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 

Abstract— Determination of PV model parameters usually 

requires time consuming iterative procedures, prone to 

initialization and convergence difficulties. In this paper, a set of 

analytical expressions is introduced to determine the five 

parameters of the single-diode model for crystalline PV modules 

at any operating conditions, in a simple and straightforward 

manner. The derivation of these equations is based on a newly 

found relation between the diode ideality factor and the open 

circuit voltage, which is explicitly formulated using the 

temperature coefficients. The proposed extraction method is 

robust, cost-efficient and easy-to-implement, as it relies only on 

datasheet information, while it is based on a solid theoretical 

background. Its accuracy and computational efficiency is verified 

and compared to other methods available in the literature 

through both simulation and outdoor measurements. 

 
Index Terms—Direct calculation, explicit expressions, five 

parameters, ideality factor, Lambert W, photovoltaic (PV), 

single-diode model, temperature coefficients. 

NOMENCLATURE 

a  Modified diode ideality factor of the single-diode 

model.  

Isca  Temperature coefficient of short circuit current.  

Voc  Temperature coefficient of open circuit voltage.  

  Coefficient for the single-diode model, defined as the 

ratio of a over Voc.  

gE  Energy gap. 

mpI  Current at maximum power point. 

phI  Photocurrent of the single-diode model. 

sI  Diode saturation current of the single-diode model.  

scI  Short-circuit current.  

k  Boltzmann constant. 

MPP  Maximum power point. 

n  Diode ideality factor of the single-diode model.  

sN  Series connected cells in a PV unit. 

OC  Open-circuit condition.  

q  Electron charge. 

sR  Series resistance of the single-diode model. 

shR  Shunt resistance of the single-diode model. 

SC  Short-circuit condition. 
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STC  Standard test conditions (1000 W/m2, 25°C).  

0T  Cell temperature at standard test conditions (25°C). 

cT  Operating cell temperature. 

mpV  Voltage at maximum power point. 

ocV  Open-circuit voltage.  

thV  Thermal voltage. 

w  Auxiliary parameter related to δ through  1 1w W e   . 

cT  Deviation of the actual cell temperature from T0. 

X0 Generic parameter X at STC (e.g. a0 or Voc0). 

I.  INTRODUCTION 

ODELING of photovoltaic (PV) systems is essential for 

assessing their efficiency and performance under 

various operating conditions. Usually, PV modeling is based 

on a suitable electrical equivalent circuit, employing a set of 

parameters that represent the properties of the PV modules and 

the operating conditions. Determination of these parameters is 

not a trivial task, since they are not generally directly provided 

in the module datasheet. Numerous methods can be found in 

the relevant literature for their evaluation, presenting widely 

different levels of accuracy, computational complexity and 

amount of required input data. A review of such methods, 

focusing on energy models for partial shading conditions, is 

presented in [1]. 

The majority of these approaches identifies the parameters 

at standard test conditions (STC), extrapolating then to the 

actual operating conditions using module datasheet 

information. With numerical methods, a system of equations is 

formed for specific operating points, which is then solved via 

a numerical or iterative algorithm [2]–[23]. A representative 

method of this category is introduced in [2], employing a 

system of five equations to determine the five parameters of 

the single-diode model. In particular, the fundamental 

equation of the model is evaluated at the short-circuit (SC), 

open-circuit (OC) and maximum power point (MPP), 

information always given in the module datasheet, while the 

slope of the P-V curve at the MPP is set to zero. The fifth 

equation is formed by exploiting the linear dependence of the 

open-circuit voltage on the operating temperature, utilizing the 

relevant temperature coefficient, also provided in the module 

datasheet. Similarly, the methods of [3]–[13], [18], [20], [21] 

rely only on datasheet information, whereas other methods 

require also the I-V curve slope at the SC and/or OC points 

[14]–[16], [19], or even the entire I-V curve [17], [22], [23]. A 

literature review and comparison through measurements on 
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this type of methods can be found in [24] and [25] 

respectively. 

An alternative approach to determine the model parameters 

is to employ a curve fitting or optimization algorithm, 

assuming that the entire I-V curve is available. The least-

squares fitting technique is applied to measured data in [26]–

[29], while various metaheuristic algorithms have been 

proposed in the literature, implementing genetic algorithms 

[30], neural networks [31], pattern search [32], particle swarm 

optimization [33], differential evolution [34] or bird mating 

optimization [35] algorithms. A comprehensive review and 

comparative assessment of such methods may be found in 

[36]. 

