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Finite element (FE) simulations are popular for studying propagation and scattering of ultrasonic

waves in nondestructive evaluation. For a large number of degrees of freedom, time domain FE

simulations are much more efficient than the equivalent frequency domain solution. However,

unlike frequency domain simulations, time domain simulations are often poor at representing the

speed and the attenuation of waves if the material is strongly damping or highly dispersive. Here,

the authors demonstrate efficient and accurate representation of propagated and scattered waves,

achieved by combining a set of time domain solutions that are obtained for a set of frequency

ranges known as bands, such that, in combination, the authors’ multiband solution accurately repre-

sents the whole wave spectrum. Consequently, high accuracy is achieved, at minor computational

cost, using a modest number of bands. The multiband technique is implemented for ultrasonic wave

propagation in highly attenuating polyethylene material, using three frequency bands, and can yield

a reduction in empirical acoustic properties fractional error compared with respective time domain

simulations, in propagation duration, of a factor of 1.4, and in full-width-half-maximum, of a factor

of 10. Last, the accuracy of this approach is further exemplified in a wave scattering simulation.
VC 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1121/1.5000492]
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I. INTRODUCTION

Nondestructive evaluation (NDE) is widely used in

industry to detect potential defects in engineering compo-

nents such that the likelihood of critical damage or failure is

minimised. The development of accurate and reliable NDE

methods increasingly uses numerical model simulations. The

work presented here arose from a need to perform simula-

tions of ultrasound NDE of high-density polyethylene

(HDPE) pipes. The simulations were performed using finite

element (FE) analysis, but this was not straightforward

because HDPE is a highly attenuating material. The method-

ology presented here was the result of developments to

enable accurate FE simulations for this problem, but it is pre-

sented here as a general methodology as it has a wide value

for applications with damping materials.

FE simulations can be performed in either time or fre-

quency domains. It is usual that time domain calculations

are performed explicitly, such that current solutions are

obtained directly from previous solutions, and under certain

preferred conditions—central difference time marching,

with diagonal mass representation1—this can be done by

spatially local calculations without ever needing to assemble

or invert a full system matrix. With no loss of accuracy or

generality, the efficiency is further improved through the use

of parallel processing. A particularly effective approach is to

use graphics processors, such as is done by the Pogo FEA

(Ref. 2) software. High efficiency is of particular signifi-

cance when modelling wave propagation in large regions

where a fine FE mesh is required, necessitating field solu-

tions for a large quantity of elements; multiple millions can

be used in many current applications.

The principle FE alternative, frequency domain finite ele-

ment (FDFE) simulations, are solved implicitly and for a large

number of harmonic solutions. This is highly computationally

expensive, particularly for large modelled geometries, requir-

ing the assembly and inversion of system matrices.1 Further to

this, some large models cannot be solved practically at all

using FDFE because the system matrix is too large for the

computer memory, and inversion is not possible within a prac-

tical time scale, even though the matrix is sparse.

The problem for the modeller arises because explicit

time domain finite element (TDFE) solutions are often poor

at accurately representing the variation with frequency of

acoustic properties—specifically the dispersion relation,

which comprises attenuation and phase velocity—and there-

fore for many such applications, neither TDFE or FDFE are

suitable.

Consequently, we developed the multiband finite ele-

ment (MBFE) approach to simulation, with which a full,a)Electronic mail: jack.egerton09@imperial.ac.uk
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accurate dispersion relation can be modelled by blending the

solutions from multiple separate TDFE solutions that are

obtained at different frequency bands. MBFE couples both

the accuracy and efficiency of FE analysis of waves with dis-

persion relations that can exhibit frequency dependence of

general form. The multiband approach is developed to

recover the lost accuracy of explicit TDFE without incurring

the heavy computational penalty of FDFE, or the limitations

in model size of the latter.

Our example application material, HDPE, is viscoelas-

tic. The properties of materials such as this can be described

by extrapolation and inference—often from multiple decades

below ultrasonic frequencies—of frequency-dependent

material property parameters, such as storage and loss mod-

uli,3,4 provided that the modelling constraints described

above do not apply. We also achieve an accurate description

of ultrasonic wave propagation and scattering in the MBFE

methodology without need for extrapolation across many

frequency decades and the consequent inference of material

properties, and without such modelling constraints as model

size, found in similar FDFE models, using acoustic proper-

ties—attenuation and phase velocity.

In our preceding study of the ultrasonic viscoelastic

acoustic properties of HDPE pipe material,5 we provide a

unique, accurate, and reliable description of the viscoelastic

properties of HDPE, covering the range of frequencies and

temperatures needed for practical ultrasound NDE of this

material. The properties are presented there in the desired

manner as spectra of attenuation and phase velocity. The

variation in properties with frequency is the modelling chal-

lenge which we aim to address here; while this will take the

specific example of HDPE properties, the approach is gen-

eral and can be used for any dispersive medium.

