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Abstract

This article presents various weak laws of large numbers for the so-called realised
covariation of a bivariate stationary stochastic process which is not a semimartingale.
More precisely, we consider two cases: Bivariate moving average processes with stochastic
correlation and bivariate Brownian semistationary processes with stochastic correlation.
In both cases, we can show that the (possibly scaled) realised covariation converges to the
integrated (possibly volatility modulated) stochastic correlation process.
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1 Introduction

The aim of this article is to construct consistent estimators for the (possibly) stochastic
correlation between two stochastic processes outside the semimartingale framework.

In the semimartingale case, the corresponding results are well-known. For instance, for a
bivariate semimartingale Y = (Y (1), Y (2))> the quadratic covariation denoted by [Y (1), Y (2)]
exists and can be approximated by the so-called realised covariation. More precisely, for n ∈ N
we write ∆n = n−1; then we have for t ≥ 0 that

bntc∑
i=1

∆n
i Y

(1)∆n
i Y

(2) u.c.p.→ [Y (1), Y (2)]t, where ∆n
i Y

(j) = Y
(j)
i∆n
− Y (j)

(i−1)∆n , j ∈ {1, 2},

where the convergence is uniform on compacts in probability (u.c.p.) as n→∞. We know
that as soon as we drop the assumption that Y is a semimartingale, its quadratic covariation
does not necessarily exist anymore. Hence we would like to answer the question whether a
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weak law of large numbers can be formulated for a possibly scaled version of the realised
covariation

bntc∑
i=1

∆n
i Y

(1)∆n
i Y

(2)

when Y is not a semimartingale. We tackle this question in a semi-parametric setting: First
of all, we define the class of bivariate moving average processes with stochastic correlation
and later extend this class to bivariate Brownian semistationary processes with stochastic
correlation. In these cases, we are able to show that, under appropriate assumptions, the
(possibly) scaled realised covariation can indeed be used to estimate correlation in a non-
semimartingale setting.

While our results are interesting from a purely theoretical point of view, we also believe
that they are relevant for various applications. For instance, empirical work in modelling of
turbulence suggests that non-semimartingale models, and Brownian semistationary processes in
particular, compare favourably to other alternatives, see e.g. Barndorff-Nielsen and Schmiegel
(2009); Márquez and Schmiegel (2016); Barndorff-Nielsen, Benth, and Veraart (2017). Also,
when it comes to modelling of financial asset prices, we remark that the classical theory has
heavily relied on the semimartingale framework, but it has been shown that non-semimartingale
models do not necessarily lead to the presence of arbitrage. More precisely, in the presence of
small proportional transaction costs, Guasoni, Rásonyi, and Schachermayer (2008) showed
that if a non-semimartingale has conditional full support, then it does not lead to so-called
free lunches. This property is indeed satisfied by a Brownian semistationary processes, see
Pakkanen (2011). Also, in the case of modelling energy prices the semimartingale assumption
can be relaxed and (multivariate) Brownian semistationary processes have been used in this
context, see e.g. Barndorff-Nielsen, Benth, and Veraart (2013); Veraart and Veraart (2014).

Our work has been motivated by a variety of recent articles which consider weak laws
of large numbers and central limit theorems for Gaussian processes, see Guyon and León
(1989); Barndorff-Nielsen, Corcuera, and Podolskij (2009); Corcuera (2012); Barndorff-Nielsen,
Corcuera, Podolskij, and Woerner (2009), for Brownian semistationary processes, see Barndorff-
Nielsen and Schmiegel (2009); Barndorff-Nielsen, Corcuera, and Podolskij (2011), and for Lévy-
driven processes, see Basse-O’Connor, Lachieze-Rey, and Podolskij (2017); Basse-O’Connor,
Heinrich, and Podolskij (2016). However, we remark that all these articles consider a univariate
setting, whereas our article is to the best of our knowledge the first one to consider the
multivariate case. This enables us to construct for the first time a consistent estimator for
stochastic correlation outside the semimartingale framework.

The remainder of this article is structured as follows. Section 2 introduces the notation and
defines the main objects of interest. In particular, it formulates the assumptions which ensure
that we are outside the semimartingale framework. Section 3 contains the main contributions
of the article by presenting three weak laws of large numbers for the (possibly scaled) realised
covariation. Since the proofs of our results are rather technical, we conclude in Section 4 and
relegate the proofs to Section 5. Finally, Section A contains some useful background material.

2 The setting

Throughout this article we denote by (Ω,F ,Ft,P) a filtered, complete probability space
and by B(R) the class of Borel subsets of R. We will consider a finite time horizon [0, T ] for
some T > 0. Let us first recall the definition of a Brownian measure.
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Definition 2.1 (Brownian measure). An Ft-adapted Brownian measure W : Ω ×B(R)→ R
is a Gaussian stochastic measure such that, if A ∈ B(R) with E[(W (A))2] <∞, then W (A) ∼
N(0, Leb(A)), where Leb is the Lebesgue measure. Moreover, if A ⊆ [t,+∞), then W (A) is
independent of Ft.

An introduction to constructing stochastic integrals against such measures can be found in
Walsh (1986).

We will assume that (Ω,F ,Ft,P) supports two independent Ft-Brownian measures
W (1), W̃ on R and will now define a bivariate moving average process with stochastic correlation.

Definition 2.2 (Bivariate moving average process with stochastic correlation). Consider two
independent Brownian measures W (1) and W̃ adapted to Ft and two nonnegative deterministic
functions g(1), g(2) ∈ L2((0,∞)) which are continuous on R \ {0}. Let ρ be a càdlàg stochastic
process, defined on the whole real line, with paths lying in [−1,+1] a.s. and independent of
Ft. Define

Y
(1)
t :=

∫ t

−∞
g(1)(t− s) dW (1)

s ,

Y
(2)
t :=

∫ t

−∞
g(2)(t− s)ρs dW (1)

s +

∫ t

−∞
g(2)(t− s)

√
1− ρ2s dW̃s.

Then the vector process (Yt)t≥0 = (Y
(1)
t , Y

(2)
t )>t≥0 is called a bivariate moving average process

with stochastic correlation.

We call Y defined as above a bivariate moving average process with stochastic correlation,

since we will formally write dW
(2)
t := ρsdW

(1)
t +

√
1− ρ2tdW̃t and we can then write

Y
(2)
t =

∫ t

−∞
g(2)(t− s) dW (2)

s .

Note that for t > 0, W (2)([0, t]) :=
∫ t
0 ρs dW

(1)
s +

∫ t
0

√
1− ρ2s dW̃s is a standard Brownian

motion by Lévy’s characterisation theorem. Hence Y (1) and Y (2) appear as two univariate
moving average processes which feature stochastic dependence.

In what follows we will mostly refer to the Brownian measures W (1) and W̃ as processes,
by a slight abuse of notation. An increment Wt −Ws will simply be the (Gaussian) random
variable W (ω, (s, t]).

2.1 Integrated correlation and realised covariation

Our object of interest is the integrated stochastic correlation coefficient given by
∫ t
0 ρsds.

It is well known that in the case when Y is a semimartingale, then the quadratic covariation
of Y is given by

[Y (1), Y (2)]t = g(1)(0+)g(2)(0+)

∫ t

0
ρsds. (1)

Our aim is to estimate (the right hand side of) equation (1) consistently given high frequency
observations. To this end consider the following setting. Suppose that we sample our processes
discretely along successive partitions of [0, T ]. A partition Πn of [0, T ] will be a collection
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of times 0 = t0 < · · · < ti < ti+1 < · · · < tn = T , where, for simplicity, we assume that the
partition is equally spaced. The mesh of the partition will therefore be ∆n = 1

n . Hence when
n→∞, ∆n → 0 and we are in the setting of the so-called infill asymptotics.

We denote the increments of Y (j) by ∆n
i Y

(j) := Y
(j)
i∆n
−Y (j)

(i−1)∆n , for j = 1, 2, and find that

∆n
i Y

(j) =

∫ (i−1)∆n

−∞

(
g(j) (i∆n − s)− g(j) ((i− 1)∆n − s)

)
dW (j)

s

+

∫ i∆n

(i−1)∆n
g(j)(i∆n − s) dW (j)

s .

(2)

The realised covariation is defined as

bntc∑
i=1

∆n
i Y

(1)∆n
i Y

(2),

for n ≥ 1, t ∈ [0, T ]. In the case when Y is a semimartingale, we know from Protter
(2005)(Theorem 23), that

bntc∑
i=1

∆n
i Y

(1)∆n
i Y

(2) u.c.p.→ [Y (1), Y (2)]t, as n→∞,

where the convergence is uniform on compacts in probability (u.c.p.), see Section A.1 for
details on u.c.p. convergence.

Since the asymptotic theory for realised covariation is well known in the semimartingale
framework, we are exclusively interested in the asymptotic behaviour of the realised covariation
when Y is not a semimartingale. In that case, we have no guarantee that, as n tends to infinity,
the realised covariation tends to a finite limit. In the following we will prove convergence of
the (possibly scaled) realised covariation and identify the limiting process.

2.2 (Non-) semimartingale conditions

The question of whether or not Y (j) for j = 1, 2 is a semimartingale hinges on the properties
of the functions g(j). To simplify the exposition, let us suppress the superscripts in the following
and focus on the process Yt =

∫ t
−∞ g(t−s)dWs in this subsection. In order to establish whether

Y belongs to the semimartingale class, we need to be precise about the filtration we are using.
There are three possible filtrations that can be considered: 1) The filtration

(
F Y
t

)
t≥0, the

natural filtration of Y , i.e. the smallest filtration to which Y is adapted; 2) the filtration(
F Y,∞
t

)
t≥0

, such that F Y,∞
t := σ{Ys, s ∈ (−∞, t]}, i.e. the filtration generated by the history

of Y ; 3) the filtration
(
FW,∞
t

)
t≥0

which is the smallest filtration with respect to which W is

an adapted Brownian measure.
A discussion on the conditions to impose to ensure that Y is a semimartingale in these

different filtrations is contained in Basse (2008), Cheridito (2004). We will work with the
condition that Y is a semimartingale in the FW,∞

t filtration. This is the most restrictive of
the three (see Basse (2008)). For this setting, there exists a classical theorem due to Knight
(1992) that states the following:
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Theorem 2.3 (Knight). The process (Yt)t≥0 is an FW,∞
t -semimartingale if and only if there

exist h ∈ L2(R) and α ∈ R such that:

g(t) = α+

∫ t

0
h(s) ds.

Next let us study some sufficient conditions for a more general class of stochastic processes
to be a semimartingale: Barndorff-Nielsen and Schmiegel (2009) extended the moving average
process to allow for stochastic volatility and defined the so-called Brownian semistationary
(BSS) process by

Xt =

∫ t

−∞
g(t− s)σsdWs, (3)

where W is an Ft-adapted Brownian measure, σ is càdlàg and Ft-adapted, g : R → R is a
deterministic function, continuous in R \ {0}, with g(t) = 0 if t ≤ 0 and g ∈ L2((0,∞)). Also
it is assumed that

∫ t
−∞ g

2(t − s)σ2s ds < ∞ a.s. so that a.s. we have Yt < ∞ for all t ≥ 0.
Barndorff-Nielsen and Schmiegel (2009) gave the following sufficient conditions for BSS process
X to be a semimartingale:

Theorem 2.4. Under the assumptions that

(i) g is absolutely continuous and g′ ∈ L2((0,∞)),

(ii) limx→0+ g(x) =: g(0+) <∞,

(iii) The process g′(−·)σ· is square integrable,

then Xt defined as in (3) is an FW,∞
t -semimartingale. In this case Xt admits the decomposi-

tion:

Xt = g(0+)Wt +

∫ t

0
dl

[∫ l

−∞
g′(l − s)σs dWs

]
.

We will now reintroduce the superscripts in our notation and formulate conditions which
ensure that the bivariate moving average process Y with stochastic correlation is not a
semimartingale. To this end, we will relax the first two assumptions in Theorem 2.4 since both
assumptions are necessary for Y (j) to belong to the semimartingale class (see Basse (2008))
for j = 1, 2.

Assumption 2.1. For j ∈ {1, 2}, we assume that g(j) : R → R+ are nonnegative functions
and continuous, except possibly at x = 0. Also, g(j)(x) = 0 for x < 0 and g(j) ∈ L2 ((0,+∞)).

