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ABSTRACT: Reactive oxygen species act as important second messengers in cell
signaling and homeostasis through the oxidation of protein thiols. However, the
dynamic nature of protein oxidation and the lack of sensitivity of existing molecular
probes have hindered our understanding of such reactions; therefore, new tools are
required to address these challenges. We designed a bifunctional variant of the strained
bicyclo[6.1.0]nonyne (BCN-E-BCN) that enables the tagging of intracellular protein
sulfenic acids for biorthogonal copper-free click chemistry. In validation studies,
BCN-E-BCN binds the sulfenylated form of the actin-severing protein cofilin, while
mutation of the cognate cysteine residues abrogates its binding. BCN-E-BCN is cell
permeable and reacts rapidly with cysteine sulfenic acids in cultured cells. Using
different azide-tagged conjugates, we demonstrate that BCN-E-BCN can be used in

various applications for the detection of sulfenylated proteins. Remarkably, cyclo-
addition of an azide-tagged fluorophore to BCN-E-BCN labeled proteins produced in vivo can be visualized by fluorescence
microscopy to reveal their localization. These findings demonstrate a novel and multifaceted approach to the detection and

trapping of sulfenic acids.

P rotein thiol (sulfhydryl) groups are important mediators

of redox signaling." In response to increases in cellular
oxidation, thiols act as nucleophiles to reduce reactive oxygen
species (ROS) in order to maintain redox homeostasis. In
general, thiol oxidation leads to the formation of disulfides and
oxidative intermediates, leading to structural changes of the
protein thiols.” In response to ROS, free thiols become oxidized
to form sulfenic acids (sulfenylation), unstable moieties that can
contribute to the formation of post-translational modifications
that may vary depending on microenvironmental conditions and
the duration of the ROS generated.” Sulfenic acids may undergo
further oxidation to sulfinic and sulfonic acids, or react with other
cysteines or glutathione to form disulfides or thiosulfinates,
respectively.” These structural changes are diverse in nature and
may impact protein function, activity, and localization. As such,
ROS has significant influence on cell functions, acting as a second
messenger to promote a diverse number of signaling events and
subsequent responses including proliferation and differentia-
tion,” hypoxia,6 ferroptosis,” and autophagy.8 Furthermore,
there are clear ROS signatures in the etiology of several diseases ;7
therefore, identifying the proteins subject to ROS regulation is
critical to understanding how oxidative stress can influence these
pathways and biological processes.

Protein thiol sulfenylation is central to ROS physiology
and pathophysiology as it is the first intermediate step in protein
oxidation. As such, a number of methods have been developed to
exploit the reactivity of the protein thiol group in order to “trap”
proteins in their sulfenylated state to characterize the proteins
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susceptible to ROS modification. Typically, the use of
1,3-dicarbonyl-based probes, such as dimedone, has been
employed to label sulfenylated proteins, with over 700 proteins
having been identified to date.'”"" Although the use of dimedone
and dimedone-like compounds is generally accepted, there are a
number of limitations associated with these probes. Dimedone
derivatives have slow rates of reaction toward sulfenic acids; in
fact, there have been several recent efforts to overcome this
problem by balancing the pK, and nucleophilicity of the enolates
of beta-functionalized carbonyl compounds.'>"® There is also
evidence suggesting that they may react with electrophilic sulfe-
namides.'* Furthermore, due to the limited range of applications
with such probes, there is a lack of spatial and temporal data
revealing the subcellular distribution of sulfenylated proteins.
As a result, there is a need to develop better tools to overcome
the challenges to examining this dynamic and labile redox
modification.

Strained cycloalkynes, such as bicyclo[6.1.0]nonyne (BCN),
show great promise as sulfenic acid traps as they react with
sulfenic acids with rate constants that are several-hundred-fold
greater than other sulfenic acid probes.” Rather than acting
similarly to dimedone-based probes that exploit the electrophilicity
of sulfenic acids (Supporting Information Figure S1A),"”" or
to probes that use the weak nucleophilicity of this group,'® the
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Figure 1. Design and application of BCN-E-BCN. (A) BCN-E-BCN (structure shown) permeates cells and reacts with endogenous protein cysteine
sulfenic acids, thereby tagging them with a BCN for click chemistry. (B) Biotin can be attached using a copper-free click reaction between the
BCN-E-BCN-protein conjugate and an azide-tagged biotin, which could be used to assist protein or peptide enrichment and subsequent analysis.
(C) In the same way, the BCN-E-BCN-protein conjugates can be labeled using an azide-tagged fluorophore to enable visualization of the subcellular

distribution of protein sulfenic acids.

reaction involves a specific concerted syn addition to the
alkyne (Supporting Information Figure S1B). In this study, we
describe the development and validation of a novel cell-permeable
bifunctional reagent, consisting of two linked BCN moieties
(BCN-E-BCN), which makes use of the BCN reactivity for
sulfenic acids to enable the detection of sulfenylated proteins.

