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We present an Adaptive Memory Programming (AMP) metaheuristic to address the Robust Capacitated

Vehicle Routing Problem under demand uncertainty. Contrary to its deterministic counterpart, the robust

formulation allows for uncertain customer demands, and the objective is to determine a minimum cost

delivery plan that is feasible for all demand realizations within a prespecified uncertainty set. A crucial step

in our heuristic is to verify the robust feasibility of a candidate route. For generic uncertainty sets, this step

requires the solution of a convex optimization problem, which becomes computationally prohibitive for large

instances. We present two classes of uncertainty sets for which route feasibility can be established much

more efficiently. While we discuss our implementation in the context of the AMP framework, our techniques

readily extend to other metaheuristics. Computational studies on standard literature benchmarks with up

to 483 customers and 38 vehicles demonstrate that the proposed approach is able to quickly provide high

quality solutions. In the process, we obtain new best solutions for a total of 123 benchmark instances.
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1. Introduction

Vehicle routing problems arise in a large variety of practical contexts, particularly in the areas of

freight transportation and logistics. In broad terms, vehicle routing problems concern the distribu-

tion of goods and/or services between production facilities, distribution centers and end-customers.

Numerous variants and applications of this problem have been proposed in the literature, differ-

ing in the considered time scale, the objectives to be optimized and the operational constraints

involved (Baldacci et al. 2012, 2010, Cordeau et al. 2007, Golden et al. 2008, Toth and Vigo 2002).
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Despite these differences, all vehicle routing problems share in common that they determine an

optimal assignment of customer orders to a fleet of vehicles, as well as the sequencing of deliveries

over a prespecified time horizon. Most frequently, the objective is to minimize the transportation

costs, expressed in terms of onetime (e.g., fleet size) and/or recurring costs (e.g., distance traveled).

One of the most extensively studied classes of vehicle routing problems is the Capacitated Vehicle

Routing Problem (CVRP), which has been investigated for more than five decades (Laporte 2009).

The CVRP concerns the cost-optimal delivery of a product from a single depot to a set of customers

through a number of capacity-constrained vehicles. Traditionally, the literature on the CVRP

assumes that the problem data (e.g., the customer demands, service times, vehicle capacities and

transportation costs) is known with certainty at the time the problem is solved. However, in many

real-life applications this data is subject to significant uncertainty, and their precise values are only

observed gradually during the execution of a delivery plan. Anticipating this uncertainty at the

design stage is crucial in order to determine realistic delivery plans and avoid severe penalties—both

contractually and in terms of lost customer goodwill—for failing to provide a reliable service.

Traditionally, decision problems with uncertain problem data are formulated as stochastic pro-

grams (Birge and Louveaux 2011, Prékopa 1995, Shapiro et al. 2009) or as Markov decision pro-

cesses (Bertsekas 2007, Puterman 1994). Both methodologies model the uncertain problem data as

random variables that follow a known distribution. The goal is to optimize a risk measure (such

as the expected value, the variance or the conditional value-at-risk of some cost function), subject

to the satisfaction of side constraints (either almost surely or with high probability). The deci-

sions may need to be chosen before the uncertain problem data is known (so-called here-and-now

decisions), or they can adapt to the observed values of the problem data (so-called wait-and-see

decisions). While stochastic programming and Markov decision processes have been very successful

at addressing a wide variety of uncertainty-affected decision problems, they suffer from two short-

comings. Firstly, they assume that the probability distribution governing the uncertain problem

data is known precisely, which is rarely the case in practice. Secondly, both methodologies are

affected by the curse of dimensionality, which impacts their computational tractability. In the con-

text of the CVRP, stochastic programming and Markov decision processes are thus primarily suited

for small and medium-sized problem instances where sufficient historical information is available

to estimate the probability distribution underlying the uncertain problem data.

In recent years, robust optimization has been proposed as an alternative paradigm to address

both of these shortcomings. Similar to stochastic programming and Markov decision processes,

robust optimization models the uncertain problem data as random variables. However, robust opti-

mization assumes that only partial information about the distribution of the uncertain problem

data is available, for example its support, symmetry properties or some of the moments (Ben-Tal
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and Nemirovski 1999, Bertsimas and Sim 2004, Kuhn et al. 2011). Robust optimization determines

solutions that perform best either in expectation, with high probability or almost surely, assuming

that the problem parameters are governed by the worst probability distribution that is compati-

ble with the available information. It has been shown that robust optimization problems can be

reformulated as non-stochastic models in which the uncertain problem parameters are assumed

to reside in some uncertainty set, and where the goal is to optimize in view of the worst possible

parameter setting within this uncertainty set (Chen et al. 2010, Delage and Ye 2010). The resulting

non-stochastic models often enjoy similar tractability properties as the deterministic version of the

problem, which makes robust optimization very attractive from a computational viewpoint. In the

context of the CVRP, robust optimization may be particularly well-suited to address larger prob-

lem instances where little or no historical information about the uncertain problem parameters

is available. For reviews of the robust optimization literature, we refer to Ben-Tal et al. (2009),

Bertsimas and Thiele (2006), Bertsimas et al. (2011), Li et al. (2011a) and Li et al. (2011b).

Unlike deterministic variants of the vehicle routing problem, which have been studied extensively,

vehicle routing under uncertainty has received much less attention in the literature. To date,

most of the contributions to vehicle routing under uncertainty employ the stochastic programming

methodology (Birge and Louveaux 2011, Prékopa 1995, Shapiro et al. 2009). Recent contributions

to vehicle routing with stochastic customer demands include Yang et al. (2000), where routes are

equipped with preventive restocking points for the vehicles, Erera et al. (2010), Laporte et al. (2002)

and Secomandi and Margot (2009), which consider return trips to the depot whenever a customer

demand cannot be served, and Ak and Erera (2007), where customers can be swapped reactively

between vehicles. Problems with stochastic travel times are studied in Kenyon and Morton (2003),

while Adelman (2004) and Kleywegt et al. (2004) combine the vehicle routing problem with aspects

of stochastic inventory control. Bent and Hentenryck (2004), Goodson et al. (2013), Hvattum et al.

(2006) and Smith et al. (2010) study dynamic problems where customer requests arrive over time

and the very presence of customers is subject to uncertainty. For reviews of the stochastic vehicle

routing literature, we refer to Cordeau et al. (2007), Gendreau et al. (1996) and Toth and Vigo

(2002).

To our knowledge, the first solution procedure for the robust CVRP (RCVRP) with uncertain

customer demands and travel times has been proposed in Sungur et al. (2008). The authors deter-

mine vehicle routes that satisfy the vehicle capacities and specified delivery time windows for all

possible realizations of the uncertain problem data. Variants of the model were applied to a bioter-

rorism emergency planning problem (Shen et al. 2009) and a courier delivery problem (Sungur

et al. 2010). The formulation from Sungur et al. (2008) optimizes in view of the scenario where all

customer demands and travel times attain their worst-case realizations simultaneously, which may
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be overly conservative for practical purposes. Ordóñez (2010) alleviates this issue by considering

upper bounds on the customer demands and travel times experienced by any vehicle. Recently,

Gounaris et al. (2013) considered the RCVRP where the customer demands can be supported on

a generic polyhedron. They develop exact robust counterparts for a number of well-known for-

mulations for the deterministic CVRP, and they propose algorithms to efficiently derive Robust

Rounded Capacity Inequalities (Gounaris et al. 2012) for use as cutting planes in a branch-and-cut

solution procedure. Finally, Agra et al. (2013) study travel time uncertainty in the context of the

vehicle routing problem with time windows. They present two robust formulations and apply them

to a ship routing and scheduling problem.

Both the deterministic and the robust CVRP can be cast as mixed-integer linear optimiza-

tion problems. The CVRP generalizes the well-known Travelling Salesman Problem but—unlike

the latter, where instances with thousands of nodes can often be solved to optimality—CVRP

instances with more than one hundred customers still pose a formidable challenge for exact solu-

tion procedures (Baldacci et al. 2010). Exact solution methods for the CVRP are typically based

on extensions of branch-and-cut (Lysgaard et al. 2004), branch-and-cut-and-price (Fukasawa et al.

2006) or set partitioning approaches (Baldacci et al. 2008). Due to the computational challenges

involved in solving the CVRP, a number of heuristic methods have been developed, such as itera-

tive improvement local search algorithms (Toth and Vigo 2003, Xu and Kelly 1996), evolutionary

algorithms (Prins 2004, Reimann et al. 2004) and hybrid metaheuristic schemes, such as Memetic

Algorithms (Nagata and Bräysy 2009) and Adaptive Memory Programming (Tarantilis 2005).

These methods have made significant contributions towards solving large-scale and very large-scale

problem instances (Kytöjoki et al. 2007, Li et al. 2005).

In this paper, we propose an Adaptive Memory Programming (AMP) metaheuristic to solve

the RCVRP under demand uncertainty. AMP is a general-purpose metaheuristic framework that

focuses on the exploitation of strategic memory components (Glover 1997). It has been successfully

applied to a range of difficult combinatorial optimization problems, in particular in the vehicle rout-

ing domain (Repoussis and Tarantilis 2010, Rochat and Taillard 1995, Tarantilis and Kiranoudis

2002, Tarantilis 2005). Based on the intuition that high-quality locally optimal solutions share

common features and components (such as common customer visiting sequences), the goal of AMP

is to exploit a set of long term memories for the iterative construction of new provisional solutions.

These solutions are used as the basis for restarting and intensifying the search, while adaptive

learning mechanisms are applied to update and manipulate the memory structures (Taillard 2001).

Despite their overall sophistication with regards to constructing and recombining solutions, most

metaheuristic approaches for vehicle routing problems adopt local search procedures to improve

the quality of the obtained solutions. The search involves repeated local moves, that is, transitions
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from one solution to another reachable (neighboring) one. A critical aspect during this process is

to verify route feasibility, and in some cases quantify the degree of route infeasibility, in order to

evaluate the effect of a local move. The AMP framework proposed in this paper, for example, grows

and manipulates a reference set of elite solutions by means of performing search trajectories that

iteratively emerge from the provisional solutions. This process results in the repeated construction

of candidate routes whose robust feasibility needs to be verified.