We further ask that g(j) be differentiable everywhere with derivative
(
g(j)
)′ ∈ L2((b(j),∞)) for

some b(j) > 0 and
(
(g(j))′

)2
non-increasing in [b(j),∞).

To simplify the notation in some of the proofs we set b = max{b(1), b(2)}, then
(
g(j)
)′ ∈

L2((b,∞)) and
(
(g(j))′

)2
is non-increasing in [b,∞) for j = 1, 2.

Note that we are not assuming that
(
g(j)
)′ ∈ L2((0,∞)) in order to exclude the semi-

martingale case. In particular, we must have that, for all ε > 0, supx∈(0,ε)

∣∣∣(g(j))′ (x)
∣∣∣ =∞.
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Remark 2.5. Under Assumption 2.1 we can deduce from the mean value theorem that there
exists an η ∈ [s, s+∆n] such that

g(j)(s+∆n)− g(j)(s) = ∆ng
(j) ′(η).

Then Assumption 2.1 implies that, for s ∈ [b,∞), we have

|g(j)(s+∆n)− g(j)(s)| ≤ ∆n|g(j) ′(s)|.

Hence, we can derive the bound:∫ ∞
b

(
g(j)(s+∆n)− g(j)(s)

)2
ds ≤ ∆2

n

∫ ∞
b

(
g(j) ′(s)

)2
ds = K∆2

n,

for some constant K > 0, since
(
g(j)
)′ ∈ L2((b,∞)).

We will impose an additional assumption for which we recall here the definition of a slowly
varying function.

Definition 2.6 (Slowly and regularly varying function). A measurable function L : (0,∞)→
(0,∞) is called slowly varying at infinity if, for all λ > 0 we have that limx→∞

L(λx)
L(x) = 1. A

function g : (0,∞) → (0,∞) is called regularly varying at infinity if, for x large enough, it
can be written as: g(x) = xδL(x), for a slowly varying function L. The parameter δ is called
the index of regular variation. Finally, a measurable function L : (0,∞) → (0,∞) is called
slowly varying at zero (resp. regularly varying at zero) if x→ L

(
1
x

)
is slowly varying (resp.

regularly varying) at infinity.

The theory of regular variation allows us to construct functions which behave asymptotically
like power functions. See also the discussion in Bennedsen, Lunde, and Pakkanen (2017), while
the standard comprehensive reference on the subject is the book by Bingham, Goldie, and
Teugels (1989).

Assumption 2.2. We require that, for j ∈ {1, 2}, the following integral functions are regularly
varying at zero: ∫ x

0

(
g(j)(s)

)2
ds = x2δ

(j)+1L
(j)
1 (x), (4)∫ b(j)

0

(
g(j)(s+ x)− g(j)(s)

)2
ds = x2δ

(j)+1L
(j)
2 (x), (5)

for δ(j) ∈ (−1
2 , 0) ∪ (0, 12), where L

(j)
1 (x) and L

(j)
2 (x) are positive, slowly varying functions at

zero which are continuous on (0,∞).

In this situation, the restriction δ(j) ∈ (−1
2 , 0) ∪ (0, 12) ensures that the process leaves the

semimartingale class.

Example 2.7. Suppose for simplicity g(x) = xδ (where we suppress the superscripts again).
Then we can show that, if δ ∈ (−1

2 , 0) ∪ (0, 12), then∫ b

0
(g(x+∆n)− g(x))2 dx = O(∆2δ+1

n ).

6



With the change of variable x = y∆n we get:

∆n

∫ bn

0
(g (∆n(y + 1))− g (∆ny))2 dy = ∆2δ+1

n

∫ bn

0

(
(y + 1)δ − yδ

)2
dy

≤ ∆2δ+1
n

∫ ∞
0

(
(y + 1)δ − yδ

)2
dy.

It is then sufficient to show that
∫∞
0

(
(y + 1)δ − yδ

)2
dy <∞. First, suppose δ > 0. Then, in

a neighbourhood of 0, (y + 1)δ − yδ ∼ 1, while by Taylor’s theorem,
(
(y + 1)δ − yδ

)2 ∼ y2δ−2
away from 0. Hence, if 2δ − 2 < −1 ⇐⇒ δ < 1

2 the function is integrable at infinity. If

instead δ < 0, changing variables z = 1
y and writing −δ =: β > 0, we obtain:∫ ∞

0

((
z + 1

z

)δ

−
(

1

z

)δ
)2

1

z2
dz =

∫ ∞
0

(
zβ−1

(
1− (z + 1)β

)
(z + 1)β

)2

dz.

For z close to zero, (z + 1)β ∼ 1 + zβ, so around 0 the integrand is asymptotically equivalent

to zβ ∼ 0. At infinity,

(
zβ−1(1−(z+1)β)

(z+1)β

)2

∼
(
zβ−1(−(z+1)β)

(z+1)β

)2

= z2β−2, so we must impose

2β − 2 < −1 ⇐⇒ β < 1
2 ⇐⇒ δ > −1

2 .

Example 2.8. A popular example in applications is the so-called Gamma kernel which is
given by g(x) = e−λxxδ1{x>0}, for λ > 0, δ > −1

2 , where superscripts are suppressed. A review
paper on the importance of the Gamma kernel in this context is given in Barndorff-Nielsen
(2016). By way of example, the Gamma kernel is very relevant in turbulence modelling, indeed
g(x) ∼ xδ, close to zero, and δ is called the scaling parameter. A scaling parameter equal to
−1

6 fits well with Kolmogorov’s scaling law in turbulence (see Corcuera, Hedevang, Pakkanen,
and Podolskij (2013)).

Note that with δ ∈ (−1
2 , 0) ∪ (0, 12 ], g satisfies Assumptions 2.1 and 2.2 (a proof of the

second statement is contained in Barndorff-Nielsen, Corcuera, and Podolskij (2011)). Indeed,
for δ in the stated range, g′ /∈ L2(0,∞), since it is unbounded and not square integrable near
zero; in this case the moving average process (and also the Brownian semistationary process)
is not a semimartingale. If δ > 0, let b be the inflection point of g and ȳ its point of maximum.
Then b > ȳ, and, if y > b, we have that ((g′)2)′(y) = 2g′(y)g′′(y) ≤ 0, since the Gamma kernel
decreases after the maximum and the second derivative tends to 0+ for y → ∞. If δ ≤ 0,
the condition that (g′)2 is non increasing in [b,∞) is satisfied for any b > 0. Finally, g′ is
obviously square integrable over [b,∞) thanks to its exponential decay.

The next assumption we assume throughout concerns the stochastic correlation process ρ.

Assumption 2.3. The paths of ρ are almost surely Hölder continuous with exponent α.

Example 2.9. If ρ can be written as a diffusion: ρt =
∫ t
0 κs dW

∗
s with W ∗ a Brownian

measure independent of W (1), W̃ , and κ satisfying some mild conditions, then ρ admits a
version which is α−Hölder continuous, for all α < 1

2 . We can for example take the solution to
the SDE:

dρt =

∫ t

0

√
(1− ρt)(1 + ρt) dWt,

which defines a stochastic process bound to stay between -1 and +1 (with the addition of
an appropriate drift, such a process takes the name of Jacobi process, see e.g. Veraart and
Veraart (2012)).
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3 Results

We will now state our main results where we distinguish two different scenarios: The first
scenario considers the case when the functions g(j) have a limit at zero, but the resulting
process Y falls outside the semimartingale class. In the second scenario we will instead allow
the functions g(j) to blow up near zero, but we ask that they are decreasing.

3.1 Weak law of large numbers for bivariate moving average processes with
stochastic correlation

3.1.1 Scenario 1: The non-semimartingale case when g(1)(0+)g(2)(0+) <∞

This subsection presents the first of our convergence results for the realised covariation.
Here we also impose an assumption on the limit behaviour of the functions g(j) at 0.

Assumption 3.1. We suppose that δ(1) + δ(2) ≥ 0 and that the limit g(1)(0+)g(2)(0+) :=

limx→0+ g
(1)(x)g(2)(x), exists finite. If δ(1)+δ(2) = 0, then we require that limx→0+ L

(1)
2 (x)L

(2)
2 (x) =

0.

Remark 3.1. If we further assumed that:

g(j)(x) = xδ
(j)
L
(j)
3 (x), (6)

where L3 is slowly varying, then Assumption 3.1 would tell us that limx→0+ g
(1)(x)g(2)(x) = 0.

This is a common practical situation, where both the kernels g can be taken to be xδ
(j)
e−λ

(j)x,
for some positive, potentially different δ(1), δ(2). Note, however, that (4) is more general.
Indeed, taking derivatives of (4), we get:(

g(j)(x)
)2

= (2δ(j) + 1)x2δ
(j)
L
(j)
1 (x) + x2δ

(j)+1
(
L
(j)
1 (x)

)′
.

The derivative of a slowly varying function need not be slowly varying (see De Haan and
Resnick (1979)), hence we are not necessarily in the same context of (6).

We can now formulate our first law of large numbers for the realised covariation of two
non-semimartingales.

Theorem 3.2 (First law of large numbers). Suppose that the Assumptions 2.1, 2.2, 2.3 and
3.1 are satisfied. Then, the following u.c.p. convergence holds:bntc∑

i=1

∆n
i Y

(1)∆n
i Y

(2)


t∈[0,T ]

u.c.p.−→
(
g(1)(0+)g(2)(0+)

∫ t

0
ρs ds

)
t∈[0,T ]

, as n→∞. (7)

3.1.2 Scenario 2: The non-semimartingale with decreasing functions g(1), g(2)

In the case when the limit limx→0+ g
(1)(x)g(2)(x) does not exist finite we need to proceed

differently in order to derive a weak law of large numbers for the realised covariation. A notable
example of this scenario is the case when g(j) are Gamma kernels given by g(j)(x) = xδ

(j)
e−λ

(j)x,
for δ(j) < 0, λ(j) > 0 for j = 1, 2.
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The method we are going to propose in the following is motivated by the method used in
the univariate case by Barndorff-Nielsen and Schmiegel (2009). To this end, let us introduce
the following notation. We write:

∆n
i Y

(1) =

∫ i∆n

−∞
ϕ
(1)
∆n

(i∆n − s) dW (1)
s ,

where

ϕ
(j)
∆n

(s) =

{
g(j)(s), s ≤ ∆n,

g(j)(s)− g(j)(s−∆n), s > ∆n,

and hence

ϕ
(j)
∆n

(i∆n − s) =

{
g(j)(i∆n − s), s ≥ (i− 1)∆n,

g(j)(i∆n − s)− g(j)((i− 1)∆n − s), s < (i− 1)∆n.

For reasons that will become apparent later, we need to impose monotonicity of our kernel
functions. Since we want to be able to cover the case where g goes to infinity close to zero, we
introduce the following assumption:

Assumption 3.2. We assume that g(1), g(2) are both decreasing on R+.

We need to formulate another rather technical assumption which has first been formulated
in Granelli and Veraart (2017). To this end let us introduce the necessary notation: We

define the bivariate Gaussian process (Gt)t≥0 whose components are given by G
(1)
t = Y

(1)
t =∫ t

−∞ g
(1)(t− s)dW (1)

s and G
(2)
t =

∫ t
−∞ g

(2)(t− s)dW (1)
s .

Remark 3.3. As a consequence of Assumption 2.2, if we denote for i ∈ {1, 2}:

R̄(i)(t) := E
[(
G

(i)
s+t −G(i)

s

)2]
,

then it holds that:
R̄(i)(t) = t2δ

(i)+1L
(i)
0 (t),

for δ(i) ∈
(
−1

2 ,
1
2

)
\ {0}, where L

(i)
0 (t) is a slowly varying function at zero. Let us denote by

L̃
(i,j)
0 (t) :=

√
L
(i)
0 (t)L

(j)
0 (t) another slowly varying function at zero.