Although all previous methods may provide sufficiently 

accurate results, they suffer from the iterative nature of the 

calculation procedure involved. Several computational issues 

arise, such as initialization difficulties, convergence failure, 

calculation uncertainty and increased computational cost and 

complexity. In order to overcome these shortcomings, a few 

analytical methods are proposed in the literature, introducing 

straightforward techniques to estimate model parameters in an 

explicit manner, avoiding iterative procedures, albeit at the 

cost of reduced accuracy [37]–[47]. In [37], the series and 

shunt resistances of the single diode model are neglected and 

the remaining three model parameters are derived under the 

assumption that the slope of the I-V curve at the MPP is equal 

to the ratio of open-circuit voltage to short-circuit current. The 

shunt resistance is also ignored in [38], leading to direct 

expressions for the four parameters through various 

simplifications. The same equations are the outcome of the 

analysis in [46], while neglecting the shunt resistance in [47] 

permits determination of the remaining parameters using real-

time measurements at six operating points. An interesting 

method is introduced in [39], which assumes that the shunt 

and series resistances are equal to the I-V curve slope at the 

SC and OC points respectively, having the latter analytically 

estimated via the four-parameter model, since these slopes are 

not available in the module datasheet. 

 On the other hand, if the slopes at the SC and OC points 

are known from measurements, the approach of [40] may be 

applied, which was chronologically the first method to directly 

determine the five parameters of the single-diode model. The 

same equations are adopted in [48] and [49], while other 

approaches may be found in [41]–[43] that also require the 

measured slopes at the SC and/or OC points. In [44] and [45], 

additional operating points, apart from the SC, MPP and OC, 

are required to employ the models proposed therein. Among 

the explicit methods presented above, only those of [37]–[39] 

are solely dependent on module datasheet information, 

however they suffer from reduced accuracy, as shown in this 

paper. 

Objective of this study is to introduce an analytical method 

to determine the five parameters of the single-diode model of 

crystalline modules, in an accurate and straightforward 

manner, using only datasheet information. For this purpose, 

the widely accepted system of five equations used in [2] is 

adopted and properly manipulated, leading to simple explicit 

expressions for the five parameters. This is achieved by 

exploiting an inherent relation of the diode ideality factor to 

the open-circuit voltage and the temperature coefficients, 

introduced for the first time in the literature, which permits 

expressing the former as an explicit function of the latter. In 

addition, the analytical MPP expressions introduced in [50] 

are also used to correlate the MPP voltage and current with the 

five parameters using the Lambert W function, thus permitting 

a closed-form solution of the resulting system of equations. 

The equations proposed constitute a computational 

improvement of the method described in [2], maintaining the 

same levels of accuracy, at a significantly simpler and more 

cost efficient formulation. 

In Section II of the paper, the adopted PV model and the 

theoretical basis for the extraction of its parameters are 

presented. The newly introduced correlation of the diode 

ideality factor and the open circuit voltage is described in 

Section III. The analytical method for the five parameter 

extraction is given in Section IV, followed by validation 

through simulations and outdoor measurements in Sections V 

and VI, respectively. 

II.  PV MODEL 

A.  Single-Diode Equivalent Circuit 

The majority of relevant studies [2], [3], [5]–[9], [11]–[14], 

[16], [17], [19], [20], [22], [26], [28]–[31], [34], [39]–[43], 

[45], [49]–[52], rely on the single-diode electrical equivalent 

circuit to describe the PV cell and module, due to its 

simplicity and sufficient accuracy. Other works that adopt a 

double-diode model [15], [21], [27], [32], [35], resort to more 

complicated methods to determine the seven parameters of the 

model, without any substantial gain in accuracy. Alternative 

approaches not based on equivalent circuits have been also 

proposed, such as [53] where the Gompertz function is 

employed. 

In Fig. 1, the equivalent circuit of the single-diode model, 

adopted in this paper, is depicted, comprising a photocurrent 

source, a diode, a series and a shunt resistance. The five 

parameters of the model are the value of the current source Iph, 

the saturation current Is and the modified diode ideality factor 

a of the diode, and the two resistances Rs and Rsh. In some 

studies, the shunt resistance Rsh [4], [10], [38], [46], [47], or 

even both resistances [18], [37], are neglected to simplify the 

model. 

The equations of the model in implicit and explicit form are 

given below [50]: 
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 (2) 

For the calculation of the Lambert W function used in (2), 

the built-in function lambertw of MATLAB may be utilized, 

or the series expansions proposed in [51] may be employed for 

more efficient computation. Furthermore, an even simpler 

approximation formula is introduced in the Appendix. 