The multiband technique may be used with dispersion

relations of general frequency dependence, because it places

no constraint on the frequency dependence of the acoustic

properties—attenuation and phase velocity—used to define

the dispersion relation. The multiband technique is here

applied to the example of viscoelastic HDPE, in which bulk

longitudinal waves propagate. More generally, such applica-

tion of FE analysis—to the accurate description of viscoelas-

tic or highly attenuating wave propagation, and to other

waves for which attenuation and phase velocity have fre-

quency dependence—is important to many areas of research,

including NDE,6 medical imaging,7 and seismology.8

This article is set out as follows. First, in Sec. II, is the

background theory required to formulate MBFE; next, in

Sec. III, is the outline of the MBFE method; in Sec. IV are

the results and analysis of MBFE applied to wave propaga-

tion and scattering examples in HDPE pipe material; and in

Sec. V conclusions are drawn.

II. MATERIAL MODEL

The theory used to define the ultrasonic acoustic proper-

ties of viscoelastic HDPE pipes is provided here to form the

basis for exemplification of the MBFE model.

The spectrum of a one-dimensional harmonic plane

wave can be expressed as

Sxðx; f Þ ¼ Sxð0; f Þ expðikxðf ÞxÞ; (1)

where x is location, f is frequency, and kxðf Þ, or tersely k(f),
is the dispersion relation

k fð Þ ¼ 2pf

vp fð Þ þ ia fð Þ; (2)

where vpðf Þ is phase velocity and aðf Þ is attenuation. For

this entire study, the following units are used, ½vp� ¼ ms�1

and ½a� ¼ m�1.

In our preceding HDPE pipe acoustic properties study5

we presented a description of ultrasonic viscoelastic bulk

wave dispersion that conforms to theoretical viscoelastic

constraints and that is necessarily causal, using the Kramers-

Kronig relation. The variation in properties with frequency

is the modelling challenge which we aim to address here;

while this will take the specific example of HDPE properties,

the approach is general and can be used for any dispersive

medium. Consequently, attenuation and phase velocity vary

with frequency using

aðf Þ ¼ a1f y (3)

and

vp fð Þ ¼ vp1 þ
vp1

p

� �2 a1

y� 1
f y�1; (4)

where 0 < a1; 1 < y < 2, and positive phase velocity at zero

frequency, 0 < vp1, are all known empirical coefficients. It is

shown in our prior analysis5 that from Eq. (1), general forms

of attenuation and phase velocity are

agen fð Þ ¼ � 1

x
ln

���� S fð Þ
S0 fð Þ

���� (5)

and

vp;gen fð Þ ¼ 2pfx

/S fð Þ � /S0
fð Þ ; (6)

where /S0
and /S are phases of the initial and propagated

waves.

III. METHOD

The method for obtaining the MBFE model is described

here, followed by its validation using wave propagation sim-

ulations that well match those of the empirical acoustic prop-

erties obtained above. The simulation technique is also

applied to a scattering example.

A. MBFE

The underlying concept of the MBFE methodology is to

solve the simulation multiple times in the time domain, in

each case covering only a subset of the frequency bandwidth,

and then assemble the multiple results to obtain the outcome

for the broader bandwidth problem. Each of the narrowband

solutions needs to be narrow enough to achieve acceptable
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accuracy, given the frequency-varying properties, and at the

same time wide enough to avoid the need for large numbers

of contributing bands.

The wave characteristics used in the described imple-

mentation of the MBFE model are chosen to be suited to real

inspection requirements. Piezoelectric ultrasonic transducers

are designed with a Q-factor—the degree of damping of an

object oscillating at resonance—that results in a single pulse

duration that is generally on the order of 3–4 cycles. These

short duration pulses have broad frequency bandwidths, and

consequently exhibit greater variation in frequency-

dependent dispersion within their non-negligible frequency

range. FE simulations in this study are therefore conducted

with cycles, ncyc¼ 4, such that meaningful comparison

can be made between accurately represented frequency-

dependent dispersion, using the MBFE approach, and other-

wise using TDFE.

A commonly used pulse window is a half-period sinu-

soid given by a Hann function. The amplitude spectrum of

this function has large peaks, known as side lobes, either

side of the central peak at pulse centre frequency, f0. This is

unsuitable when general frequency dependent dispersion is

assumed, as it is necessary to describe viscoelastic media

such as HDPE, because during wave propagation the fre-

quency content of the main lobe can be attenuated more than

the unphysical side lobes, resulting in dominance of these

erroneous frequencies in propagated pulses. This is avoided

through selection of an envelope that generates an amplitude

spectrum with smaller side lobes, such as the Blackmann-

Harris window,9

P nð Þ ¼ a0 � a1 cos
2pn

N � 1

� �
þ a2 cos

4pn

N � 1

� �

� a3 cos
6pn

N � 1

� �
; (7)

for samples n ¼ 1; ::;N, where a0 ¼ 0:35875; a1 ¼ 0:48829;
a2 ¼ 0:14128; and a3 ¼ 0:01168. This is the chosen window

for all FE simulations in this article. Using an input pulse

with accurate frequency content relaxes the filtering require-

ments in post-processing of the simulated wave; if large side

lobes are present the high- and low-pass filters used neces-

sarily have corner frequencies close to f0, resulting in greater

undesired filtering of the frequency content of the main

spectrum.