For i, j ∈ {1, 2}, we write ρi,j = ρ for i 6= j and ρi,j = 1 for i = j. Moreover, we introduce
the functions mapping R+ into R+, with i, j ∈ {1, 2}:

R̄(i,j)(t) := E
[(
G

(j)
t −G

(i)
0

)2]
=
∥∥∥g(i)∥∥∥2

L2
+
∥∥∥g(j)∥∥∥2

L2
− 2E

[
G

(i)
0 G

(j)
t

]
. (8)

We note that we can write

R̄(i,j)(t) = Ci,j + 2ρi,j

∫ ∞
0

(g(j)(x)− g(j)(x+ t))g(i)(x)dx,

where Ci,j :=
∥∥g(i)∥∥2

L2 +
∥∥g(j)∥∥2

L2 − 2ρi,j
∫∞
0 g(i)(x)g(j)(x)dx, where in particular Ci,i = 0. We

can now formulate our next assumption.
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Assumption 3.3. For all t ∈ (0, T ), there exist slowly varying functions L
(i,j)
0 (t) and L

(i,j)
2 (t)

which are continuous on (0,∞) such that

R̄(i,j)(t) = Ci,j + ρi,jt
δ(i)+δ(j)+1L

(i,j)
0 (t), for i, j ∈ {1, 2}, (9)

and

1

2
(R̄(i,j))′′(t) = ρi,jt

δ(i)+δ(j)−1L
(i,j)
2 (t), for i, j ∈ {1, 2},

where δ(1), δ(2) ∈
(
−1

2 ,
1
2

)
\ {0}.

Also, if we denote L̃
(i,j)
0 (t) :=

√
L
(i,i)
0 (t)L

(j,j)
0 (t), we ask that the functions L

(i,j)
0 (t) and

L
(i,j)
2 (t) are such that, for all λ > 0, there exists a H(i,j) ∈ R such that:

lim
t→0+

L
(i,j)
0 (λt)

L̃
(i,j)
0 (t)

= H(i,j) <∞, (10)

and that there exists b ∈ (0, 1), such that:

lim sup
x→0+

sup
y∈(x,xb)

∣∣∣∣∣L(i,j)
2 (y)

L̃
(i,j)
0 (x)

∣∣∣∣∣ <∞. (11)

Remark 3.4. We remark that Assumption 3.3 is important for the setting when i 6= j, in the
case when i = j the assumption is implied by the previous assumptions as discussed before.

Remark 3.5. Assumption 3.3 can be seen as the extension of the classical assumptions on
the variogram of a stationary process, see e.g. Corcuera, Hedevang, Pakkanen, and Podolskij
(2013); Barndorff-Nielsen, Corcuera, and Podolskij (2013); Guyon and León (1989).

We need to introduce the following scaling factor for the realised covariation: The scaling
factor c(x) is defined as

c(x) :=

∫ ∞
0

ϕ(1)
x (s)ϕ(2)

x (s) ds

=

∫ x

0
g(1)(s)g(2)(s) ds+

∫ ∞
0

(
g(1)(s+ x)− g(1)(s)

)(
g(2)(s+ x)− g(2)(s)

)
ds.

Assumption 3.4. The scaling factor satisfies

c(∆n) = ∆δ(1)+δ(2)+1
n L

(1,2)
4 (∆n), (12)

where L
(1,2)
4 is a continuous function on (0,∞) which is slowly varying at zero and δ(1), δ(2) ∈(

−1
2 ,

1
2

)
\ {0}. Moreover, we assume that there exists a constant |H| <∞ such that

lim
x→0+

L
(1,2)
4 (x)

L̃
(1,2)
0 (x)

= H. (13)

Note that since the kernel functions are positive, decreasing and differentiable, c(x) is a
positive, increasing function of x.

We can now formulate the second weak law of large numbers for the scaled realised
covariation of two non-semimartingales.
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Theorem 3.6. Suppose that Assumptions 2.1, 2.2, 2.3, 3.2, 3.3 and 3.4 hold. Then:(
∆n

∑n
i=1∆

n
i Y

(1)∆n
i Y

(2)

c(∆n)

)
t∈[0,T ]

u.c.p.−→
(∫ t

0
ρl dl

)
t∈[0,T ]

, as n→∞.

We note that this result differs from the result obtained in Theorem 3.2 by the fact that
we need to include the additional scaling factor ∆n

c(∆n)
∼ ∆−δ(1)−δ(2)n . While this might seem

innocent at first sight, it does impose restriction on empirical applications, since the scaling
factor depends on the typically unknown functions g(1) and g(2). Note further, that for n large
enough, the scaling factor ∆n

c(∆n)
is increasing with n.

3.2 Weak law of large number for bivariate Brownian semistationary pro-
cesses with stochastic correlation

So far we have considered bivariate moving average processes with stochastic correlation.
In a next step, we wish to consider a more general class of stochastic processes which also
allows for stochastic volatility. To this end, we give the definition of the bivariate BSS process
with stochastic correlation that generalises Definition 2.2.

Definition 3.7 (Bivariate Brownian semistationary process with stochastic correlation).
Consider two independent Brownian measures W (1) and W̃ adapted to Ft and two nonnegative
deterministic functions g(1), g(2) ∈ L2((0,∞)) which are continuous on R \ {0}. Let ρ be
a càdlàg stochastic process, defined on the whole real line, with paths lying in [−1,+1] a.s.
and independent of Ft. Let further σ(1), σ(2) be càdlàg , Ft-adapted stochastic processes and
assume that for i ∈ {1, 2}, and for all t ∈ [0, T ]:∫ t

−∞
g(i)2(t− s)σ(i)2s ds <∞.

Define

X
(1)
t :=

∫ t

−∞
g(1)(t− s)σ(1)s dW (1)

s ,

X
(2)
t :=

∫ t

−∞
g(2)(t− s)σ(2)s ρs dW

(1)
s +

∫ t

−∞
g(2)(t− s)σ(2)s

√
1− ρ2s dW̃s.

Then the vector process (Xt)t≥0 = (X
(1)
t , X

(2)
t )>t≥0 is called a bivariate Brownian semistationary

process with stochastic correlation.

We note that we can write

Xt =

∫ t

−∞

(
g(1)(t− s) 0

0 g(2)(t− s)

)(
σ
(1)
s 0

0 σ
(2)
s

)(
1 0

ρs
√

1− ρ2s

)
d

(
W

(1)
s

W̃s

)
,

=

∫ t

−∞

(
g(1)(t− s) 0

0 g(2)(t− s)

)(
σ
(1)
s 0

0 σ
(2)
s

)
d

(
W

(1)
s

W
(2)
s

)
,

where the integration is to be understood componentwise. For the increment processes, we
obtain for j ∈ {1, 2}:
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∆n
i X

(j) =

∫ (i−1)∆n

−∞

(
g(j)(i∆n − s)− g(j)(i− 1)∆n − s)

)
σ(j)s dW (j)

s

+

∫ i∆n

(i−1)∆n
g(j)(i∆n − s)σ(j)s dW (j)

s . (14)

Lastly, we will need the following technical assumption:

Assumption 3.5. The volatility processes are assumed to be independent of the Brownian

measures, i.e.: σ
(
σ(1), σ(2)

)
is independent of σ

(
W (1), W̃

)
. We assume that for j ∈ {1, 2},

we have that the following property holds almost surely:∫ ∞
1

(
d

ds
g(j)(s)

)2

σ
(j)
y−s ds <∞, for all y ∈ R+.

We can write:

n∑
i=1

∆n
i X

(1)∆n
i X

(2) =

n∑
i=1

∫ ∞
0

ϕ
(1)
∆n

(s)σ
(1)
i∆n−s dW

(1)
i∆n−s

∫ ∞
0

ϕ
(2)
∆n

(s)σ
(2)
i∆n−s dW

(2)
i∆n−s.

We now consider the sigma algebra H := F ρ,σ(1),σ(2)
generated by the processes ρ, σ(1), σ(2).

We obtain:

E

[
∆n
i X

(1)∆n
i X

(2)

∣∣∣∣∣H
]

=

∫ ∞
0

ϕ
(1)
∆n
ϕ
(2)
∆n
σ
(1)
i∆n−sσ

(2)
i∆n−sρi∆n−s ds

=

∫ (i−1)∆n

−∞
∆n
i g

(1)∆n
i g

(2)σ(1)s σ(2)s ρs ds+

∫ i∆n

(i−1)∆n
g(1)(i∆n−s)g(2)(i∆n−s)σ(1)s σ(2)s ρs ds.

(15)

We aim to show the corresponding version of Theorem 3.6, in presence of volatility.

Theorem 3.8 (Law of large numbers). Suppose that the assumptions of Theorem 3.6 hold.
Further assume that the processes σ(1), σ(2)have Hölder continuous sample paths and satisfy
Assumption 3.5. Then(

∆n

∑bntc
i=1 ∆

n
i X

(1)∆n
i X

(2)

c(∆n)

)
t∈[0,T ]

u.c.p.−→
(∫ t

0
σ
(1)
l σ

(2)
l ρl dl

)
t∈[0,T ]

, as n→∞,

where c(∆n) =
∫ ∆n
0 g(1)(s)g(2)(s) ds+

∫∞
0

(
g(1)(s+∆n)− g(1)(s)

) (
g(2)(s+∆n)− g(2)(s)

)
ds.

4 Conclusion

In this article we have proven two versions of a law of large numbers for the realised
covariation of the bivariate moving average process with stochastic correlation. We have also
proven a weak law of large numbers for a bivariate Brownian semistationary process with
stochastic correlation. These results state the consistency of our estimator for the integrated
covariance, the (possibly scaled) realised covariation. The importance of such results can be
seen in the more general context of building a fully multivariate theory for general BSS process,
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whose importance in stochastic modelling in e.g. finance and turbulence, see Barndorff-Nielsen,
Benth, and Veraart (2013); Corcuera, Hedevang, Pakkanen, and Podolskij (2013), is steadily
rising. Performing inference on the dependence of two such processes is of fundamental
importance in practical applications. It has to be stressed, though, that our second law of
large numbers requires us to scale the estimator by the typically unknown kernel functions
g(1) and g(2), and this makes the estimation unfeasible in practice. Further research could be
devoted to estimating the kernel functions first and use a plug-in type estimator as the scaling
factor of the realised covariation we have considered in this article.

On the stochastic analysis side, our results show that it is possible to obtain convergence
of the “realised covariation” between two non-semimartingales, subject to appropriate scaling.
Our techniques are very general and one could perhaps try to adapt them to other classes
of multivariate fractional process, for example extending the theory to include the integral
processes appearing in Corcuera, Nualart, Woerner, et al. (2006).

In future research one could also tackle the problem of deriving a central limit theorem for
bivariate Brownian semistationary processes and first results along these lines are available in
Granelli and Veraart (2017).

5 Proofs

5.1 Proof of Theorem 3.2

5.1.1 Notation and preliminary remarks

This section contains the full proof of Theorem 3.2, which will be divided into several
separate lemmas.

Recall that we are working on a finite, fixed time horizon [0, T ], but according to Theorem
A.3 and Remark 5.1 below, we do not lose generality if, for simplicity, we restrict ourselves to
T = 1. Hence we do so in the following.

Remark 5.1 (From convergence in probability to u.c.p. convergence). We only need to show
pointwise convergence in probability of the realised covariation in order to prove Theorem
3.2. Indeed, even though we are not directly in the framework of Theorem A.3, because the
realised quadratic covariation process does not have increasing paths, since the product of the
increments can be negative, we can still deduce u.c.p. convergence via the polarisation identity:

n∑
i=1

(∆n
i Y ∆

n
i X) =

1

2

n∑
i=1

(∆n
i (X + Y ))2 −

n∑
i=1

(∆n
i X)2 −

n∑
i=1

(∆n
i Y )2 .

If we can prove that the left hand side converges in probability for all t, it will follow that the
realised quadratic variation of the sum X + Y converges for all t, because we already know
from the results in Barndorff-Nielsen and Schmiegel (2009) that convergence of the squared
increments of X and Y separately holds for all t. But then each term on the right hand side
converges u.c.p. because they all have increasing paths. Since u.c.p. convergence is induced by a
metric, we can conclude that u.c.p. convergence will hold for the realised quadratic covariation
too.

In the following, the notation: E(i−1)∆n denotes the conditional expectation operator upon
the sub-σ-algebra G(i−1)∆n generated by the whole process ρ and by the increments of the
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processes W (1) and W̃ until (i− 1)∆n, i.e.:

G(i−1)∆n = σ{ρs; s ∈ R} ∨ σ{W (1)
u −W (1)

t , W̃u − W̃t; −∞ < t ≤ u ≤ (i− 1)∆n}.