In the deterministic CVRP, verifying the feasibility of a route requires summing up the customer

demands along the route and checking whether the sum exceeds the capacity of the vehicle. In the

RCVRP, on the other hand, verifying route feasibility requires the solution of a convex optimization

problem, which becomes computationally demanding for large instances. It is therefore imperative

to identify properties that allow us to establish route feasibility more efficiently. To that end, this

paper studies two classes of uncertainty sets for which robust route feasibility can be established

very efficiently. While we discuss our implementation in the context of an AMP metaheuristic,

our methods readily extend to other metaheuristics. We present numerical results on well-known

benchmark data sets from the literature that illustrate the computational performance of our

proposed solution approach.

We can summarize the contributions of this paper as follows.

1. We develop an AMP metaheuristic for the RCVRP under demand uncertainty. To our best

knowledge, this is the first application of a metaheuristic framework on a robust variant of a vehicle

routing problem.

2. We extend earlier AMP frameworks for the deterministic CVRP and discuss a number of

implementation enhancements that appear to improve performance in the RCVRP setting. Most

prominently, (a) we present a novel mechanism to identify and select elite solution components of

varying size, and (b) we employ a new augmented objective function that facilitates the exploration

of both feasible and infeasible regions of the solution space during the local search process.

3. A crucial step in any RCVRP heuristic is the verification of route feasibility. We present

two classes of uncertainty sets that allow us to establish route feasibility in a very efficient way.

Our results generalize earlier findings on disjoint budget uncertainty sets to the broader class of

inclusion-constrained budget uncertainty sets, which allow us to model a wider range of dependen-

cies between the customer demands.

4. We demonstrate the effectiveness of the proposed framework via a comprehensive study on

small-, medium- and large-scale benchmark instances from the literature. In the process, we identify

new best solutions for a total of 123 instances.

5. We demonstrate the usefulness of our heuristic for initializing exact search procedures. By

feeding high-quality heuristic solutions into a previously developed branch-and-cut algorithm, we
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solve 3 benchmark instances to certified optimality for the first time, as well as obtain new best

lower bounds for an additional 31 instances.

The remainder of the paper is structured as follows. Section 2 defines the RCVRP and introduces

some notation. Section 3 discusses the verification of route feasibility, which is critical for the com-

putational efficiency of the AMP framework presented in Section 4. Section 5 reports computational

results, and we provide some concluding remarks in Section 6.

2. The Robust Capacitated Vehicle Routing Problem

An instance of the deterministic CVRP is described by a complete, directed and weighted graph

G = (V,A, c) with node set V = {0,1, . . . , n}, arc set A = V × V and nonnegative arc weights

c :A 7→R+. Node 0 represents the unique depot, whereas the nodes i∈ {1, . . . , n} refer to customers

with known nonnegative demands qi ∈ R+ for the product. We denote the vector of all customer

demands by q ∈Rn+, and we refer to the set of customer nodes as VC = V \{0}. The arc weight c(i, j)

describes the transportation costs incurred by any vehicle that traverses the arc (i, j)∈A (e.g., fuel,

labor and insurance). The depot is equipped with m homogeneous vehicles K = {1, . . . ,m}, each

of which can transport up to Q units of the product.

A candidate solution to the deterministic CVRP is given by a set of routes R= (R1, . . . ,Rm),

where Rk = (Rk,0,Rk,1, . . . ,Rk,nk ,Rk,nk+1) represents the route of the k-th vehicle. For each route

Rk, we have Rk,0 =Rk,nk+1 = 0, that is, the route has to start and end at the depot node. The

nodes Rk,1, . . . ,Rk,nk ∈ VC represent the customers served on the k-th route in the order in which

they are being served. We stipulate that a route set R forms a partition of the customer set VC ,

that is, each customer is served on exactly one route, and neither split deliveries nor unserved

customer demands are permitted. We say that a route set R is feasible if each route Rk satisfies

the capacity constraint of the k-th vehicle, that is, if
∑nK

l=1 qRk,l ≤Q for all k ∈K. Sometimes we

additionally impose route duration constraints. In these cases, we interpret c(i, j) as the travel time

from node i to j, and we require the cumulative duration of each route Rk to be bounded above by

T ∈ R+, that is,
∑nk

l=0 c(Rk,l,Rk,l+1) +
∑nk

l=1 s(Rk,l)≤ T for all k ∈K, where s(i), i ∈ VC , denotes

the service time of customer i. In either case, we denote by R(q) the set of all feasible route sets

for the demand vector q. We can then define the CVRP as follows.

minimize
R

c(R) =
∑
k∈K

nk∑
l=0

c(Rk,l,Rk,l+1)

subject to R∈R(q).

(CVRP)

In this problem, the objective function minimizes the cumulative transportation costs (or travel

times) along all routes. The constraint ensures that the route set is feasible; that is, all routes start

and end at the depot node, all customer demands are being served, there are no split deliveries, all
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routes complete within the duration limit (if imposed), and the capacity constraints are satisfied

for all vehicles.

Contrary to its deterministic counterpart, the robust CVRP assumes that the customer demands

q are no longer known precisely, but that they are merely known to lie in some uncertainty set

Q⊆Rn+. In the absence of historical data, this uncertainty set can be chosen based on subjective

information from domain experts, for example as polyhedra or ellipsoids around some nominal

demand values. Ben-Tal and Nemirovski (2000) have shown that such uncertainty sets can success-

fully immunize optimization problems against imprecise knowledge of the problem parameters. If,

on the hand, historical data about the customer demands is available, then the uncertainty set can

be designed using statistical results. The construction of suitable uncertainty sets has been dis-

cussed, amongst others, by Bandi and Bertsimas (2012), Ben-Tal et al. (2009), Chen et al. (2010),

Gounaris et al. (2013), Li et al. (2011a,b) and Wiesemann et al. (2013). We will revisit this point

in Section 3. We remark that the uncertainty set Q is usually not rectangular, that is, it does not

typically admit the possibility that all customer demands attain their maximum values simultane-

ously. Once the uncertainty set Q has been chosen, we follow the robust optimization paradigm and

seek to determine a set of routes that remains feasible for all possible demand realizations q ∈Q.

To this end, we call a route set robust feasible if each route Rk satisfies the capacity constraint of

the k-th vehicle for all possible demand realizations, that is,
∑nK

l=1 qRk,l ≤Q for all k ∈K and all

q ∈Q. Again, we may sometimes impose additional constraints on the route durations. In analogy

to the set R(q), we denote by R(Q) the set of all robust feasible route sets for the uncertainty set

Q. The robust CVRP can then be formulated as follows.

minimize
R

c(R) =
∑
k∈K

nk∑
l=0

c(Rk,l,Rk,l+1)

subject to R∈R(Q).

(RCVRP)

The objective function is the same as in the deterministic case, but the constraint now ensures that

the route set is robust feasible, that is, all routes start and end at the depot node, all customer

demands are being served, there are no split deliveries, all routes complete within the duration

limit (if imposed), and the capacity constraints are satisfied for all vehicles under any possible

demand realization q ∈Q.

In the robust CVRP, the set of routes R is chosen as a here-and-now decision, that is, R

is selected before the realization of the uncertain demands is observed. Alternatively, one could

envision dynamic formulations in which the routes are adapted whenever some of the uncertain

demands have been observed. Examples include detours to the depot that are inserted whenever a

customer’s demand exceeds the remaining vehicle load, the option to preventively restock a vehicle

during its route or the decision to reactively swap customers between vehicle routes (see Section 1).
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The robust CVRP constitutes a conservative formulation for the CVRP under demand uncer-

tainty since it requires feasibility for all possible demand realizations q ∈ Q. One can envisage

alternative models that require satisfaction of the vehicle capacity constraints in expectation or

with a sufficiently high probability. Linearity of the expectation operator implies that formulations

which meet the capacity constraints in expectation are equivalent to instances of the deterministic

CVRP where we identify the customer demand vector q with the vector of expected customer

demands. There is a strong connection between the robust CVRP and chance-constrained vehicle

routing problems in which the vehicle capacities must be satisfied with a pre-specified probability.

Indeed, by choosing the uncertainty set Q appropriately, we can interpret the robust CVRP as

a chance-constrained vehicle routing problem in which the probability distribution governing the

customer demands is itself subject to uncertainty, see Gounaris et al. (2013).

3. Verifying the Robust Feasibility of Vehicle Routes

In this section, we assume that we are given a set of routes R (i.e., a partition of the customer set),

and we wish to establish whether R is robust feasible with respect to the capacity constraints. To

this end, we need to verify the satisfaction of the following m semi-infinite constraints:

nk∑
l=1

qRk,l ≤Q ∀k ∈K, ∀q ∈Q

By construction, these constraints are satisfied if and only if

max
q∈Q

nk∑
l=1

qRk,l ≤Q ∀k ∈K, (1)

that is, if for each route k ∈K, the maximum cumulative customer demands
∑nk

l=1 qRk,l over all

demand realizations q ∈ Q does not exceed the vehicle’s capacity Q. We can assume that Q ⊆

[0,Q · e], where e ∈ Rn denotes the vector of all ones, since otherwise the RVRP instance would

be trivially infeasible. Moreover, we can without loss of generality assume that the uncertainty set

Q is convex. In fact, since the objective function of the embedded maximization problem in (1) is

linear, the optimal value of this problem does not change if we replace the feasible region with its

convex hull. Thus, in general, verifying the robust feasibility of a route set requires the solution of

m convex optimization problems.

In the following, we assume that the uncertainty setQ is a polyhedron. In this case, the embedded

maximization problem in (1) constitutes a linear program. If there is no exploitable sparsity struc-

ture, the solution of such linear programs with M inequality constraints and N variables requires

on average O(MN 2) arithmetic operations using interior point methods or variants of the simplex

algorithm, see Bertsimas and Tsitsiklis (1997) or Boyd and Vandenberghe (2004). Moreover, if we
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know the maximum of
∑

l∈S1 ql over Q and we are interested in the maximum of
∑

l∈S2 ql over Q,

where S1, S2 ⊆ VC are “sufficiently similar” sets, then we can solve the second linear program much

faster if we warm-start the algorithm from the solution of the first linear program.

In the remainder of this section, we consider two special classes of polyhedral uncertainty sets—

budget and factor model uncertainty sets—that are relevant in practice and that allow us to verify

the robust feasibility of vehicle routes much faster than for generic polyhedral uncertainty sets.