 3 

D Rsh

Rs

Iph

Ideal component
I

+

-

V

 
Fig. 1. Single-diode electrical equivalent circuit of the PV cell [50]. 

B.  Theoretical Basis for the Extraction of the Five Parameters 

The main concept for identifying the five parameters of the 

model is to select such values that the fundamental model 

equation (1) or (2) is satisfied at a given set of operating 

points. 

When the entire I-V curve is available, this may be 

achieved by a curve fitting or optimization algorithm [26]–

[32], [34]–[36]. However, I-V characteristics are not generally 

given in the PV module datasheets, rendering these techniques 

impractical for most applications. 

Another approach is to form a system of equations for 

specific operating conditions, using only information provided 

in the datasheet [2]–[13], [18], [20], [37]–[39], [46]. In order 

to calculate the five parameters, a 5th order equation system 

has to be formulated. The three standard equations adopted in 

all studies are derived by evaluating (1) at the SC, OC and 

MPP operating points at STC: 
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As a fourth equation, the derivative of power w.r.t voltage 

at MPP is usually set to zero [2], [3], [9]–[13], [19], [20], [38], 

[46]: 
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Regarding the fifth equation, three main alternative 

approaches exist, as explained in [13] and [24]: 
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In [3], [6], [11], [19], [39], the slope of the I-V curve at SC 

is considered equal to the opposite reciprocal of Rsh0, 

according to (7). A similar assumption is made in [6] and [39], 

except for OC conditions and Rs0 (8). A main drawback of 

these approaches is that (7) and (8) lack in a theoretical basis, 

as shown in [24], leading either to inaccuracies or to numerical 

solution difficulties. On the other hand, (9) states that the open 

circuit voltage Voc varies linearly with cell temperature Tc, 

according to the temperature coefficient βVoc [2], [4], [9]. This 

is generally known to be valid, at least over a limited 

temperature range close to 25°C, while βVoc is always provided 

in module datasheets. 

An extended discussion on the suitability of (7)-(9) to be 

used as the fifth equation of the system is given in [24] and 

[13]. In the former, it is concluded that (7) and (9) yield better 

results over (8), while in [13] it is shown that each alternative 

has its own weaknesses. For (9), in particular, not all ΔΤc 

values lead to a feasible solution, thus raising the need for a 

specific selection criterion for ΔΤc. 

This shortcoming is overcome in this paper by symbolically 

solving (9), leading to a simple analytical expression 

completely independent of ΔTc. Thereafter, this is combined 

with (3)-(6) to formulate a set of five equations similar to [2], 

but simple enough to permit symbolic solution. 

III.  RELATION BETWEEN THE MODIFIED DIODE IDEALITY 

FACTOR AND THE OPEN CIRCUIT VOLTAGE 

In this section, a0 is expressed as an explicit function of 

Voc0 and the temperature coefficients. At STC, a0 is [2]:  

 0
0 0s th s

kT
a n N nV N

q
   (10) 

where n and Vth0 are the ideality factor and thermal voltage of 

the p-n junction respectively, T0 the nominal temperature, k 

the Boltzmann constant, q the electron charge, and Ns the 

series connected cells in the PV unit. Since the extraction of a0 

is quite difficult, some researchers assume typical values [5], 

[12], while others determine its value along with the rest of the 

five parameters via an iterative algorithm. On the other hand, 

analytical expressions of a0 in terms of the SC, OC and MPP 

characteristics are given in [37]–[39], but they suffer in 

accuracy due to the simplifications performed. In the 

following, a theoretically valid expression is derived by 

correlating the dependence of a0 and Voc0 on temperature. 

At open circuit, the series resistance Rs carries no current, 

whereas the photocurrent flows mainly through the conducting 

diode D and to a much smaller extent through the shunt 

resistance Rsh. Therefore, (1) may be simplified, as commonly 

done in the literature, to: 
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If (11) is written for nominal irradiance 1000 W/m2 and an 

arbitrary temperature Tc, (12) is derived using the 

extrapolation equations of the five parameters given in [2]: 
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where ΔΤc is the deviation of Tc from T0, αIsc and βVoc are the 

normalized temperature coefficients of Isc and Voc, while Eg 

and Eg0 are the energy gap of silicon in Tc and T0 respectively. 

Thereafter, substitution of constants and rearrangement of 

terms in (12) leads to (details are provided in the Appendix): 
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(a) 

 
(b) 

Fig. 2. Variation of: (a) term f(ΔΤc) of (13), and (b) δ0=α0/Voc0 (normalized on 

its value at nominal temperature T0), over an extended range of realistic 
temperatures for the 20 commercial PV modules used in Section V. 

