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Abstract

This article presents a weak law of large numbers and a central limit theorem for the
scaled realised covariation of a bivariate Brownian semistationary process. The novelty
of our results lies in the fact that we derive the suitable asymptotic theory both in a
multivariate setting and outside the classical semimartingale framework. The proofs rely
heavily on recent developments in Malliavin calculus.

Keywords: Central limit theorem, stable convergence, fourth moment theorem, moving average
process, bivariate Brownian semistationary process, multivariate setting, high frequency data.
MSC: 60F05, 60F15, 60G15

1 Introduction

Within the realm of stochastic processes that fail to be a semimartingale, the recent
literature has devoted particular attention to the Brownian semistationary (BSS) process, a
process that has originally been used in the context of turbulence modelling in Barndorff-
Nielsen and Schmiegel (2009), but has been subsequently employed as a price process in energy
markets in Barndorff-Nielsen, Benth, and Veraart (2013). The BSS process in its most basic
form can be written as:

Yt =

∫ t

−∞
g(t− s)σs dWs,

for a deterministic kernel function g, a stochastic volatility process σ and a Brownian motion
W. Pakkanen (2011) proved that BSS processes have conditional full support and thus may
be used as a price model in financial markets with transaction costs. Also, BSS processes
can be used in the context of option pricing, through the modelling of rough volatility (see
Gatheral, Jaisson, and Rosenbaum (2014) and Bayer, Friz, and Gatheral (2016)). In this
context, Bennedsen, Lunde, and Pakkanen (2017) present a hybrid simulation scheme used in
Monte Carlo option pricing.
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Its spreading use in applications has led to many theoretical questions, some of which have
only recently obtained an answer.

Still, the stochastic-analytic properties of the Brownian semistationary process are not
yet completely understood. The univariate case has been studied in detail, and in particular,
numerous papers have been published that deal with its asymptotic theory of multipower
variation.

The theory of multipower variation for semimartingales was first introduced in Barndorff-
Nielsen and Shephard (2004b) and expanded in several subsequent papers (see Barndorff-Nielsen
and Shephard (2006), Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2006),
Barndorff-Nielsen, Shephard, and Winkel (2006), Kinnebrock and Podolskij (2008), Jacod
(2008), Lepingle (1976), Vetter (2010)). One of the main applications of multipower variation
is the construction of robust estimators that allow to disentangle the impact of the jump risk
from the stochastic volatility risk in the price of financial assets.

Outside the semimartingale class a general theory seems to be impossible to achieve and
results have to be proved for the particular collection of processes under consideration. For the
univariate BSS process, one can see for example Barndorff-Nielsen, Corcuera, and Podolskij
(2011) with their study of multipower variation through Malliavin calculus and the more recent
paper Barndorff-Nielsen, Corcuera, and Podolskij (2013) which deals with the multipower
variation of higher order differences of the BSS process in order to estimate its smoothness.

In the present paper, we define and work with the bivariate Brownian semistationary
process. The introduction of a second dimension greatly increases the complexity, but also
allows for novel possibilities in terms of modelling dependence. Given the importance in
practical applications of the Brownian semistationary process, the first natural result in
the multivariate theory must be a limit theorem allowing inference to be performed on the
dependence between two components.

In the semimartingale case, inference on the dependence can be performed through
the quadratic covariation between two processes. Applying the same ideas to this setting
immediately poses the question of whether the quadratic covariation can be successfully defined
between two BSS processes. There are very few results in the literature concerning quadratic
covariation between two non semimartingales. As an example, Föllmer, Protter, and Shiryaev
(1995) deal with this problem, but they only consider [X,F (X)], where X is a semimartingale
and F is an absolutely continuous function with square integrable derivative. In this case
F (X) is not necessarily a semimartingale, while X always is.

We instead propose the study of [Y (1), Y (2)], when both Y (1) and Y (2) are BSS processes
and are not semimartingales. Hence the aim is to show convergence of an appropriately scaled
version of the following realised covariation process:

bntc∑
i=1

(
Y

(1)
i
n

− Y (1)
i−1
n

)(
Y

(2)
i
n

− Y (2)
i−1
n

)
. (1)

A weak law of large numbers in such a setting has recently been obtained in Granelli
and Veraart (2017). Here, we tackle the arguably more difficult case of deriving a suitable
central limit theorem. Central limit theorems for processes are results which are usually
hard to prove, and techniques to prove them vary from case to case. The most celebrated
result of this kind is Donsker’s theorem, which states that an appropriately scaled, symmetric
random walk converges weakly to Brownian motion (a standard reference is Billingsley (2009)).
The high frequency limits of semimartingales are typically processes with a mixed Gaussian
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distributions, and these central limit theorem results are typically stronger than the standard
ones that only state weak convergence in the Skorokhod space, in order for statistical inference
to be performed in a feasible way. They instead involve stable convergence of processes,
which involves proving weak convergence in an extended sample space, where typically a new
Brownian motion lives, which is independent from the original processes. We will see that
such results can also be obtained in our more general non-semimartingale setting.

The methods we use in our proofs rely heavily on the powerful Fourth Moment Theorem
which was proven in Nualart and Peccati (2005). Their theory was developed by combining
Stein’s method with Malliavin calculus. The most comprehensive reference on the subject is
the monograph Nourdin and Peccati (2012).

The outline of the remainder of this article is as follows. Section 2 introduces the notation
and defines the bivariate Gaussian core and the bivariate Brownian semistationary process.
Moreover, we formulate assumptions which ensure that we are outside the semimartingale
setting (since the corresponding theory is well-known in the semimartingale framework).
Section 3 gives a brief self-contained summary of the key concepts of Malliavin calculus and the
celebrated Fourth Moment Theorem needed for proving our results. The main contributions
of our article can be found in Sections 4 and 5, where we state the central limit theorems
for a suitably scaled version of the realised covariation of a Gaussian core and a Brownian
semistationary process, respectively. Section 6 concludes. The proof of the central limit
theorem in the case of the Gaussian core is presented in Section 7, and in the case of a
Brownian semistationary process in Section 8.

2 The setting

Throughout this article we denote by (Ω,F ,Ft,P) a filtered, complete probability space
and by B(R) the class of Borel subsets of R and we consider a finite time horizon [0, T ] for
some T > 0.

We will assume that (Ω,F ,Ft,P) supports two independent Ft-Brownian measures
W (1),W (2) on R, for which we briefly recall the definition.

Definition 2.1 (Brownian measure). An Ft-adapted Brownian measure W : Ω ×B(R)→ R
is a Gaussian stochastic measure such that, if A ∈ B(R) with E[(W (A))2] <∞, then W (A) ∼
N(0, Leb(A)), where Leb is the Lebesgue measure. Moreover, if A ⊆ [t,+∞), then W (A) is
independent of Ft.

Let us first define the so-called bivariate Gaussian core, which is in fact a bivariate Gaussian
moving average process with correlated components.

Definition 2.2 (The Gaussian core). Consider two Brownian measures W (1) and W (2) adapted

to Ft with dW
(1)
t dW

(2)
t = ρdt, for ρ ∈ [−1, 1]. Further take two nonnegative deterministic

functions g(1), g(2) ∈ L2((0,∞)) which are continuous on R \ {0}. Define, for j ∈ {1, 2},

G
(j)
t :=

∫ t

−∞
g(j)(t− s) dW (j)

s .

Then the vector process (Gt)t≥0 = (G
(1)
t , G

(2)
t )>t≥0 is called the (bivariate) Gaussian core.

If we add stochastic volatility to the Gaussian core, then we obtain a bivariate Brownian
semistationary (BSS) process defined as follows.
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Definition 2.3 (Bivariate Brownian semistationary process). Consider two Brownian measures

W (1) and W (2) adapted to Ft with dW
(1)
t dW

(2)
t = ρdt, for ρ ∈ [−1, 1]. Further take two

nonnegative deterministic functions g(1), g(2) ∈ L2((0,∞)) which are continuous on R \ {0}.
Let further σ(1), σ(2) be càdlàg , Ft-adapted stochastic processes and assume that for j ∈ {1, 2},
and for all t ∈ [0, T ]:

∫ t
−∞ g

(j)2(t− s)σ(j)2s ds <∞. Define, for j ∈ {1, 2},

Y
(j)
t :=

∫ t

−∞
g(j)(t− s)σ(j)s dW (j)

s .

Then the vector process (Yt)t≥0 = (Y
(1)
t , Y

(2)
t )>t≥0 is called a bivariate Brownian semistationary

process.

2.1 Technical assumptions

Let us now introduce a few working assumptions. Most of them are standard and already
appear in similar forms in the literature, for example in Corcuera, Hedevang, Pakkanen, and
Podolskij (2013).

2.1.1 (Non-) semimartingale conditions

As mentioned in the introduction, we are exclusively interested in the non-semimartingale
setting since the corresponding asymptotic theory for semimartingales is well established in the
literature, see e.g. Protter (2005); Barndorff-Nielsen and Shephard (2004a). It turns out that
the (non-) semimartingale property of G(j) or Y (j) (for j = 1, 2) depends on the properties of
the functions g(j).

Let us for a moment suppress the superscripts and write Gt =
∫ t
−∞ g(t − s)dWs for a

univariate Gaussian core. Consider the filtration
(
FW,∞
t

)
t≥0

which is the smallest filtration

with respect to which W is an adapted Brownian measure and recall the classical result due
to Knight (1992):

Theorem 2.4 (Knight). The process (Gt)t≥0 is an FW,∞
t -semimartingale if and only if there

exists h ∈ L2(R) and α ∈ R such that: g(t) = α+
∫ t
0 h(s) ds.

In the case of a univariate Brownian semistationary (BSS) process given by

Yt =

∫ t

−∞
g(t− s)σsdWs, (2)

Barndorff-Nielsen and Schmiegel (2009) derived the following sufficient conditions for a BSS

process Y to be a semimartingale:

Theorem 2.5. Under the assumptions that (i) g is absolutely continuous and g′ ∈ L2((0,∞)),
(ii) limx→0+ g(x) =: g(0+) <∞, (iii) the process g′(−·)σ· is square integrable, then Yt defined
as in (2) is an FW,∞

t -semimartingale. In this case Yt admits the decomposition:

Yt = g(0+)Wt +

∫ t

0
dl

[∫ l

−∞
g′(l − s)σs dWs

]
.
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Let us now return to the bivariate case and formulate conditions which ensure that the
bivariate processes G,Y are not semimartingales. This can be achieved by relaxing the first
two assumptions in Theorem 2.5 since both assumptions are necessary for G(j) to belong to
the semimartingale class (see Basse (2008)) for j = 1, 2.

Assumption 2.1. For j ∈ {1, 2}, we assume that g(j) : R → R+ are nonnegative functions
and continuous, except possibly at x = 0. Also, g(j)(x) = 0 for x < 0 and g(j) ∈ L2 ((0,+∞)).

We further ask that g(j) be differentiable everywhere with derivative
(
g(j)
)′ ∈ L2((b(j),∞)) for

some b(j) > 0 and
(
(g(j))′

)2
non-increasing in [b(j),∞).

In the following we will set b = max{b(1), b(2)}, then
(
g(j)
)′ ∈ L2((b,∞)) and

(
(g(j))′

)2
is

non-increasing in [b,∞) for j = 1, 2.