The low accuracy of the frequency dependent acoustic

properties obtained using TDFE result from the necessary

reduction of Eq. (2) to a fixed frequency solution. This fixed

frequency representation is also used in the MBFE proce-

dure, but accuracy is improved because each band is rela-

tively narrow. The fixed frequency for this approximation is

justifiably chosen to be that which the wave contains most

of—the modal value of its amplitude spectrum—which is f0
for approximately single-peak pulses, such as the tone bursts

used here. The resulting simplified dispersion is

k f0ð Þ ¼
2pf0
vp f0ð Þ

þ ia f0ð Þ; (8)

with corresponding terse variables, k0, vp0, and a0.

Rayleigh damping is a damping model available in many

commercial explicit TDFE software packages that is

appropriate to the dispersion in Eq. (8), and that does not

compromise the efficiency of the explicit time marching

scheme, which is described using the equation of dynamic

equilibrium10

M½ �€u þ C½ � _u þ K½ �u ¼ F½ �; (9)

where ½M�; ½C�; ½K�, and ½F� are mass, damping, stiffness,

and loading matrices, respectively. The following, u, _u;
and €u are particle displacement and its first and second time

derivatives. The damping matrix can be expressed in terms

of both the mass and stiffness matrices10

C½ � ¼ CM M½ � þ CK K½ �; (10)

where ½C�; ½M�, and ½K� are the damping, mass, and stiffness

coefficients and CM and CK are the Rayleigh coefficients,

which can be defined in terms of attenuation for a fixed fre-

quency using11

CM ¼ 2a0vp0 (11)

and

CK ¼
CM

x2
0

; (12)

where the centre angular frequency is x0 ¼ 2pf0. Assuming

a harmonic displacement solution to Eq. (9)

uðtÞ ¼ u0 expðix0tÞ; (13)

where the angular frequency is x ¼ 2pf , and using Eq. (10),

the equilibrium equation becomes

� M½ � 1þ i
CM

x0

� �
x2

0uþ K½ � 1� ix0CKð Þu ¼ F½ �; (14)

implying the following transformations from an undamped

to damped system for density

q! q 1þ i
CM

x0

� �
(15)

and Young’s modulus

E! Eð1� ix0CKÞ: (16)

The low accuracy of TDFE results from the following.

Describing the general frequency dependence of wave

acoustic properties in HDPE using power law viscoelastic

dispersion is highly accurate, as shown in Ref. 5.

Conversely, it is inaccurate to reduce these acoustic proper-

ties to a fixed frequency description. Much of the accuracy

of the power law description, or other dispersion relations, is

recovered using MBFE. The favoured approach to conduct-

ing MBFE, known as “k-blending,” is outlined here with

relevant equations:
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(1) Divide the amplitude of the spectrum of the initial signal

into a set number of bands, nband, containing equal fre-

quency content (equal area under jSinitj vs f curve).

(2) Perform separate TDFE simulations with centre frequen-

cies equal to the frequency at the centre of each band.

(3) Window and filter all waveform outputs such that dis-

tinct initial and latent signals are isolated.

(4) Calculate attenuation and phase velocity from these sep-

arated signals.

(5) Combine these acoustic properties using the dispersion

relation of Eq. (2).

(6) Blend together the dispersion relations of all bands using

weighting functions, yielding k for the whole bandwidth.

(7) Calculate an accurate description of the transfer function,

H(f), that maps an initial pulse to a propagated pulse.

The window used in step (3) is a Tukey window, which

is a rectangular window with Hann (sinusoidal) leading and

trailing edges. Unlike for the above example of toneburst

generation, where significant attenuation and corresponding

dominance of amplitude spectrum side lobes results, win-

dowing of waveforms is not subject to this complication,

therefore Hann edges are no issue. A rectangular function is

accurate because it does not alter pulse amplitude within the

window range. However, it does sharply truncate the signal,

which can alter the pulse frequency content. By contrast, use

of Hann edges in Tukey windowing smooths truncation,

minimising this effect. The corner frequencies of the filters

in step (3) are distant from significant frequency content and

have first-order roll-off.

The attenuation and phase velocity in step (4) are those

of Eqs. (5) and (6). The blending described in step (6)

involves linear weighting functions for the nth band, bn, that

equal 1 at band centres where TDFE simulations are most

accurate, equal 0.5 at adjacent band edges, and equal 0 at

adjacent band centres. In the outer halves of the first and last

bands all frequency content is used—equivalently bn¼ 1

there. Using this blending, the whole bandwidth can be

described with high use of accurate frequency content and

low use of inaccurate content. Frequency content beyond the

first and last band is alternatively linearly extrapolated for

comparison of accuracy.

Below we describe and formulate general methods we

have considered for the blending of attenuations and phase

velocities, as well as blending of dispersion relations.

Blending of propagated spectra, attenuations, and phase

velocities, dispersion relations, and transfer functions are all

inequivalent. For example, the blends of attenuations and

phase velocities are not the same as the blends of dispersion

relations, as follows:

ablend ¼
X

n

anbn (17)

and

vp;blend ¼
X

n

vpnbn ()
2pf

vp;blend

¼ 2pfX
n

vpnbn

; (18)

while the dispersion blending used in MBFE is

kblend ¼ 2pf
X

n

bn

vpn
þ i
X

n

anbn; (19)

such that

kblend 6¼
2pf

vp;blend

þ iablend: (20)

The mapping of initial pulse to propagated pulse described

in step (7) includes both the amplitude and the phase of the

spectra and is defined as follows:

H fð Þ ¼ S fð Þ
S0 fð Þ : (21)

To ensure the k-blending MBFE technique is most suit-

able, other approaches to MBFE are also developed for com-

parison of accuracy, generality, and to a lesser degree,

simplicity. These unfavoured approaches are listed here.