 

This equation correlates a0, Voc0, αIsc and βVoc with the 

temperature deviation ΔTc. At first sight, this may seem 

paradoxical, since the first four parameters are defined at 

nominal temperature and depend only on the structural 

characteristics of the PV module, rather than on the operating 

temperature. However, if f(ΔTc) is calculated for typical values 

of αIsc over an extended range of realistic temperatures 

 25 ,75cT C C    , it is found that f(ΔTc) remains close to 3, 

with a deviation always lower than 0.5. This is illustrated in 

Fig. 2(a), where the range of f(ΔTc) variation with temperature 

is plotted for the 20 commercial PV modules used in Section 

V. f(ΔTc=0) at nominal temperature (Tc=T0) is indicated with 

square markers. As the deviations from the nominal values are 

very small compared to the constant term 47.05 in the 

denominator of (13), temperature clearly is not a significant 

parameter. This observation is further confirmed in Fig. 2(b), 

where (13) (i.e. the ratio of a0 over Voc0, denoted δ0 in (14) 

below) is evaluated over the same temperature range for the 

20 PV modules. Deviations are always less than 0.5%, 

therefore f(ΔTc=0) can be reasonably used as an 

approximation of the actual f(ΔTc). Hence, ignoring the 

temperature effect by assuming Tc=T0, a relation between a0, 

Voc0, αIsc and βVoc is established via (13).  

Using the typical value f(ΔTc=0) (see Section C in the 

Appendix), (13) is further simplified to: 

 0
0

0

1 298.15

50.05 298.15

Voc

oc Isc

a

V a





 


 (14) 

where the temperature coefficients are normalized (p.u.) and 

signed (βVoc<0, aIsc>0). 

In (14), the newly introduced coefficient δ0, defined as the 

ratio of a0 over Voc0 at STC, is directly related to βVoc and αIsc. 

Essentially, δ0 correlates the dependence of a0 and Voc0 on 

temperature, as modeled through the temperature coefficients. 

Equation (14) practically constitutes a reformulation of (9), 

proving that the exact value of ΔTc does not really matter, as 

already pointed out in [13], and replacing (9) as the fifth 

equation for the determination of the five parameters. At the 

same time, (14) ensures solution feasibility, as it always 

permits the determination of a0 in a simple analytical manner, 

through data always provided in the module datasheet. 

IV.  METHOD FOR EXTRACTION OF THE FIVE PARAMETERS 

A.  Extraction at STC 

As discussed above, the system of equations adopted for 

the determination of the five parameters at STC comprises (3)-

(6) and (14). Nevertheless, the complexity of (5) and (6), 

which concern operation at the MPP, impedes its symbolic 

solution, still imposing the need for numerical/iterative 

computation. This is overcome by utilizing the analytical MPP 

expressions introduced in [50], which correlate Vmp and Imp 

with the five parameters in a direct and simple way: 

      1 -1 1-1mp s sh s phV R R a w R I w    (15) 

    1-1 -1mp ph shI I w a w R   (16) 

  -1mp s mpV a w R I   (17) 

where w=W{Iphe/Is}. As demonstrated in [50], the error in 

power estimation using these expressions is less than 0.1% at 

any operating condition, given that Rs remains at least two 

orders of magnitude smaller than Rsh. Similar expressions with 

slightly different formulation are also proposed in [54] and 

[55]. 

If (5) and (6) are replaced by (16) and (17), the system of 

equations is now readily solvable. In particular, if (14) is 

solved for a0 and (17) for Rs0, (18) and (19) are derived 

respectively. Furthermore, solving  (16) for Rsh0 under the 

assumption that Iph0 is equal to Isc0, yields (20). Moreover, 

neglecting the exponential term in (3), since at SC the 

photocurrent mainly flows through the series and shunt 

resistance, rather than the non-conducting diode, leads to the 

well-known (21). Finally, rearranging (11) to isolate Is0 and 

substituting (14), yields (22). 

0 0 0oca V   (18) 

0 0 0 0( 1) Is mp mp0R a w V    
 (19) 

0 0 0 0 0( 1) (1 1 ) Ish sc mp0R a w I w     
 (20) 

 0 0 0 01ph s sh scI R R I    (21) 

01
0 0s phI I e


   (22) 

The parameter δ0 is determined through (14) using the 

temperature coefficients, while the auxiliary term w0 is found 

by substituting (11) and (14) in w0= W{Iph0e/Is0}: 

  01 1
0w W e

 
   (23) 

Therefore, determination of the five parameters at STC 

requires first calculation of the coefficient δ0 using (14), and 

then application of (23) to determine the term w0. Thereafter, 

the expressions (18)-(22) are sequentially evaluated, in this 

order: first (18) to calculate a0, then (19) and (20) to acquire 

Rs0 and Rsh0, subsequently (21) to determine Iph0 and finally 

(22) for Is0. It is a purely analytical method, simple and easy to 

implement, as it relies only on information found in the 
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module datasheet, while it provides accurate results, as shown 

in the following sections. 