BCN-E-BCN is comprised of two symmetrical strained cycloo-
ctynes connected by a short ethylenediamine-derived linker, which
allows protein sulfenic acids to be selectively tagged with a BCN
group for copper-free click chemistry with azide-tagged reagents
(Figure 1). The symmetrical design of the bifunctional probe
allows for straightforward two-step synthesis from commercially
available compounds'” (Supporting Information Figure S2) and
exploits the most reactive and practical functionalities for sulfenic
acid detection and click chemistry.

To validate the specificity of this probe, we incubated
BCN-E-BCN with cofilin, a filamentous actin (F-actin) severing
protein that has been shown to be oxidized by hydrogen peroxide
(H,0,)."® Recombinant human cofilin was first incubated with
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100 uM BCN-E-BCN, followed by a copper-free click reaction
with azide-PEG3-biotin. BCN-E-BCN tagging was characterized
by Western blotting using fluorescently labeled streptavidin
to detect consequent protein-biotin conjugates formed by this
reaction. BCN-E-BCN tagged cofilin in vitro, which could
be increased above spontaneously oxidized basal levels with
increasing H,O, concentrations (Figure 2A). We previously deter-
mined that cofilin oxidation by H,O, occurs at cysteines 139 and
147, resulting in reduced binding and severing of F-actin by
cofilin.'® Mutation of these cysteines to alanine residues (C139/
147A) decreased H,0,-induced BCN-E-BCN labeling in vitro
(Figure 2B), indicating that BCN-E-BCN tags cofilin at these
cysteine sulfenic acids. Mass spectrometry analysis of recombi-
nant cofilin incubated with BCN-E-BCN verified that cysteine
139 was a BCN-modified residue (Figure 2C). In addition, we
did not detect that BCN-E-BCN labeled the free thiol, sulfinic, or
sulfonic forms of cofilin by mass spectrometry.

MDA MB 231 cells are triple negative human breast cancer
cells that have been shown to have high basal levels of sulfenic
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Figure 2. Validation of BCN-E-BCN sulfenic acid labeling using recombinant human cofilin protein. (A) Recombinant human cofilin (10 yg) was oxidized
with H,0, (20 min, RT) before incubation with 100 M BCN-E-BCN. Azide-PEG3-biotin (1 mM) was added for 1 h to drive the click reaction, and lysates
were analyzed by Western blotting. BCN-E-BCN labeling was visualized using fluorophore-conjugated streptavidin and detected by infrared imaging.
(B) Wild-type or C139/147A mutant human cofilin was oxidized in vitro with 1 mM H, O, before being labeled with 100 M BCN-E-BCN and analyzed as
described in A. (C) Positive ion MS/MS spectra and theoretical masses of b and y fragmentation series of a peptide (133—146) of human cofilin (P23528)
modified with azide-PEG3-biotin BCN-E-BCN. The b and y ion series are indicated in blue and red, respectively.

acid formation."” To test the reactivity of BCN-E-BCN in a
whole cell system, we incubated cultured cells with varying
concentrations of BCN-E-BCN for 30 min at 37 °C, followed by
cell lysis and conjugation with azide-PEG3-biotin for detection.
BCN-E-BCN was determined to be cell permeable and labeled
sulfenic acids in a concentration-dependent manner (Figure 3A),
with efficient labeling at concentratlons lower than typically used
for dimedone based probes.'' When compared to a commercially
available biotinylated form of BCN (BCN-biotin), BCN-E-BCN
demonstrated significantly greater efficacy in labeling sulfeny-
lated proteins (Figure 3B). Treatment with 50 uM H,0, induced
a modest 50% increase in BCN-E-BCN labeling, as calculated
by quantifying fluorophore-conjugated band intensities using an
Odyssey CLx Imaging System (Figure 3C). To attenuate this
increase and demonstrate that the labeling responds to changes
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in redox state, we incubated the reaction in the presence of the
antioxidant N-acetylcysteine (NAC; Figure 3C), which resulted
in decreased BCN-E-BCN labeling. Furthermore, treatment
with high H,0, concentrations decreased BCN-E-BCN labeling
and correlated with increased peroxiredoxin trioxide (Prx-O;)
formation (Figure 3D), suggesting that proteins were oxidized
beyond the single oxygen-containing sulfenic acid and were
forming BCN nonreactive sulfinic and sulfonic acids at these
concentrations. Collectively, these data are consistent with
BCN-E-BCN being specific for the sulfenic acid form of thiol
oxidation.