The first omitted approach takes the transfer function of

each band evaluated at solely the band centre frequencies

then assigns these fixed values, obtained from each TDFE

simulation, to all frequencies within their corresponding

band. The second approach is to linearly interpolate the

transfer function between the band centre values. The next

approach is logarithmic interpolation of the transfer function.

Of blending approaches, first the propagated spectra of each

band are blended, then the phase velocities and attenuations are

blended, followed by dispersions, and finally the transfer func-

tions. Of these, blending the dispersion relations (k-blending)

proves accurate, general, and simple to implement and use.

B. FE meshing and geometries

The FE models described here represent the propagation

and scattering of plane longitudinal waves in HDPE pipe

material in two dimensions. In Fig. 1, the propagation FE

simulations are in two dimensions; at the top and bottom

model boundaries, displacement normal to these boundaries

is set to zero; and HDPE is approximated as homogeneous

and isotropic. A plane wave is approximated by a 100 mm

linear source oriented 90� to the axial direction. The model

is set within the FE software to have no displacements nor-

mal to the direction of wave propagation. The wave is moni-

tored at two locations, one 10 mm from the source in the

propagation direction, the next 100 mm beyond that.

The sum of all point sources along the source line

approximates a plane wave, which is most suitable for

HDPE where shear waves are attenuated on the order of 10

times that of the already highly attenuated longitudinal

waves.12 The simulated region is bounded by a large absorp-

tive region that has decreasing stiffness towards the bound-

ary, known as the stiffness reduction method (SRM).13 This

highly attenuates waves propagating in this region such that

boundary reflections are minimal and the resulting wave is

not complicated by undesired signals. The SRM was primar-

ily designed for use with elastic materials. In such cases, the

damping of the SRM decreases to zero towards the modelled

region. We have adjusted the implementation of the SRM to
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decrease damping towards the viscoelastic damping of

HDPE at the inner edges of the SRM. This ensure damping

continuity at the boundary.

The optimal frequency for ultrasonic inspection of

HDPE pipes is selected based on the following compromise.

Higher frequencies can increase spatial resolution. Also,

higher frequencies produce more directive beams. Last,

attenuation in HDPE, and many other media, increases with

frequency. Because of this, MBFE and TDFE simulations of

both wave propagation and scattering are conducted with

median propagation paths of xs¼ 100 and 53.5 mm, respec-

tively, all at frequency, f¼ 2.25 MHz. Frequencies similar to

this are often used in current industrial inspection of HDPE

pipe joints.

The chosen FE mesh comprises structured triangular

plane strain elements. The mesh is describable as fine14 with

element size

dx � k0

20
; (22)

where the wavelength at centre frequency, f0, is k0 ¼ vp0=f0

and vp0 is the phase velocity at centre frequency. This mesh

refinement, and our other chosen refinement, which is half

the spatial step of this, are sufficiently fine for our purpose of

demonstrating the improvements in accuracy of MBFE over

TDFE simulations, for given mesh refinements. Given that

for all simulations the time step is 2.5 times as refined as the

spatial step,

dt � 1

50f0

; (23)

the time step contributes negligible computational error,

while ensuring numerical stability.

For increased FE simulation accuracy in both TDFE and

MBFE, shown in Fig. 2, at the four square-oriented corners

of two adjacent triangular source or monitor elements, four

nodes are displaced parallel to lines that project to the centre

of the squares that comprise two triangular elements. After

summation of the displacements at the four nodes, where

two nodes are common to both elements, this excitation

approximates that of a purely longitudinal (pure-L) wave

point source.14

Following the study of the propagation and attenuation

of plane waves, we have also demonstrated the MBFE meth-

odology on a simulation of scattering from a discontinuity,

in a study relevant for NDE. Shown in Fig. 3, the scattering

FE simulations are two-dimensional and the scatterer is a

cylindrical void with a radius of 3 mm. This is an approxima-

tion to a pertinent defect example, where a void may form

around a liquid or solid manufacturing inclusion in the

HDPE pipe joint. The FE mesh comprises triangular ele-

ments with the size stated in Eq. (22). Before and after

scattering off the cylindrical void, the wave is detected at a

pure-L monitor.

IV. RESULTS AND ANALYSIS

Provided here are the results and analysis of MBFE

applied to our wave propagation and scattering examples.

FIG. 1. Geometry of FE simulation of

wave propagation in the material of the

wall of a HDPE pipe. The two large

rectangles are the boundaries of the

absorbing region (SRM), all pure-L

point sources are aligned vertically

near the inner left boundary, and the

monitoring nodes are depicted by

squares centred at (�100,0) and (0,0).

FIG. 2. Cartoon of two adjacent square-oriented triangular source or moni-

tor elements with four nodal displacements, depicted by arrows, which are

directed parallel to lines that project to the centre of the squares that com-

prise the two triangular elements.