3.1. Budget Uncertainty Sets

We consider budget uncertainty sets of the form

Q=

{
q ∈Rn+ : q ∈

[
q,q
]
,
∑
i∈Bl

qi ≤ bl for l= 1, . . . ,L

}
, (2)

which constitute the intersection of the n-dimensional hyperrectangle
[
q,q
]

with L budget con-

straints involving customer subsets Bl ⊆ VC . In this definition, q,q ∈ Rn+, L ∈ N, Bl ⊆ VC and

bl ∈ R+, l ∈ L = {1, . . . ,L}, constitute parameters which need to be selected by the modeler. To

exclude empty uncertainty sets, we require that q ≤ q component-wise and bl ≥
∑

i∈Bl
q
i

for all

l ∈L. Without loss of generality, we further assume that Bl 6=Bl′ for all l, l′ ∈L, l 6= l′.

Budget uncertainty sets of the type (2) reflect the belief that the demand qi of customer i∈ VC
can vary between the lower and upper bounds q

i
and qi. However, unless the customer demands

exhibit perfect correlations, it is unlikely that all customer demands simultaneously attain extreme

values. The uncertainty set therefore imposes limits on the cumulative customer demands over

various subsets Bl of the customer set VC . The parameters of the uncertainty set can be specified

using domain knowledge or statistical arguments. For example, under mild technical conditions,

the central limit theorem shows that if the customer demands qi, i ∈ VC , constitute independent

and identically distributed random variables with mean µ and variance σ2, then for sufficiently

large |Bl|, the cumulative customer demands in the budget set Bl satisfy∑
i∈Bl

qi ≤ |Bl|µ+
√
|Bl|σΦ−1(1−β) (3)

with probability β. Here, Φ−1(·) denotes the inverse cumulative distribution function of the stan-

dard normal distribution. One readily verifies that the inequality (3) can be incorporated as a

budget constraint of the form
∑

i∈Bl
qi ≤ bl in the uncertainty set (2).

Budget uncertainty sets have been first proposed by Bertsimas and Sim (2004) for the special

case of a single budget constraint; that is, the case where L= 1 and B1 = VC . It has been shown

in Gounaris et al. (2013) that under these special conditions the RCVRP reduces to an instance

of the deterministic CVRP. In the remainder of this section, we therefore focus on instances of
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the uncertainty set (2) where L > 1, in which case the RCVRP no longer admits an equivalent

reformulation as a deterministic CVRP instance.

Generic Budget Uncertainty Sets. The maximization of
∑

i∈S qi over a budget uncertainty

set of the form (2) amounts to the solution of a fractional packing problem (Garg and Könemann

2007). Ignoring polylogarithmic factors and assuming that L≤ n, a (1 + ε)-approximation to the

fractional packing problem can be determined in time O(ε−2Ln), see Young (2001).

Inclusion-Constrained Budget Uncertainty Sets. We now consider a subclass of budget

uncertainty sets where the budget sets Bl, l ∈L, satisfy the following inclusion condition:

(IC) For all l, l′ ∈L, the budget sets Bl and Bl′ satisfy Bl ⊆Bl′ , Bl′ ⊆Bl or Bl′ ∩Bl = ∅.

Thus, for any two budget sets Bl and Bl′ we have that either one set is a subset of the other one,

or the two sets are disjoint. An example of a budget uncertainty set that satisfies condition (IC) is:

Q=
{
q ∈R4

+ : q ∈ [1,3]
3
, q1 + q2 ≤ 3, q3 + q4 ≤ 3, q1 + q2 + q3 + q4 ≤ 5

}
One readily verifies that (IC) establishes a partial order on the budget sets {Bl}l∈L with respect

to the subset relation ⊆, with the additional property that incomparable budget sets are disjoint.

The inclusion condition is closely related to the notion of laminar families in combinatorial opti-

mization (Schrijver 2003), and a similar condition has been used recently to study distributionally

robust optimization problems (Wiesemann et al. 2013, Xu and Mannor 2012). Without loss of gen-

erality, we assume from now on that the budget sets are ordered according to this subset relation,

that is, for all l, l′ ∈L, l≤ l′, we have Bl ⊆Bl′ or Bl ∩Bl′ = ∅.

We want to show that if (IC) is satisfied, then we can maximize
∑

i∈S qi over the uncertainty

set (2) by solving a maximum flow problem. A maximum flow problem is defined through a directed,

weighted graph G = (V,A, γ) whose node set V contains a designated source node s and sink

node t. The arcs A⊆ V ×V can be interpreted as pipes with nonnegative capacities γ(i, j) ∈ R+,

(i, j)∈A. The goal is to maximize the cumulative flow from the source to the sink, subject to flow

conservation at the intermediate nodes i ∈ V \ {s, t} and satisfaction of the arc capacities γ. For

further information about maximum flow problems, we refer to Ahuja et al. (1993).

Let us fix an instance of the uncertainty set (2), together with a nonempty set of customer nodes

S ⊆ VC . We construct an instance of the maximum flow problem as follows. The node set V contains

the source node s and the sink node t, as well as nodes si for each customer i ∈ S and nodes β0
l

and β1
l for each budget l ∈L. We connect the source node s to each customer node si through an

arc with capacity γ(s, si) = qi−qi. These links ensure that none of the customer demands exceeds

its upper bound. Now we consider the budget sets Bl in the order of ascending subscripts l. For

those customers i ∈Bl that do not take part in any of the previous budget sets B1, . . . ,Bl−1, we
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introduce an arc from si to β0
l with capacity γ(si, β

0
l ) =∞.1 We now consider the previous budget

sets Bl′ , l
′ = 1, . . . , l−1, that share some customers with Bl (that is, Bl′ ∩Bl 6= ∅). For each of these

budget sets we introduce an arc from β1
l′ to β0

l with capacity γ(β1
l′ , β

0
l ) =∞, provided that there

is no budget set Bl′′ 6= Bl′ ,Bl such that Bl′ ⊆ Bl′′ ⊆ Bl. Intuitively, we thus connect the node β0
l

corresponding to the budget set Bl with all nodes βl′ that correspond to budget sets Bl′ that are

“immediate predecessors” of Bl with respect to the subset relation ⊆. We also add an arc from β0
l

to β1
l with capacity γ(β0

l , β
1
l ) = bl −

∑
i∈Bl

q
i
. This arc ensures that the l-th budget constraint is

satisfied. Once we have added arcs for all budget sets Bl, l ∈ L, we introduce arcs from β1
l to the

sink node t for all those budget sets Bl that satisfy Bl ∩Bl′ = ∅ for all l′ = l+ 1, . . . ,L, that is, for

all those budget sets Bl that are maximal with respect to the ⊆ relation. For each of these arcs,

we set the capacity to γ(β1
l , t) =∞.

We now formalize this idea. For a given instance of the uncertainty set (2), we define

P(l) = {l′ ∈ {1, . . . , l− 1} : Bl′ ⊆Bl and Bl′ ∩Bl′′ = ∅ for all l′′ ∈ {l′+ 1, . . . , l− 1}} for l ∈L

as the index set of direct predecessor budget sets of Bl, that is, those budget sets Bl′ ⊆ Bl for

which there is no budget set Bl′′ 6= Bl′ ,Bl such that Bl′ ⊆ Bl′′ ⊆ Bl. We also denote by T =

{l ∈L : Bl ∩Bl′ = ∅ for all l′ ∈ {l+ 1, . . . ,L}} the set of terminal budget sets Bl, that is, those bud-

get sets that are not contained in any other budget set.

For a nonempty customer set S ⊆ VC , the node set V of G is given by

V = {s, t}∪ {si : i∈ S}∪
{
β0
l , β

1
l : l ∈L

}
.

The arc set A is then given by the union of A0, Al, l ∈L, and AL+1, where

A0 = {(s, si) : i∈ S}∪

{
(si, t) : i∈ S \

⋃
l∈L

Bl

}
with arc weights γ(s, si) = qi− qi and γ(si, t) =∞,

Al =
{

(β1
l′ , β

0
l ) : l′ ∈P(l)

}
∪

{
(si, β

0
l ) : i∈Bl \

⋃
l′<l

Bl′

}
∪
{

(β0
l , β

1
l )
}

for l ∈L

with arc weights γ(β1
l′ , β

0
l ) = γ(si, β

0
l ) =∞ and γ(β0

l , β
1
l ) = bl−

∑
i∈Bl

q
i
, as well as

AL+1 =
{

(β1
l , t) : Bl ∈ T

}
with arc weights γ(β1

l , t) =∞. The construction of the graph G = (V,A, γ) is illustrated in Figure 1.

The following auxiliary result analyzes the structure of the graph G.

1 Whenever we assign a capacity of ∞ to an arc, this can be replaced with a sufficiently large finite number, for

example M =
∑
i∈S

(
qi− q

i

)
.
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Figure 1 Construction of the graph G for Q=
{
q ∈ [1,3]3 : q1 + q2 ≤ 3, q1 + q2 + q3 ≤ 5

}
and S = {1,2,3}.

Lemma 1. Assume that condition (IC) is satisfied. Then, for each i∈ S, the graph G = (V,A, γ)

contains exactly one path from the source s to the sink t via node si, and this path is of the form

Pi = (s, si, β
0
l1
, β1

l1
, β0

l2
, β1

l2
, . . . , β0

lσi
, β1

lσi
, t),

where l1 < l2 < . . . < lσi are the budgets sets Bl that contain customer i. Moreover, we have σi = 0

if and only if customer i does not participate in any budget set, that is, if i /∈
⋃
l∈LBl.

Proof. If i ∈ S \
⋃
l∈LBl, then the only arc emanating from node si is (si, t) ∈ A0, and the

assertion follows from the fact that (s, si)∈A0. Assume now that i∈
⋃
l∈LBl and that the graph G

contains the path Pi, that is, (s, si), (si, β
0
l1

), . . . , (β1
lσi
, t)∈A. By construction of the arc set A, we

have i ∈Bl1 since (si, β
0
l1

) ∈Al1 . Likewise, we have i ∈Bls , s= 2, . . . , σi, because (β1
ls−1

, β0
ls

) ∈Als .

We thus conclude that l1 < l2 < . . . < lσi are the budgets sets Bl that contain customer i.