It is important to note that we are not assuming that
(
g(j)
)′ ∈ L2((0,∞)) in order to exclude

the semimartingale case. In particular, we must have that, for all ε > 0, supx∈(0,ε)
(
g(j)
)′

(x) =
∞.

2.1.2 Technical assumptions for the cross-correlations

We need some additional technical assumptions to control the terms arising in the covaria-
tion between the two components of the bivariate Gaussian core and the bivariate BSS process.
Such assumptions will be formulated in terms of slowly varying functions, for which we briefly
recall the definition, see e.g. Bingham, Goldie, and Teugels (1989).

Definition 2.6 (Slowly and regularly varying function). A measurable function L : (0,∞)→
(0,∞) is called slowly varying at infinity if, for all λ > 0 we have that limx→∞

L(λx)
L(x) = 1. A

function g : (0,∞) → (0,∞) is called regularly varying at infinity if, for x large enough, it
can be written as: g(x) = xδL(x), for a slowly varying function L. The parameter δ is called
the index of regular variation. Finally, a measurable function L : (0,∞) → (0,∞) is called
slowly varying at zero (resp. regularly varying at zero) if x→ L

(
1
x

)
is slowly varying (resp.

regularly varying) at infinity.

For i, j ∈ {1, 2}, we write ρi,j = ρ for i 6= j and ρi,j = 1 for i = j. Also, let us introduce
the functions mapping R+ into R+, with i, j ∈ {1, 2}:

R̄(i,j)(t) := E
[(
G

(j)
t −G

(i)
0

)2]
=
∥∥∥g(i)∥∥∥2

L2
+
∥∥∥g(j)∥∥∥2

L2
− 2E

[
G

(i)
0 G

(j)
t

]
. (3)

We note that we can write

R̄(i,j)(t) = Ci,j + 2ρi,j

∫ ∞
0

(g(j)(x)− g(j)(x+ t))g(i)(x)dx,

where Ci,j :=
∥∥g(i)∥∥2

L2 +
∥∥g(j)∥∥2

L2−2ρi,j
∫∞
0 g(i)(x)g(j)(x)dx, where in particular Ci,i = 0. This

enables us to formulate our next assumption.

Assumption 2.2. For all t ∈ (0, T ), there exist slowly varying functions L
(i,j)
0 (t) and L

(i,j)
2 (t)

which are continuous on (0,∞) such that

R̄(i,j)(t) = Ci,j + ρi,jt
δ(i)+δ(j)+1L

(i,j)
0 (t), for i, j ∈ {1, 2}, (4)
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and

1

2
(R̄(i,j))′′(t) = ρi,jt

δ(i)+δ(j)−1L
(i,j)
2 (t), for i, j ∈ {1, 2},

where δ(1), δ(2) ∈
(
−1

2 ,
1
2

)
\ {0}.

Also, if we denote L̃
(i,j)
0 (t) :=

√
L
(i,i)
0 (t)L

(j,j)
0 (t), we ask that the functions L

(i,j)
0 (t) and

L
(i,j)
2 (t) are such that, for all λ > 0, there exists a H(i,j) ∈ R such that:

lim
t→0+

L
(i,j)
0 (λt)

L̃
(i,j)
0 (t)

= H(i,j) <∞, (5)

and that there exists b ∈ (0, 1), such that:

lim sup
x→0+

sup
y∈(x,xb)

∣∣∣∣∣L(i,j)
2 (y)

L̃
(i,j)
0 (x)

∣∣∣∣∣ <∞. (6)

In this situation, the restriction δ(j) ∈ (−1
2 , 0) ∪ (0, 12) ensures that the process leaves the

semimartingale class.

Remark 2.7. A consequence of Assumption 2.2 is that:√
R̄(i,i)(t)R̄(j,j)(t) = tδ

(i)+δ(j)+1L̃
(i,j)
0 (t),

where L̃
(i,j)
0 (t) is again a slowly varying function at zero which is continuous on (0,∞).

Example 2.8. In the univariate case, condition (4) reads (suppressing superscripts):

R̄(t) = t2δ+1L0(t). (7)

The so-called Gamma kernel given by g(x) = e−λxxδ1{x>0}, for λ > 0, δ > −1
2 , has attracted

attention in applications (both to turbulence and finance), see for instance the review paper by
Barndorff-Nielsen (2016). In the case when δ ∈ (−1

2 , 0) ∪ (0, 12 ], g satisfies Assumptions 2.1
and condition (4), see Barndorff-Nielsen, Corcuera, and Podolskij (2011).

Example 2.9. Condition (5) in Assumption 2.2 is satisfied if limt→0+ L
(i,j)
0 (t) = M (i,j) <∞

and limt→0+

√
L
(i)
0 (t)L

(j)
0 (t) = N (i,j) < ∞ with M(i,j)

N(i,j) = H(i,j). In the case when i = j, we

have H i,j = 1, so condition (5) is satisfied.

As a consequence of Assumption 2.2, we highlight a fact that will be particularly useful
for our purposes.

Lemma 2.10. Define

c(x) :=

∫ x

0
g(1)(s)g(2)(s) ds+

∫ ∞
0

(
g(1)(s+ x)− g(1)(s)

)(
g(2)(s+ x)− g(2)(s)

)
ds.

If Assumption 2.2 holds, then it is possible to show that:

c(x) = xδ
(1)+δ(2)+1L

(1,2)
4 (x), (8)
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where L
(1,2)
4 is a continuous function on (0,∞) which is slowly varying at zero, and δ(1), δ(2) ∈(

−1
2 ,

1
2

)
\ {0}. Moreover, there exists a constant |H| <∞ such that

lim
x→0+

L
(1,2)
4 (x)

L̃
(1,2)
0 (x)

= H. (9)

More precisely, H = 1
2

(
H(1,2) +H(2,1)

)
.

Example 2.11 (Gamma Kernel). If the kernel function is the Gamma kernel:

g(i)(s) = sδ
(i)
e−λ

(i)s1{s≥0},

for λ(i) > 0, δ(i) ∈ (−1
2 ,

1
2)\{0}, and similarly for g(j), then one can show directly that Lemma

2.10 holds, and give an explicit expression for the constant H:

H =

(
−Γ (δ(1) + 1)Γ (−1− δ(1) − δ(2))

Γ (−δ(1))
− Γ (δ(2) + 1)Γ (−1− δ(1) − δ(2))

Γ (−δ(2))

)

21+δ
(1)+δ(2)

√
Γ (32 + δ(i))Γ (32 + δ(j))

Γ (12 − δ(i))Γ (12 − δ(j))
.

A proof of this result can be found in Section 7.2.

2.2 Discrete observations and scaling factor

While the stochastic processes we are going to consider are defined in continuous time, we
work under the assumption that we only observe them discretely which is the case of practical
relevance. Moreover, our asymptotic results rely on so-called in-fill asymptotics where the
time interval is fixed, but we sample more and more frequently. This is in contrast to the, in
time series more widely used, concept of long span asymptotics where the stepsize between
observations stays constant, but the number of observations grows, meaning that a bigger and
bigger time interval is considered in the asymptotic case.

Suppose that we sample our processes discretely along successive partitions of [0, T ]. A
partition Πn of [0, T ] will be a collection of times 0 = t0 < · · · < ti < ti+1 < · · · < tn = T ,
where, for simplicity, we assume that the partition is equally spaced. The mesh of the partition
will therefore be ∆n = 1

n and we have limn→∞∆n = 0.
We will use the following notation for (high-frequent) increments of the stochastic processes

we are considering: For instance, for the process G(j), we denote its increment by ∆n
i G

(j) :=

G
(j)
i∆n
−G(j)

(i−1)∆n
, for j = 1, 2. A straightforward computation shows that the increments can

be represented as

∆n
i G

(j) =

∫ (i−1)∆n

−∞

(
g(j) (i∆n − s)− g(j) ((i− 1)∆n − s)

)
dW (j)

s

+

∫ i∆n

(i−1)∆n

g(j)(i∆n − s) dW (j)
s .

(10)

We define the realised covariation as

bntc∑
i=1

∆n
i G

(1)∆n
i G

(2), for n ≥ 1, t ∈ [0, T ].
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We know that in the case when G is a semimartingale, then

bntc∑
i=1

∆n
i G

(1)∆n
i G

(2) u.c.p.→ [G(1), G(2)]t, as n→∞,

where the convergence is uniform on compacts in probability (u.c.p.) and the limiting process
is the quadratic covariation. However, outside the semimartingale framework, the quadratic
covariation does not necessarily exist. Granelli and Veraart (2017) recently considered the
non-semimartingale case and showed that, under suitable assumptions, the (possibly scaled)
realised covariation converges u.c.p. to an appropriate limit which can be viewed as the
correlation between the two non-semimartingale components. In the present work, we would
like to go a step further and prove a central limit theorem associated with the scaled realised
covariation. In order to do so, we need to define the suitable scaling factor. It turns out that
the following choice is appropriate. For j ∈ {1, 2}, set

τ (j)n :=

√
E
[(
∆n

1G
(j)
)2]

=

√∫ ∞
0

(
g(j)(s+∆n)− g(j)(s)

)2
ds+

∫ ∆n

0

(
g(j)(s)

)2
ds.

(11)

The scaled realised covariation of the Gaussian core is then given by

bntc∑
i=1

∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

.

Our aim is now to derive a central limit theorem for the suitably centred and scaled realised
covariation of the Gaussian core. As soon as we have that result, we will generalise it to the
case when the underlying bivariate process is a bivariate Brownian semistationary process
and, hence, also accounts for stochastic volatility in each component.

The key component for proving the two central limit theorems is the so-called Fourth
Moment Theorem, see Nourdin and Peccati (2012). Hence we are going to give a very brief
self-contained introduction to Malliavin calculus in the next section which will then allow us
to formulate the Fourth Moment Theorem.

3 Pathway to the Fourth Moment Theorem

The purpose of this section is to illustrate the background necessary to illustrate the
techniques developed by Nualart and Peccati that led them to proving the celebrated Fourth
Moment Theorem.

We start with an introduction to Malliavin calculus. A good source for this material
is Section 2 of Nourdin and Peccati (2012). A good summary of the necessary tools is also
presented in Corcuera (2012). The standard comprehensive reference for Malliavin calculus is
Nualart (2006).

3.1 Wiener Chaos decomposition

We fix a real, separable Hilbert space H, with its scalar product 〈·, ·〉H and norm ‖·‖H :=

〈·, ·〉
1
2
H. We denote by X = {X(h) : h ∈ H} an isonormal Gaussian process over H defined on
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some probability space (Ω,F ,P), by which we mean a stochastic process indexed over H such
that E [X(g)X(h)] = 〈g, h〉H, for every f, g ∈ H. We will assume that F is generated by X.

The first important result is the granted existence of an isonormal process:

Proposition 3.1. Given a real, separable Hilbert space H, there exists an isonormal process
over H.

Proof. See Nourdin and Peccati (2012), Theorem 2.1.1.

We now introduce the fundamental notion of Wiener chaos, which plays a crucial role in
our derivation of results. First, we recall:

Definition 3.2 (Hermite polynomials). Let p ≥ 0 be an integer. We define the p-th Hermite
polynomial as H0 := 1, for p = 0, and Hp+1(x) := xHp(x)− pHp−1(x), for p > 0.