1274 J. Acoust. Soc. Am. 142 (3), September 2017 Egerton et al.



A. Wave propagation

Shown in Fig. 4 are 4-cycle tonebursts propagated

100 mm in the FE geometry depicted in Fig. 1. The solid

curve is our benchmark propagated pulse, u, predicted using

Eq. (2) with select acoustic properties obtained from the

procedure described in our preceding HDPE pipe acoustic

properties study.5 Dot-dashed curve is the TDFE pulse,

uTD, dx ¼ k0=40, and a time increment of dt ¼ 1=
ð100f0Þ. Dot-dashed curve is the MBFE pulse with

nband ¼ 3, uMB;3.

Qualitatively, it is clear that there is significantly

improved matching to u for uMB;3 compared with uTD, spe-

cifically in both the amplitude and the phase of the pulse.

Also the period is visibly much shorter for uTD than it should

be, because the low frequencies are attenuated too much and

the high frequencies too little with frequency independent

attenuation.

In summary, using as few as three bands in MBFE

results in a significantly improved representation of ultra-

sonic wave propagation relative to that of TDFE simulation.

The TDFE and MBFE attenuations are exemplified in

Figs. 5 and 6 for nband¼ 3 and ncyc¼ 4, d x ¼ k0=40, and

d t ¼ 1=ð100f0Þ. The attenuation of TDFE is approximately

equal to the empirical attenuation at f0, resulting in attenua-

tion being too high at frequencies below f0 and too low at

frequencies above f0.

The blending of attenuation in Fig. 6 shows close agree-

ment with the desired empirical solution, obtained in our

acoustic properties study,5 over the frequency range covered

by the bands. The bands are defined such that equal fre-

quency content of the initial pulse exists in each band.

However, the dispersion blending solution between bands

cannot be an ideal linear approximation to the empirical dis-

persion because other sources of computational error exist in

FIG. 3. Geometry of FE simulation of

scattering from a cylindrical void

defect in the material of the wall of a

HDPE pipe. The inner rectangle is the

boundaries of the absorbing region

(SRM), the defect is depicted as a solid

circle, all pure-L point sources are

aligned vertically near the left absorb-

ing region, and the monitoring nodes

are centred at (�26.75,0) and depicted

by a square.

FIG. 4. Empirical, from Sec. II, and

FE simulated longitudinal wave pulses

propagated in HDPE. The input pulses

are 4-cycle tonebursts with Blackman-

Harris envelopes. The centre frequency

of the input pulse is f0 ¼ 2:25 MHz

and for the FE pulses the mesh spacing

is dx ¼ k0=40 and the time increment

is dt ¼ 1=ð100f0Þ. The pulse ampli-

tudes are normalised to the maximum

of the amplitude of the Hilbert trans-

form of the analytical initial pulse,

mahðu0Þ. The solid curve is the empiri-

cal pulse, u, the dashed curve is the

TDFE pulse, uTD, and dot-dashed

curve is the MBFE pulse with

nband¼ 3, uMB;3.
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FE simulation. An example of this is the error associated

with approximating the modelled geometry with elements of

finite extent, where a coarser mesh decreases the FE accu-

racy; the accuracy increases as the mesh is refined. Similar

results are expected for refinement of the time increment, dt.
In summary, using as few as three bands in MBFE

results in a significantly improved representation of ultra-

sonic attenuation relative to that of TDFE simulation.

In Fig. 7, the phase velocity of TDFE is approximately

equal to the empirical phase velocity at f0, resulting in veloc-

ity being too high at frequencies below f0 and too low at fre-

quencies above f0. For increasing frequency, the TDFE

velocity error relative to the frequency independent ideal

solution, vp;1, increases because the number of elements per

wavelength, k=40, decreases. In Fig. 8, as with MBFE atten-

uation, MBFE phase velocity shows close agreement to the

empirical curve and improved accuracy at frequencies above

and below f0 compared with any of the three individual

TDFE solutions that this blend is obtained from.

In summary, using as few as three bands in MBFE

results in a significantly improved representation of ultra-

sonic phase velocity relative to that of TDFE simulation.

To further quantify the improved accuracy of MBFE

over TDFE, for a given number of frequency bands, nband,

mesh spacing, dx, and time increment, dt, the full-width-

half-maxima (FWHM) and propagation durations (PDs) of

the FE pulses are obtained as fractional differences from

those of the empirical propagated pulse, u, for a 4-cycle

toneburst, shown in Figs. 9 and 10, respectively. The

FWHM corresponds to a 6 dB drop in amplitude on a loga-

rithmic scale and the PD can infer wave propagation distance

using knowledge of the wave velocity in the medium. The

TDFE solutions are threshold lines for comparison with 3, 7,

and 15 bands. The two alternative MBFE techniques, with

and without extrapolation of the solution beyond the edge

bands, are also compared.

In Fig. 9, the FWHM discrepancy is

�FWHM ¼
FWHM uð Þ � FWHM uFEð Þ

FWHM uð Þ

����
����; (24)

where mahðuÞ is the maximum amplitude of the Hilbert

transform of the longitudinal wave displacement, and in Fig.

10, the PD discrepancy is

FIG. 5. TDFE attenuation frequency

dependence for HDPE wave propaga-

tion where dx ¼ k0=40 and the time

increment is again dt ¼ 1=ð100f0Þ. The

dashed curve is the empirical attenua-

tion frequency power-law, the dotted-

dashed curve is the empirical attenua-

tion at f0, and the solid curve is the

TDFE solution obtained at f0 ¼ 2:25

MHz, where non-negligible wave fre-

quency content exists between

1 � f=MHz � 3:5.