To show the reverse direction, assume that customer i ∈ S participates in the budget sets

Bl1 ,Bl2 , . . . ,Blσi , l1 < l2 < . . . < lσi , and that i /∈Bl′ for all l′ ∈ L \ {l1, l2, . . . , lσi}. In that case, the

only arc emanating from si is (si, β
0
l1

)∈Al1 . Likewise, the definition of P(l2) implies that the only

arc emanating from β1
l1

is (β1
l1
, β0

l2
) ∈ Al2 . In the same way, one readily shows by induction over

s that the only arc emanating from β1
ls

, s = 2, . . . , σi − 1, is (β1
ls
, β0

ls+1
) ∈ Als+1

. Finally, we have

Blσi ∈ T , for otherwise i ∈ Bl′ for some l′ ∈ {lσi + 1, . . . ,L}. Hence, the only arc emanating from

β1
lσi

is (β1
lσi
, t) ∈AL+1. We have thus shown that if customer i ∈ S participates in the budget sets

Bl1 ,Bl2 , . . . ,Blσ , then Pi is the only (s, t)-path via node si. This completes the proof. �

In the remainder of this section, we use the shorthand notation (j, k) ∈ Pi to denote that (j, k)

is an arc on the path Pi specified in Lemma 1, that is, (j, k) ∈
{

(s, si), (si, β
0
l1

), . . . , (β1
lσi
, t)
}

. We

now show that there is a one-to-one correspondence between maximal flows in G and maximizers

of
∑

i∈S qi over the uncertainty set (2).

Proposition 1. Assume that condition (IC) is satisfied, and let Q? denote the value of a max-

imal flow in the graph G = (V,A, γ). Then Q? +
∑

i∈S qi is the maximum of
∑

i∈S qi over (2).

Proof. Assume that q? ∈ Rn+ maximizes
∑

i∈S qi over (2). For each customer i ∈ S,

Lemma 1 ensures that there is a unique (s, t)-path via node si that is of the form Pi =
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(s, si, β
0
l1
, β1

l1
, β0

l2
, β1

l2
, . . . , β0

lσi
, β1

lσi
, t). We define an (s, t)-flow fi : A 7→ R+ for each customer i via

fi(j, k) = q?i − qi for (j, k) ∈ Pi and fi(j, k) = 0 for (j, k) ∈A \Pi. By construction, each (s, t)-flow

fi(·), i ∈ S, satisfies flow conservation and all arc capacities. Consider now the cumulative flow

f :A 7→R+ defined through f(j, k) =
∑

i∈S fi(j, k) for all (j, k) ∈A. By construction, f(·) satisfies

flow conservation. Thus, we only have to check that all arc capacities are satisfied. Since the cus-

tomer flows fi(·), i∈ S, do not share any of the arcs (s, si), (si, β
0
l ) or (si, t), we only need to verify

the satisfaction of the capacities of the arcs (β0
l , β

1
l ) and (β1

l , t). For each such arc (β0
l , β

1
l ), we have

f(β0
l , β

1
l ) =

∑
i∈S

fi(β
0
l , β

1
l ) =

∑
i∈Bl

(q?i − qi) ≤ bl−
∑
i∈Bl

q
i

= γ(β0
l , β

1
l ).

Here, the first equality follows from the definition of f(·), the second one from the definition of

the customer flows fi(·) and Lemma 1, the inequality holds because q? ∈Q, and the last equality

follows from the definition of γ(β0
l , β

1
l ). A similar argument shows that the capacities of the arcs

(β1
l , t) are satisfied as well. Thus, the flow f(·) is feasible and has the value

∑
i∈S(q?i −qi). We have

therefore shown that the value of a maximal flow in the graph G = (V,A, γ) is at least as large as

the maximum of
∑

i∈S(q?i − qi) over (2).

We now show that the value of a maximal flow in G is also at most as large as the maximum of∑
i∈S(q?i −qi) over (2). To this end, note that Lemma 1 implies that the set of all (s, t)-paths is given

by {Pi}i∈S. Due to the optimality of q?, for every customer i we either have q?i = qi or there is a

budget set Bl such that i∈Bl and
∑

j∈Bl
q?j = bl. Hence, for every path Pi, either fi(s, si) = γ(s, si)

or fi(β
0
ls
, β1

ls
) = γ(β0

ls
, β1

ls
) for some s = 1, . . . , σi. We can then construct an (s, t)-cut of the same

value as the flow f(·). The max-flow-min-cut theorem (Ahuja et al. 1993) now implies that G does

not contain a larger flow than f(·). This concludes the proof. �

We remark that both Lemma 1 and Proposition 1 rely on the assumption that the inclusion

condition (IC) is satisfied. One can readily construct instances of the uncertainty set Q that violate

(IC) and for which the results of Lemma 1 and Proposition 1 no longer hold.

The maximum flow problem defined on the graph G can readily be solved with standard algo-

rithms. For example, variants of the push-relabel maximum flow algorithm can find a maximal

flow in time O((n+ L)3), and implementations of Dinic’s blocking flow algorithm determine an

optimal solution in time O((n+L)2 log(n+L)), see Ahuja et al. (1993). We now show that due to

the specific structure of the graph G, we can find a maximal flow much faster.
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Proposition 2. Assume that condition (IC) is satisfied. Then, a maximal flow in G = (V,A, γ)

is given by f? :A 7→R+, where f?(j, k) =
∑

i∈S f
?
i (j, k) for all (j, k) ∈A, and each f?i :A 7→R+ is

defined through

f?i (j, k) = min

{
qi−qi, min

{
bl−

∑
i′∈Bl

q
i′
−
∑
i′∈Bl,
i′<i

f?i′(s, si′) : l ∈L such that i∈Bl

}}
∀(j, k)∈ Pi,

(4)

where Pi is defined in Lemma 1, as well as f?i (j, k) = 0 for all (j, k)∈A\Pi. Note that the recursion

is well-defined as each flow f?i (·) is defined in terms of the flows f?i′(·) for i′ = 1, . . . , i− 1.

Proof. Assume that S = {i1, i2, . . . , iσ} with i1, i2, . . . , iσ ∈ VC and i1 < i2 < . . . < iσ. Since q
i1
≤

qi1 and
∑

i′∈Bl
q
i′
≤ bl for all budget sets l ∈ L that contain customer i1, the flow f?i1(·) is non-

negative. By construction, f?i1(·) also satisfies the capacities of all arcs. Finally, since all arcs in

Pi1 carry the same flow, f?i1(·) satisfies flow conservation. We thus conclude that f?i1(·) represents

a feasible flow in G. By the same argument, one can show via induction over s= 2, . . . , σ that all

flows resulting from the partial sums
∑s

s′=1 f
?
is′

(·) are nonnegative, satisfy the capacities of all arcs

and flow conservation. We thus conclude that f?(·) is a feasible flow in G.

We now show that f?(·) is indeed a maximal flow in G. To this end, note that Lemma 1

implies that the set of all (s, t)-paths is given by {Pi}i∈S. For each flow resulting from a partial

sum
∑s

s′=1 f
?
is′

(·) and each path Pis′ , s
′ = 1, . . . , s, there is at least one arc (j, k) ∈ Pis′ for which∑s

s′=1 f
?
is′

(j, k) = γ(j, k). Indeed, if the minimum in (4) is attained by the first term qis′ − qis′
,

then we have
∑s

s′=1 f
?
is′

(s, sis′ ) = γ(s, sis′ ). Likewise, if the minimum in (4) is attained by the

term bl−
∑

i′ qi′ −
∑

i′ f
?
i′(s, si′) for some budget set l ∈ L that contains customer i, then we have∑s

s′=1 f
?
is′

(β0
l , β

1
l ) = γ(β0

l , β
1
l ). We thus conclude that for each path Pi in f?(·), i ∈ S, there is an

arc (j, k) ∈ Pi where f?(j, k) = γ(j, k). Since {Pi}i∈S constitutes the set of all (s, t)-paths, we can

then construct an (s, t)-cut with the same value as f?(·). The max-flow-min-cut theorem (Ahuja

et al. 1993) now implies that G does not contain a larger flow than f?(·). �

While Proposition 2 solves the maximization of
∑

i∈S qi over (2) through a maximum flow prob-

lem, we can now abstract from flow graphs and directly calculate the maximizer of
∑

i∈S qi over (2).

Corollary 1. The maximum of
∑

i∈S qi over (2) is given by q? defined through

q?i = min

{
qi, min

{
bl−

∑
i′∈Bl,
i′<i

q?i′ : l ∈L such that i∈Bl

}}
for i∈ S,

as well as q?i = q
i

for i /∈ S. Using appropriate data structures, the solution q? can be computed in

time O(nL).



Gounaris et al.: An AMP Framework for the Robust CVRP
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 15

Note that we cannot expect to maximize
∑

i∈S qi over (2) in less than O(nL) operations without

making assumptions regarding the sparsity of the uncertainty set Q. This is the case because each

budget set Bl can contain O(n) customers in general, and there are L such budget sets.

Disjoint Budget Uncertainty Sets. We call a budget uncertainty set disjoint if Bl∩Bl′ = ∅

for all l, l′ ∈ L. By construction, disjoint budget uncertainty sets satisfy the condition (IC). It

turns out, however, that we can maximize
∑

i∈S qi more efficiently if the budget uncertainty set is

disjoint.

Proposition 3 (Gounaris et al. (2013)). Assume that the sets {Bl}Ll=1 in (2) are disjoint,

that is, Bl∩Bl′ = ∅ for l 6= l′. Then, for any customer subset S ⊆ VC, the maximum of
∑

i∈S qi over

Q from (2) is given by

∑
i∈S

qi +
L∑
l=1

min

{
bl−

∑
i∈Bl

qi,
∑

i∈S∩Bl

(
qi− qi

)}
+

∑
i∈S\

⋃L
l=1Bl

(
qi− qi

)
.

Using appropriate data structures, the maximizer of
∑

i∈S qi can be computed in time O (|S|).

Proposition 3 can be proved using linear programming duality arguments. While this result

allows us to maximize
∑

i∈S qi very efficiently for disjoint budget uncertainty sets, we can further

speed up computations if we need to repeatedly solve the maximization problem for customer sets

that are sufficiently similar. Indeed, for two customer subsets S1, S2 ⊆ VC , the maximum of
∑

i∈S2 qi

over (2) can be calculated from the maximum of
∑

i∈S1 qi over (2) in time O (|S1 \S2|+ |S2 \S1|).

