−n−1

n∏

i=1

f {
σ̂

σ
(ai +

μ̂ − μ
σ̂

)}dμdσ

= s
∫ ∞

0

∫ ∞

−∞
(σ̂/q2)

−n−1 f (q1q2 + q2ai)| detJ|dq1dq2

= s
∫ ∞

0

∫ ∞

−∞
σ̂−n+1qn−1

2

n∏

i=1

f (q1q2 + q2ai)dq1dq2,

where | detJ| = (σ̂/q2)2 is the absolute value of the Jacobian determinant of (μ, σ)(q1,q2) =

ϕ−1(q1,q2) = (μ̂−σ̂q1, σ̂/q2). Comparison with (2) yields the relationship between the normalizing

constants,

s≡ σ̂n−1c(a). (7)

Thus the joint posterior density of (Q1,Q2) is given by

π(q1,q2|Y = y) = sqn+1
2 σ̂

−n−1
n∏

i=1

f (q1q2 + q2ai)| detJ|

= c(a)qn−1
2

n∏

i=1

f (q1q2 + q2ai). (8)
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Note that this is exactly equal to the joint conditional frequentist density given in (1).

Theα quantiles of the marginal posterior distributions, denoted byq1,B,α andq2,B,α, are respec-

tively defined by
∫ q1,B,α

−∞

∫ ∞

0
π(q1,q2|Y = y)dq2dq1 = α, (9)

and
∫ q2,B,α

0

∫ ∞

−∞
π(q1,q2|Y = y)dq1dq2 = α. (10)

Comparison with (3) and (4) confirms thatq1,F,α = q1,B,α andq2,F,α = q2,B,α. The construction of

credible sets when eitherμ or σ is the interest parameter exactly parallels the procedure in the

conditional frequentist setting. In particular, the 1− α upper credible limits forμ andσ, denoted

by μB,1−α andσB,1−α, satisfy

Prμ,σ|A=a(μ ≤ μB,1−α|A = a) = 1− α

and

Prμ,σ|A=a(σ ≤ σB,1−α|A = a) = 1− α,

i.e. the conditional frequentist coverage of the posterior credible set under priorπ(μ, σ) ∝ σ−1, is

exactly 1− α, whetherμ orσ is the parameter of interest.

In summary, we have demonstrated that the formal equivalence between the frequentist condi-

tional density of (Q1,Q2) and the Bayesian posterior density of (Q1,Q2) under the priorπ(μ, σ) ∝

σ−1 allows us to deduce directly that this prior is exact conditional probability matching, when

eitherμ or σ is the interest parameter. It follows immediately that this prior is an exact proba-

bility matching prior in the usual, unconditional sense. That Bayesian posterior quantiles under

this prior act as frequentist confidence limits both conditionally and unconditionally is a result that

holds quite generally, even when the marginal posterior of interest is analytically intractable.
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