FIG. 6. MBFE attenuation frequency

dependence for HDPE wave propaga-

tion where dx ¼ k0=40 and the time

increment is again dt ¼ 1=ð100f0Þ. The

dashed curve is the empirical attenua-

tion frequency power-law, dot-dashed

curves are the empirical attenuations at

f0 of each band, the solid curves are

time domain FE solutions obtained at

f0 of each band, the thick solid curve is

the MBFE dispersion blend solution to

describe general frequency depen-

dence, and the vertical dots are the

edges between bands and the outer

bands contain the remaining frequency

content.
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FIG. 7. TDFE phase velocity frequency

dependence for HDPE wave propaga-

tion where dx ¼ k0=40 and the time

increment is again dt ¼ 1=ð100f0Þ. The

dashed curve is the empirical phase

velocity frequency power-law, dot-

dashed curve is the empirical phase

velocity at f0, and the solid curve is the

TDFE solution obtained at f0 ¼ 2:25

MHz, where non-negligible wave fre-

quency content exists between

1 � f=MHz � 3:5.

FIG. 8. MBFE phase velocity frequency

dependence for HDPE wave propaga-

tion where dx ¼ k0=40 and the time

increment is again dt ¼ 1=ð100f0Þ. The

dashed curve is the empirical phase

velocity frequency power-law, dot-

dashed curves are the empirical phase

velocities at f0 of each band, the solid

curves are time domain FE solutions

obtained at f0 of each band, the thick

solid curve is the MBFE dispersion

blend solution to describe general fre-

quency dependence, and the vertical

dots are the edges between bands and

the outer bands contain the remaining

frequency content.

FIG. 9. Full-width-half-maximum dis-

crepancies between the empirical prop-

agation of a 4-cycle toneburst and the

TDFE and MBFE approximations to

this. The dotted line is the TDFE frac-

tional error with dx ¼ k0=20. For the

same mesh refinement, the diamonds

are the MBFE FWHM fractional errors

and the crosses are the fractional errors

for MBFE with extrapolation. Dot-

dashed line is the TDFE fractional

error with dx ¼ k0=40. For the same

mesh refinement, the squares are the

MBFE fractional errors and the circles

are the fractional errors for MBFE

with extrapolation.
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�t ¼
tmah uð Þ � tmah uFEð Þ
tmah uð Þ � tmah u0ð Þ

�����
�����; (25)

where tmahðuP0Þ is the time that the maximum amplitude of

the Hilbert envelope of the initial pulse, uP0, occurs, and the

other times correspond to the maxima for the other pulses.

In Fig. 9, the TDFE solution with less mesh refinement

has unexpectedly low fractional error. This is because, as is

shown in Figs. 4 and 5 for dx ¼ k0=40, the pulse does not

have the required frequency down shift, and therefore no

pulse broadening in the time domain. However, an equal and

opposite error occurs with the velocity, as also shown in

Figs. 4 and 7, where high frequencies are significantly more

dispersive than for the empirical velocity, resulting in erro-

neous pulse broadening.

These two errors counteract one another to produce a

coincidentally accurate FWHM, where �FWHM ¼ 0:018. By

increasing the mesh refinement of the TDFE solution, and

therefore decreasing numerical error, the fractional uncer-

tainty in FWHM shown in Fig. 9 actually increases to

�FWHM ¼ 0:096. This is because the two numerical errors

described above that have equal and opposite contributions

to pulse dispersion in the time domain reduce at different

rates with increased mesh refinement.

Because of these various contributing sources of error in

FWHM, MBFE has high accuracy for three bands but there

is no consistent trend towards increasing accuracy with

increasing bands for FWHM. With three bands the FWHM

errors for the coarse and fine mesh refinements of MBFE

without extrapolation are �FWHM ¼ 0:074 and 0.046. With

extrapolations these errors reduce to �FWHM ¼ 0:010 and

0.009, which are approximately a factor of 2 more accurate

than the erroneously high accuracy of the coarse refined

TDFE solution and approximately a factor of 10 more accu-

rate than the TDFE solution with less computational error.

In summary, using as few as three bands in MBFE

results in significantly improved representations of ultrasonic

pulse FWHM relative to those of TDFE simulation, with

the exception of one anomalously accurate TDFE result,

explained above.

In Fig. 10, the coarse and fine mesh TDFE PD errors are

�t ¼ 0:047 and 0.038. The MBFE errors asymptote towards

the highest accuracy achievable for a given mesh refinement.

With three bands the PD errors for the coarse and fine mesh

refinements of MBFE without extrapolation are �t ¼ 0:042 and

0.035. With extrapolations these errors reduce to �t ¼ 0:040

and 0.033, which are approximately a factor of 1.1 more accu-

rate than the coarse refined TDFE solution and approximately a

factor of 1.4 more accurate than the TDFE solution with less

computational error.

In summary, using as few as three bands in MBFE

results in significantly improved representations of ultrasonic

pulse PD relative to those of TDFE simulation.