B.  Extraction at other Operating Conditions 

Input data may often refer to operating conditions other 

than STC, such as normal operating cell temperature (NOCT) 

or study-case specific conditions. As shown in the following, 

(18)-(22) can still be applied, for arbitrary irradiance and 

temperature. 

First, the ratio of a over Voc, denoted as δ, is found for the 

general case. Provided that a is linearly dependent on 

temperature and it is not affected by irradiance [2], δ is 

expressed as: 

 
(14)[2]

0 0 0
0

0

c oc c

oc oc oc

a T T V Ta

V V V T
     (24) 

where temperatures Tc and T0 are expressed in K. Therefore, if 

the characteristic operating points SC, OC and MPP are 

known at the study-case conditions, as well as at STC from the 

datasheet, the extraction methodology involves first evaluation 

of (14) for δ0, then (24) for δ. Thereafter,  1 1w W e   is 

calculated and (18)-(22) are evaluated, noting that all terms 

refer to the specific operating conditions, rather than to STC. 

V.  VALIDATION AND COMPARATIVE ASSESSMENT THROUGH 

SIMULATIONS 

In this section, the model introduced is validated through 

simulations in MATLAB. The numerical method of De Soto 

[2] is adopted as a reference, since it is a well-established 

model in the literature and it is based on the same theoretical 

assumptions as the proposed equations. This way, it is shown 

that the latter provide practically the same accuracy, but in a 

simpler and straightforward manner. 

A.  Validation of the Coefficient δ0 

In order to verify the theoretical analysis of Section III and 

the validity of (14), the ratio of a0 over Voc0 is studied at STC 

for 20 commercial PV modules given in Table I. This ratio is 

first calculated via the numerical method of De Soto [2], and  

then it is compared to the coefficient δ0 as determined through 

(14). In Fig. 3, the reference values of the ratio are indicated 

with blue square markers, while the estimated values using 

(14) with red cross markers. As shown, the deviations are 

negligible, presenting rms and maximum errors 0.07% and 

less than 0.1% respectively.  

Moreover, it is worth noting that δ0 is always very close to 

0.04 (green line). This may be explained if the near-zero 

values of αIsc and the limited range of βVoc (close to -0.003) are 

considered. Substituting these values in (14) yields δ0≈0.04, 

which therefore represents its typical value. 

B.  Validation of the Five Parameter Extraction Method 

In the following, the proposed extraction method is applied 

and compared to other explicit approaches found in the 

literature in terms of accuracy and computational effort. 

Specifically, the explicit techniques presented in [37]–[39], 

which also rely only on datasheet information, are 

implemented and denoted by the names of their respective 

main authors: Saloux, Khezzar, and Bai. The simulations  

 
Fig. 3. Parameter δ0 (ratio of a0 over Voc0) as calculated using the method of 

De Soto and through (14) for 20 commercial PV modules. 

presented correspond to extended ranges of irradiance (100 to 

1000 W/m2 with a step of 50 W/m2) and temperature 

variations (-25 to 75°C with a step of 5°C), while they are 

repeated for the 20 commercial PV modules, leading to 7980 

scenarios in total. 

The simulation methodology adopted consists of the 

following steps. First, the five parameters are determined at 

STC through the DeSoto model for the study-case module and 

then extrapolated to the actual operating conditions [2]. 

Thereafter, the I-V curve is constructed and the three 

characteristic operating points SC, OC and MPP are recorded. 

The latter are considered as the input data which are fed to the 

Proposed and the other three explicit approaches. After 

evaluating the five parameters using each of the alternative 

models, the I-V characteristic is reconstructed and is compared 

to the reference one by DeSoto. As a measure of the achieved 

accuracy, the normalized root mean squared deviation 

(NRMSD) of the entire I-V curve from the reference one is 

used, in the same way as in [17]. 

In order to evaluate the estimation accuracy of the 

Proposed method, the NRMSD distribution over the simulated 

irradiance and temperature ranges is recorded in Fig. 4. Each 

error value corresponds to the mean NRMSD for all PV 

modules considered, presenting global rms and maximum 

errors of 0.43% and less than 1%, respectively. It is worth 

noting that maximum deviation is observed at the highest 

values of irradiance and temperature. This is because of the 

MPP expressions (15)-(17) adopted, which slightly 

underestimate Vmp and overestimate Imp in these conditions 

[50]. 