The main idea to prove (7) is to add and subtract the quantity:

n∑
i=1

E(i−1)∆n

[
∆n
i Y

(1)∆n
i Y

(2)
]

= E(i−1)∆n

[
n∑
i=1

∆n
i Y

(1)∆n
i Y

(2)

]
, (16)

and split the difference
∑n

i=1∆
n
i Y

(1)∆n
i Y

(2) − g(1)(0+)g(2)(0+)
∫ 1
0 ρs ds into:

An :=

n∑
i=1

∆n
i Y

(1)∆n
i Y

(2) −
n∑
i=1

E(i−1)∆n

[
∆n
i Y

(1)∆n
i Y

(2)
]
, (17)

Bn :=

n∑
i=1

E(i−1)∆n

[
∆n
i Y

(1)∆n
i Y

(2)
]
− g(1)(0+)g(2)(0+)

∫ 1

0
ρs ds. (18)

The proof that An converges to zero will take most of the present section. Proposition 5.11
contains the much shorter proof that Bn converges to zero as well.

Using the notation ∆n
i g

(j)
s := g(j) (i∆n − s) − g(j) ((i− 1)∆n − s), the quantity in (16)

equals:

E(i−1)∆n

[
n∑
i=1

∆n
i Y

(1)∆n
i Y

(2)

]

=
n∑
i=1

E(i−1)∆n

[∫ i∆n

(i−1)∆n
g(1) (i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2) (i∆n − s) dW (2)

s

]

+
n∑
i=1

∫ (i−1)∆n

−∞
∆n
i g

(1)
s dW (1)

s

∫ (i−1)∆n

−∞
∆n
i g

(2)
s dW (2)

s .

(19)

We have to establish a preliminary lemma:

Lemma 5.2. The following holds:

E(i−1)∆n

[∫ i∆n

(i−1)∆n
g(i∆n − s) dWs

]
= 0,

E(i−1)∆n

[∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s) dW (2)

s

]

=

∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s) ρs ds.

(20)

Proof. The first result is immediate. For the second one, using the definition of W (2):

E(i−1)∆n

[∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s) dW (2)

s

]
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=E(i−1)∆n

[∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s) ρsdW (1)

s

]
(21)

+E(i−1)∆n

[∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)

√
1− ρ2sdW̃s

]
. (22)

Line (22) immediately evaluates to zero by the tower property and independence of W (1), W̃ .
Observe that

σ
{
W (1)
u −W (1)

t , W̃u − W̃t; −∞ < t ≤ u ≤ (i− 1)∆n

}
is independent of

σ

(∫ i∆n

(i−1)∆n
g(1)(i∆n − s)dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)ρsdW (1)

s

)
∨ σ (ρs, s ∈ R) =: F ρ.

Hence, conditioning on G(i−1)∆n is equivalent to conditioning on F ρ (Williams (1991)).
By taking the derivative of the conditional characteristic function, and exchanging differ-

entiation and expectation thanks to uniform boundedness, we can write:

− ∂2

∂ϑ1∂ϑ2

∣∣∣∣∣
ϑ1=0,ϑ2=0

E

[
exp

{
iϑ1

∫ k∆n

(k−1)∆n
g(1)(k∆n − s) dW (1)

s

+ iϑ2

∫ k∆n

(k−1)∆n
g(2)(k∆n − s)ρs dW (1)

s

}∣∣∣∣∣F ρ

]

= −E

[
∂2

∂ϑ1∂ϑ2

∣∣∣∣∣
ϑ1=0,ϑ2=0

exp

{
iϑ1

∫ k∆n

(k−1)∆n
g(1)(k∆n − s) dW (1)

s

+ iϑ2

∫ k∆n

(k−1)∆n
g(2)(k∆n − s)ρs dW (1)

s

}∣∣∣∣∣F ρ

]

= E

[∫ k∆n

(k−1)∆n
g(1)(k∆n − s) dW (1)

s

∫ k∆n

(k−1)∆n
g(2)(k∆n − s)ρs dW (1)

s

∣∣∣∣∣F ρ

]
,

but on the other hand:

− ∂2

∂ϑ1∂ϑ2

∣∣∣∣∣
ϑ1=0,ϑ2=0

E

[
exp

{
iϑ1

∫ k∆n

(k−1)∆n
g(1)(k∆n − s) dW (1)

s

+ iϑ2

∫ k∆n

(k−1)∆n
g(2)(k∆n − s)ρs dW (1)

s

}∣∣∣∣∣F ρ

]

= − ∂2

∂ϑ1∂ϑ2

∣∣∣∣∣
ϑ1=0,ϑ2=0

E

[
exp

{
i

∫ k∆n

(k−1)∆n

[
ϑ1g

(1)(k∆n − s) + ϑ2ρsg
(2)(k∆n − s)

]
dW (1)

s

}∣∣∣∣∣F ρ

]

= − ∂2

∂ϑ1∂ϑ2

∣∣∣∣∣
ϑ1=0,ϑ2=0

exp

(
−1

2

∫ k∆n

(k−1)∆n

[
ϑ1g

(1)(k∆n − s) + ϑ2ρsg
(2)(k∆n − s)

]2
ds

)

=

∫ k∆n

(k−1)∆n
g(1)(k∆n − s)g(2)(k∆n − s)ρs ds,
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proving the claim.

We are now ready to begin to look at the proof of Theorem 3.2. The next two sections
contain the full details on the convergence of An as defined in (17).

5.1.2 Convergence of An

First we show the convergence of An. To this end recall that

An =

n∑
i=1

∆n
i Y

(1)∆n
i Y

(2) −
n∑
i=1

E(i−1)∆n

[
∆n
i Y

(1)∆n
i Y

(2)
]
.

Expanding the conditional expectation using the computations in Lemma 5.2 and simple
algebra gives:

n∑
i=1

(
∆n
i Y

(1)∆n
i Y

(2) − E(i−1)∆n

[
∆n
i Y

(1)∆n
i Y

(2)
])

= A(1)
n +A(2)

n , where

A(1)
n =

n∑
i=1

∫ (i−1)∆n

−∞
∆n
i g

(1)
s dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)dW (2)

s (23)

+
n∑
i=1

∫ (i−1)∆n

−∞
∆n
i g

(2)
s dW (2)

s

∫ i∆n

(i−1)∆n
g(1)(i∆n − s)dW (1)

s (24)

A(2)
n =

n∑
i=1

(∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s) dW (2)

s (25)

−
∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s)ρs ds

)
. (26)

Proposition 5.3. We have the following L2-convergence: A
(1)
n

L2

→ 0 as n→∞.

Proof. The two terms (23) and (24) in A
(1)
n are symmetric. Hence we only present the proof

that the first one converges to zero, and the proof for the second one will follow in an analogous

way. We compute the L2 norm of the first term in A
(1)
n :

E

( n∑
i=1

∫ (i−1)∆n

−∞
∆n
i g

(1)
s dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)dW (2)

s

)2
 . (27)

It is easy to see that the cross products originating by squaring the sum are equal to:

2
∑
j<i

E

[∫ (i−1)∆n

−∞
∆n
i g

(1)
s dW (1)

s

∫ (j−1)∆n

−∞
∆n
j g

(1)dW (1)
s

×
∫ i∆n

(i−1)∆n
g(2)(i∆n − s) dW (2)

s

∫ j∆n

(j−1)∆n
g(2)(j∆n − s) dW (2)

s

]
,
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which is easily seen to be zero, by the tower property, conditioning on G(i−1)∆n . The other
term originating from (27), is the sum of the n terms squared:

n∑
i=1

E

(∫ (i−1)∆n

−∞
∆n
i g

(1)
s dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s) dW (2)

s

)2


=
n∑
i=1

∫ (i−1)∆n

−∞

(
∆n
i g

(1)
s

)2
ds

∫ i∆n

(i−1)∆n

(
g(2)(i∆n − s)

)2
ds, (28)

thanks to an application of Corollary A.5 in the Appendix.
Now (28) becomes, after a change of variable:

n

∫ ∞
0

(
g(1)(s+∆n)− g(1)(s)

)2
ds

∫ ∆n

0

(
g(2)(s)

)2
ds. (29)

From Remark 2.5 it follows that it is only necessary to consider the bounded interval
(0, b(1)) in the first integral of (29), since on [b(1),+∞) the integral is O(∆2

n).
It then follows from Assumption 2.2 that the quantity in (29) can be written as follows,

for some constant C:

Cn∆2δ(1)+2δ(2)+2
n L

(2)
1 (∆n)L

(1)
2 (∆n) = C∆2δ(1)+2δ(2)+1

n L
(2)
1 (∆n)L

(1)
2 (∆n)→ 0,

since δ(1) + δ(2) ≥ 0, the product of slowly varying function is slowly varying and the Potter
bounds apply, which we recall in Remark 5.4 below.

Remark 5.4 (Potter’s bound for slowly varying functions at zero). For a slowly varying
function L at infinity, we have Potter’s bound: there exist constants ū, C1, C2 such that, for
any δ > 0 and u > ū:

C1u
−δ ≤ L(u) ≤ C2u

δ.

Call M(u) := L( 1
u). M is slowly varying at zero. Potter’s bound, for small u, gives us:

C1

(
1

u

)−δ
≤ L

(
1

u

)
≤ C2

(
1

u

)δ
,

which we can rewrite as:

C1u
δ ≤M(u) ≤ C2u

−δ.

In particular, for any α > 0, choose δ ∈ (0, α). Then:

0 ≤ tαM(t) ≤ C2t
αt−δ = C2t

α−δ → 0

as t→ 0. Henceforth, for all α > 0, limt→0 t
αM(t) = 0.

For the first part of the proof of Theorem 3.2, we are only left with the term A
(2)
n , where

we recall that

A(2)
n =

n∑
i=1

∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s) dW (2)

s
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−
∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s)ρs ds.

Using that dW
(2)
t = ρt dW

(1) +
√

(1− ρ2t ) dW̃t, we will split it into two terms. I.e. we will

write A
(2)
n = A

(2,1)
n +A

(2,2)
n , where the first one is given by

A(2,1)
n =

n∑
i=1

(∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)

√
1− ρ2s dW̃s

)

and is dealt with in Lemma 5.5. The second one, whose convergence is more difficult to prove,
is given by:

A(2,2)
n =

n∑
i=1

(∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)ρs dW (1)

s

−
∫ i∆n

(i−1)∆n
(g(1)(i∆n − s))(g(2)(i∆n − s)) ρs ds

)
.

A proof of its convergence can be found in Proposition 5.6. We will start with the easier one:

Lemma 5.5. We have the following L2-convergence: A
(2,1)
n

L2

→ 0 as n→∞.

Proof. We get:

E

( n∑
i=1

∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)

√
1− ρ2s dW̃s

)2
 (30)

=

n∑
i=1

E

(∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)

√
1− ρ2s dW̃s

)2
+ (31)

∑
i 6=j

E

[∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)

√
1− ρ2s dW̃s× (32)

×
∫ j∆n

(j−1)∆n
g(1)(j∆n − s) dW (1)

s

∫ j∆n

(j−1)∆n
g(2)(j∆n − s)

√
1− ρ2s dW̃s

]
.

Since FW (1)
is independent of F ρ ∨F W̃ , it is easy to deal with the term in (31):

n∑
i=1

E

(∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)

√
1− ρ2s dW̃s

)2


=

n∑
i=1

E

(∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

)2
E

(∫ i∆n

(i−1)∆n
g(2)(i∆n − s)

√
1− ρ2s dW̃s

)2


(33)

=
n∑
i=1

∫ ∆n

0

(
g(1)(s)

)2
ds

∫ ∆n

0

(
g(2)(s)

)2 (
1− ρ2i∆n−s

)
ds (34)

18



≤2n

∫ ∆n

0

(
g(1)(s)

)2
ds

∫ ∆n

0

(
g(2)(s)

)2
ds = C∆2(δ(1)+δ(2)+1)

n L
(1)
1 (∆n)L

(2)
1 (∆n)n→ 0,

(35)

for a constant C > 0, where the asymptotics on line (35) follow from Assumption 2.2 and
Remark 5.4. Lastly, the summand in (32) becomes:

∑
i 6=j

E

[∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)

√
1− ρ2s dW̃s×

×
∫ j∆n

(j−1)∆n
g(1)(j∆n − s) dW (1)

s

∫ j∆n

(j−1)∆n
g(2)(j∆n − s)

√
1− ρ2s dW̃s

]

=
∑
i 6=j

E

[∫ i∆n

(i−1)∆n
g(2)(i∆n − s)

√
1− ρ2s dW̃s

∫ j∆n

(j−1)∆n
g(2)(j∆n − s)

√
1− ρ2s dW̃s

]
×

E

[∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s ×
∫ j∆n

(j−1)∆n
g(1)(j∆n − s) dW (1)

s

]
= 0,

since ((i− 1)∆n, i∆n) ∩ ((j − 1)∆n, j∆n) = ∅.