The absolute reduction in error from TDFE to MBFE is

greater for FWHM than PD because FWHM is influenced by

attenuation and phase velocity accuracy while PD error is

only influenced by phase velocity; for viscoelastic media

with dispersion relations that adhere to the Kramers-Kronig

causality constraint, as with Eqs. (3) and (4), attenuation

varies more than phase velocity with frequency and is there-

fore less well represented by the TDFE frequency

independent solution. Extrapolation provides the largest

reduction in MBFE FWHM error because of the high fre-

quency dependence of attenuation, while mesh refinement

provides the largest reduction in MBFE PD error because of

the relatively large reduction in velocity accuracy when the

number of elements per wavelength is lower.

Consequently, MBFE has been quantitatively validated

using the example of ultrasonic wave propagation in HDPE

that has a known general functional form for frequency

dependent dispersion. MBFE has also been shown to provide

significant improvements over TDFE for as few as three

bands.

B. Wave scattering

Wave scattering is a second case where dispersion char-

acteristics, including the influence of the scatterer, follow

general frequency dependence describable by MBFE. The

scattered pulse shapes of TDFE simulations will be compared

with those of MBFE with three bands. The convergence of

FIG. 10. PD discrepancies between the

empirical propagation of a 4-cycle

toneburst and the TDFE and MBFE

approximations to this. The dotted line

is the TDFE fractional error with

dx ¼ k0=20. For the same mesh refine-

ment, the diamonds are the MBFE PD

fractional errors and the crosses are the

fractional errors for MBFE with

extrapolation. Dot-dashed line is the

TDFE fractional error with

dx ¼ k0=40. For the same mesh refine-

ment, the squares are the MBFE frac-

tional errors and the circles are the

fractional errors for MBFE with

extrapolation.
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the 3 band solution to a 15 band solution will be depicted for

a high mesh refinement MBFE example with extrapolation at

the outer band edges.

The following analysis is of simulations using the cylin-

drical void scattering geometry shown in Fig. 3, where the

wave is monitored at the same location before incidence on

the scatterer and after scattering. In Fig. 11, the solid curve is

the 15 band MBFE scattered pulse, uMB;15, the dashed curve is

the TDFE scattered pulse, uTD, and the dotted-dashed curve is

the band MBFE scattered pulse, uMB;3. The TDFE pulse has

an amplitude that is approximately double that of the 15 band

MBFE pulse. Also, its period is too short, which will result in

a FWHM that is too low. The phase is approximately one-

quarter of a cycle wrong. The PD is approximately equal to

that of the 15 band MBFE pulse. The 3 band MBFE solution

has fully converged to the 15 band MBFE pulse, within uncer-

tainty bounds much smaller than the computational error

caused by the finite mesh size.

In summary, using as few as three bands in MBFE

results in a significantly improved representation of ultra-

sonic wave scattering relative to that of TDFE simulation.

V. DISCUSSION AND CONCLUSIONS

Conventional TDFE simulations provide insufficient

accuracy when describing ultrasonic waves in materials

where wave propagation results in a large reduction in wave

amplitude, because they are limited to restrictive damping

models, such as Rayleigh damping. FDFE is discussed as an

alternative approach to such simulation, but this method is

inherently highly computationally expensive for large model

sizes and, using the usual implementation in many commer-

cial software packages, FDFE can also be limited in its

description of different frequency dependent dispersion rela-

tions. Accurate application of FDFE to, for example, visco-

elastic waves often requires prior accurate knowledge of the

frequency dependence of storage and loss moduli, rather

than just the frequency dependence of attenuation and phase

velocity. The MBFE approach is beneficial because such

material properties as storage and loss moduli require signifi-

cant materials testing to obtain. The inference of these

acoustic properties using specific relations to material prop-

erties can result in increased uncertainty or error, potentially

caused by such a mathematical description using unsuitable

approximations to variations in, or unsuitable operating

ranges in, the parameters with which the acoustic properties

vary. For example, these material properties must usually be

inferred using extrapolation from data obtained at frequen-

cies significantly below ultrasonic frequencies. In wave sim-

ulation, use of accurate and reliable fully parameterised

acoustic properties inherently bypasses these potential com-

plications and sources of uncertainty or error. MBFE is con-

sequently devised and proposed as an appropriate approach

to modelling ultrasonic viscoelastic waves, and other such

dispersion relations with general frequency dependence,

only using prior knowledge of acoustic properties.

The MBFE approach is validated using a wave propaga-

tion example and shown to significantly increase accuracy

over the TDFE example. For HDPE pipe material, while the

large variation of its attenuation with frequency results in

improved accuracy, even for a high number of MBFE bands,

the smaller variation with frequency of its phase velocity

leads to higher achievable absolute accuracy; using MBFE

with three bands is highly beneficial for sizing accuracy, for

example using a 6 dB drop in amplitude, and also beneficial

for location accuracy because of its improved PD accuracy.

Scattering from a cylindrical void is demonstrated as an

alternative case where MBFE is implemented to simulate

waves with transfer functions that have general frequency

dependence. The MBFE 3 band solution is fully converged

to the 15 band pulse shape, within uncertainty bounds, while

the TDFE solution features significant discrepancy.

MBFE is shown to improve accuracy over TDFE with-

out incurring high computational cost. Furthermore, MBFE

can be significantly more computationally efficient than

FDFE for similar accuracy, or potentially more efficient with

higher accuracy than an FDFE simulation implemented in

many current commercial software packages.