In particular, if S2 results from S1 through the addition or removal of a single customer, then the

maximum of
∑

i∈S2 qi can be calculated from the maximum of
∑

i∈S1 qi in constant time O (1).

This is crucial for metaheuristic frameworks, which heavily rely on local search procedures that

iteratively perturb a given subset of customers.

Let us formalize this idea. For a given customer set S, we store in z = maxq∈Q
∑

i∈S qi the

maximum cumulative customer demands over S. Moreover, for each budget l ∈L the variable ρl =∑
i∈S∩Bl

(
qi− qi

)
stores the sum of differences between upper and lower demand bounds of those

customers in S that participate in the budget Bl. The variable π=
∑

i∈S
⋂⋃L

l=1Bl
q
i
+
∑

i∈S\
⋃L
l=1Bl

qi

stores the sum of lower bounds of all customers in S that participate in some budget l ∈L, minus

the sum of upper bounds of those customers in S that do not participate in any budget. We

typically start with S = ∅, in which case (z,ρ, π) = 0.

If we want to add a customer i /∈ S to S that participates in the budget li ∈ L, then we update

the quantities π, ρli and z via πnew← πold + qi, ρ
new
li
← ρold

li
+ (qi − qi) and znew← zold + (πnew −

πold) + (ρnew
li
− ρold

li
). If customer i does not participate in any budget, then we only update π

and z via πnew ← πold + qi and znew ← zold + (πnew − πold). Likewise, if we want to remove a
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customer i ∈ S that participates in the budget li ∈ L, then we update the quantities π, ρli and

z via πnew ← πold − qi, ρnew
li
← ρold

li
− (qi + qi) and znew ← zold + (πnew − πold) + (ρnew

li
− ρold

li
). If

customer i does not participate in any budget, then we only update π and z via πnew← πold− qc
and znew← zold + (πnew − πold). This way, for every customer subset S the value of z equals the

maximum of
∑

i∈S qi over q ∈Q.

Disjoint budget uncertainty sets allow us to impose upper bounds on the customer demands

encountered in different geographical regions. As we discuss in Section 5, this can help to avoid

overly conservative route sets that hedge against highly unlikely concentrations of customer

demands in specific regions. Inclusion-constrained budget uncertainty sets represent a natural gen-

eralization of this concept. They allow us to impose a hierarchy of upper bounds on the customer

demands. One could, for example, simultaneously impose upper bounds on the customer demands

encountered in every municipality (finest granularity), county and state (coarsest granularity).

Under mild assumptions, the central limit theorem implies that higher and lower demand realiza-

tions tend to cancel each other out, which allows us to impose upper demand bounds at coarser

levels of granularity that are tighter than the sums of upper demand bounds at finer levels.

3.2. Factor Model Uncertainty Sets

We now assume that the uncertainty set takes the form

Q=
{
q ∈Rn+ : q= q0 + Γξ for some ξ ∈Ξ

}
, (5a)

where

Ξ =
{
ξ ∈RF : ξ ∈ [−e,+e] , e>ξ ∈ [−βF,+βF ]

}
. (5b)

In this definition, q0 ∈Rn+, Γ∈Rn×F , F ∈N and β ∈ [0,1] constitute parameters which need to be

selected by the modeler. The vector e∈RF denotes the vector of all ones.

The uncertainty set (5) stipulates that the customer demands q are distributed around a nominal

demand vector q0, subject to an additive disturbance Γξ. We can interpret ξ as a vector of F

independent factors that attain values in the unit hypercube. The linear operator Γξ allows us

to model correlations among the customer demands through linear combinations of these factors.

The constraint e>ξ ∈ [−βF,+βF ] reflects the belief that not all factors attain extreme values at

the same time. If β = 0, then the constraint requires that as many factors ξf will be above 0∈RF

as there will be below 0. This special case is known as the “zero-net-alpha adjustment” in robust

portfolio optimization, see Ceria and Stubbs (2006). If β = 1, then the factor uncertainty set Ξ

reduces to an F -dimensional hypercube. If records of historical customer demands are available,

then β can be chosen using statistical arguments (cf. Section 3.1).

The following result shows that the satisfaction of constraint (1) can be verified efficiently if the

uncertainty set Q is of the form (5).
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Proposition 4 (Gounaris et al. (2013)). For a customer set S ⊆ VC, assume that f1, . . . , fF

represents an ordering of the factors ξf in (5b) according to non-increasing marginal demands∑
i∈S

Γif1 ≥
∑
i∈S

Γif2 ≥ . . . ≥
∑
i∈S

ΓifF .

Then, the maximum of
∑

i∈S qi over the polytope defined in (5) is given by

∑
i∈S

q0
i + min

{
F∑
f=1

∣∣∣∣∣∑
i∈S

Γif −λ

∣∣∣∣∣+βF |λ| : λ∈

{
0,
∑
i∈S

Γif
`+
,
∑
i∈S

Γif
`−

}}
, (6)

where `+ = d(1 + β)F/2e and `− = max{d(1−β)F/2e,1}. Using appropriate data structures, the

maximizer of
∑

i∈S qi can be computed in time O (F |S|+F logF ).

We remark that F � n for typical factor models, which means that we can maximize
∑

i∈S qi

over the polytope (5) very efficiently. The proof of Proposition 4 is based on the following intuition.

Maximizing
∑

i∈S qi over the uncertainty set (5) is equivalent to the optimization problem

maximize
ξ∈RF

∑
i∈S

[
q0
i +

F∑
f=1

Γifξf

]
subject to −e≤ ξ≤+e

−βF ≤ e>ξ≤+βF.

If we dualize this problem, then we obtain a linear minimization problem with 2F + 2 nonnegative

variables and F constraints. The specific structure of the problem allows us to remove all but

one variable. The resulting problem minimizes a piecewise linear and convex function over a one-

dimensional domain. We thus know that the optimum must be attained at a breakpoint of this

function. A closer examination reveals that only three breakpoints qualify as optimal solutions,

and these correspond to the cases λ ∈
{

0,
∑

i∈S Γif
`+
,
∑

i∈S Γif
`−

}
in Proposition 4. For a formal

proof of the proposition, the reader is referred to Gounaris et al. (2013).

We now describe an incremental procedure that allows us to calculate the maximum of
∑

i∈S2 qi

very efficiently from the maximum of
∑

i∈S1 qi if S2 results from S1 through the addition or removal

of a single customer. To this end, we define the constant vector ξwc ∈ RF as follows. Let τ =

b(F −bβF c)/2c and σ = bβF c + τ . If σ + τ = F , then ξwc = (1, . . . ,1,−1, . . . ,−1)>, where the

first σ and the last τ components are 1 and −1, respectively. If σ + τ 6= F , then we set ξwc =

(1, . . . ,1, βF −bβF c,−1, . . . ,−1)>, where again the first σ and the last τ components are 1 and −1,

respectively. By construction, the vector ξwc satisfies −e ≤ ξwc ≤ +e and −βF ≤ e>ξwc ≤ +βF .

During the incremental search, the variable z = maxq∈Q
∑

i∈S qi stores the maximum cumulative

customer demands over S, γf =
∑

i∈S ξ
wc
f Γif stores the total disturbances for each factor f ∈ F in

S, and the variable κ=
∑

i∈S q
0
i stores the cumulative nominal demands in S. We start with an

empty customer subset S = ∅, and therefore (z,γ, κ) = 0 initially.
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If we add a customer i /∈ S to S, then we conduct the updates γnew
f ← γold

f +ξwc
f Γif , f ∈ {1, . . . ,F},

and κnew← κold + q0
i . We then sort the components of γ in decreasing order, and we set znew←

κnew +
∑F

f=1 γ
old
f . Similarly, if we remove a customer i ∈ S from S, then we conduct the updates

γnew
f ← γold

f − ξwc
f Γif , f ∈ {1, . . . ,F}, and κnew← κold− q0

i . We again sort the components of γ in

decreasing order, and we set znew← κnew +
∑F

f=1 γ
old
f . Note that the sorting can typically be done

efficiently as the previous order of the components of γ is likely to be “almost sorted.”

4. An AMP Framework for the Robust CVRP

In this section, we propose an AMP metaheuristic that incorporates a number of novel elements

regarding (i) the systematic identification, selection and combination of promising solution com-

ponents, (ii) the manipulation and updating of the set of elite solutions, (iii) the construction of

combinations of multiple elite solutions, and (iv) the improvement of the quality of provisional

solutions generated during the search process via local search. The adaptive memory refers to a

reference set of feasible solutions that is populated and updated by elite solutions, following a

deterministic set of rules. The key idea is to keep track of the “elite components” of the solutions

visited during the search, and to use them as building blocks for the construction of new provi-

sional solutions. To that end, search diversification is achieved by combining elite components of

multiple reference solutions in ways that have not been encountered in the search history, while

the search gradually intensifies as the reference set evolves with strictly improving solutions, and

the solution’s elite components tend to more often belong to solutions from a limited number of

regions of the solution space.

From the implementation viewpoint, the proposed solution framework consists of two phases,

namely the initialization and the exploitation phase (see Algorithm 1). The initialization phase

(Lines 3 through 14) generates a reference set P of high quality solutions. During this phase it is

important to ensure that the initial reference solutions are adequately diversified so as to provide

a good initial sampling of promising areas of the solution space. This is achieved via the greedy

randomized savings heuristic (Lines 4 and 5) presented in Section 4.1, while the solutions generated

are further improved by the Tabu Search algorithm (Line 6) described in Section 4.3. Once the

initialization phase has been completed, the exploitation phase (Lines 15 through 26) manipulates P

through an exploration of search trajectories initiated from new provisional solutions. In particular,

at each iteration the elite components of the reference solutions are systematically identified and,

based on deterministic criteria, a subset of them is selected as an intermediate solutionR0 (Line 16)

from which the generation of the final provisional solution R† is initiated (Line 17). This procedure

is described in Section 4.2. The provisional solution R† is then used to restart the Tabu Search

algorithm (Line 18) described in Section 4.3. To that end, the best encountered feasible solution
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Algorithm 1 Adaptive Memory Programming

Input: µ, ν, ζ, η, and θ (user-defined parameters)

1: P ←∅, RB←∅, c(RB) = +∞
2: Start Timer t

// Initialization Phase

3: while |P|<µ do

// Construction of initial solution

4: R0← ((0,1,0), (0,2,0), · · · , (0,m,0))

5: R0←Greedy Randomized Savings Heuristic(R0, η)

// Improvement via local search

6: R′←Tabu Search(R0, ν, ζ)

// If not feasible, do not consider

7: if Not Feasible(R′) then

8: continue

9: end if

// Update incumbent

10: if c(R′)< c(RB) then

11: RB←R′
12: end if

// Update reference set

13: P ←P ∪R′
14: end while

// Exploitation Phase

15: while t < tlim do

// Construction of provisional solution

16: R0← Selection of Elite Components(P, θ)
17: R†←Greedy Randomized Savings Heuristic(R0, η)

// Improvement via local search

18: R′←Tabu Search(R†, ν, ζ)

// If not feasible, do not consider

19: if Not Feasible(R′) then

20: continue

21: end if

// Update incumbent

22: if c(R′)< c(RB) then

23: RB←R′
24: end if

// Update reference set

25: P ←Reference Set Update Method(P,R′)
26: end while

27: return RB
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R′ updates the reference set (Line 25), if quality and diversity criteria are met. This process is

regulated by the reference set update method described in Section 4.4.