Remark 3.3. This is just one of many equivalent definitions for the Hermite polynomials. See
Nourdin and Peccati (2012), Definition 1.4.1 and Proposition 1.4.2 for alternative equivalent
formulations and characterisations.

Definition 3.4. For each n ≥ 0, Hn denotes the closed linear subspace of L2(Ω) generated
by the random variables {Hn (X(h)) : h ∈ H, ‖h‖H = 1}. The space Hn is called the n-th
Wiener chaos of X.

Wiener chaoses of different order on a Gaussian space are orthogonal as the next proposition
shows.

Proposition 3.5. Let Z, Y ∼ N (0, 1) be jointly Gaussian. then, for all n,m ≥ 0:

E [Hn(Z)Hm(Y )] =

{
n! (E [ZY ])n , if n = m,

0, otherwise.

Proof. See Nourdin and Peccati (2012), Proposition 2.2.1.

The next theorem states the fundamental fact that the L2-space of random variables can
be orthogonally decomposed as a direct sum of Wiener chaoses.

Theorem 3.6 (Wiener-Itô chaos decomposition). The following decomposition holds:

L2(Ω) =
∞⊕
n=0

Hn.

So, every variable F ∈ L2(Ω) can be written uniquely as:

F = E[F ] +
∞∑
n=1

Fn,

where Fn ∈ Hn and the series converges in L2(Ω).

Proof. See Theorem 2.2.4 in Nourdin and Peccati (2012).
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3.2 Tensor products

In this section we give a very brief definition of tensor products of Hilbert spaces. The
reference that we use here is Reed and Simon (1975).

Let H1 and H2 be two real Hilbert spaces with inner products 〈·, ·〉H1 and 〈·, ·〉H2 . For
g ∈ H1 and h ∈ H2, denote the bilinear form g ⊗ h : H1 ×H2 → R by:

[g ⊗ h](x, y) = 〈x, g〉〈y, h〉, (x, y) ∈ H1 ×H2.

Let E be the set of all finite linear combinations of such bilinear forms.

Lemma 3.7. The bilinear form � ·, · � on E defined by:

� g1 ⊗ h1, g2 ⊗ h2 �:= 〈g1, g2〉H1〈h1, h2〉H2 (12)

is symmetric, well defined and positive definite, and thus defines a scalar product on E.

Proof. See Reed and Simon (1975).

The space E with the scalar product � ·, · � is obviously not complete. Hence we give
the following definition.

Definition 3.8 (Tensor product). The tensor product of the Hilbert spaces H1 and H2 is the
Hilbert space H1 ⊗H2 defined to be the completion of E under the scalar product in (12).

Furthermore, we denote by H⊗n the n-fold tensor product between H and itself.
Symmetric tensors will play an important role in our discussion, and are defined next:

Definition 3.9 (Symmetrisation of a tensor product). If f ∈ H⊗n is of the form:

f = h1 ⊗ · · · ⊗ hn,

then the symmetrisation of f , denoted by f̃ , is defined to be:

f̃ :=
1

n!

∑
σ∈Sn

hσ(1) ⊗ · · · ⊗ hσ(n),

where the sum is taken over all permutations of {1,. . . , n}. The closed subspace of H⊗n

generated by the elements of the form f̃ , is called the n-fold symmetric tensor product of H,
and is denoted by H�n.

A recurrent construction that we will encounter is that of contracting a tensor product,
defined as follows:

Definition 3.10 (Contraction of tensors). Let g = g1⊗· · ·⊗gn ∈ H⊗n and h = h1⊗· · ·⊗hm ∈
H⊗m. For any 0 ≤ p ≤ min(n,m), we define the p−th contraction of g ⊗ h as the following
element of H⊗m+n−p:

g ⊗p h := 〈g1, h1〉H . . . 〈gp, hp〉Hgp+1 ⊗ · · · ⊗ gn ⊗ hp+1 ⊗ . . . hm.

Note that, even if g and h are symmetric, their p-th contraction is not, in general, a symmetric
tensor. We therefore denote by g ⊗̃ph its symmetrisation.
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3.3 The derivative operator

In this section we define the Malliavin derivative operator. We will need this to define its
adjoint operator, the multiple integral, that we will use later for the proof of the central limit
theorem.

Let S denote the set of smooth random variables, i.e. of the form:

f (X(h1), . . . , X(hm)) , (13)

where m ≥ 1, f is a test function, i.e. f ∈ C∞ and f and all of its derivatives have at most
polynomial growth and hi ∈ H, for i ∈ {1, . . . ,m}.

Lemma 3.11. The space S is dense in Lq(Ω) for every q ≥ 1.

Proof. See Lemma 2.3.1 in Nourdin and Peccati (2012).

We need one last technical definition before we can introduce the Malliavin derivative.

Definition 3.12. Given a probability space (Ω,F ,P) and a generic real, separable Hilbert
space H, we denote by Lq(Ω,H) := Lq(Ω,F ,P;H) the class of those H-valued random
elements Y that are F -measurable and such that ‖Y ‖qH <∞.

We proceed to define the Malliavin derivative of a smooth variable.

Definition 3.13 (Malliavin Derivative). Let F ∈ S be given by (13), and p ≥ 1 an integer.
The p-th Malliavin derivative of F with respect to X is the element of L2(Ω,H�p) defined by:

DpF :=

m∑
i1,...,ip=1

∂p

∂xi1 . . . ∂xip
f (X(h1), . . . X(hm))hi1 ⊗ · · · ⊗ hip .

In order for us to define the adjoint of the Malliavin derivative, we need to make sure that
the latter operator is at least closable, or else its adjoint could be defined in too small a subset
of L2(Ω,H�p). Indeed, recall the following result from functional analysis (we denote by A∗

the adjoint of a linear operator A):

Proposition 3.14. A linear operator A : D(A)→ H is closable if and only if A∗ is densely
defined.

The following theorem establishes the fundamental fact that the Malliavin operator is
indeed closable.

Theorem 3.15. Let q ∈ [1,∞), and let p ≥ 1 be an integer. Then the operator Dp : S ⊂
Lq(Ω)→ Lq(Ω,H�p) is closable.

Proof. See Proposition 2.3.4 in Nourdin and Peccati (2012).
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3.4 The multiple integral

We are ready to give the formal definition of the multiple divergence operator δp.

Definition 3.16. Let p ≥ 1 be an integer. Denote by Dom δp the subset of elements u ∈
L2(Ω,H⊗p) such that there exists a constant c satisfying:

|E [〈DpF, u〉H⊗p ]| ≤ c
√

E [F 2], (14)

for all F ∈ S .

Condition (14) ensures that, for a fixed u ∈ Dom δp, the linear operator F 7→ E [〈DpF, u〉H⊗p ]
is continuous from S equipped with the L2(Ω) norm into R. Therefore it can be extended to
a linear operator from L2(Ω) into R. By the Riesz representation theorem, then there exists a
unique element in L2(Ω), denoted δp(u), such that: E [〈DpF, u〉H⊗p ] = E [Fδp(u)] . Thus, we
can give the following definition:

Definition 3.17 (Multiple divergence). The multiple divergence operator δp : Dom δp ⊂
L2(Ω,H⊗p) → L2(Ω) is defined to be the adjoint operator of Dp. That means that if u ∈
Dom δp then δp(u) is defined to be that only element of L2(Ω) such that:

E [Fδp(u)] = E [〈u,DpF 〉H⊗p ] ,

for all F ∈ S .

Finally, we define the multiple integral operator, which is the object we will need the most
in our discussion:

Definition 3.18 (Multiple integral). Let p ≥ 1 and f ∈ H�p. The p-th multiple integral of
f with respect to X is defined to be Ip(f) := δp(f).

We further write I0 := I for the identity in R.
The connection between multiple integrals and the Wiener chaos decomposition is asserted

by the following theorem:

Theorem 3.19. Let f ∈ H, with ‖f‖H = 1. Then, for any integer p ≥ 1, we have:

Hp((X(f)) = Ip
(
f⊗p

)
.

As a consequence, the linear operator Ip is an isometry from H�p onto the p−th Wiener chaos
Hp of X.

Proof. See Theorem 2.2.7 in Nourdin and Peccati (2012).

In particular, crucially, the image of a p−th multiple integral lies in the p−th Wiener chaos
of X.

We will also make use of the following product formula:

Theorem 3.20 (Product formula for multiple integrals). Let p, q ≥ 1. If f ∈ H�p and
g ∈ H�q, then:

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f ⊗̃rg).

Proof. See Nourdin and Peccati (2012), Theorem 2.7.10.
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3.5 The Fourth Moment Theorem

With our arsenal of technical tools, we can start to prepare the statement of the fourth
moment theorem. We begin by stating another very remarkable fact. For a vector of L2-
variables belonging to a fixed Wiener chaos, joint weak convergence to the Gaussian distribution
is equivalent to marginal convergence. More precisely, we have the following theorem:

Theorem 3.21. Let d ≥ 2 and qd, . . . , q1 ≥ 1 be some fixed integers. Consider vectors:

Fn := (F1,n, . . . , Fd,n) = (Iq1(f1,n), . . . , Iqd(fd,n)), n ≥ 1,

with fi,n ∈ H�qi. Let C ∈ Md(R) be a symmetric, nonnegative definite matrix, and let
N ∼ Nd(0, C). Assume that:

lim
n→∞

E [Fr,nFs,n] = C(r, s), 1 ≤ r, s ≤ d. (15)

Then, as n→∞ the following two conditions are equivalent:

a) Fn converges in law to N.

b) For every 1 ≤ r ≤ d, Fr,n converges in law to N (0, C(r, r)).

Proof. See Theorem 6.2.3 in Nourdin and Peccati (2012).

We can finally present the statement of the fourth moment theorem, which gives us
equivalent conditions for convergence in law when the sequence of variables belongs to a fixed
Wiener chaos.

Theorem 3.22 (Fourth moment theorem). Let Fn = Iq(fn), n ≥ 1, be a sequence of random
variables belonging to the q-th chaos of X, for some fixed integer q ≥ 2 (so that fn ∈ H�q).
Assume, moreover, that E[F 2

n ]→ σ2 > 0 as n→∞. Then, as n→∞, the following assertions
are equivalent:

1. Fn
L→ N(0, σ2),

2. limn→∞ E[F 4
n ] = 3σ2,

3. ‖fn ⊗r fn‖H⊗(2q−2r) → 0, for all r = 1, . . . , q − 1.

Proof. This is a simplified version of Theorem 5.2.7 in Nourdin and Peccati (2012).

4 A central limit theorem for the realised covariation of the
Gaussian core

This section focusses on the Gaussian core G as defined in Definition 2.2; we will use the
notation from Subsection 2.2 in the following.

Since G is a Gaussian process, we can apply the Hilbert-space techniques depicted above,
using the Hilbert space of L2-Gaussian variables. To this end, let H be the Hilbert space
generated by the random variables given by the scaled increments of the Gaussian core:(

∆n
i G

(j)

τ
(j)
n

)
n≥1,1≤i≤bntc,j∈{1,2}

,
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equipped with the scalar product 〈·, ·〉H induced by L2(Ω,F ,P), i.e., for X,Y ∈ H, we have
〈X,Y 〉H = E [XY ].