FIG. 11. FE simulated longitudinal

wave pulses propagated in HDPE and

scattered from a 3 mm cylindrical void.

The input pulses are 4-cycle tonebursts

with Blackman-Harris envelopes. The

centre frequency of the input pulse is

f0 ¼ 2:25 MHz and the mesh spacing

is dx ¼ k0=40 and the time increment

is dt ¼ 3=ð400f0Þ. The pulse ampli-

tudes are normalised to the maximum

of the amplitude of the Hilbert trans-

form of the input pulse, mahðu0Þ. The

solid curve is the 15 band MBFE scat-

tered pulse, uMB;15, the dashed curve is

the TDFE scattered pulse, uTD, and

dot-dashed curve is the 3 band MBFE

scattered pulse, uMB;3.

J. Acoust. Soc. Am. 142 (3), September 2017 Egerton et al. 1279



ACKNOWLEDGMENTS

The authors acknowledge EPSRC and the UK Research

Centre for NDE (EPSRC Grant No. EP/L022125/1) for

funding this work. P.H. is funded under EPSRC Grant No.

EP/M020207/1.

1K.-J. Bathe, Finite Element Procedures in Engineering Analysis (Prentice-

Hall, Englewood Cliffs, NJ, 1982), pp. 887–1012.
2P. Huthwaite, “Accelerated finite element elastodynamic simulations using

the GPU,” J. Comput. Phys. 257, 687–707 (2014).
3R. E. Challis, F. Blarel, M. E. Unwin, J. Paul, and X. Guo, “Models of

ultrasonic wave propagation in epoxy materials,” IEEE Trans. Ultrason.,

Ferroelectr., Freq. Control 56(6), 1225–1237 (2009).
4S. Holm and S. P. Nasholm, “Comparison of fractional wave equations for

power law attenuation in ultrasound and elastography,” Ultrasound Med.

Biol. 40(4), 695–703 (2014).
5J. S. Egerton, M. J. S. Lowe, H. V. Halai, and P. Huthwaite, “Ultrasonic

attenuation and phase velocity in high-density polyethylene (HDPE) pipe

material,” J. Acoust. Soc. Am. 141(3), 1535–1545 (2017).
6S. I. Rokhlin, D. E. Chimenti, and P. B. Nagy, Physical Ultrasonics in
Composites (Oxford University Press, Oxford, 2011), pp. 3–368.

7M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K.

R. Nightingale, “A finite-element method model of soft tissue response to

impulsive acoustic radiation force,” IEEE Trans. Ultrason., Ferroelectr.,

Freq. Control 52(10), 1699–1712 (2005).
8P. Moczo, J. Kristek, M. Galis, P. Pazak, and M. Balazovjech, “The finite-

difference and finite-element modelling of seismic wave propagation and

earthquake motion,” Acta Physica Slovaca 57(2), 177–406 (2007).
9J. O. Smith III, Spectral Audio Signal Processing (W3K Publishing,

Lewiston, NY, 2011), pp. 57–63.
10L. Meirovitch, Fundamentals of Vibration (McGraw Hill Publications,

New York, 2003), pp. 77–144.
11C. Ramadas, K. Balasubramaniam, A. Hood, M. Joshi, and C. V.

Krishnamurthy, “Modelling of attenuation of Lamb waves using Rayleigh

damping: Numerical and experimental studies,” Composite Struct. 93,

2020–2025 (2011).
12J. Wu, “Determination of velocity and attenuation of shear waves using

ultrasonic spectroscopy,” J. Acoust. Soc. Am. 99(5), 2871–2875 (1996).
13J. R. Pettit, A. Walker, P. Cawley, and M. J. S. Lowe, “A stiffness reduc-

tion method for efficient absorption of waves at boundaries for use in com-

mercial finite element codes,” Ultrasonics 54(7), 1868–1879 (2014).
14M. B. Drozdz, “Efficient finite element modelling of ultrasound waves in

elastic media,” Ph.D. thesis, Imperial College London, January 2008, pp.

182–203.

1280 J. Acoust. Soc. Am. 142 (3), September 2017 Egerton et al.

http://dx.doi.org/10.1016/j.jcp.2013.10.017
http://dx.doi.org/10.1109/TUFFC.2009.1164
http://dx.doi.org/10.1109/TUFFC.2009.1164
http://dx.doi.org/10.1016/j.ultrasmedbio.2013.09.033
http://dx.doi.org/10.1016/j.ultrasmedbio.2013.09.033
http://dx.doi.org/10.1121/1.4976689
http://dx.doi.org/10.1109/TUFFC.2005.1561624
http://dx.doi.org/10.1109/TUFFC.2005.1561624
http://dx.doi.org/10.1016/j.compstruct.2011.02.021
http://dx.doi.org/10.1121/1.414880
http://dx.doi.org/10.1016/j.ultras.2013.11.013

	s1
	l
	n1
	s2
	d1
	d2
	d3
	d4
	d5
	d6
	s3
	s3A
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	d21
	s3B
	d22
	d23
	s4
	f1
	f2
	s4A
	f3
	f4
	d24
	d25
	f5
	f6
	f7
	f8
	f9
	s4B
	f10
	s5
	f11
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14