Our AMP solution framework is controlled through five parameters, namely the size µ of the

reference set P, the size η of the restricted candidate list (see Section 4.1), the parameter θ used

during the selection of elite components (see Section 4.2), and the parameters ν and ζ that control

the local search process (see Section 4.3). The algorithm terminates after a pre-specified time limit

tlim is reached (Line 15), at which point the best encountered feasible solution RB is returned

(Line 27).

The above described AMP framework introduces few user-defined parameters, as compared to

similar VRP metaheuristic approaches. Furthermore, and contrary to many recent metaheuristic

algorithms proposed in the VRP literature, our framework does not incorporate any instance-

specific features, spatiotemporal decomposition schemes or heuristic restriction procedures to accel-

erate the neighborhood search process. As described in Gendreau and Tarantilis (2010), such

mechanisms may have a strong impact on the efficiency and scalability towards large-scale prob-

lem instances; however, they are hard to implement for practical applications. To that end, the

proposed solution approach is generic and could be applied without any modification for both

deterministic and robust problem settings. In the literature, there is an evident lack for efficient

solution approaches with a wider applicability towards problem extensions that combine multiple

features. From this viewpoint, our approach can be regarded as relatively simple to implement and

adopt.

Our experience with developing a metaheuristic framework for the RCVRP reveals that the

combination of robust capacity, duration and fixed fleet-size constraints makes the construction of

feasible solutions very difficult using traditional insertion- and savings-based construction heuris-

tics. For this reason, we decided to treat infeasibility indirectly and to use a hierarchical penalized

cost function to allow the local search to enter the infeasible region. Similar approaches for the

control exploration of feasible and infeasible regions are widely used, and as reported in Vidal et al.

(2012), they are found to enhance the performance of the search process. Finally, it is worth to

note that the proposed mechanisms for selecting solution components of varying size generalize

those of earlier AMP heuristics applied for the deterministic CVRP in Tarantilis and Kiranoudis

(2002) and Tarantilis (2005), while they provide more consistent performance.

4.1. Greedy Randomized Savings Heuristic

As mentioned earlier, it is important during the initialization phase to ensure an adequate level

of diversity among the solutions in the initial reference set (Tarantilis 2005). For this purpose,

we use a generalized savings construction heuristic to generate initial solutions (Lines 4 and 5 in
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Algorithm 1) coupled with a probabilistic mechanism, similar to that proposed in Repoussis et al.

(2010).

Given an initial partial solution (e.g., a solution where one vehicle is assigned to each customer or

to subsets of customers), savings heuristics iteratively merge pairs of routes according to a savings

metric (Clarke and Wright 1964): for two vehicle routes Rk = (Rk,0, . . . ,Rk,i,Rk,j, . . . ,Rk,nk+1) and

Rk′ = (Rk′,0,Rk′,i′ , . . . ,Rk′,j′ ,Rk′,nk′+1), the savings function (assuming symmetric transportation

costs) evaluates to c(i, j) + c(0, i′) + c(j′, nk′ + 1)− c(i, i′)− c(j, j′). This process is repeated until

no further savings can be obtained or when a predefined number of routes is reached. Based on

this scheme, various merging combinations can be obtained.

During the route merging process, priority is given to merging combinations with positive savings

that are robust feasible. If a predefined number of routes must be reached, however, both negative

savings and infeasible merging combinations are considered as well. Moreover, the merging of single-

customer routes with routes containing at least two customers is encouraged by multiplying the

savings with a random parameter from the range [1.1,1.6]. We also incorporate a greedy randomized

mechanism (Resende and Ribeiro 2010). In particular, the savings for each possible pair of routes

are ordered in a so-called restricted savings list, which contains the route pairs resulting in the

highest savings. At each iteration, a random pair is selected from the list, and the corresponding

routes are merged. In our implementation, the restricted savings list is cardinality-based and fixed

to a predefined size η. Parameter η determines the extent of randomization and greediness during

the construction process. From our numerical experiments we conclude that a range of values

η ∈ [8,12] is suitable for the RCVRP instances we consider. In our implementation, we set η= 10.

Given that we always add and remove a constant number of edges, it is straightforward to

evaluate the savings in the transportation costs as well as to verify, if necessary, that the route

duration constraints are satisfied (simply check whether
∑nk

l=0 c(Rk,l,Rk,l+1)+
∑nk

l=1 s(Rk,l)≤ T for

all k ∈K). Verifying the robust satisfaction of the capacity constraints is more involved, but can

be done efficiently for the cases discussed in Section 3.

4.2. Generation of Provisional Solutions

The general aim of the exploitation phase is to generate new provisional solutions by combining

components encountered in reference solutions. For this purpose, a systematic approach is applied

periodically to select and isolate (based on deterministic criteria) from the reference set P a set

of solution components (i.e. subroutes) that are good candidates to participate in the provisional

solution (Line 16 in Algorithm 1). An elite component refers to a subroute (i.e., an ordered subset

of customers) that appears “sufficiently frequently” in P. We define the length lenb of an elite

component b to be the number of customers in the subroute, and we restrict lenb to the interval
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[2, n]. We note that an elite component may be as large as a complete route and as short as an

individual arc linking two customers. Singleton customers, on the other hand, do not qualify as

elite components.

The number of reference solutions in which the elite component is encountered varies as well.

We apply a lower cutoff, which enforces that a solution component is considered only if it appears

in at least a minimum number of reference solutions fmin. According to our tests, a range of

fmin ∈ [0.15µ,0.25µ] is appropriate for the RCVRP instances we consider, and we use fmin = 0.20µ

in our implementation.

The final set of extracted components should consist of non-overlapping customer sets in order

to be suitable for recombination in the new solution. To that end, we assign a score to each elite

component according to a metric that is described later in this section. We then sort the list of

elite components according to their score, and we start adopting components from the top of the

list. Once an elite component is extracted from the list, all remaining elite components that share

at least one customer with the former are removed from further consideration, as adopting those

components would result in the inclusion of duplicate customers in the final set.

Finally, given the extracted elite components, an intermediate solution is generated by assigning

a vehicle to each of the selected subroutes as well as to any singleton customer that does not

participate in any of the selected elite components. By construction, the intermediate solution is

robust feasible, apart from potentially violating the number m of available vehicles. The reason

for this is that all elite components stem from robust feasible reference solutions and the customer

visiting sequences remain unchanged, ensuring that both the capacity and duration constraints are

satisfied. At this point, the greedy randomized savings heuristic from Section 4.1 is employed to

obtain the new (finalized) provisional solution (Line 17 in Algorithm 1). It is worth mentioning

that the proposed probabilistic route merging scheme will often provide different combinations of

the elite components that have not been encountered in the search history. Note also that at the

end of the construction process the provisional solution can be either feasible or infeasible.

Calculation of Component Scores. The component scoring metric for each elite component

b is defined as

scb =

(∑
R∈P

wRIR,b

)
/ (1− θ)lenb−2

,

where IR,b is an indicator function taking the value of 1 if the elite component participates in the

solution R and 0 otherwise, wR are factors that weight the participation in each solution, and

the parameter θ ∈ (0,1) quantifies the adoption of longer elite components at the expense of their

shorter subsets.
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We adopt two different strategies for the selection of the weights wR. In the first strategy,

the weight wR attributed to each solution R ∈ P is calculated as wR = diss(R,R∗)
maxR′∈P diss(R′,R∗) , where

diss(R,R∗) is the dissimilarity between solution R and the currently best solution R∗, measured

in terms of the total number of different arcs (also known as broken-pairs distance). This strategy

enhances diversification and guides the search towards distant and possible unexplored regions

with respect to the current best solution. In the second strategy, the weight accounts for the cumu-

lative transportation costs incurred by the solution: wR =
maxR′∈P c(R

′)−c(R)

maxR′∈P c(R
′)−minR′∈P c(R

′) . This strategy

myopically intensifies and directs the search effort to regions close to the best solutions in P. In our

implementation, we use these strategy interchangeably with equal selection probability. More elab-

orate strategic oscillation schemes—based on current search progress—can be adopted to better

balance the needs for exploration and exploitation.

With regards to parameter θ, we select the moderate value of θ= 0.2 which we have identified to

work well for the instances we consider. Note that very small values of θ (i.e., θ→ 0) would cause the

elite component adoption to predominantly involve components of length lenb = 2 (i.e., individual

arcs) which appear in the reference solution at least as many times as the longer subroutes.

On the other hand, large values of θ (i.e., θ→ 1) would imply that only complete routes in the

solution reference set would be considered, which results in insufficient diversification. In other

words, although selecting elite components with a large number of nodes is desirable from the

perspective of readily recombining the elite components into new high quality provisional solutions,

the right balance needs to be sought between appearance frequency and component length.

4.3. Tabu Search

In an effort to intensify the search close to promising regions of the solution space, the initial

and provisional solutions are further improved by means of a Tabu Search algorithm (Lines 6

and 18 in Algorithm 1). As described in Glover (1997), Tabu Search explores the solution space

by iteratively perturbing a solution R to the best admissible solution R′ within a subset ΩY (R) of

a preselected neighborhood structure Y . To that end, a short term memory (also known as a tabu

list) keeps track of the attributes of the most recently visited solutions in the search history and

prevents revisiting them for a predefined number of iterations ν (tabu tenure). The tabu status of

an admissible neighboring solution can be overridden only if predefined aspiration criteria are met.