Denoting by Id the multiple integral of order d, acting on H�d, with values in L2(Ω), (see
Definition 3.18), we can write:

∆n
i G

(1)

τ
(1)
n

= I1

(
∆n
i G

(1)

τ
(1)
n

)
,

∆n
i G

(2)

τ
(2)
n

= I1

(
∆n
i G

(2)

τ
(2)
n

)
.

Recall the definition of the symmetrisation of the tensor product: x⊗̃y := 1
2 (x⊗ y + y ⊗ x).

Using the product formula (3.20), the product of two multiple integrals becomes:

∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

= I1

(
∆n
i G

(1)

τ
(1)
n

)
I1

(
∆n
i G

(2)

τ
(2)
n

)
=

1∑
r=0

r!

(
1

r

)(
1

r

)
I2−2r

(
∆n
i G

(1)

τ
(1)
n

⊗̃r
∆n
i G

(2)

τ
(2)
n

)

= I2

(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
+ E

[
∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

]
.

Rearranging, this yields:

∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

− E

[
∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

]
= I2

(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
.

Let us hence define the function f : L2(Ω)× L2(Ω) → R given by f(X,Y ) = XY − E[XY ],
and the process:

Znt =
1√
n

bntc∑
i=1

f

(
∆n
i G

(1)

τ
(1)
n

,
∆n
i G

(2)

τ
(2)
n

)
=

1√
n

bntc∑
i=1

I2

(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
.

4.1 A uniform bound for the covariance

We can now formulate a uniform bound for the covariance term r
(n)
i,j (k) := E

[
∆n

1G
(i)

τ
(i)
n

∆n
1+kG

(j)

τ
(j)
n

]
,

for i, j ∈ {1, 2}.

Theorem 4.1. Let ε > 0, with ε < 1− δ(i) − δ(j), for i, j ∈ {1, 2}. Define:

ri,j(k) := (k − 1)δ
(i)+δ(j)+ε−1, if k > 1,

and ri,j(0) = ri,j(1) = 1. Under Assumptions 2.1 and 2.2, there exists a positive constant
C <∞ and a natural number n0(ε) such that:∣∣∣r(n)i,j (k)

∣∣∣ ≤ Cri,j(k), for k ≥ 0, (16)

for all n ≥ n0(ε). Moreover, define ρ
(i,j)
ϑ (0) = ρH for i 6= j and ρ

(i,j)
ϑ (0) = 1 for i = j, and

for any i, j ∈ {1, 2} set

ρ
(i,j)
ϑ (k) =

1

2
ρi,jH

(i,j)
(

(k − 1)ϑ − 2kϑ + (k + 1)ϑ
)
, for k ≥ 1. (17)

Then it holds that:

lim
n→∞

r
(n)
i,j (k) = ρ

(i,j)

δ(i)+δ(j)+1
(k), for all k ≥ 0, i, j ∈ {1, 2}. (18)
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4.2 Convergence of the finite dimensional distributions of the Gaussian
core

In order to look at the convergence of the finite-dimensional distributions, let {ak}, {bk}
be two increasing sequences of positive real numbers, with ak < bk < ak+1, and consider, for
any d ∈ N the vector:(

Znb1 − Z
n
a1 , . . . , Z

n
bd
− Znad

)>
,

whose generic k−th component is:

1√
n

bnbkc∑
i=bnakc+1

I2

(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
= I2

 1√
n

bnbkc∑
i=bnakc+1

∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

 .

Theorem 4.2 (Convergence of the finite dimensional distributions). Take a Gaussian core
as defined in Definition 2.2. Let Assumptions 2.1 and 2.2 be satisfied and suppose that
δ(1) ∈ (−1

2 ,
1
4)\{0}, δ(2) ∈ (−1

2 ,
1
4)\{0}. Consider f : L2(Ω)×L2(Ω)→ R given by f(X,Y ) =

XY − E[XY ], and the process:

Znt =
1√
n

bntc∑
i=1

f

(
∆n
i G

(1)

τ
(1)
n

,
∆n
i G

(2)

τ
(2)
n

)
=

1√
n

bntc∑
i=1

I2

(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
.

Let {ak}, {bk} be two increasing sequences of positive real numbers, with ak < bk < ak+1, and
consider, for any d ∈ N the vector:

Znt :=
(
Znb1 − Z

n
a1 , . . . , Z

n
bd
− Znad

)>
=
(
F1,n . . . , Fd,n

)>
.

Then Znt ⇒N ∼ Nd(0,C), where Ci,j = limn→∞ E [Fi,nFj,n] , 1 ≤ i, j ≤ d. Finally, the matrix
C is diagonal, and the general j-th diagonal element is equal to C(1, 1)(bj − aj), with

C(1, 1) := 2

∞∑
k=1

(
ρ
(1,1)

2δ(1)
(k)ρ

(2,2)

2δ(2)
(k) +

(
ρ
(1,2)

δ(1)+δ(2)
(k)
)2)

+ (1 + ρ2H2) <∞. (19)

In order to compute C(1, 1) we remark that the definition of the terms of the form ρ
(i,j)
ϑ (k)

was given in equation (17).
The series in (19) converges absolutely, thanks to Theorem 4.1, as it is bounded by:

4

∞∑
k=1

(k − 1)2δ
(1)+2δ(2)+2ε−2 ,

which converges if and only if 2δ(1) + 2δ(2) + 2ε− 2 < −1 ⇐⇒ δ(1) + δ(2) + ε < 1
2 , which is

implied by our assumption that δ(1) ∈ (−1
2 ,

1
4) \ {0}, δ(2) ∈ (−1

2 ,
1
4) \ {0}.

4.3 Tightness of the law of the realised covariation for the Gaussian core

As customary when proving weak convergence, we also need a tightness result for the law
of the realised covariation process. This turns out to be a lot simpler than the convergence of
the finite dimensional distributions.
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Theorem 4.3 (Tightness). Let the assumptions as in Theorem 4.2 hold. For all n ∈ N, let
Pn be the law of the process:

Zn· =
1√
n

bn·c∑
i=1

f

(
∆n
i G

(1)

τ
(1)
n

,
∆n
i G

(2)

τ
(2)
n

)
=

1√
n

bn·c∑
i=1

I2

(
∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

)
,

on the Skorokhod space D[0, T ]. Then, the sequence {Pn}n∈N is tight.

4.4 The central limit theorem for the Gaussian core

With Theorem 4.2 and 4.3 at our disposal, it is immediate to prove the fundamental
theorem stating weak convergence of the realised covariation of the Gaussian core:

Theorem 4.4 (Weak Convergence of the Gaussian Core). With the same setting and assump-
tions of Theorem 4.2, we obtain: 1√

n

bntc∑
i=1

(
∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

− E

[
∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

])
t∈[0,T ]

⇒
(√

βBt

)
t∈[0,T ]

, (20)

where Bt is a Brownian motion independent of the processes G(1), G(2), β = C(1, 1) from (19)
and the convergence is in the Skorokhod space D[0, T ] equipped with the Skorokhod topology.

5 A central limit theorem for the realised covariation of the
Brownian semistationary process

The weak convergence result for the Gaussian core obtained in the previous section is the
cornerstone needed to obtain the general central limit theorem for a Brownian semistationary
process Y, which includes stochastic volatility in each component, recall Definition 2.3.

We will need two additional assumptions:

Assumption 5.1. We require that, for k ∈ {1, 2}, the quantity:√
E
[(∫ (i−1)∆n

−∞ ∆g(k)σ
(k)
s dW

(k)
s

)2]
τ
(k)
n

=

√∫∞
0

(
g(k)(s+∆n)− g(k)(s)

)2 E [(σ(k)(i−1)∆n−s

)2]
ds

τ
(k)
n

is uniformly bounded in n ∈ N and i ∈ {1, . . . , n}.

Example 5.1. Assumption 5.1 is easily satisfied in many cases of interests, for example, if
the stochastic volatility processes are second-order stationary.

Assumption 5.2. The stochastic volatility process σ(1) (resp. σ(2)) has α(1)-Hölder (resp.
α(2)) continuous sample paths, for α(1) ∈

(
1
2 , 1
)
. Furthermore, both the kernel functions g(1)

and g(2) satisfy the following property: For j ∈ {1, 2}, write:

π(j)n (A) :=

∫
A

(
g(j)(x+∆n)− g(j)(x)

)2
ds∫∞

0

(
g(j)(x+∆n)− g(j)(x)

)2
ds
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and note that π
(j)
n are probability measures. We ask that there exists a constant λ < −1 such

that for any εn = O(n−κ), it holds that:

π(j)n ((εn,∞)) = O
(
nλ(1−κ)

)
.

5.1 Some remarks on stable convergence

Before stating our central limit theorem result, we need to briefly introduce the notion
of stable convergence, which is the type of convergence that we will encounter, and which
is typically used in inference for semimartingales. In this section we take definitions and
results from Aldous and Eagleson (1978) and from the survey on uses and properties of stable
convergence in Podolskij and Vetter (2010).

Definition 5.2 (Stable convergence). Let a probability space (Ω,F ,P) be fixed. Suppose the
sequence of variables Y (n) converges weakly to Y , denoted by:

Y (n) ⇒ Y.

We say that Y (n) converges stably to Y and write Y (n) st.⇒ Y if, for any F−measurable set B,
we have:

lim
n→∞

P
(
{Y (n) ≤ x} ∩B

)
= P ({Y ≤ x} ∩B) ,

for a countable, dense set of points x.

It is easy to see that Y (n) st.⇒ Y , if and only if for any f bounded Borel function, and for
any F−measurable fixed variable Z:

lim
n→∞

E
[
f
(
Y (n)

)
Z
]

= E [f(Y )Z] .

Yet another characterisation is the following:

Y (n) st.⇒ Y ⇐⇒ (Y (n), Z)⇒ (Y,Z),

for any F−measurable fixed variable Z.
An obvious consequence of the previous characterisation is the following continuous mapping

theorem for stable convergence:

Theorem 5.3 (Continuous mapping theorem). Suppose that Yn
st.⇒ Y , that σ is any fixed

F -measurable random variable and that g(x, y) is a continuous function of two variables.
Then:

g(Yn, σ)
st.⇒ g(Y, σ).

When the limiting variable Y can be taken to be independent of F , we say that the stable
convergence is mixing, and we write:

Y (n) ⇒ T (mixing).

Finally, there is a useful criterion that can be used to establish mixing convergence:
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Proposition 5.4. Suppose that Y (n) ⇒ Y . Then the following are equivalent:

1. Y (n) ⇒ Y (mixing),

2. For all fixed k ∈ N and B ∈ σ
(
Y (1) . . . , Y (k)

)
such that P(B) > 0,

lim
n→∞

P
(
Y (n) ≤ x

∣∣∣B) = FY (x).

Proof. See Proposition 2 in Aldous and Eagleson (1978).

5.2 The central limit theorem

We are now in the position to formulate our key result: the central limit theorem for the
suitably centred and scaled realised covariation of a bivariate Brownian semistationary process.