In Table I, the rms and maximum NRMSD using each 

explicit approach are shown for every PV module considered. 

The Proposed method shows best performance among all  

 
Fig. 4. Distribution of NRMSD over the entire range of irradiance and 

temperature, using the Proposed technique as compared to the DeSoto 
method. NRMSD values plotted represent the mean for the 20 PV modules 

studied. 
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TABLE I  
ESTIMATION ERROR OF THE EXPLICIT METHODS AS COMPARED TO THE 

DESOTO APPROACH FOR 20 DIFFERENT COMMERCIAL PV MODULES 

PV module 

NRMSD (%) of the explicit methods 

Saloux Khezzar Bai     Proposed 

RMS MAX RMS MAX RMS MAX RMS MAX 

Aleo s18-235 3.49 7.61 0.59 1.25 1.34 2.07 0.42 0.97 

Bosch M60s-245 3.48 7.39 0.39 0.72 1.39 2.10 0.44 0.98 

Canadian Solar CS6P 250 3.04 6.87 0.95 2.02 1.27 2.06 0.31 0.77 

Conergy PowerPlus 190P 3.13 6.79 0.74 1.59 1.28 1.99 0.34 0.80 

Day4 Energy 60MC-I 3.30 7.09 0.94 1.96 1.16 1.67 0.33 0.75 

ET Zero-rack 240 3.90 8.61 0.54 1.12 1.38 2.17 0.50 1.14 

LDK 235 P-20 2.77 6.25 0.76 1.58 1.31 2.13 0.29 0.71 

Perllight PLM-250P-60 2.14 4.40 2.20 4.10 1.45 2.74 0.33 0.51 

REC 250PE 3.50 7.69 1.32 2.76 1.17 2.06 0.32 0.75 

Renesola Virtus II 250 3.36 7.12 0.67 1.46 1.24 1.88 0.37 0.85 

SCHOTT Perform 240 3.09 7.12 1.81 3.62 1.28 2.45 0.28 0.58 

Sharp NU-E240 (J5) 3.30 7.43 2.07 4.20 1.32 2.79 0.32 0.61 

Silcio SE250 3.84 8.23 0.56 1.21 1.25 1.90 0.46 1.02 

Solea SM 190 3.33 7.52 1.44 2.98 1.22 2.15 0.30 0.72 

Sopray SR 245 2.57 5.66 1.08 2.19 1.26 1.94 0.24 0.56 

Sunmodule SW 240 2.69 5.70 0.40 0.88 1.59 2.38 0.36 0.82 

Sunpower E19-240 2.50 5.50 1.25 2.45 1.21 1.85 0.20 0.48 

Upsolar UP-M240P 3.29 6.85 0.35 0.81 1.53 2.24 0.45 0.95 

Yingli YGE 250P-29b 3.69 7.88 0.62 1.34 1.31 2.00 0.45 1.03 

Yingli YL-165 4.05 9.48 2.60 5.18 1.38 3.28 0.44 0.76 

OVERALL 3.26 9.48 1.24 5.18 1.32 3.28 0.37 1.14 

 

explicit techniques. It is worth noting that the Saloux, Khezzar 

and Bai methods all present maximum errors for the YL165 

module, which is the oldest study-case module, with 

significant series and shunt losses. Moreover, it is worth 

mentioning that if the simple formula (26) is employed for the 

Lambert W function (see Appendix) instead of a series 

expansions [51], the resulting error increment does not exceed 

0.05%, rendering it a useful alternative for an even simpler 

implementation without any marked reduction in accuracy. 

As far as the execution time is concerned, the 

computational effort required by the DeSoto method and each 

of the explicit models is shown in absolute and normalized 

form in Table II (all simulations conducted on the same PC 

with a 3.4-GHz CPU and 6.00-GB RAM). The Proposed 

technique is slightly more time-consuming compared to the 

other analytical models, due to the Lambert W function 

evaluation. This overhead is drastically reduced if the 

simplified formula (26) is employed. Nonetheless, all explicit 

methods present practically the same level of performance 

compared to the DeSoto model, which is around three to four 

orders of magnitude slower. In conclusion, the Proposed 

method presents the same accuracy as the reference DeSoto 

model, but at a significantly simpler and computationally more 

efficient implementation. 