Now we tackle the difficult term:

Proposition 5.6. We have the following convergence in probability: A
(2,2)
n

P→ 0 as n→∞.

We will use a blocking technique, which consists in freezing the correlation process in each
of the intervals ((i− 1)∆n, i∆n). Exploiting the Hölder continuity assumption on the paths of
ρ, we will show that this “frozen” quantity is a good substitute of the one we have: We need
to show that the difference converges to zero (at least) in probability. The following lemma
shows that there is essentially no harm in doing so for the Lebesgue integral part:

Lemma 5.7. We have the following almost sure convergence:

n∑
i=1

∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s)

(
ρs − ρ(i−1)∆n

)
ds

a.s.→ 0, as n→∞.

Proof. We find that:∣∣∣∣∣
n∑
i=1

∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s)

(
ρs − ρ(i−1)∆n

)
ds

∣∣∣∣∣
≤

n∑
i=1

∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s)

∣∣ρs − ρ(i−1)∆n∣∣ ds
≤ ∆α

nn

∫ ∆n

0
g(1)(s)g(2)(s) ds ≤ ∆α

nn

√∫ ∆n

0

(
g(1)(s)

)2
ds

√∫ ∆n

0

(
g(2)(s)

)2
ds

= C(∆δ(1)+δ(2)+α
n )

√
L
(1)
1 (∆n)L

(2)
1 (∆n)→ 0.
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For the Brownian part, the situation is similar, but we cannot ask for a.s. convergence.

Lemma 5.8. We have the following L2-convergence:

n∑
i=1

∫ i∆n

(i−1)∆n
g(1)(i∆n−s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n−s)

(
ρs − ρ(i−1)∆n

)
dW (1)

s
L2

→ 0, as n→∞.

Proof. Using the inequality E
[
(
∑n

i=1Xi)
2
]
≤ n

∑n
i=1 E

[
X2
i

]
, we obtain:

E

( n∑
i=1

∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)

(
ρs − ρ(i−1)∆n

)
dW (1)

s

)2


≤n
n∑
i=1

E

[
E

[(∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)

(
ρs − ρ(i−1)∆n

)
dW (1)

s

)2 ∣∣∣∣∣F ρ


=n

n∑
i=1

E

[∫ i∆n

(i−1)∆n

(
g(1)(i∆n − s)

)2
ds

∫ i∆n

(i−1)∆n

(
g(2)(i∆n − s)

)2
(ρs − ρi∆n−s)

2 ds

+2

(∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s) (ρs − ρi∆n−s) ds

)2 ]
, (36)

where the last equality (36) follows from an application of Corollary A.5 in the appendix.
Furthermore, by Hölder’s inequality we have(∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s) |ρs − ρi∆n−s| ds

)2

≤

(∫ i∆n

(i−1)∆n

(
g(1)(i∆n − s)

)2
ds

∫ i∆n

(i−1)∆n

(
g(2)(i∆n − s)

)2
(ρs − ρi∆n−s)

2 ds

)2

.

Finally, using that |ρs − ρ(i−1)∆n | ≤ C∆α
n, for some positive constant C:

3Cn
n∑
i=1

E

[∫ i∆n

(i−1)∆n

(
g(1)(i∆n − s)

)2
ds

∫ i∆n

(i−1)∆n

(
g(2)(i∆n − s)

)2
(ρs − ρi∆n−s)

2 ds

]

≤n2∆2α
n

∫ ∆n

0

(
g(1)(s)

)2
ds

∫ ∆n

0

(
g(2)(s)

)2
ds = ∆2(δ(1)+δ(2)+α)

n L
(1)
1 (∆n)L

(2)
1 (∆n)→ 0,

where the asymptotic bound follows again from Assumption 2.2 and Remark 5.4.

Proof of Proposition 5.6. We can now prove the statement of Proposition 5.6. In the light of
Lemmas 5.7 and 5.8, it will be sufficient to show that:

n∑
i=1

(∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)ρ(i−1)∆n dW

(1)
s
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−
∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s)ρ(i−1)∆n ds

)
(37)

converges to zero. We will show that it does so in L2. Since we can take out the random
variable ρ(i−1)∆n from the stochastic integrals in (37), it remains to prove that:

E

[(
n∑
i=1

ρ(i−1)∆n

(∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s) dW (1)

s

−
∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s) ds

))2]
(38)

converges to zero. For ease of notation, we will suppress the arguments of the functions
g(1), g(2) in parts of the present proof. By expanding (38) we obtain two terms: the sum of
the squares and the sum of the cross products. We start with the latter:

n∑
i,j=1
i 6=j

E

[
ρ(i−1)∆nρ(j−1)∆n×

(∫ i∆n

(i−1)∆n
g(1) dW (1)

s

∫ i∆n

(i−1)∆n
g(2) dW (1)

s −
∫ i∆n

(i−1)∆n
g(1)g(2) ds

)
(∫ j∆n

(j−1)∆n
g(1) dW (1)

s

∫ j∆n

(j−1)∆n
g(2) dW (1)

s −
∫ j∆n

(j−1)∆n
g(1)g(2) ds

)]
. (39)

The expectation splits thanks to independence between F ρ and FW (1)
. Now suppose i < j;

then by the independent increments property of the integrals:

E

[(∫ i∆n

(i−1)∆n
g(1) dW (1)

s

∫ i∆n

(i−1)∆n
g(2) dW (1)

s −
∫ i∆n

(i−1)∆n
g(1)g(2) ds

)
×(∫ j∆n

(j−1)∆n
g(1) dW (1)

s

∫ j∆n

(j−1)∆n
g(2) dW (1)

s −
∫ j∆n

(j−1)∆n
g(1)g(2) ds

)]

=E

[(∫ i∆n

(i−1)∆n
g(1) dW (1)

s

∫ i∆n

(i−1)∆n
g(2) dW (1)

s −
∫ i∆n

(i−1)∆n
g(1)g(2) ds

)]
×

E

[(∫ j∆n

(j−1)∆n
g(1) dW (1)

s

∫ j∆n

(j−1)∆n
g(2) dW (1)

s −
∫ j∆n

(j−1)∆n
g(1)g(2) ds

)]
= 0.

Hence we are only left with considering the sum of squares:

n∑
i=1

E

ρ2(i−1)∆n
(∫ i∆n

(i−1)∆n
g(1) dW (1)

s

∫ i∆n

(i−1)∆n
g(2) dW (1)

s −
∫ i∆n

(i−1)∆n
g(1)g(2) ds

)2


=

n∑
i=1

E
[
ρ2(i−1)∆n

]

· E

(∫ i∆n

(i−1)∆n
g(1) dW (1)

s

∫ i∆n

(i−1)∆n
g(2) dW (1)

s −
∫ i∆n

(i−1)∆n
g(1)g(2) ds

)2
 .

(40)
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Now:

E

(∫ i∆n

(i−1)∆n
g(1) dW (1)

s

∫ i∆n

(i−1)∆n
g(2) dW (1)

s −
∫ i∆n

(i−1)∆n
g(1)g(2) ds

)2


= E

(∫ i∆n

(i−1)∆n
g(1) dW (1)

s

∫ i∆n

(i−1)∆n
g(2) dW (1)

s

)2
−(∫ i∆n

(i−1)∆n
g(1)g(2) ds

)2

=

∫ i∆n

(i−1)∆n

(
g(1)
)2

ds

∫ i∆n

(i−1)∆n

(
g(2)
)2

ds+

(∫ i∆n

(i−1)∆n
g(1)g(2) ds

)2

(41)

≤ 2

∫ i∆n

(i−1)∆n

(
g(1)
)2

(s) ds

∫ i∆n

(i−1)∆n

(
g(2)
)2

(s) ds (42)

= C∆2(δ(1)+δ(2)+1)
n L

(1)
1 (∆n)L

(2)
1 (∆n),

where (41) is an application of Lemma 68. Thus, (40) finally goes to zero:

C∆2(δ(1)+δ(2)+1)
n L

(1)
1 (∆n)L

(2)
1 (∆n)

n∑
i=1

E
[
ρ2(i−1)∆n

]
≤ C∆2(δ(1)+δ(2))+1

n L
(1)
1 (∆n)L

(2)
1 (∆n)

→ 0,

for some positive constant C. The proof of Proposition 5.6 is now complete.

5.1.3 Convergence of Bn

What remains to be shown is the convergence of the term Bn. Recall that

Bn =
n∑
i=1

E(i−1)∆n

[
∆n
i Y

(1)∆n
i Y

(2)
]
− g(1)(0+)g(2)(0+)

∫ 1

0
ρs ds, (43)

where we recall the following expression, which we derived in (19) and (20):

n∑
i=1

E(i−1)∆n

[
∆n
i Y

(1)∆n
i Y

(2)
]

=
n∑
i=1

∫ (i−1)∆n

−∞
∆n
i g

(1)
s dW (1)

∫ (i−1)∆n

−∞
∆n
i g

(2)
s dW (2)+

n∑
i=1

∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s)ρs ds,

with ∆n
i g

(j)
s := g(j) (i∆n − s) − g(j) ((i− 1)∆n − s). Hence we can write Bn = B

(1)
n + B

(2)
n ,

where

B(1)
n =

n∑
i=1

∫ (i−1)∆n

−∞
∆n
i g

(1)
s dW (1)

s

∫ (i−1)∆n

−∞
∆n
i g

(2)
s dW (2)

s ,

and

B(2)
n =

n∑
i=1

∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s)ρs ds− g(1)(0+)g(2)(0+)

∫ 1

0
ρs ds.
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Lemma 5.9. We have the following L2-convergence: B
(1)
n

L2

→ 0 as n→∞.

Proof. Using the inequality E
[
(
∑n

i=1Xi)
2
]
≤ n

∑n
i=1 E

[
X2
i

]
, it suffices to look at:

n
n∑
i=1

E

(∫ (i−1)∆n

−∞
∆n
i g

(1)
s dW (1)

s

∫ (i−1)∆n

−∞
∆n
i g

(2)
s dW (2)

s

)2


= n

n∑
i=1

∫ (i−1)∆n

−∞
(∆n

i g
(1)
s )2 ds

∫ (i−1)∆n

−∞
(∆n

i g
(2)
s )2 ds

+ 2n
n∑
i=1

(∫ (i−1)∆n

−∞
(∆n

i g
(1)
s )(∆n

i g
(2)
s )ρs ds

)2

(44)

≤ 3n
n∑
i=1

∫ (i−1)∆n

−∞
(∆n

i g
(1)
s )2 ds

∫ (i−1)∆n

−∞
(∆n

i g
(2)
s )2 ds, (45)

by Hölder’s inequality. Each of the two integrals in (45) can be decomposed as:∫ (i−1)∆n

−∞

(
∆n
i g

(j)
s

)2
ds

=

∫ b(j)

0
(g(j)(s+∆n)− g(j)(s))2 ds+

∫ +∞

b(j)
(g(j)(s+∆n)− g(j)(s))2 ds. (46)

The integral on the unbounded domain is O(∆2
n), as in Remark 2.5. Hence it suffices to

consider the product of the integrals in the bounded domains, i.e.:

n
n∑
i=1

∫ b(1)

0
(g(1)(s+∆n)− g(1)(s))2 ds

∫ b(2)

0
(g(2)(s+∆n)− g(2)(s))2 ds. (47)

Thanks to Remark 5.4 and Assumption 2.2, the quantity in (47) becomes, for some C > 0:

Cn2∆2+2(δ(1)+δ(2))
n L

(1)
2 (∆n)L

(2)
2 (∆n)→ 0.