Theorem 5.5 (Central limit theorem). Let G be the sigma algebra generated by the Gaussian
core G, and let σ(1) and σ(2) be G−measurable. For the bivariate BSS process, provided that
Assumptions 2.1, 2.2, 5.1 and 5.2 are satisfied with δ(1), δ(2) ∈ (−1

2 ,
1
4) \ {0}, the following

G -stable convergence holds: 1√
n

bntc∑
i=1

∆n
i Y

(1)

τ
(1)
n

∆n
i Y

(2)

τ
(2)
n

−
√
nE

[
∆n

1G
(1)

τ
(1)
n

∆n
1G

(2)

τ
(2)
n

]∫ t

0
σ(1)s σ(2)s ds


t∈[0,T ]

st.
=⇒
n→∞

(√
β

∫ t

0
σ(1)s σ(2)s dBs

)
t∈[0,T ]

, (21)

in the Skorokhod space D[0, T ], where β = C(1, 1), see equation (19). Also, B is Brown-
ian motion, independent of F and defined on an extension of the filtered probability space
(Ω,F ,Ft,P).

We note that the central limit theorem implies a weak law of large numbers, which we
present next, cf. also Granelli and Veraart (2017).

Proposition 5.6. Assume that the conditions of Theorem 5.5 hold. Then

∆n

c(∆n)

bntc∑
i=1

∆n
i Y

(1)∆n
i Y

(2) P→ ρ

∫ t

0
σ(1)s σ(2)s ds, as n→∞.

So Theorem 5.5 implies a weak law of large numbers. It is to be stressed though, that
the law of large numbers can be formulated in a more general way, modulo some different
assumptions on the volatility processes. We refer to the discussion in Granelli and Veraart
(2017) for the details. In particular, for the weak law of large numbers to hold, we do
not need the restriction that δ(1), δ(2) ∈

(
−1

2 ,
1
4

)
\ {0}, but we can have the whole range

δ(1), δ(2) ∈
(
−1

2 ,
1
2

)
\ {0}. On the other hand, we remark that the weak law of large numbers

formulated in Granelli and Veraart (2017) required the kernel functions to be decreasing, and
we do not have such a restriction for the central limit theorem.
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6 Conclusion

In this article we have employed techniques that were successfully used in the univariate
case for the power, multipower, and bipower variation of the BSS process and of Gaussian
processes, (as appearing in Barndorff-Nielsen, Corcuera, and Podolskij (2011), Barndorff-
Nielsen, Corcuera, and Podolskij (2009), Barndorff-Nielsen, Corcuera, Podolskij, and Woerner
(2009), Corcuera, Hedevang, Pakkanen, and Podolskij (2013)) to show a central limit theorem
for the realised covariation of the bivariate Gaussian core and the BSS process.

This result, apart from being interesting from a purely mathematical point of view, can be
viewed as the starting point of the use of multivariate BSS processes in stochastic modelling.
The central limit theorem unlocks inference on the dependence parameter for the multivariate
BSS process. There are still parts of such a multivariate theory that need to be developed in
the future. For instance, one interesting aspect would be to allow for the correlation coefficient
to be stochastic. Another direction of future research would include extending our results
from the realised covariation to more general functionals, obtaining a fully multidimensional
theory of multipower variation of the BSS process. Also, one could investigate whether similar
results can be obtained for other forms of volatility modulated Gaussian processes outside the
semimartingale setting.

7 Proofs for the Gaussian core

7.1 Proof of Lemma 2.10

We start off by proving the very useful Lemma 2.10.

Proof of Lemma 2.10. Note that we can express c(x) as follows:

c(x) =

∫ x

0
g(1)(s)g(2)(s) ds+

∫ ∞
0

g(1)(s+ x)g(2)(s+ x) ds

−
∫ ∞
0

g(1)(s)g(2)(s+ x) ds−
∫ ∞
0

g(1)(s+ x)g(2)(s) ds+

∫ ∞
0

g(1)(s)g(2)(s) ds.

After a change of variable, we can write the second integral as:
∫∞
x g(1)(s)g(2)(s) ds, and

therefore we can simplify the expression as:

c(x) = 2

∫ ∞
0

g(1)(s)g(2)(s) ds−
∫ ∞
0

g(1)(s)g(2)(s+ x) ds−
∫ ∞
0

g(1)(s+ x)g(2)(s) ds

=

∫ ∞
0

g(1)(s)(g(2)(s)− g(2)(s+ x)) ds+

∫ ∞
0

g(2)(s)(g(1)(s)− g(1)(s+ x)) ds.

(22)

Assumption 2.2 implies that

c(x) = xδ
(1)+δ(2)+1 1

2

(
L
(1,2)
0 (x) + L

(2,1)
0 (x)

)
.

Note that L
(1,2)
4 (x) := 1

2

(
L
(1,2)
0 (x) + L

(2,1)
0 (x)

)
is itself a slowly varying function and the

constant H = 1
2

(
H(1,2) +H(2,1)

)
.

Let us next provide the details of the computation of H for the case of two Gamma kernels,
as discussed in Example 2.11.
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7.2 Proof of Example 2.11

Proof of Example 2.11. We start with the expression for c(x) given in (22):

c(x) = 2

∫ ∞
0

g(1)(s)g(2)(s) ds−
∫ ∞
0

g(1)(s)g(2)(s+ x) ds−
∫ ∞
0

g(1)(s+ x)g(2)(s) ds.

If we plug in the explicit epression for the Gamma kernel, we obtain:

c(x) = 2

∫ ∞
0

sδ
(1)+δ(2)e−(λ

(1)+λ(2))s ds−
∫ ∞
0

(sδ
(1)
e−λ

(1)s(s+ x)δ
(2)
e−λ

(2)(s+x) ds

−
∫ ∞
0

(s + x)δ
(1)
e−λ

(1)(s+x)sδ
(2)
e−λ

(2)s ds. (23)

The first integral can be easily evaluated:

2

∫ ∞
0

g(1)(s)g(2)(s) ds = 2
Γ (δ(1) + δ(2) + 1)

(λ(1) + λ(2))δ
(1)+δ(2)+1

.

The other two integrals can be computed analytically in terms of a power series using formula
(12) in Bateman 1954[p. 234]. We will use the notation: (a)n = a(a + 1) . . . (a + n − 1) :=∏n−1

k=0(a+ k) = Γ (a+n)
Γ (a) , with (a)0 := 1.

For the first one of the two, for example, the final result is:

K
(1)
1 e−λ

(2)txδ
(1)+δ(2)+1

∞∑
k=0

(1 + δ(1))k
(δ(1) + δ(2) + 2)k

(
(λ(1) + λ(2))x

)k
k!

+ K2e
−λ(2)x

∞∑
k=0

(δ(2))k
(δ(1) + δ(2))k

((λ(i) + λ(j))x)k

k!
, (24)

for constants K
(1)
1 ,K2:

K
(1)
1 =

Γ (δ(1) + 1)Γ (−1− δ(1) − δ(2))
Γ (−δ(1))

, K2 =
Γ (δ(1) + δ(2) + 1)

(λ(1) + λ(2))δ
(1)+δ(2)+1

.

Swapping the variables δ(1), δ(2), we obtain the result for the second integral. Summing up,
we conclude that (23) equals:

c(x) = 2K2 − xδ
(1)+δ(2)+1

(
K

(1)
1 e−λ

(1)xf (1)(x) +K
(2)
1 e−λ

(2)xf (2)(x)
)

−K2

(
e−λ

(1)xf (3)(x) + e−λ
(2)xf (4)(x)

)
,

where f (1), f (2) are power series such that limx→0 f
(1)(x) = limx→0 f

(2)(x) = 1, while:

f (3)(x) =

∞∑
k=0

(δ(1))k
(δ(1) + δ(2))k

(
(λ(1) + λ(2))x

)k
k!

, f (4)(x) =

∞∑
k=0

(δ(2))k
(δ(1) + δ(2))k

(
(λ(1) + λ(2))x

)k
k!

.

Using the Taylor expansion: e−λ
(i)x = 1− λ(i)x+ o(x), some of the terms simplify to give:

c(x) = −xδ(1)+δ(2)+1
(
K

(1)
1 e−λ

(1)xf (1)(x) +K
(2)
1 e−λ

(2)xf (2)(x)
)

+O(x2)

= xδ
(1)+δ(2)+1

(
−K(1)

1 e−λ
(1)xf (1)(x)−K(2)

1 e−λ
(2)xf (2)(x) + f (5)(x)

)
,
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and we know that f (5)(x) = O
(
x1−δ

(1)−δ(2)
)

. If we call L
(1,2)
4 (x) = −K(1)

1 e−λ
(1)xf (1)(x) −

K
(2)
1 e−λ

(2)xf (2)(x) + f (5)(x), then L
(1,2)
4 (x) is continuous and we also have:

lim
x→0+

L
(1,2)
4 (x) = −K(1)

1 −K
(2)
1 ,

which in particular implies that L
(1,2)
4 (x) is slowly varying at zero.

We know by Barndorff-Nielsen, Corcuera, and Podolskij (2011) that:

lim
x→0+

L
(i,i)
0 (x) = 2−1−2δ

(i) Γ
(
1
2 − δ

(i)
)

Γ
(
3
2 + δ(i)

) ,
and so:

lim
x→0+

L̃
(1,2)
0 (x) = K0 := 2−1−δ

(1)−δ(2)
√
Γ (12 − δ(i))Γ (12 − δ(j))
Γ (32 + δ(i))Γ (32 + δ(j))

.

Finally, we can then find an expression for H:

H =
−K(1)

1 −K
(2)
1

K0
=

(
−Γ (δ(1) + 1)Γ (−1− δ(1) − δ(2))

Γ (−δ(1))
− Γ (δ(2) + 1)Γ (−1− δ(1) − δ(2))

Γ (−δ(2))

)

21+δ
(1)+δ(2)

√
Γ (32 + δ(i))Γ (32 + δ(j))

Γ (12 − δ(i))Γ (12 − δ(j))
.

7.3 Proof of Theorem 4.1

The uniform bound on the covariances r
(n)
i,j (k) that we prove on Theorem 4.1 is a fun-

damental analytical result that allows us to sit within the reach of some powerful results of
Malliavin calculus. In this section we give the proof of that theorem. Let us start off with an
elementary result.

Lemma 7.1. For a C2 function u, and h > 0:

u(x+ h)− 2u(x) + u(x− h) = h2u′′(ζ),

where ζ ∈ (x− h, x+ h).

Proof of Lemma 7.1. Simply write Taylor’s formula twice, with Lagrange remainder:{
u(x+ h) = u(x) + hu′(x) + 1

2h
2u′′(ζ+), ζ+ ∈ (x, x+ h),

u(x− h) = u(x)− hu′(x) + 1
2h

2u′′(ζ−), ζ− ∈ (x− h, x).

Adding the two equations:

u(x+ h)− 2u(x) + u(x− h) = h2
(
u′′(ζ+) + u′′(ζ−)

2

)
.

By continuity of u′′ and the intermediate value theorem:

u′′(ζ+) + u′′(ζ−)

2
∈ u′′

(
(ζ−, ζ+)) ⊆ u′′ ((x− h, x+ h)

)
,

which implies the result.
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We have now the tools to tackle the proof of Theorem 4.1.