VI.  EXPERIMENTAL VALIDATION THROUGH MEASUREMENTS 

 

TABLE II  

EXECUTION TIME OF THE DESOTO AND THE EXPLICIT METHODS 

Method 
Execution time 

(μs) per scenario 

Execution time normalized 

on the Proposed method 

DeSoto 10805.4 3178.06 

Saloux 1.4 0.41 

Khezzar 1.5 0.44 

Bai 2.5 0.74 

Proposed 3.4 1.00 

Proposed (simple W) 1.9 0.59 

TABLE III 
PV MODULES USED IN THE EXPERIMENTAL VALIDATION 

Model Type Cells Isc0 (A) Voc0 (V) Imp0 (A) Vmp0 (V) 

Conergy PowerPlus 

190PC 
poly 48 8.61 29.52 8.09 23.87 

Day4 Energy 60MC-I poly 60 8.58 37.32 8.08 30.29 

Perllight PLM-250P-60 poly 60 8.49 37.58 7.88 31.73 

Solea SM 190 mono 72 5.73 44.18 5.33 35.65 

Yingli YL-165 poly 48 7.90 29.0 7.17 23.0 

 

To further verify the validity of the expressions introduced 

in this paper, outdoor measurements have been taken for five 

commercial PV modules at three different operating 

conditions. The properties of the study-case modules are given 

in Table III. The I-V characteristics and the actual irradiance 

and temperature were recorded using the Amprobe Solar-4000 

Analyzer PV tracer. The irradiance sensor of the equipment 

employs two PV cells, one monocrystalline and one 

polycrystalline, while the temperature meter features an 

infrared sensor. The validation procedure involves first 

recording of the I-V curve, then locating the SC, OC and MPP 

operating points and using them as input data to the four 

explicit methods, in order to evaluate the five parameters and 

reconstruct the I-V characteristic for comparison with the 

original measured one. 

In Fig. 5, the measured I-V curve is depicted for an 

indicative case, along with the simulated characteristics 

derived from the four explicit models. As shown in the upper 

zoom-box, the Saloux and Khezzar methods overestimate the 

current in the region between SC and MPP, due to neglecting 

the shunt resistance in the model, whereas the Bai technique 

underestimates the current in this region, because of the 

assumptions made for estimating the slope at SC. In the region 

between MPP and OC (lower zoom-box in Fig. 5), the Saloux 

method noticeably deviates from the measurements due to the 

simplifications assumed (series and shunt resistances are 

ignored – slope at MPP is considered equal to Voc/Isc), while 

the other two explicit approaches perform satisfactorily. The 

Proposed method provides excellent results over the entire 

range of the I-V characteristic. 

This is further confirmed in Table IV, where the NRMSD 

of the four analytical models is shown for each case. The 

Saloux method presents errors up to almost 10%, while the 

Khezzar and Bai methods perform better, still presenting rms 

errors higher than the maximum NRMSD recorded for the 

Proposed model. The rms error of the latter is only slightly 

higher than 1%, proving sufficiently accurate in practice, as 

well. 

 
Fig. 5. Measured and simulated I-V curves using the analytical methods for an 
indicative case (Perllight PLM-250P-60 module at 805 W/m2 – 45°C). 
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TABLE IV  

ESTIMATION ACCURACY OF THE EXPLICIT METHODS BASED ON 

MEASUREMENTS ON FIVE COMMERCIAL PV MODULES 

PV module NRMSD (%) compared to measured I-V 

Operating conditions Saloux Khezzar Bai Proposed 

Conergy PowerPlus 190PC     

917 W/m2 – 57°C 5.91 1.90 3.13 1.15 

857 W/m2 – 56°C 6.11 1.78 3.00 0.94 

465 W/m2 – 58°C 1.74 2.60 1.83 1.75 

Day4 Energy 60MC-I     

906 W/m2 – 47°C 7.12 2.10 3.21 1.76 

743 W/m2 – 42°C 5.44 1.12 2.43 1.34 

518 W/m2 – 39°C 3.05 0.80 1.56 1.53 

Perllight PLM-250P-60     

902 W/m2 – 40°C 9.44 2.22 3.06 0.54 

805 W/m2 – 45°C 8.51 1.54 2.58 0.66 

500 W/m2 – 47°C 5.10 3.23 1.94 1.70 

Solea SM 190     

930 W/m2 – 45°C 3.92 0.38 1.55 0.72 

772 W/m2 – 40°C 2.59 1.03 1.27 0.72 

544 W/m2 – 35°C 2.26 0.49 1.82 1.22 

Yingli YL-165     

976 W/m2 – 58°C 4.86 1.65 2.59 0.91 

593 W/m2 – 47°C 2.60 2.27 3.26 0.59 

437 W/m2 – 43°C 4.25 0.64 2.21 1.07 

OVERALL RMS 5.34 1.78 2.45 1.18 

OVERALL MAXIMUM 9.44 3.23 3.26 1.76 

 

It is worth mentioning that temperature measurements may 

present significant inaccuracies. However, this does not affect 

the validation of the four explicit models, since they rely on 

the SC, OC and MPP voltage and current measurements, in 

which the temperature effect is already included, while the 

impact on the modified diode ideality factor in the Proposed 

and Saloux methods is only secondary. 