Remark 5.10. Note that the last bound is sharp, in the sense that we obtained O(∆
2(δ(1)+δ(2))
n )

instead of O(∆
2(δ(1)+δ(2)+α)
n ). This is the only term in the proof where we cannot obtain more

regularity by the Hölder continuity of the paths of ρ. Hence, Assumption 3.1 which we are
imposing in this section is crucial here.

We conclude with the last part of the convergence theorem.

Proposition 5.11. We have the following almost sure convergence result: B
(2)
n

a.s.→ 0 as
n→∞.

Proof. Using Lemma 5.7 we can simply show that

n∑
i=1

ρ(i−1)∆n

∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s) ds
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converges almost surely to the limit g(1)(0+)g(2)(0+)
∫ 1
0 ρs ds. To this end, note that

n∑
i=1

ρ(i−1)∆n

∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s) ds (48)

=

n∑
i=1

ρ(i−1)∆n

∫ ∆n

0
g(1)(y)g(2)(y) dy (49)

=

(∫ ∆n

0
g(1)(y)g(2)(y) dy

) n∑
i=1

ρ(i−1)∆n (50)

= ∆ng
(1)(ζ)g(2)(ζ)1{ζ∈[0,∆n]}

n∑
i=1

ρ(i−1)∆n
a.s.→ g(1)(0+)g(2)(0+)

∫ 1

0
ρs ds. (51)

Line (49) follows by setting y = i∆n − s, while line (51) follows from the mean value theorem
and the fact that the paths of ρ are almost surely Riemann integrable.

This concludes the proof of Theorem 3.2, that deals with the case where the indices of
regular variation satisfy: δ(1) + δ(2) ≥ 0.

In the following section, we wish to lift such a restriction, and prove another law of large
numbers, this time for a scaled version of the realised covariation.

5.2 Proof of Theorem 3.6

As in the last section, thanks to Remark 5.1, we will prove convergence in probability
for t = 1. In order to prove this result, we denote by F ρ := σ{ρs, s ∈ R} and we start by
considering the following decomposition:

∆n

∑n
i=1∆

n
i Y

(1)∆n
i Y

(2)

c(∆n)
−
∫ 1

0
ρl dl = D(1)

n +D(2)
n , where

D(1)
n = ∆n

∑n
i=1∆

n
i Y

(1)∆n
i Y

(2)

c(∆n)
−

n∑
i=1

E

[
∆n

c(∆n)
∆n
i Y

(1)∆n
i Y

(2)

∣∣∣∣∣F ρ

]
,

D(2)
n =

n∑
i=1

E

[
∆n

c(∆n)
∆n
i Y

(1)∆n
i Y

(2)

∣∣∣∣∣F ρ

]
−
∫ 1

0
ρl dl.

(52)

5.2.1 Convergence of D
(2)
n

Note that

E

[
∆n
i Y

(1)∆n
i Y

(2)

∣∣∣∣∣F ρ

]
=

∫ i∆n

−∞
ϕ
(1)
∆n

(i∆n − s)ϕ(2)
∆n

(i∆n − s)ρs ds

=

∫ ∞
0

ϕ
(1)
∆n

(s)ϕ
(2)
∆n

(s)ρi∆n−s ds.
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Hence we can write

∆n

∑n
i=1 E

[
∆n
i Y

(1)∆n
i Y

(2)

∣∣∣∣∣F ρ

]
c(∆n)

=

∫∞
0 ϕ

(1)
∆n

(s)ϕ
(2)
∆n

(s)∆n (
∑n

i=1 ρi∆n−s) ds

c(∆n)

=

∫
R+

∆n

(
n∑
i=1

ρi∆n−s

)
dπn(s),

(53)

where, for each n ∈ N, πn is a measure whose density with respect to the Lebesgue measure is
given by

ϕ
(1)
∆n

(s)ϕ
(2)
∆n

(s)∫∞
0 ϕ

(1)
∆n

(s)ϕ
(2)
∆n

(s) ds
.

Note however that πn(ds) is a probability measure if both g(1) and g(2) are positive and
for s > ∆n one has

(
g(1)(s)− g(1)(s−∆n)

)
×
(
g(2)(s)− g(2)(s−∆n)

)
≥ 0, that is, if both are

monotonically increasing or decreasing. This is why we needed to introduce Assumption 3.2.

Let us now formulate a key result needed for establishing the convergence of D
(2)
n .

Proposition 5.12. Assume that the assumptions of Theorem 3.6 hold. If the probability
measures πn defined after equation (53) converge weakly to a probability π on [0,∞) then:

∆n

∑n
i=1 E

[
∆n
i Y

(1)∆n
i Y

(2)

∣∣∣∣∣F ρ

]
c(∆n)

a.s.→
∫
R+

(∫ 1−s

−s
ρl dl

)
dπ(s), as n→∞. (54)

Proof. Denote by fn(x, ω) := ∆n
∑n

i=1 ρi∆n−x(ω) and by f(x, ω) :=
∫ 1−x
−x ρl(ω) dl. Further-

more, for a measure µ on [0,+∞) and a measurable function g: µ(g) :=
∫
R+ g(x) dµ(x). For

a.s. ω, limn→∞ fn(x, ω) = f(x, ω).
Let l∗i be any point in [−x+ (i− 1)∆n,−x+ i∆n]. The error we make at the n-th step

with a Riemann sum is:

|fn − f | =

∣∣∣∣∣
n∑
i=1

∫ −x+i∆n
−x+(i−1)∆n

(
ρl − ρl∗i

)
dl

∣∣∣∣∣ ≤
n∑
i=1

∫ −x+i∆n
−x+(i−1)∆n

K|l − l∗i |
α dl

≤
n∑
i=1

∫ −x+i∆n
−x+(i−1)∆n

K∆α
n dl = Kn∆α+1

n ,

for a positive constant K, hence:

|πn(fn)− πn(f)| ≤ Kn∆α+1
n πn(R+) = Kn∆α+1

n → 0,

since πn(R+) :=
∫
R+ dπn(x) = 1.

Proposition 5.13. Assume that the assumptions of Theorem 3.6 hold. Then D
(2)
n

a.s.→ 0 as
n→∞.
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Proof. We remark that checking weak convergence of probability measures is equivalent to
checking pointwise convergence of the corresponding cumulative distribution functions. Hence
we write

Fn(x) = πn ([0, x]) =

∫ x
0 ϕ

(1)
∆n

(s)ϕ
(2)
∆n

(s) ds∫∞
0 ϕ

(1)
∆n

(s)ϕ
(2)
∆n

(s) ds
.

Now fix ε > ∆n. Then, for all x > ε, one has:

Fn(x)− Fn(ε) =

∫ x
ε ϕ

(1)
∆n

(s)ϕ
(2)
∆n

(s) ds∫∞
0 ϕ

(1)
∆n

(s)ϕ
(2)
∆n

(s) ds
≤ 1

c(∆n)

√∫ x

ε

(
ϕ
(1)
∆n

(s)
)2

ds

∫ x

ε

(
ϕ
(2)
∆n

(s)
)2

ds.

Denoting by b(1) a real number such that
(
g(1)

′
)2

(s) is decreasing for s > b(1):

∫ x

ε

(
ϕ
(1)
∆n

(s)
)2

ds =

∫ b(1)

ε

(
ϕ
(1)
∆n

(s)
)2

ds+

∫ x

b(1)

(
ϕ
(1)
∆n

(s)
)2

ds

≤ ∆2
n

[
(b(1) − ε) sup

[ε,b(1)]

(
g(1)

′
)2

(s) +
∥∥∥g(1)′∥∥∥

L2[ε,∞)

]
= C∆2

n → 0,

so

lim
n→∞

Fn(x)− Fn(ε) = 0, (55)

which implies that the limiting cumulative distribution function will be constant on the sets
(ε,∞), for all ε > 0, and hence its mass will intuitively concentrate at zero. We now formalise
this observation.

We observe that the family of measures {πn}∞n=1 is easily proven to be tight. Indeed, fix a
small ζ > 0, then if b = max(b(1), b(2)), by the above computations:∫ ∞

b
ϕ
(1)
∆n

(s)ϕ
(2)
∆n

(s) ds ≤ C∆2
n,

which is smaller than ζ for n big enough, say for n > n(ζ). Hence the compact set [0, b] is

such that πn[0, b] > 1− ζ for all n > n(ζ). The finite collection {πi}n(ζ)i=1 is obviously tight, and
thus we can conclude that the whole family {πn} is tight.

By tightness and Prohorov’s theorem, the sequence πn is relatively compact, that is, every
subsequence contains a further subsubsequence converging weakly to some probability measure
Q (that could depend on the chosen subsequence). By (55), the only possible weak limit is the
unit mass at zero, and hence every subsequence has a subsubsequence converging to δ0. But
this fact is equivalent to the weak convergence πn ⇒ δ0 (see Billingsley (2009), Theorem 2.6).

Now from (54) and the above remark we obtain that

∆n

∑n
i=1 E

[
∆n
i Y

(1)∆n
i Y

(2)

∣∣∣∣∣F ρ

]
c(∆n)

a.s.→
∫
R+

(∫ 1−s

−s
ρl dl

)
dδ0(s) =

∫ 1

0
ρl dl, as n→∞,

i.e. D
(2)
n

a.s.→ 0 as n→∞.
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5.2.2 Convergence of D
(1)
n

It remains to prove that D
(1)
n converges to 0. To this end note that asking that its L2-norm

goes to zero is equivalent to showing that Var(D
(1)
n |F ρ)→ 0 as n→∞.

Proposition 5.14. Suppose that the assumptions of Theorem 3.6 hold. Then:

Var

(
∆n

∑n
i=1∆

n
i Y

(1)∆n
i Y

(2)

c(∆n)

∣∣∣∣∣F ρ

)
→ 0, as n→∞.

Proof. We can write

Var

(
∆n

∑n
i=1∆

n
i Y

(1)∆n
i Y

(2)

c(∆n)

∣∣∣∣∣F ρ

)
=

∆2
n

c2(∆n)

(
n∑
i=1

Var

(
∆n
i Y

(1)∆n
i Y

(2)

∣∣∣∣∣F ρ

))

+2
∆2
n

c2(∆n)

 n∑
i=1

n∑
j=i+1

Cov

(
∆n
i Y

(1)∆n
i Y

(2), ∆n
j Y

(1)∆n
j Y

(2)

∣∣∣∣∣F ρ

) . (56)

Now observe that:

Var

(
∆n
i Y

(1)∆n
i Y

(2)

∣∣∣∣∣F ρ

)
≤ E

[(
∆n
i Y

(1)∆n
i Y

(2)
)2 ∣∣∣∣∣F ρ

]
∼ Kc2(∆n),

for some positive constant K > 0 thanks to Assumption 2.2 and the computations in the
previous sections. Hence the first term in (56) is asymptotically equivalent to:

Kn∆2
n → 0.

Now we have that

Cov

(
∆n
i Y

(1)∆n
i Y

(2), ∆n
j Y

(1)∆n
j Y

(2)

∣∣∣∣∣F ρ

)
= E

[
∆n
i Y

(1)∆n
i Y

(2)∆n
j Y

(1)∆n
j Y

(2)

∣∣∣∣∣F ρ

]

− E

[
∆n
i Y

(1)∆n
i Y

(2)

∣∣∣∣∣F ρ

]
E

[
∆n
j Y

(1)∆n
j Y

(2)

∣∣∣∣∣F ρ

]
.