Proof of Theorem 4.1. The objective in the section is to show that we can bound:

|r(n)i,j (k)| ≤ r(k), (25)

uniformly in n, for all choices of i, j. In order to do so, recall the functions mapping R+ into
R+, with i, j ∈ {1, 2}:

R̄(i,j)(t) := E
[(
G

(j)
t −G

(i)
0

)2]
.

We need to show that this function is well defined. More generally, note that for the Gaussian
core, we have for any u ∈ R:

E
[(
G

(j)
u+t −G(i)

u

)2]
= E

[(∫ u+t

−∞
g(j)(u+ t− s) dW (j)

s −
∫ t

−∞
g(i)(t− s) dW (i)

s

)2
]

=

∫ u+t

−∞

(
g(j)(u+ t− s)

)2
ds+

∫ t

−∞

(
g(i)(t− s)

)2
ds− 2

∫ t

−∞
g(i)(t− s)g(j)(u+ t− s)ρi,j ds

=

∫ ∞
0

(
g(j)(y)

)2
dy +

∫ ∞
0

(
g(i)(y)

)2
dy − 2

∫ ∞
0

g(i)(y)g(j)(y + t)ρi,j dy

=
∥∥∥g(i)∥∥∥2

L2
+
∥∥∥g(j)∥∥∥2

L2
− 2E

[
G

(i)
0 G

(j)
t

]
,

which is indeed a function of t only. It is straightforward to find the connection between

r
(n)
i,j (k) and R̄(i,j)(k), when k ∈ N:

r
(n)
i,j (k) = E

[
∆n

1G
(i)

τ
(i)
n

∆n
1+kG

(j)

τ
(j)
n

]
=

1

τ
(i)
n τ

(j)
n

E
[(
G

(i)
1
n

−G(i)
0

)(
G

(j)
1+k
n

−G(j)
k
n

)]
=

1

τ
(i)
n τ

(j)
n

(
E
[
G

(i)
1
n

G
(j)
1+k
n

]
− E

[
G

(i)
1
n

G
(j)
k
n

]
− E

[
G

(i)
0 G

(j)
1+k
n

]
+ E

[
G

(i)
0 G

(j)
k
n

])
=

1

τ
(i)
n τ

(j)
n

(
−R̄(i,j)

(
k

n

)
+

1

2
R̄(i,j)

(
k − 1

n

)
+

1

2
R̄(i,j)

(
k + 1

n

))
(26)

=
1

2τ
(i)
n τ

(j)
n

(
−2R̄(i,j)

(
k

n

)
+ R̄(i,j)

(
k − 1

n

)
+ R̄(i,j)

(
k + 1

n

))
=

1

2n2τ
(i)
n τ

(j)
n

(
R̄(i,j)

)′′(k
n

+
ϑnk
n

)
, (27)

for some |ϑnk | < 1, thanks to the elementary result stated in Lemma 7.1.

The connection between r
(n)
i,j and R̄(i,j)(t) was derived in (26) and (27):

r
(n)
i,j (k) =

−2R̄(i,j)( kn) + R̄(i,j)(k+1
n ) + R̄(i,j)(k−1n )

2
√
R̄(i,i)( 1

n)R̄(j,j)( 1
n)

=
1

2n2τ
(i)
n τ

(j)
n

(
R̄(i,j)

)′′(k
n

+
ϑnk
n

)
, (28)

as well as:

τ (i)n =

√
R̄(i,i)

(
1

n

)
=

√√√√E

[(
G

(i)
1
n

−G(i)
0

)2
]

=

(
1

n

) 1
2(2δ(i)+1)

√
L
(i)
0

(
1

n

)
.
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Let us now show the uniform bound (16) and the limit result for the case when k ∈ N. For
k ∈ N, we go back to the second equality in (28), and deduce that:

|r(n)i,j (k)| =

∣∣∣∣∣∣ρi,j
(k + ϑnk)δ

(i)+δ(j)−1 L
(i,j)
2

(
k
n +

ϑnk
n

)
L̃
(i,j)
0 ( 1

n)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
(k + ϑnk)δ

(i)+δ(j)−1 L
(i,j)
2

(
k
n +

ϑnk
n

)
L̃
(i,j)
0 ( 1

n)

∣∣∣∣∣∣ .
Note that for k > 1, we deduce from ϑnk ∈ (−1, 1) and δ(i) + δ(j) − 1 < −ε < 0 that

(k + ϑnk)δ
(i)+δ(j)−1 ≤ (k − 1)δ

(i)+δ(j)−1.

Now, if 2 ≤ k < bn1−bc, then k
n +

ϑnk
n ∈

(
2
n +

ϑnk
n ,
bn1−bc−1

n +
ϑnk
n

)
⊂
(

1
n ,
bn1−bc
n

)
⊂
(
1
n ,

1
nb

)
and hence, the bound (6) in Assumption 2.2 applies and we obtain that

L
(i,j)
2

(
k
n +

ϑnk
n

)
L̃
(i,j)
0 ( 1

n)

is bounded close to the origin for n big enough.
If instead bn1−bc ≤ k ≤ n, then, for all ε > 0, and any δ < ε(1− b) there exists a constant

C(δ) > 0 such that

|r(n)i,j (k + 1)| =

∣∣∣∣∣∣∣
(
k + 1 + ϑnk+1

)δ(i)+δ(j)−1
L
(i,j)
2

(
k+1
n +

ϑnk+1

n

)
L̃
(i,j)
0 ( 1

n)

∣∣∣∣∣∣∣
≤ C(δ)

kδ
(i)+δ(j)−1+ε−δ

nε(1−b)−δ
1

L̃
(i,j)
0 ( 1

n)
.

(29)

We used the fact that for any δ, t > 0, there exists a constant C depending on δ (and t) only
such that |L2(x)| ≤ C(δ)x−δ, in a neighborhood x ∈ (0, t].

Observe now that M (i,j)(n) := 1

L̃
(i,j)
0 ( 1

n
)

is a slowly varying function at ∞. Indeed, for any

λ > 0:

lim
n→∞

M (i,j)(λn)

M (i,j)(n)
= lim

n→∞

L̃
(i,j)
0 ( 1

λn)

L̃
(i,j)
0 ( 1

n)
= 1.

But since M (i,j) is slowly varying, there exists a constant C̃ such that, by Potter’s bound:

M(n) ≤ C̃n−ε(1−b)+δ ⇐⇒ 1

nε(1−b)−δL̃
(i,j)
0 ( 1

n)
≤ C̃,

that gives us

|r(n)i,j (k + 1)| ≤ C̃C(δ)kδ
(i)+δ(j)−1+ε.

As δ is arbitrary, set C1 = C̃C(δ) for any δ > 0.
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Next, let us prove the limit result. To this end, we will use the first equality in (28) to show
the convergence in (18). Using the expression (4) from Assumptions 2.2, we get for k ∈ N:

r
(n)
i,j (k) (30)

= ρi,j
−2kδ

(i)+δ(j)+1L
(i,j)
0 ( kn) + (k − 1)δ

(i)+δ(j)+1L
(i,j)
0 (k−1n ) + (k + 1)δ

(i)+δ(j)+1L
(i,j)
0 (k+1

n )

2L̃
(i,j)
0 ( 1

n)
.

Because of (5), we get in the limit:

lim
n→∞

r
(n)
i,j (k) = ρi,jH

(i,j)

(
−2kδ

(i)+δ(j)+1 + (k − 1)δ
(i)+δ(j)+1 + (k + 1)δ

(i)+δ(j)+1
)

2
.

Let us now consider the case when k = 0. We need to show that limn→∞ r
(n)
i,j (0) = ρH

for i 6= j and limn→∞ r
(n)
i,j (0) = 1 for i = j. First, suppose that i = j. Then r

(n)
i,j (0) = 1, and

hence limn→∞ r
(n)
i,j (0) = 1. Next, assume that i 6= j. Then

r
(n)
i,j (0) = ρ

ζn
ξn
,

where

ζn =

∫ ∆n

0
g(1)(s)g(2)(s) ds+

∫ ∞
0

(
g(1)(s+∆n)− g(1)(s)

)(
g(2)(s+∆n)− g(2)(s)

)
ds,

ξn =

[(∫ ∆n

0

(
g(1)(s)

)2
ds+

∫ ∞
0

(
g(1)(s+∆n)− g(1)(s)

)2
ds

)
·
(∫ ∆n

0

(
g(2)(s)

)2
ds+

∫ ∞
0

(
g(2)(s+∆n)− g(2)(s)

)2
ds

)]1/2
.

(31)

Using Lemma 2.10, we get:

ζn = ∆δ(1)+δ(2)+1
n L

(1,2)
4 (∆n).

Also, Remark 2.7 implies that

ξn = ∆δ(1)+δ(2)+1
n

√
L
(1)
0 (∆n)L

(2)
0 (∆n) = ∆δ(1)+δ(2)+1

n L̃
(1,2)
0 (∆n).

Then equation (9) in Lemma 2.10 ensures that limn→∞ ζn/ξn = H and hence limn→∞ r
n
i,j(0) =

ρH for i 6= j. Finally, we remark that since r
(n)
i,j (0) converges, there exists a positive constant

C2 such that |r(n)i,j (0)| ≤ C2 for all n ∈ N. So, we can conclude that (16) holds with
C = max{1, C1, C2}.
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7.4 Limiting covariance

Our strategy for proving the central limit theorem for the Gaussian core relies on Theorem
3.21, which gives us the fundamental tool for proving convergence in distribution to a Gaussian
variable in this setting.

In order to be able to apply Theorem 3.21 to prove the central limit theorem later on, we
must first compute the limiting covariance: i.e. we need to compute limn→∞ E [I2(fr,n)I2(fs,n)],
where:

fr,n :=
1√
n

bnbrc∑
i=bnarc+1

∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

.