VII.  CONCLUSION 

In this paper, a new coefficient for the single-diode PV 

model was first introduced, denoted as δ, which correlates the 

modified diode ideality factor and the open circuit voltage 

with the temperature coefficients. This coefficient was used to 

derive an analytical expression for the diode ideality factor of 

the model using only datasheet information. 

A set of analytical expressions were then developed to 

calculate the five parameters of the single-diode model in a 

straightforward, simple and cost-efficient manner. The input 

data of these equations are the voltage and current at short-

circuit, open-circuit and maximum power conditions, as well 

as the temperature coefficients, while the equations are 

applicable at any operating conditions. The accuracy of the 

method was validated through simulations and outdoor 

measurements, by comparison to other explicit approaches 

available in the literature. 

The method introduced constitutes a computational 

improvement of the model of De Soto [2], presenting 

practically the same accuracy,  with significant gains in 

robustness, efficiency and ease of implementation. These 

properties render the proposed expressions a useful tool for 

PV modeling, especially in applications where different PV 

modules need to be studied at various operating conditions. 

APPENDIX 

A.  Simple Approximation Formula of the Lambert W Function 

The Lambert W function { }W x is the inverse of the equation

wwe x and it cannot be expressed in terms of elementary 

functions. Generally, iterative algorithms are used in 

MATLAB and other computational platforms, but more 

efficient calculation is possible when series expansions are 

employed instead, such as the ones proposed in [51]. An even 

simpler formula is introduced in this paper, utilizing the work 

of [56]. As explained therein, the Lambert W function of e

may be approximated by: 

   ln
1

1
W e






   
  

 
 (25) 

where λ is a large positive number and B is a constant. If B is 

set to zero and λ to ln(x), W{x} is then expressed as: 

  
ln(ln( ))

ln( ) 1
ln( ) 1

x
W x x

x

 
  

 
 (26) 

The above expression provides a sufficiently accurate 

approximation of W{x} for x≥2, whose error is always less 

than 1.5%. Thus, it provides a simpler and more cost-efficient 

implementation, compared to other approaches, when x does 

not take small values. 

B.  Derivation of (13) 

In order to simplify (12), (11) is applied at STC to express 

Iph0 as in (27), the ratio Tc/T0 is rewritten according to (28), 

while the term (Eg0/T0-Eg/Tc)/k is reformulated using the 

extrapolation equation of the energy gap of silicon: Eg=Eg0(1-

0.0002677ΔΤc) [2], and the constant values Eg0=1.7958e-19 J 

and k=1.381e-23 J/k, leading to (29): 

 0 0

0 0
ocV a

ph sI I e   (27) 

 
0 0 1c cT T T T     (28) 
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Substitution of (27)-(29) in (12) yields: 

0(1 )Isc c sa T I 

0

0
0

ocV

a
se I
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0

0 00
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1
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  (30) 

As the terms Is0 in the right and left hand side of (30) cancel 

out, the following relation can be derived after some 

manipulation:  

 
 

0 0

3
0 00

( )

1

1
47.05 1 ln

1

c

Voc

oc c

c Isc c

f T

a T

V T TT

T a T








   
   

      

  (31) 

Apparently, (31) is identical to (13), while it is worth noting 

that the temperature effect is limited only to the term f(ΔΤc) in 

the denominator. 

C.  Calculation of a Typical Value for f(ΔTc) 

As discussed in Section III, the term f(ΔTc) in (13) varies in 

a limited range, for typical values of αIsc under any realistic 

temperature. In order to handle f(ΔTc) as a constant, its value 

at the nominal temperature T0 is calculated and considered as 

typical. Since f(ΔTc) is not defined in T0 (ΔTc=0), the 

corresponding limit is evaluated: 
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The crossed-out terms above are equal to zero, while 

considering the definition of the exponential function: 

  
1

0
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n
x

n
n n

x
e xn

n 
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the two remaining terms in (32) are expressed as: 
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 Thus, 0
0

lim ( ) 3
c

c Isc
T

f T a T
 

   , which is then substituted in 

(13), eventually leading to (14). 
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