This iterative local search procedure is repeated until a termination condition is met, at which

point the best encountered solution is returned.

Although the Tabu Search algorithm accounts for a significant portion of the overall compu-

tational burden, the method is essential for the progression towards high-quality regions of the

solution space. From the implementation viewpoint, three aspects determine the computational
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efficiency and overall performance, namely (i) the definition of the search space, (ii) the selection

of the neighborhood structures and associated evaluation methods, and (iii) the definitions of the

tabu list, aspiration criteria, and the termination condition. Below, we provide an overview of our

implementation with regards to each of these three aspects.

4.3.1. Search Space. The search space is defined such that the method can handle both fea-

sible and infeasible solutions, and the solutions are evaluated lexicographically based on feasibility.

Let R= (R1, . . . ,Rm) be a set of routes. If all routes Rk are robust feasible, the search attempts

to improve the original objective function (i.e., c(R), the cumulative transportation costs), and

is confined to the space of robust feasible route sets. As such, once a feasible solution is reached

during the local search process, we do not allow the search to re-enter the infeasible region, admit-

ting only those neighboring solutions that are feasible. On the other hand, infeasibility may occur

due to violations of the route durations and/or the capacity constraints of the vehicles. In these

cases, the search space is defined with respect to the total distance traveled, compounded by the

weighted sum of route duration and vehicle capacity violations.

Let d(R) and g(R) be the cumulative route duration and vehicle capacity violations, respectively,

and let ψD and ψQ be the corresponding weight coefficients. The new augmented objective function

h(R) is defined as

h(R) = c(R) +ψDd(R) +ψQg(R). (7)

The route duration violation of the k-th vehicle evaluates to max{0, c(Rk) + s(Rk)−T}, where

c(Rk) =
∑nk

l=0 c(Rk,l,Rk,l+1) and s(Rk) =
∑nk

l=1 s(Rk,l) are the cumulative travel times and services

times along the route, respectively, and T is the maximum allowable route duration. In total, the

cumulative route duration violation d(R) can be expressed as

d(R) =
∑
k∈K

max{0, c(Rk) + s(Rk)−T}. (8)

Similarly, the cumulative vehicle capacity violation g(R) can be defined as

g(R) =
∑
k∈K

max{0,max
q∈Q

nk∑
l=1

qRk,l −Q}. (9)

In the literature, augmented objective functions with similar penalty terms are widely adopted

for the exploration of both feasible and infeasible regions (Tarantilis et al. 2012). However, in the

context of the RCVRP, verifying robust feasibility is more involved as we need to evaluate the

inner maximization in (9), which itself amounts to an optimization problem. As we will discuss in

Section 4.3.2, our AMP procedure uses both intra-route and inter-route moves. Intra-route moves

alter the order in which customers are visited, but they do not modify the set of customers that
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participate in the route. Thus, the capacity violation remains the same and no capacity check has

to be performed. On the other hand, inter-route moves, which account for the majority of the

postulated moves, require us to recalculate the capacity violation. Hence, it is important to employ

an implementation that enables fast “on-the-fly” computations, such as the one that was detailed

in Section 3.

The performance of the proposed local search scheme crucially depends on the initial values and

the subsequent readjustment of the weight coefficients. In our implementation, we initially set the

coefficients to ψD = 10 and ψQ = 1, and we increment either of the coefficients during the search via

ψD←ψD+10 or ψQ←ψQ+1 if the current solution violates a route duration or a vehicle capacity,

respectively. On the other hand, if the solution becomes feasible, we re-initialize the coefficients to

ψD = 10 and ψQ = 1. This selection reflects our computational experience, where it appears rather

difficult to restore feasibility for large scale long-haul problem instances that prescribe tight route

duration restrictions.

4.3.2. Neighborhood Structures and Associated Evaluation Methods. At each iter-

ation of the local search process, the best admissible (feasible or infeasible) neighbor R′ (i.e.,

minR′∈ΩY (R){h(R′)}) replaces the current solution R. In our implementation, we use neighborhood

structures based on ordinary edge-exchange local moves, namely intra- and inter-route 2-Opt, 1-0

Relocate and 1-1 Exchange (Aarts and Lenstra 2003, Gendreau and Tarantilis 2010). The selection

of neighborhood structures at each iteration of the Tabu Search is random, with equal selection

probability. Our algorithm does not exploit any potential spatiotemporal structure.

We remark that the aforementioned neighborhood structures involve the addition and deletion

of a constant number of edges, and that the overall size of each neighborhood is quadratic. In

particular, the intra-route 2-Opt involves the substitution of a total of 2 edges within a single route,

or similarly, the inversion of the visiting sequence of a segment (Rk,i, . . . ,Rk,j). On the other hand,

the inter-route 2-Opt neighborhood (also known as 2-Opt*) swaps the end segments of two vehicle

routes Rk and Rk′ (i.e., (Rk,l, . . . ,Rk,nk+1) and (Rk′,l′ , . . . ,Rk′,nk′+1)) without reversing the order

of customers. Finally, a 1-0 Relocate move involves the removal of one customer from its current

position and its insertion into a different position of either the same or a separate route, while a

1-1 Exchange move swaps the positions of two customers.

We traverse the above described neighborhood structures in lexicographic order and apply an

early pruning mechanism that is based on both feasibility and gain. Feasibility checks and compu-

tations of violations can be performed efficiently for the route durations. To that end, we store in

memory the vehicles’ arrival times at each of the customers and update these quantities whenever a

local move is adopted. The verification of robust feasibility with respect to the capacity constraints
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is more demanding. However, due to the nature of the search procedure that explores the space in

an incremental fashion, we seldom have to compute the capacity violation of a customer set S ⊆ VC
from scratch. Instead, most of the time we are interested in computing the incremental difference

in violation that results from adding a customer i /∈ S to a set S or removing a customer j ∈ S from

the set S, which can be done efficiently using the methods described in Section 3. For example, in

the case of an inter-route 1-0 Relocate move, one may simply compute the incremental violation

difference between customer subsets Rk and Rk \ {Rk,i}, where k ∈K and i ∈ VC , as well as the

difference between Rk′ and Rk′ ∪ {Rk,i}, where k′ ∈K. The former difference is negative (i.e., a

move towards feasibility), while the latter difference is positive (i.e., a move towards infeasibility).

Similar arguments can be used to break down the inter-route 2-Opt and 1-1 Exchange moves into

elementary additions and removals of customers. Moreover, the same concept can be readily applied

and/or extended to other more complex neighborhood structures, such as λ-interchange and ejec-

tion chains. Note that in the case of 2-Opt* moves, which involve the relocation of potentially

large subroutes, it is important to account for the length of the involved subroutes and imple-

ment the computation so as to minimize the number of required customer additions and removals

(considering also the possibility of computing the violation from scratch).

4.3.3. Tabu List, Aspiration Criteria, and Termination Condition. The primary goal

of a tabu list is to avoid cycling, at least in the short term. For this purpose, both the forward and

reverse local move attributes that correspond to edges being added and deleted are stored in the

tabu list, and the addition and deletion of these edges is restricted for a number of iterations ν.

The tabu status is overridden if an improvement is observed with respect to the best encountered

solution (aspiration criterion). The termination condition imposes a maximum number of iterations

ζ without observing any further improvement.

Regarding the parameter settings, the literature typically adopts a value ν ∈ [20,40] for intensifi-

cation search, and this range seems to fit well for the RCVRP instances we consider. Furthermore,

one may expect that large values of ζ (our termination condition) will increase the performance.

However, there is a trade off between efficiency and effectiveness, since large values of ζ may result

in excessive runtimes at an insignificant added benefit. Overall, it seems that values less than 300

provide a consistent performance across most problem instances. Based on these observations, we

set ν = 30 and ζ = 100.

4.4. Reference Set Update Method

The size of the reference set P progressively increases during the initialization phase up to a

maximum value of µ. After that, the method switches to the exploitation phase, where the size of P

is kept constant by replacing older solutions with more recently encountered ones (see Algorithm 1).
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In the process, it is important to ensure an appropriate balance between quality and diversity

among the reference solutions. Such a balance allows for a more efficient and effective exploration

of the solution space. Furthermore, it has been reported that an appropriately diverse collection

of reference solutions can in many cases contain useful information about the structural aspects of

the optimal solutions (Tarantilis et al. 2012).

On this basis, the reference set update method used in the exploitation phase adopts a determin-

istic set of rules that account for attractiveness both in terms of the total transportation costs as

well as the level of dissimilarity between the reference solutions and the currently best solution. We

now formalize this idea. Let R denote a route set that is a candidate for insertion into P, R′ any

reference solution of P, and RB and RW the best and the worst of solutions of P, respectively. If

c(R)< c(RB), then R replaces RW in P. Otherwise, if there exists some R′ such that c(R)< c(R′)

and diss(R,RB)> diss(R′,RB), then R replaces R′ in P. We remark that only feasible solutions

are considered for insertion into the reference set. In our implementation, we set µ = 15, which

appears to be a fairly robust value.

5. Computational Results

We begin our computational study with the 180 RCVRP benchmark instances introduced

in Gounaris et al. (2013). These instances originate from standard CVRP benchmark problems

used in the literature (see NEO Research Group (2012) for a compilation of data files) and cor-

respond to small- and medium-sized instances with up to 150 customers and 15 vehicles. In these

instances, it is assumed that the uncertain customer demands are supported on uncertainty sets of

the form of budget and factor model sets similar to the ones described in Section 3. In particular,

we use the budget uncertainty set

QB =

{
q ∈

[
(1−α)q0, (1 +α)q0

]
:
∑
i∈Ω

(qi− q0
i )≤ β

∑
i∈Ω

[
(1 +α)q0

i − q0
i

]
∀Ω∈ {NE,NW,SW,SE}

}
,

where NE,NW,SW,SE refer to the four geographic quadrants defined by the customer coordinates

from the benchmark datasets. The support QB stipulates that the customer demands deviate by

at most α ·100% from their nominal values q0 specified in the benchmark problems. Moreover, the

cumulative demand in each quadrant does not exceed its nominal value by more than β · 100%. In

addition, we also consider the following factor model uncertainty set for the customer demands:

QF =

{
q ∈

[
(1−α)q0, (1 +α)q0

]
: ∃ξ ∈Ξ such that qi =

(
1 +α

4∑
f=1

γifξf

)
q0
i ∀ i∈ VC

}
,

where

Ξ =
{
ξ ∈R4 : ξ ∈ [−e,+e] , e>ξ ∈ [−4β,+4β]

}
.
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The interpretation of parameter α is the same as in the case of QB. In QF , we model the demand

of customer i as a convex combination of f = 1, . . . ,4 factors that can be interpreted as quadrant

demands. The weights γif of this convex combination reflect the relative proximity of customer i to

each quadrant. More precisely, we set γif = ρif/
∑4

f ′=1 ρif ′ , where ρif measures the inverse distance

between customer i and the centroid of quadrant f . The cumulative demand over all quadrants is

assumed to deviate from its nominal value by at most β ·100%. Note that for both QB and QF , we

retrieve a rectangular support if we set β = 1 and the deterministic CVRP if we choose α= 0. From

now on, we set α = 0.1 and β = 0.5. Later in this section, we perform a sensitivity analysis and

demonstrate that the metaheuristic retains its efficiency across the full range of values for these

parameters.