We start with the case r 6= s:

E [I2(fr,n)I2(fs,n)] = 2〈fr,n, fs,n〉H⊗2

= 2〈 1√
n

bnbrc∑
i=bnarc+1

∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

,
1√
n

bnbsc∑
j=bnasc+1

∆n
jG

(1)

τ
(1)
n

⊗̃
∆n
jG

(2)

τ
(2)
n

〉H⊗2 . (32)

Without loss of generality, we will choose r = 1, s = 2, a1 = 0, b1 = a2 = 1, b2 = 2, obtaining:

2

n
〈
n∑
i=1

∆n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

,
2n∑

j=n+1

∆n
jG

(1)

τ
(1)
n

⊗̃
∆n
jG

(2)

τ
(2)
n

〉H⊗2 . (33)

Now, let k = j − i. Also recall the definition r
(n)
a,b (k) := E

[
∆n

1G
(a)

τ
(a)
n

∆n
1+kG

(b)

τ
(b)
n

]
. Then, the single

scalar product equals:

〈∆
n
i G

(1)

τ
(1)
n

⊗̃∆
n
i G

(2)

τ
(2)
n

,
∆n
jG

(1)

τ
(1)
n

⊗̃
∆n
jG

(2)

τ
(2)
n

〉H⊗2

=
1

4
〈∆

n
i G

(1)

τ
(1)
n

⊗ ∆n
i G

(2)

τ
(2)
n

+
∆n
i G

(2)

τ
(2)
n

⊗ ∆n
i G

(1)

τ
(1)
n

,
∆n
jG

(1)

τ
(1)
n

⊗
∆n
jG

(2)

τ
(2)
n

+
∆n
jG

(2)

τ
(2)
n

⊗
∆n
jG

(1)

τ
(1)
n

〉H⊗2

=
1

4
〈∆

n
i G

(1)

τ
(1)
n

⊗ ∆n
i G

(2)

τ
(2)
n

,
∆n
jG

(1)

τ
(1)
n

⊗
∆n
jG

(2)

τ
(2)
n

〉H⊗2 +
1

4
〈∆

n
i G

(2)

τ
(2)
n

⊗ ∆n
i G

(1)

τ
(1)
n

,
∆n
jG

(1)

τ
(1)
n

⊗
∆n
jG

(2)

τ
(2)
n

〉H⊗2

+
1

4
〈∆

n
i G

(1)

τ
(1)
n

⊗ ∆n
i G

(2)

τ
(2)
n

,
∆n
jG

(2)

τ
(2)
n

⊗
∆n
jG

(1)

τ
(1)
n

〉H⊗2 +
1

4
〈∆

n
i G

(2)

τ
(2)
n

⊗ ∆n
i G

(1)

τ
(1)
n

,
∆n
jG

(2)

τ
(2)
n

⊗
∆n
jG

(1)

τ
(1)
n

〉H⊗2

=
1

4
E

[
∆n
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Thus, we have that expression (33) becomes:
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(
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2,2 (k) + r
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)
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(
r
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2,2 (k) + r
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2,1 (k)r

(n)
1,2 (k)

)
. (34)

By Cesaro’s theorem, if:

lim
k→∞

k
(
r
(n)
1,1 (k)r

(n)
2,2 (k) + r

(n)
2,1 (k)r

(n)
1,2 (k)

)
= 0, (35)

then the first sum in (34) will converge to zero. Theorem 4.1 gives us:∣∣∣r(n)1,1 (k)r
(n)
2,2 (k) + r

(n)
2,1 (k)r

(n)
1,2 (k)

∣∣∣ ≤ 2(k − 1)2(δ
(1)+δ(2))+2ε−2. (36)

Hence, we have the limit in (35) provided that

2(δ(1) + δ(2)) + 2ε− 2 < −1 ⇐⇒ (δ(1) + δ(2)) + ε− 1 < −1

2
⇐⇒ ε <

1

2
− (δ(1) + δ(2)),

which, in order for ε > 0 to hold, implies that we must ask:

δ(1) + δ(2) <
1

2
. (37)

Applying Theorem 4.1 again shows that the absolute value of the second sum in (34) can
be bounded by:

1

n
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4

n
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k=n

k2δ
(1)+2δ(2)+2ε−1.

The first sum goes to zero whenever the summand is summable, thus we get δ(1) + δ(2) < 1,
which is clearly satisfied under condition (37). For the second sum, we have in particular
that k < 2n ⇐⇒ 1

n <
2
k , so we can write:

4

n

2n−2∑
k=n

k2δ
(i)+2δ(j)+2ε−1 < 8

2n−2∑
k=n

k2δ
(i)+2δ(j)+2ε−2.

Condition (37) again ensures convergence to zero.
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7.5 Limiting variance

Now we consider the case when r = s in (15), as we have to find the limiting variance.
Again, take, by simplicity, r = s = 1, a1 = 0, b1 = 1, and this time, k = |i− j|:

E [I2 (f1,n) I2 (f1,n)] = 2 ‖f1,n‖2H⊗2

= 2〈 1√
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)
.

(38)

Now write r
(n)
1,1 (k)r

(n)
2,2 (k)+r

(n)
2,1 (k)r

(n)
1,2 (k) = pn(|i−j|) (note that, if j < i, r

(n)
a,b (j−i) = r

(n)
b,a (i−j)),

so that:
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n∑
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n

n∑
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2

n
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k=1
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=
2

n
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n∑
i=k+1

pn(k) + pn(0) =
2

n

n−1∑
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(n− k)pn(k) + pn(0)

= 2
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(
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n

)
pn(k) + pn(0).

(39)

Thanks to (18), we see that, for k ≥ 1:

pn(k) = r
(n)
1,1 (k)r

(n)
2,2 (k) + r

(n)
2,1 (k)r

(n)
1,2 (k)→ ρ

(1,1)

2β(1)(k)ρ
(2,2)

2β(2)(k) +
(
ρ
(1,2)

β(1)+β(2)(k)
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,

In the case when k = 0, we have

pn(0) = 1 +
1

(τ
(1)
n τ

(2)
n )2

(
E
[
∆n

1G
(1)∆n

1G
(2)
])2

1 + ρ2
(
ζn
ξn

)2

,

where ζn and ξn are defined as in (31). As above, using Assumption 2.2 and Lemma 2.10,
ensures that limn→∞ ζn/ξn = H2 and hence limn→∞ pn(0) = 1 + ρ2H2.

By the bound (16) in Theorem 4.1 and the bounded convergence theorem, (39) converges
to

C(1, 1) := lim
n→∞

E [I2 (f1,n) I2 (f1,n)]

= 2
∞∑
k=1

(
ρ
(1,1)

2β(1)(k)ρ
(2,2)

2β(2)(k) +
(
ρ
(1,2)

β(1)+β(2)(k)
)2)

+ (1 + ρ2H2) <∞. (40)

7.6 Proof of Theorem 4.2

Proof of Theorem 4.2. We start from the last statement of the theorem, i.e. the limiting
covariance matrix. The limit: limn→∞ E [Fi,nFj,n] has been computed in the last few sections,
where we picked intervals [ak, bk] of length 1 and showed that the matrix is diagonal, with
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diagonal elements all equal to C(1, 1). It is straightforward to change the summation indices

in (38) from
∑n

i=1 to
∑bnbkc

i=bnakc+1. Since limn→∞
bnbkc−bnakc

n = limn→∞
nbk−{nbk}−nak+{nak}

n =
bk − ak, we get the limit as in the statement.

The weak convergence is now implied by an application of Theorem 3.21. In order to show
that condition (b) there is satisfied, we need to check one of the equivalent conditions provided
by Theorem 3.22. Employing condition 3 in our case accounts to verifying that, for 1 ≤ k ≤ d:∥∥∥∥∥∥
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Without loss of generality, we look at d = 1 and assume a1 = 0, b1 = 1:
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We hence obtain:
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We need to show that the quantity in (42) converges to zero. It is sufficient to show that the
sum of the absolute values converges to zero. If we apply Hölder inequality, we get:
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So we can split the sum into two components. Let us perform the substitution

(i, j, i′, j′)→ (i, j, i′, l) := (i, j, i′, i′ − j′).
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Thanks to Hölder’s inequality, the first term is bounded by:
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For a fixed δ, the second one converges to 0 as n tends to infinity. The first one is bounded by
K
√
δ (for a positive constant K <∞), thus letting δ → 0 we have:
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converge. In a completely analogous way we can show that the second component of the

original sum converges to zero, provided that also
∑
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(
r
(n)
b′,β′(i)
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is finite. But since from

Theorem 4.1 we have:∣∣∣r(n)i,j (k)
∣∣∣2 ≤ C(k − 1)2δ

(i)+2δ(j)+2ε−2, for k ≥ 2,

it is sufficient to ask that δ(i) + δ(j) < 1
2 for all possible choices of i, j. Explicitly, it is sufficient

to ask that: δ(1) < 1
4 and δ(2) < 1

4 .
The statement of the theorem is proved.
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7.7 Proof of Theorem 4.3

Proof of Theorem 4.3.
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Multiplying and dividing by bntc − bnsc yields:
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 ,

thanks to the same arguments as in equation (39). We now know that the quantity in brackets
is convergent, hence bounded. Tightness now follows as in the proof of Theorem 7 in Corcuera
(2012), invoking Theorem 13.5 in Billingsley (2009).

7.8 Proof of Theorem 4.4

Proof of Theorem 4.4. The fact that the finite dimensional distributions of the realised co-
variation converge to those of Brownian motion is the content of Theorem 4.2: the limiting
finite dimensional distributions we had there coincide with those on the right hand side of
(20). The fact that the limiting Brownian motion Bt is independent of G(1) and G(2) follows
from the fact that(

G
(1)
bk
−G(1)

ak , G
(2)
bk
−G(2)

ak ,
1√
n

∑bnbkc
i=bnakc+1

(
∆n

i G
(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

− E
[
∆n

i G
(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

]))
n∈N

converges to a multivariate Gaussian, and, for all n ∈ N the third component is orthogonal to
the first two, as it belongs to a different Wiener chaos. Given the tightness result in Theorem
4.3, an application of Theorem 13.1 in Billingsley (2009) allows to conclude.

8 Proofs for the Brownian semistationary process

8.1 Strategy and outline of the proof

In order to prove the central limit theorem for the bivariate Brownian semistationary
process we will introduce a blocking technique, see Bernstein (1927), whereby, alongside the
original time-grid indexed by n, we introduce a coarser grid with a new index l, and we freeze
the volatility processes at the start of each l−interval. Heuristically, letting n go to infinity,
for a fixed l, allows us invoke the weak convergence of the Gaussian core we have proven in
the previous section, as the volatilities are “frozen”. A further limit in l gives us the final
result where the volatilities are integrated against the limiting Brownian motion.
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Let us now show how the blocking technique will be introduced. We define

µn := r
(n)
1,2 (0) = E

[
∆n

1G
(1)

τ
(1)
n

∆n
1G

(2)

τ
(2)
n

]
,

which is bounded by 1. For any l ≤ n we have the decomposition:
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√
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)
︸ ︷︷ ︸
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t

+
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τ
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σ
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σ
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A
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+
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+
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n
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σ
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σ
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−
√
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∫ t

0
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Dn
t

.

The term denoted by Cn,lt will give us the stable convergence to a non-zero limit, while the

terms Ant , A
′′′n,l
t := A

′n,l
t +A

′′n,l
t , Dn

t will converge to zero (in a way that will be made precise
below.)

We will divide the proof into four parts, each one dealing separately with one of the terms.

8.2 Convergence of the term An
t

Proposition 8.1. Assume that the assumptions of Theorem 5.5 hold. Then Ant given by

Ant =
1√
n

bntc∑
i=1

(
∆n
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∆n
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τ
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n

)

converges to zero uniformly on compacts in probability (u.c.p.).
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Proof of Proposition 8.1. We write:

∆n
i Y

(1)

τ
(1)
n

∆n
i Y

(2)

τ
(2)
n

=
1

τ
(1)
n τ
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n

. We start by showing that:
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goes to zero. Adding and subtracting σ
(1)
(i−1)∆n
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s , we get:
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(45)

We can show u.c.p convergence to zero. If we can show that the supremum over [0, T ] converges
in L1 to zero, it would be enough. If we take the first term of (45),

E

∣∣∣∣∣∣ 1
√
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(2)
n

bntc∑
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]∣∣∣∣∣
that is smaller than:
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×

[∫ i∆n

(i−1)∆n

g(1)(i∆n − s)
(
σ(1)s − σ
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)
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By Cauchy-Schwarz E[|XY |] ≤

√
E[X2]

√
E[Y 2]. Now:√∫ i∆n
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)2 E[σ
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s ] ds =

√∫ ∆n
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(
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)2 E [(σ(2)i∆n−s
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since σ is bounded on compact intervals, we get the bound
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g(1)(i∆n − s)(σ(1)s − σ(1)(i−1)∆n−s) dW
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s

)2
,

for some constant K. Now the first term is bounded by K, and the second one is term A in
the proof of Theorem 5 in Barndorff-Nielsen, Corcuera, and Podolskij (2011) (page 37, full
version), which goes to zero, under our assumptions. We can repeat the reasoning for the
second term of (45). Let’s take another term now:
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]
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Adding and subtracting σ
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first term:
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We can use the same arguments as above. The only difference is the expectation of (1) over
the infinite interval:√

E
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(
g(2)(s+∆n)− g(2)(s)

)2 E [(σ(2)(i−1)∆n−s
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τ
(2)
n

Assumption 5.1 allows to conclude that this quantity is bounded. The remaining term (2) is
the sum B + C from the paper Barndorff-Nielsen, Corcuera, and Podolskij (2011) and goes to
zero in L2 as well.