(57)

Thanks to Lemma A.4, we know how to express the first expectation in (57) and write

Cov

(
∆n
i Y

(1)∆n
i Y

(2), ∆n
j Y

(1)∆n
j Y

(2)

∣∣∣∣∣F ρ

)
=

E
[
∆n
i Y

(1)∆n
j Y

(1)
∣∣F ρ

]
E
[
∆n
i Y

(2)∆n
j Y

(2)
∣∣F ρ

]
+ E

[
∆n
i Y

(1)∆n
j Y

(2)
∣∣F ρ

]
E
[
∆n
i Y

(2)∆n
j Y

(1)
∣∣F ρ

]
. (58)

Now, recall the notation ∆n
i g

(k)
s := g(k) (i∆n − s)− g(k) ((i− 1)∆n − s), for k ∈ {1, 2}. Since

j > i, we have:
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E
[
∆n
i Y

(1)∆n
j Y

(1)
∣∣F ρ

]
=

∫ i∆n

(i−1)∆n
g(1)(i∆n − s)∆n

j g
(1)
s ds+

∫ (i−1)∆n

−∞
∆n
i g

(1)
s ∆n

j g
(1)
s ds

=

∫ ∆n

0
g(1)(s)

(
g(1)((j − i)∆n + s)− g(1)((j − i− 1)∆n + s)

)
ds+∫ ∞

0

(
g(1)(∆n + s)− g(1)(s)

)(
g(1)((j − i)∆n + s)− g(1)((j − i− 1)∆n + s)

)
ds, (59)

and similarly:

E
[
∆n
i Y

(1)∆n
j Y

(2)
∣∣F ρ

]
=

∫ i∆n

(i−1)∆n
g(1)(i∆n−s)∆n

i g
(2)
s ρs ds+

∫ (i−1)∆n

−∞
∆n
i g

(1)
s ∆n

j g
(2)
s ρs ds,

and analogously for the other terms in (58).
These terms do not simply depend on the difference j − i because of the presence of the

correlation process ρ. Nevertheless, ρ is bounded by 1 in absolute value, so passing to the
absolute values, we can write:∣∣∣∣∣Cov

(
∆n
i Y

(1)∆n
i Y

(2), ∆n
j Y

(1)∆n
j Y

(2)

∣∣∣∣∣F ρ

)∣∣∣∣∣
≤ E

[∣∣∣∆n
i Y

(1)∆n
j Y

(1)
∣∣∣ ∣∣ρ ≡ 1

]
E
[∣∣∣∆n

i Y
(2)∆n

j Y
(2)
∣∣∣ ∣∣ρ ≡ 1

]
+ E

[∣∣∣∆n
i Y

(1)∆n
j Y

(2)
∣∣∣ ∣∣ρ ≡ 1

]
E
[∣∣∣∆n

i Y
(2)∆n

j Y
(1)
∣∣∣ ∣∣ρ ≡ 1

]
. (60)

The proof that the quantity goes to zero follows from Theorem 4.1 in Granelli and Veraart
(2017). Details on how to apply that theorem in this setting are as follows.

Denote by r
(n)
a,b (j − i) = E

[∣∣∣∆n
i Y

(a)∆n
j Y

(b)
∣∣∣ ∣∣ρ ≡ 1

]
, for a, b ∈ {1, 2}. Then, in fact,

r
(n)
a,b (j − i) = E

[
∆n
i G

(a)∆n
jG

(b)
]
, for a, b ∈ {1, 2}. The second term in line (56) is then

dominated by:

2
∆2
n

c2(∆n)

n∑
i=1

n∑
j=i+1

[
r
(n)
1,1 (j − i)r(n)2,2 (j − i) + r

(n)
1,2 (j − i)r(n)2,1 (j − i)

]
(61)

= 2
∆2
n

c2(∆n)

n∑
i=1

n∑
j−i=1

[
r
(n)
1,1 (j − i)r(n)2,2 (j − i) + r

(n)
1,2 (j − i)r(n)2,1 (j − i)

]
(62)

= 2
∆2
n

c2(∆n)
n

n∑
i=1

[
r
(n)
1,1 (i)r

(n)
2,2 (i) + r

(n)
1,2 (i)r

(n)
2,1 (i)

]
(63)

= 2
1

n

n∑
i=1

[
r
(n)
1,1 (i)r

(n)
2,2 (i)

c2(∆n)
+
r
(n)
1,2 (i)r

(n)
2,1 (i)

c2(∆n)

]
. (64)

With our assumptions, Theorem 4.3 in Granelli and Veraart (2017) gives us the uniform bound
for a positive constant C:

|E(∆n
1G

(a)∆n
1+iG

(b))|

τ
(a)
n τ

(b)
n

≤ C(i− 1)δ
(a)+δ(b)+ε−1,
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for all ε > 0, where, for i ∈ {a, b}:

τ (i)n :=

√
E
[(
∆n

1G
(i)
)2]

=

√∫ ∞
0

(
g(i)(s+∆n)− g(i)(s)

)2
ds+

∫ ∆n

0

(
g(i)(s)

)2
ds

=
√
R̄(i)(∆n) = ∆δ(i)+1/2

n

√
L
(i)
0 (∆n).

We can write∣∣∣r(n)a,b (k)
∣∣∣

c(∆n)
=
|E(∆n

1G
(a)∆n

1+kG
(b))|

c(∆n)
=
|E(∆n

1G
(a)∆n

1+kG
(b))|

τ
(a)
n τ

(b)
n

τ
(a)
n τ

(b)
n

c(∆n)
.

According to Assumption 3.4, we have

τ
(a)
n τ

(b)
n

c(∆n)
=
∆δ(a)+δ(b)+1
n

√
L
(a)
0 (∆n)L

(b)
0 (∆n)

∆δ(1)+δ(2)+1
n L

(1,2)
4 (∆n)

=

√
L
(a)
0 (∆n)L

(b)
0 (∆n)

L
(1,2)
4 (∆n)

.

Hence

τ
(1)
n τ

(1)
n

c(∆n)

τ
(2)
n τ

(2)
n

c(∆n)
=
L
(1)
0 (∆n)L

(2)
0 (∆n)

(L
(1,2)
4 (∆n))2

=
τ
(1)
n τ

(2)
n

c(∆n)

τ
(2)
n τ

(1)
n

c(∆n)
.

According to Assumption 3.4 the term
L
(1)
0 (∆n)L

(2)
0 (∆n)

(L
(1,2)
4 (∆n))2

converges, so it can be bounded by a

constant K. Hence we can deduce that for all ε > 0 there exists an n0(ε) ∈ N such that

r
(n)
1,1 (i)r

(n)
2,2 (i)

c(∆n)2
≤ KC(i− 1)2δ

(1)+2δ(2)+2ε−2,
r
(n)
1,2 (i)r

(n)
2,1 (i)

c(∆n)2
≤ KC(i− 1)2δ

(1)+2δ(2)+2ε−2

and for all n ≥ n0(ε). Convergence to zero then follows from Cesáro’s Theorem and from:

lim
i→∞

(i− 1)2δ
(1)+2δ(2)+2ε−2 = 0⇐⇒ 2δ(1) + 2δ(2) + 2ε− 2 < 0 ⇐⇒ ε < 1− δ(1) − δ(2),

which is always possible, as δ(1) + δ(2) ∈ (−1,+1).

5.3 Proof of Theorem 3.8

We first observe that, thanks to Theorem A.3 and Remark 5.1, u.c.p. convergence on [0, T ]
is implied by convergence in probability for all t ∈ [0, T ]. Without loss of generality, we will
then restrict ourselves to t = 1. The proof will be split in several steps. We start with the
familiar splitting:

∆n

∑n
i=1∆

n
i X

(1)∆n
i X

(2)

c(∆n)
−
∫ 1

0
σ
(1)
l σ

(2)
l ρl dl = G(1)

n +G(2)
n , where

G(1)
n = ∆n

∑n
i=1∆

n
i X

(1)∆n
i X

(2)

c(∆n)
−

n∑
i=1

E

[
∆n

c(∆n)
∆n
i X

(1)∆n
i X

(2)

∣∣∣∣∣H
]
,

G(2)
n =

n∑
i=1

E

[
∆n

c(∆n)
∆n
i X

(1)∆n
i X

(2)

∣∣∣∣∣H
]
−
∫ 1

0
σ
(1)
l σ

(2)
l ρl dl.

(65)

Proposition (5.12) easily extends to this situation and we can show that G
(2)
n

a.s.→ 0, as n→∞:
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Proposition 5.15. Let σ(1), σ(2), ρ have Hölder continuous sample paths, almost surely. Let
πn be a sequence of probability measures converging weakly to the probability π. Then, the
almost sure convergence of the Riemann sums

fn(ω, x) :=

n∑
i=1

ρi∆n−xσ
(1)
i∆n−xσ

(2)
i∆n−x →

∫ 1−x

−x
σ
(1)
l σ

(2)
l ρl dl =: f(ω, x)

implies the convergence of the integrals:

πn(fn)→ π(f).

In particular, we have the almost sure convergence:

n∑
i=1

E

[
∆n

c(∆n)
∆n
i X

(1)∆n
i X

(2)

∣∣∣∣∣H
]
a.s.→
∫
R+

(∫ 1−x

−x
σ
(1)
l σ

(2)
l ρl dl

)
dπ(x), as n→∞.

Proof. Let αρ, ασ(1) , ασ(2) denote the Hölder coefficients of ρ, σ(1), σ(2) and set α := min{αρ, ασ(1) , ασ(2)},
and |u− t| < 1. Then∣∣∣σ(1)u σ(2)u ρu − σ(1)t σ

(2)
t ρt

∣∣∣ ≤ ∣∣∣σ(1)u σ(2)u (ρu − ρt) + ρt(σ
(1)
u σ(2)u − σ

(1)
t σ

(2)
t )
∣∣∣

≤
∣∣∣σ(1)u σ(2)u (ρu − ρt) + ρt

(
σ(1)u

(
σ(2)u − σ

(2)
t + σ

(2)
t

)
− σ(1)t σ

(2)
t

)∣∣∣
≤ |u− t|αρ |σ(1)u σ(2)u |+ |σ(1)u ||u− t|

α
σ(2) + |σ(2)t ||u− t|

α
σ(1)

≤ |u− t|α
(
|σ(1)u σ(2)u |+ |σ(1)u |+ |σ

(2)
t |
)
.

The error we make with a Riemann sum becomes:

|fn(x)− f(x)| =

∣∣∣∣∣∆n

n∑
i=1

ρi∆n−xσ
(1)
i∆n−xσ

(2)
i∆n−x −

∫ 1−x

−x
ρlσ

(1)
l σ

(2)
l dl

∣∣∣∣∣
≤

n∑
i=1

∫ −x+i∆n
−x+(i−1)∆n

|σ(1)l σ
(2)
l ρl − σ

(1)
l∗i
σ
(2)
l∗i
ρl∗i | dl

≤
n∑
i=1

∫ −x+i∆n
−x+(i−1)∆n

|l − l∗i |
α
(
|σ(1)l σ

(2)
l |+ |σ

(1)
l |+ |σ

(2)
l∗i
|
)
dl

≤ ∆α
n

(∫ 1−x

−x

(
|σ(1)l σ

(2)
l |+ |σ

(1)
l |
)
dl +∆n

n∑
i=1

|σ(2)l∗i
|

)
.

Now we can finally prove the bound for the integrals:

|πn(fn)− πn(f)| ≤ ∆α
nπn

(∫ 1−x

−x

(
|σ(1)l σ

(2)
l |+ |σ

(1)
l |
)
dl +∆n

n∑
i=1

|σ(2)l∗i
|

)

= ∆α
nπn

(∫ 1−x

−x

(
|σ(1)l σ

(2)
l |+ |σ

(1)
l |
)
dl

)
+∆α

nπn

(
∆n

n∑
i=1

|σ(2)l∗i
|

)
.
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The first term converges to π
(∫ 1−x
−x |σ

(1)
l σ

(2)
l |+ |σ

(1)
l | dl

)
, since the function x→

∫ 1−x
−x |σ

(1)
l σ

(2)
l |+

|σ(1)l | dl is continuous and tends to zero for x→∞. Since the paths of σ(2) are almost surely
Hölder continuous, Proposition 5.12 applies, and we can conclude that:

πn

(
∆n

n∑
i=1

|σ(2)l∗i
|

)
→ π

(∫ 1−x

−x
|σ(2)l | dl

)
;

henceforth:

|πn(fn)− πn(f)| → 0× π
(∫ 1−x

−x
|σ(1)l σ

(2)
l |+ |σ

(1)
l |+ |σ

(2)
l | dl

)
= 0.

Analogously to Proposition 5.14, we need to show that:

Var

(
∆n

c(∆n)

n∑
i=1

∆n
i X

(1)∆n
i X

(2)

∣∣∣∣∣H
)
→ 0, as n→∞,

which implies that G
(1)
n

L2

→ 0 as n→∞.

Proposition 5.16. Suppose that the assumption of Theorem 3.8 hold. Then

Var

(
∆n

c(∆n)

n∑
i=1

∆n
i X

(1)∆n
i X

(2)

∣∣∣∣∣H
)
→ 0, as n→∞,

Sketch of Proof. We will only sketch the proof, which follows the same lines as the proof of
Proposition 5.14. The basic idea is the following: Since the volatility process is càdlàg, it is
bounded on compact intervals, while unbounded intervals are controlled via Assumption 3.5.