We next examined BCN-E-BCN tagging of a previously char-
acterized sulfenylated candidate protein by immunoprecipitation
from whole cell lysates. Glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) is a key regulator of the glycolytic pathway and
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is susceptible to thiol oxidation.”’~** HEK 293 human embry-
onic kidney cell lysates were oxidized with 0.5 mM H,O, before
labeling with 250 uM BCN-E-BCN. GAPDH was immunopre-
cipitated and BCN-E-BCN labeling determined by Western
blotting. As shown in Figure 3E, BCN-E-BCN labeled GAPDH
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Figure 3. Biochemical properties of BCN-E-BCN in cultured cells.
(A) MDA MB 231 human breast cancer cells were incubated with
increasing concentrations of BCN-E-BCN for 30 min before being lysed
and conjugated with 1 mM azide-biotin using click chemistry. Data show
Western blot analysis of total BCN-E-BCN labeling, which was visualized
using fluorophore-conjugated streptavidin and detected by infrared
imaging. (B) MDA MB 231 cells were incubated with either 100 uM
BCN-E-BCN or 100 #M BCN-biotin and harvested at the time points
indicated. BCN-E-BCN lysates were conjugated with 1 mM azide-PEG3-
biotin before all lysates were resolved by Western blotting using
fluorophore-conjugated streptavidin to detect BCN-E-BCN or BCN-
biotin labeled proteins. GAPDH was used as a loading control. (C) MDA
MB 231 cells were pretreated with N-acetylcysteine (NAC: 10mM, 18 h)
before incubation with H,O, for 20 min. Cells were labeled with 100 M
BCN-E-BCN and analyzed as described in A. (D) MDA MB 231 cells
were incubated with increasing concentrations of H,O, for 20 min
before incubation with 100 uM BCN-E-BCN for 30 min. Cells were
lysed, and BCN-E-BCN—protein conjugates were reacted with azide-
PEG3-biotin and analyzed as described in A. Protein oxidation to
cysteine sulfonic acid was detected with antibody against peroxiredoxin
sulfonic acid (Prx-O;), and f-tubulin was blotted as a loading control.
(E) HEK 293 human embryonic kidney cell lysates were treated with
H,0, (500 uM, 5 min) and labeled with 250 uM BCN-E-BCN before
azide—biotin conjugation. GAPDH was immunoprecipitated from cells
and the amount of BCN-E-BCN labeling was visualized using
fluorophore-conjugated streptavidin and detected by infrared imaging.
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in HEK293 cell lysates, demonstrating the utility of this compound
in identifying sulfenylated proteins from complex lysates.

To utilize the flexibility of the cyclooctyne ring in click
chemistry reactions, we employed an azide-tagged fluorophore to
label BCN-E-BCN-protein conjugates in fixed cells in order
to visualize their subcellular localization. MDA MB 231 cells
were fixed with 4% paraformaldehyde, tagged with 100 yM
BCN-E-BCN followed by Alexa Fluor 488 azide and analyzed by
fluorescence microscopy. We were able to visualize the spatial
distribution of BCN-E-BCN tagged proteins, with the majority
being predominantly cytoplasmic, with some mitochondrial,
plasma membrane and weak nuclear signals detected (Figure 4).
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Figure 4. BCN-E-BCN enables visualization of sulfenylated proteins by
fluorescence microscopy. MDA MB 231 human breast cancer cells were
fixed with 4% paraformaldehyde, permeabilized for 5 min with 0.5%
Triton, and incubated with 100 yuM BCN-E-BCN for 30 min. For
iodoacetamide (IAM) treated samples, cells were pretreated with
100 M IAM (30 min, RT) prior to BCN-E-BCN incubation. Cells were
washed in PBS and conjugated with 1 mM Alexa fluor 488 azide for the
detection of BCN-E-BCN labeled proteins. Cells were stained with an
anti-Cox IV antibody (mitochondria), DAPI (nuclear DNA), and
phalloidin (F-actin) as indicated.

It has been suggested that free thiols may undergo thiol-yne
addition with cyclooctyne groups, such that pretreating proteins
with iodoacetamide (IAM) would be expected to reduce non-
specific binding.”> However, we found that IAM pretreatment
of MDA MB 231 cells did not markedly affect BCN-E-BCN
labeling (Figure 4), consistent with the sulfenic acid sgeciﬁcity of
the reaction and in line with previous findings."> It should
be noted that BCN should not be regarded as an electrophilic
reagent for sulfenic acids but reacts via a concerted syn addition of
the sulfenic acid to the alkyne: the C—S bond and the C—H bond

are formed in the same step via a cyclic transition state, analogous
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to a pericyclic reaction (Supporting Information Figure S1B).
This type of reactivity is not possible for protein thiols or
sulfenamides, and our results indicate that electrophilic reaction
with thiolates or thiyl radicals is unlikely to contribute to
the observed BCN-tagging of proteins under physiological
conditions.

Protein sulfenylation has received much recent interest
because of its dynamic and complex role in ROS mediated cell
signaling. However, a major limitation is a lack of convenient
tools to measure this post-translational modification. Existing
reagents are compromised by low reaction rates for sulfenic
acids or have limited utility in biochemical and cell biological
applications. Here, we now report the development and char-
acterization of a novel bifunctional cyclooctane compound,
BCN-E-BCN, which can rapidly label sulfenylated proteins in
cultured cells and be used in a number of diverse applications.
We demonstrate that BCN-E-BCN is cell permeable, has high
reactivity compared to other BCN derivatives, and can facilitate a
range of experimental approaches via copper-free click chemistry
reactions that allow for labeling of BCN-tagged proteins with a
variety of readily detectable moieties.
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