Now we consider the cross term
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We add and subtract: σ
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We can proceed exactly as above, and convergence to zero is proved.

8.3 Convergence of the term A
′′′n,l
t = A

′n,l
t + A

′′n,l
t

It is worth mentioning at this point that proofs that terms similar to the one we called

A
′′′n,l
t converge to zero in the univariate case have had a tormented history in the literature.

Indeed, a mistake appeared in the proof of a similar result in Corcuera, Nualart, Woerner,
et al. (2006) in the context of power variation for integral processes. The application of the
mean value theorem on page 724 of that paper is invalid.

The mistake was not simple to correct. Years later, the paper Corcuera, Nualart, and
Podolskij (2014) was published, which highlighted the techniques from fractional integration
that were needed to correct the proof. As it turns out, in our multivariate setting it is sufficient
to invoke that univariate result to obtain the required convergence. This section contains the
details of the proof.

Proposition 8.2. Assume that the assumptions of Theorem 5.5 hold. Then

P− lim
l→∞

lim sup
n→∞

sup
t∈[0,T ]

∣∣∣A′′′n,lt

∣∣∣ = 0.

Proof of Proposition 8.2. We need to set the following notation:
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and f(ti) = σ
(1)
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σ
(2)
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. We will be using Remark 1.1 in the paper Corcuera, Nualart,

and Podolskij (2014). We know that:
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Convergence (4) in the paper reads:
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which in our setting and with our notation becomes:
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Expanding the bracket in (1) above, the first term gives us exactly term A
′n,l
t . The second

term from the bracket (1) is:∣∣∣∣∣ µn√n
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which is bounded by

∣∣∣∣∣A′′n,lt + µn√
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∑bltc+1
j=1 σ

(1)
(j−1)∆n

σ
(2)
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∣∣∣∣∣. This second term goes to zero a.s.

for any fixed l, which concludes the proof.

8.4 Convergence of the term Cn,l
t

The term Cn,lt is the one that will give us the stable convergence we seek.

Proposition 8.3. Assume that the assumptions of Theorem 5.5 hold. Then(
G

(1)
t , G

(2)
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t∈[0,T ]

converges weakly to(
G

(1)
t , G

(2)
t ,
√
βBt

)
t∈[0,T ]

.

Proof of Proposition 8.3. We split the proof into two parts: First, we prove tightness and
then convergence of the finite dimensional distributions.
Tightness: By Theorem 13.2 in Billingsley (2009), a sequence of measures Pn is tight if and
only if:

1. lima→∞ lim supn→∞ Pn (x| ‖x‖ ≥ a) = 0

2. For any ε > 0, limδ lim supn→∞ Pn (x|w′x(δ) ≥ ε) = 0,
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where w′x(δ) is defined as follows. For S ⊆ [0, T ], call the modulus of continuity

wx(S) := sup
s,t∈S

‖f(s)− f(t)‖R3 .

A partition 0 ≤ t1 ≤ · · · ≤ tv = T of [0, T ] is δ-sparse if min1≤i≤v(ti − ti−1) > δ. Define, for
0 < δ < T ,

w′x(δ) = inf
ti

max
1≤i≤v

wx[ti−1, ti),

where the maximum runs over all δ-sparse partitions {ti}.
Our probability measures Pn live in D

(
[0, T ];R3

)
, the space of càdlàg functions with

values in R3, equipped with the Skorokhod topology. The norm in this space is defined as:

‖f‖D([0,T ];R3) = sup
t∈[0,T ]

‖f‖R3 ,

and hence the two conditions above only depend on the norm in R3. It is then sufficient to
show them component-wise. The first two components trivially satisfy them, as the sequences
reduce to only one measure per component. The fact that the third component satisfies them
both is a consequence of Theorem 4.3 and the characterisation above.
Convergence of the finite dimensional distributions: We need to show that for any
choice of positive numbers ak < bk, k ∈ {1, . . . , D}, the sequence of matrix variables:(

G
(1)
bk
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β (Bbk −Bak)

)
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. (49)

This we know already, as pointed out in the proof of Theorem 4.4, as marginal convergence
of sequence of variables within fixed Wiener chaoses implies joint convergence. The first two
components lie in the first chaos, the third one lies in the second chaos. The statement of
Theorem 4.4 allows to conclude.

Proposition 8.4. Assume that the assumptions of Theorem 5.5 hold. Then Cnt converges

stably in law to
√
β
∫ t
0 σ

(1)
s σ

(2)
s dBs in the Skorokhod space D[0, T ], where β = C(1, 1), see

equation (19), and where first n→∞ for fixed l and then l→∞. Also, B is Brownian motion,
independent of F and defined on an extension of the filtered probability space (Ω,F ,Ft,P).

Proof of Proposition 8.4. The joint weak convergence in (49) paired with the asymptotic
independence of the limit B and G(1), G(2) and an application of Proposition 5.4 ensure that:
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, we have the following G -stable convergence for fixed l as n→∞:

σ
(1)
(j−1)∆l

σ
(2)
(j−1)∆l

1√
n

∑
i∈Il(j)

(
∆n
i G

(1)

τ
(1)
n

∆n
i G

(2)

τ
(2)
n

− µn

)
st.⇒ σ

(1)
(j−1)∆l

σ
(2)
(j−1)∆l

√
β
(
Bj∆l

−B(j−1)∆l

)
.

37



Finally we have that

P− lim
l→∞

bltc∑
j=1

σ
(1)
(j−1)∆l

σ
(2)
(j−1)∆l

√
β
(
Bj∆l

−B(j−1)∆l

)
=
√
β

∫ t

0
σ(1)s σ(2)s dBs,

because the integrand is càdlàg. Modulo another term of the form µn√
n

∑bltc+1
j=1 σ

(1)
(j−1)∆n

σ
(2)
(j−1)∆n

,

which goes to zero a.s. as n→∞, we have proven stable convergence of the term Cn,lt in our
decomposition.

8.5 Convergence of the term Dn
t

Proposition 8.5. Assume that the assumptions of Theorem 5.5 hold. Then supt∈[0,T ]|Dn
t | → 0

almost surely.

Proof of Proposition 8.5. Note that Dn
t is given by

1√
n
µn

bntc∑
j=1

σ
(1)
(j−1)∆n

σ
(2)
(j−1)∆n

−
√
nµn

∫ t

0
σ(1)s σ(2)s ds.

Recall that α(i) denotes the Hölder continuity index of σ(i). Rewriting the integral:∫ t

0
σ(1)s σ(2)s ds =

bntc∑
j=1

∫ j∆n

(j−1)∆n

σ(1)s σ(2)s ds+

∫ t

bntc∆n

σ(1)s σ(2)s ds,

and using the mean value theorem, we get:

|Dn
t | ≤

1√
n
µn

bntc∑
j=1

|σ(1)(j−1)∆n
σ
(2)
(j−1)∆n

− σ(1)sj σ
(2)
sj |

+
1√
n
µn

∥∥∥σ(1)sj σ
(2)
sj

∥∥∥
∞

≤ 1√
n
µn

bntc∑
j=1

|(j − 1)∆n − sj |min(α(1),α(2))|σ(1)(j−1)∆n
+ σ(2)sj |

+
1√
n
µn

∥∥∥σ(1)sj σ
(2)
sj

∥∥∥
∞

≤C 1√
n
µn∆n

min(α(1),α(2))nT l +
1√
n
µn

∥∥∥σ(1)sj σ
(2)
sj

∥∥∥
∞

=C
√
nµn∆n

min(α(1),α(2))T +
1√
n
µn

∥∥∥σ(1)sj σ
(2)
sj

∥∥∥
∞
.

Hence, supt∈[0,T ]|Dn
t | → 0 almost surely, since min(α(1), α(2)) > 1

2 .

8.6 Proofs of Theorem 5.5 and Proposition 5.6

Proof of Theorem 5.5. The statement of Theorem 5.5 is a consequence of Propositions 8.1,
8.2, 8.4, 8.5, noting that they imply that, for any ε > 0,

lim
l→∞

lim sup
n→∞

P

(
sup
t∈[0,T ]

∣∣∣Ant +A
′n,l
t +A

′′n,l
t +Dn

t

∣∣∣ ≥ ε) = 0.

It is now sufficient to apply Theorem 3.2 in Billingsley (2009) to conclude.
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Finally we provide the proof of the weak law of large numbers.

Proof of Proposition 5.6. We note that, for each fixed t ∈ [0, T ], (21) implies that:√n
 1

n

bntc∑
i=1

∆n
i Y

(1)

τ
(1)
n

∆n
i Y

(2)

τ
(2)
n

− E

[
∆n

1G
(1)

τ
(1)
n

∆n
1G

(2)

τ
(2)
n

]∫ t

0
σ(1)s σ(2)s ds


n∈N

converges weakly, hence, by Prohorov’s theorem, it is a tight sequence. It then follows that:

1

n

bntc∑
i=1

∆n
i Y

(1)

τ
(1)
n

∆n
i Y

(2)

τ
(2)
n

− E

[
∆n

1G
(1)

τ
(1)
n

∆n
1G

(2)

τ
(2)
n

]∫ t

0
σ(1)s σ(2)s ds

P→ 0.

Now:

E

[
∆n

1G
(1)

τ
(1)
n

∆n
1G

(2)

τ
(2)
n

]

=

∫ ∆n

0 g(1)(s)g(2)(s)ρ ds+
∫∞
0

(
g(1)(s+∆n)− g(1)(s)

) (
g(2)(s+∆n)− g(2)(s)

)
ρ ds

τ
(1)
n τ

(2)
n

= ρ
c(∆n)

τ
(1)
n τ

(2)
n

.

Hence:

∆n

bntc∑
i=1

∆n
i Y

(1)

τ
(1)
n

∆n
i Y

(2)

τ
(2)
n

− ρ c(∆n)

τ
(1)
n τ

(2)
n

∫ t

0
σ(1)s σ(2)s ds

P→ 0,

which is equivalent to:

∆n

bntc∑
i=1

∆n
i Y

(1)∆n
i Y

(2) − ρc(∆n)

∫ t

0
σ(1)s σ(2)s ds

P→ 0,

or indeed to:

∆n

c(∆n)

bntc∑
i=1

∆n
i Y

(1)∆n
i Y

(2) P→ ρ

∫ t

0
σ(1)s σ(2)s ds.
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