All the terms concerning intervals on the sets of the form [(i − 1)∆n, i∆n] of the proof
of Proposition 5.14 are treated exactly in the same way, since we can uniformly bound σ by
its maximum on [0, 1]. When σ appears integrated on an interval of infinite length, bounded
away from 0, we can write for j ∈ {1, 2}:∫ ∞

b(j)

(
g(j)(s+∆n)− g(j)(s)

)2 (
σ
(j)
(i−1)∆n−s

)2
ds ≤ (66)

∆2
n

∫ ∞
b(j)

(
d

ds
g(j)(s)

)2 (
σ
(j)
(i−1)∆n−s

)2
ds = O(∆2

n), (67)

since the integral in (67) is finite, thanks to Assumption 3.5.

A Background results

A.1 U.c.p. convergence of processes

We briefly recall the mode of convergence that we work with throughout this article:
uniform convergence on compacts in probability, or u.c.p. for short.
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Definition A.1 (u.c.p. convergence). The sequence of càdlàg processes X(n) is said to converge
uniformly on compacts in probability to the càdlàg process X if, for all t > 0 and all ε > 0:

lim
n→∞

P
(

sup
s<t

∣∣∣X(n)
s −Xs

∣∣∣ > ε

)
= 0

Remark A.2. Note that the assumption that the processes are càdlàg is sufficient to ensure
that the supremum is P-measurable.

In some cases, pointwise convergence in probability is enough to prove u.c.p. convergence
of processes as can be seen in the following theorem.

Theorem A.3 (Sufficient condition for u.c.p. convergence). Let the assumption and notation of

Definition A.1 prevail. Suppose that, for all t in a dense subset D ⊂ R+ we have X
(n)
t

P→ Xt.
Assume further, that the paths of X(n) are increasing with time and the paths of X are

continuous, almost surely. Then, the (stronger) convergence X
(n)
·

u.c.p.→ X· holds.

A.2 Expectation of the product of four stochastic integrals

Lemma A.4. Let W denote a standard Brownian motion and let H(i)(t), for i ∈ {1, 2, 3, 4}
be deterministic functions such that

∫ T
0

(
H(i)(t)

)2
dt <∞. Then, one has:

E
[∫ T

0
H(1)
s dWs

∫ T

0
H(2)
s dWs

∫ T

0
H(3)
s dWs

∫ T

0
H(4)
s dWs

]
=

∫ T

0
H(1)
s H(3)

s ds

∫ T

0
H(2)
s H(4)

s ds+

∫ T

0
H(1)
s H(2)

s ds

∫ T

0
H(3)
s H(4)

s ds

+

∫ T

0
H(1)
s H(4)

s ds

∫ T

0
H(2)
s H(3)

s ds. (68)

Proof. We will prove the claim by differentiating the characteristic function. In details, we
compute:

∂4

∂ϑ4∂ϑ3∂ϑ2∂ϑ1

∣∣∣∣∣
ϑ=0

E
[
eiϑ1

∫ T
0 H

(1)
s dWs+iϑ2

∫ T
0 H

(2)
s dWs+ϑ3

∫ T
0 H

(3)
s dWs+iϑ4

∫ T
0 H

(4)
s dW

]
, (69)

for ϑ = (ϑ1, ϑ2, ϑ3, ϑ4)
>. The random variable

ϑ1

∫ T

0
H(1)
s dWs + ϑ2

∫ T

0
H(2)
s dWs + ϑ3

∫ T

0
H(3)
s dWs + ϑ4

∫ T

0
H(4)
s dWs

follows a Gaussian distribution with mean zero and variance:∫ T

0

(
ϑ1H

(1)
s + ϑ2H

(2)
s + ϑ3H

(3)
s + ϑ4H

(4)
s

)2
ds.

Note that the variable has moments of all orders, hence our approach is justified.
The expectation in (69) equals:

H̃(ϑ1, ϑ2, ϑ3, ϑ4) := exp

(
−1

2

∫ T

0

(
ϑ1H

(1)
s + ϑ2H

(2)
s + ϑ3H

(3)
s + ϑ4H

(4)
s

)2)
ds.
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We proceed with differentiating the function H̃.

∂H̃

∂ϑ1
= −H̃

∫ T

0

(
ϑ1H

(1)
s + ϑ2H

(2)
s + ϑ3H

(3)
s + ϑ4H

(4)
s

)
H(1)
s ds

∂2H̃

∂ϑ2∂ϑ1
= −H̃

∫ T

0
H(1)
s H(2)

s ds+ H̃

[∫ T

0

(
ϑ1H

(1)
s + ϑ2H

(2)
s + ϑ3H

(3)
s + ϑ4H

(4)
s

)
H(1)
s ds×

∫ T

0

(
ϑ1H

(1)
s + ϑ2H

(2)
s + ϑ3H

(3)
s + ϑ4H

(4)
s

)
H(2)
s ds

]
∂3H̃

ϑ3ϑ2ϑ1
= H̃

∫ T

0
H(1)
s H(2)

s ds

∫ T

0

(
ϑ1H

(1)
s + ϑ2H

(2)
s + ϑ3H

(3)
s + ϑ4H

(4)
s

)
H(3)
s ds

+ H̃

[∫ T

0

(
ϑ1H

(1)
s + ϑ2H

(2)
s + ϑ3H

(3)
s + ϑ4H

(4)
s

)
H(1)
s ds

×
∫ T

0

(
ϑ1H

(1)
s + ϑ2H

(2)
s + ϑ3H

(3)
s + ϑ4H

(4)
s

)
H(2)
s ds

×
∫ T

0

(
ϑ1H

(1)
s + ϑ2H

(2)
s + ϑ3H

(3)
s + ϑ4H

(4)
s

)
H(3)
s ds

]

+ H̃

[∫ T

0
H(1)
s H(3)

s ds

∫ T

0

(
ϑ1H

(1)
s + ϑ2H

(2)
s + ϑ3H

(3)
s + ϑ4H

(4)
s

)
H(2)
s ds

+

∫ T

0
H(2)
s H(3)

s ds

∫ T

0

(
ϑ1H

(1)
s + ϑ2H

(2)
s + ϑ3H

(3)
s + ϑ4H

(4)
s

)
H(1)
s ds

]
.

And finally, since H̃(0, 0, 0, 0) = 1 and ∂H̃
∂ϑi

∣∣
ϑ=0

= 0,

∂4H̃

∂ϑ4∂ϑ3∂ϑ2∂ϑ1

∣∣∣∣∣
ϑ=0

=

∫ T

0
H(1)
s H(2)

s ds

∫ T

0
H(3)
s H(4)

s ds+

∫ T

0
H(1)
s H(3)

s ds

∫ T

0
H(2)
s H(4)

s ds+

∫ T

0
H(2)
s H(3)

s ds

∫ T

0
H(1)
s H(4)

s ds, (70)

proving the claim.

A particularly useful consequence of Lemma A.4 is the following result:

Corollary A.5. Let (Kt)t≥0 be an a.s. bounded stochastic process, then:

E

(∫ i∆n

(i−1)∆n
g(1)(i∆n − s) dW (1)

s

∫ i∆n

(i−1)∆n
g(2)(i∆n − s)Ks dW

(1)
s

)2 ∣∣∣∣∣FK


=

∫ i∆n

(i−1)∆n

(
g(1)(i∆n − s)

)2
ds

∫ i∆n

(i−1)∆n

(
g(2)(i∆n − s)

)2
K2
s ds

+ 2

(∫ i∆n

(i−1)∆n
g(1)(i∆n − s)g(2)(i∆n − s)Ks ds

)2

.

33



Acknowledgement

We wish to thank Damiano Brigo, Dan Crisan, Mikko Pakkanen and Mark Podolskij for
helpful discussions. AG is grateful to the Department of Mathematics of Imperial College for
his PhD scholarship which supported this research. AEDV acknowledges financial support by
a Marie Curie FP7 Integration Grant within the 7th European Union Framework Programme
(grant agreement number PCIG11-GA-2012-321707).

References

Barndorff-Nielsen, O. E., J. M. Corcuera, and M. Podolskij (2009). “Power variation for Gaus-
sian processes with stationary increments”. In: Stochastic Processes and Their Applications
119.6, pp. 1845–1865 (cit. on p. 2).

— (2011). “Multipower variation for Brownian semistationary processes”. In: Bernoulli 17.4,
pp. 1159–1194 (cit. on pp. 2, 7).

— (2013). “Limit theorems for functionals of higher order differences of Brownian semi-
stationary processes”. In: Prokhorov and contemporary probability theory. Springer, pp. 69–
96 (cit. on p. 10).

Barndorff-Nielsen, O. E., J. M. Corcuera, M. Podolskij, and J. Woerner (2009). “Bipower
variation for Gaussian processes with stationary increments”. In: Journal of Applied
Probability 46.1, pp. 132–150 (cit. on p. 2).

Barndorff-Nielsen, O. E. (2016). “Gamma kernels and BSS/LSS processes”. In: Advanced
Modelling in Mathematical Finance: In Honour of Ernst Eberlein. Springer Proceedings in
Mathematics & Statistics Volume 189. Springer, pp. 41–61 (cit. on p. 7).

Barndorff-Nielsen, O. E., F. E. Benth, and A. E. D. Veraart (2013). “Modelling energy spot
prices by Lévy-driven Volterra processes”. In: Bernoulli 19.3, pp. 803–845 (cit. on pp. 2,
13).

— (2017). Ambit stochastics. Draft of research monograph (cit. on p. 2).
Barndorff-Nielsen, O. E. and J. Schmiegel (2009). “Brownian Semistationary Processes and

Volatility/Intermittency”. In: Advanced Financial Modelling. Ed. by H. Albrecher, W. Run-
galdier, and W. Schachermeyer. Radon Series on Computational and Applied Mathematics
8. Berlin: W. de Gruyter, pp. 1–26 (cit. on pp. 2, 5, 9, 13).

Basse, A. (2008). “Gaussian moving averages and semimartingales”. In: Electronic Journal of
Probability 13.39, pp. 1140–1165 (cit. on pp. 4, 5).

Basse-O’Connor, A., C. Heinrich, and M. Podolskij (2016). “On limit theory for Lévy semi-
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stationary increments Lévy driven moving averages”. In: Annals of Probability. To appear
(cit. on p. 2).

Bennedsen, M., A. Lunde, and M. S. Pakkanen (2017). “Hybrid scheme for Brownian semista-
tionary processes”. In: Finance and Stochastics. To appear (cit. on p. 6).

Billingsley, P. (2009). Convergence of probability measures. Vol. 493. John Wiley & Sons
(cit. on p. 26).

Bingham, N. H., C. M. Goldie, and J. L. Teugels (1989). Regular variation. Vol. 27. Cambridge
university press (cit. on p. 6).

34



Cheridito, P. (2004). “Gaussian moving averages, semimartingales and option pricing”. In:
Stochastic processes and their applications 109.1, pp. 47–68 (cit. on p. 4).

Corcuera, J. M. (2012). “New Central Limit Theorems for Functionals of Gaussian Processes
and their Applications”. English. In: Methodology and Computing in Applied Probability
14.3, pp. 477–500 (cit. on p. 2).

Corcuera, J. M., E. Hedevang, M. S. Pakkanen, and M. Podolskij (2013). “Asymptotic theory
for Brownian semi-stationary processes with application to turbulence”. In: Stochastic
Processes and their Applications 123.7, pp. 2552–2574 (cit. on pp. 7, 10, 13).

Corcuera, J. M., D. Nualart, J. H. Woerner, et al. (2006). “Power variation of some integral
fractional processes”. In: Bernoulli 12.4, pp. 713–735 (cit. on p. 13).

De Haan, L and S. I. Resnick (1979). “Derivatives of regularly varying functions in R d
and domains of attraction of stable distributions”. In: Stochastic Processes and their
Applications 8.3, pp. 349–355 (cit. on p. 8).

Granelli, A. and A. E. D. Veraart (2017). “A central limit theorem for the realised covariation
of a bivariate Brownian semistationary process”. ArXiv (cit. on pp. 9, 13, 28).
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