We first report the best solutions identified by our AMP framework after a time limit of 1h

CPU.2 Table 1 presents these results for both QB and QF . To illustrate the quality of the obtained

solutions, we also compare them with the upper bounds reported in Table EC.3 of Gounaris et al.

(2013), which have been obtained with a branch-and-cut method. We observe that out of the

total of 180 instances, the metaheuristic was able to obtain improved best-known solutions for 49

instances, while it was able to match or come very close to the previously best-known solutions in

all remaining cases.

We now turn our attention to the performance of the metaheuristic in terms of CPU time

requirements. Although the results reported above correspond to the best solutions obtained after

a time limit of 1h CPU, this amount of time may be overly generous for all but the most difficult

instances. In fact, in many cases the metaheuristic has found a very good solution in an early stage

of the search process and spent the remaining time attempting to improve this solution. In order to

better appreciate this fact, we compute the relative differences between the best solutions obtained

at given time marks and the overall best known solution (i.e., the best solution after 1h CPU).

Table 2 reports the aggregated results. We observe that within 5s CPU the heuristic has found a

solution that is within 1% of the overall best, while there is practically no improvement beyond

5m CPU. At this point, it is probably more reasonable to restart the algorithm with a different

random seed rather than to spend additional time trying to improve the solution at hand. We

further note that no significant performance difference is observed between the budget and factor

model uncertainty sets.

In fact, the performance of the new AMP framework is not only insensitive to the type of

uncertainty set, but it also does not seem to be affected by the actual range and magnitude of

the anticipated uncertainty. To show this, we select various values for the parameters α and β and

2 Throughout the computational study, we use a PC with a single-core Intel 2.66GHz processor and 3GB RAM.
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Table 2 Average progress of heuristic solutions across the 90 benchmark
problems from Table 1. This table reports the average relative differences to

the overall best solutions obtained by the heuristic after 1h CPU.

Support
Time (CPU)

1s 5s 10s 30s 1m 5m 10m

QB 1.37% 0.59% 0.38% 0.21% 0.12% 0.05% 0.04%
QF 1.49% 0.65% 0.42% 0.29% 0.23% 0.05% 0.02%

Table 3 Impact of α and β in the average progress of heuristic solutions
across all 180 benchmark instances from Table 1 (including both supports QB

and QF). This table reports the average relative differences to the overall best
solutions obtained by the heuristic after 1h CPU.

(α,β)
Time (CPU)

1s 5s 10s 30s 1m 5m 10m

(0.0,0.0)† 1.19% 0.46% 0.34% 0.21% 0.17% 0.07% 0.05%
(0.1,0.0) 1.13% 0.65% 0.39% 0.21% 0.13% 0.05% 0.02%
(0.1,0.5) 1.43% 0.62% 0.40% 0.25% 0.17% 0.05% 0.03%
(0.1,1.0)† 1.30% 0.42% 0.39% 0.21% 0.11% 0.05% 0.03%
(0.2,0.0) 1.27% 0.57% 0.41% 0.25% 0.18% 0.07% 0.05%
(0.2,0.5) 1.27% 0.72% 0.31% 0.32% 0.22% 0.08% 0.04%
(0.2,1.0)† 1.30% 0.76% 0.53% 0.31% 0.24% 0.10% 0.05%

†Although these problems reduce to deterministic CVRP instances, they are
solved with our RCVRP metaheuristic for a fair comparison.

resolve all instances. We present the aggregated results in Table 3. We observe that the differences

approach their terminal value of zero at about the same rate for all parameter values, an indication

that the heuristic performs comparably in all cases.

Determining high-quality heuristic solutions is of course very important in practice. But how

important are high-quality solutions if one is merely interested in proving optimality? In an effort to

answer this question, we undertake the following experiment. We perform a single run of the AMP

metaheuristic with a short time limit of 5m CPU. We take the best heuristic solution obtained

within this time limit, feed it as an initial incumbent into the branch-and-cut framework of Gounaris

et al. (2013) and record the performance difference relative to the original branch-and-cut scheme.

In particular, we record the residual lower and upper bounds after 24h CPU and compare them with

the ones reported in Gounaris et al. (2013). To ensure a fair comparison, we have used the same

code, computer, MILP solver (CPLEX 12.1 IBM Corp. (2009)) and problem instances that were

employed in the previous study, the only difference being the introduction of the heuristic solutions

as starting incumbents for the MILP solver. Table 4 presents the results of this experiment. We

restrict ourselves to those 88 instances which had not been solved to global optimality by the

original branch-and-cut scheme (i.e., for which there was a residual LB–UB gap after 24h CPU).

As the table shows, the a priori knowledge of a heuristic solution enabled the exact framework to
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obtain new optimality certificates for 3 instances and improve the previously best-known lower and

upper bounds in a total of 31 and 54 instances, respectively.

We have shown that the metaheuristic developed in this paper is efficient for small- and medium-

sized instances, which is consistent with the performance of the AMP metaheuristic from Section 4

when applied to the deterministic CVRP and other related problems (Repoussis and Tarantilis

2010). In particular, we observe that the presence of uncertainty does not significantly degrade

the performance of the AMP scheme. We have further shown that the metaheuristic can help to

improve the performance of exact solution frameworks. We now investigate the performance of

our metaheuristic on large-scale RCVRP instances that would be challenging for exact algorithms.

To that end, we apply our approach to the two standard large-scale CVRP benchmark suites

used in the literature (Christofides et al. 1979, Golden et al. 1998). These instances involve up

to 483 customers and 38 vehicles. In analogy to Gounaris et al. (2013), we increase the vehicle

capacities by 20% in order to accommodate the uncertainty in the customer demands.3 The results

are presented in Table 5. For each of the benchmark instances and each of the two uncertainty

sets QB and QF , we conducted 10 independent runs that were initialized with different random

seeds. All runs were conducted with the same parameter settings α= 0.1 and β = 0.5. We report

the “best-best,” “average-best” and “worst-best” solutions found after a time limit of 1h CPU as

well as the time required to obtain the best solution found. For completeness, the table also lists

the number of customers, number of vehicles, route duration limit, homogeneous service time for

each customer, as well as the homogeneous vehicle capacity for each instance. We observe that

our framework provides feasible solutions to all of these instances within the allotted time limit.

The relatively small differences between “best-best” and “worst-best” solutions indicate that the

AMP framework is reasonably robust against the random seed initialization and can be expected

to perform efficiently even when run only for a single time. Furthermore, the reported runtimes

indicate that in most cases the metaheuristic was still making progress when the time limit was

reached, and it could thus benefit from additional computational resources.

We conclude this section by quantifying the average incease in the total cost of an RCVRP

solution compared to its deterministic CVRP counterpart. To this end, we focus on the 14 problem

sets introduced by Christofides et al. (1979) and select various combinations of parameter settings

(α,β). In each case, we run the AMP framework as before4, record the best heuristic solution

encountered and compare it with the solution of the deterministic CVRP instance (that is, the

3 The benchmark instances were originally proposed for the deterministic CVRP, and they are designed to be capacity-
tight in this setting. Hence, the original vehicle capacity specifications would lead to infeasible instances even for
small choices of α and β (see also Gounaris et al. (2013) for further justification).

4 Ten independent runs starting from different random seeds; 1h CPU time limit for each run.
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Table 5 Heuristic solutions obtained for the large-scale literature benchmark problems and the two supports QB and QF . Each problem is
solved 10 times starting from a different random seed. The time limit is set to 1h CPU for each run.

Problem† Num. Num. Dur. Serv. Veh. Budgets (QB) Factor model (QF )

Cust. Veh. Lim. Time Cap. Best Avg. Worst tbest(s) Best Avg. Worst tbest(s)

cmt-01 50 5 ∞ 0 192 519.43 519.45 519.49 0 519.43 519.44 519.49 0

cmt-02 75 10 ∞ 0 168 807.15 810.08 813.73 8 785.86 793.25 805.11 9

cmt-03 100 8 ∞ 0 240 803.33 806.91 813.16 142 794.52 799.83 810.23 237
cmt-04 150 12 ∞ 0 240 1,012.80 1,027.55 1,039.16 1,337 1,006.33 1,017.56 1,031.88 1,441

cmt-05 199 16 ∞ 0 240 1,254.38 1,266.11 1,276.94 3,214 1,243.27 1,254.04 1,269.06 1,500

cmt-06 50 6 200 10 192 555.43 555.43 555.43 2 555.43 555.43 555.43 1
cmt-07 75 11 160 10 168 902.01 902.16 903.57 21 901.40 901.40 901.40 4

cmt-08 100 9 230 10 240 865.50 867.10 870.69 31 865.50 866.54 872.32 7

cmt-09 150 14 200 10 240 1,167.06 1,174.08 1,188.71 2,551 1,163.81 1,171.41 1,178.33 920
cmt-10 199 18 200 10 240 1,412.10 1,419.88 1,435.33 798 1,410.65 1,415.15 1,422.33 2,027

cmt-11 120 7 ∞ 0 240 1,005.10 1,006.08 1,007.51 261 994.63 996.03 1,000.45 45

cmt-12 100 10 ∞ 0 240 808.90 809.43 811.30 2 804.08 804.08 804.08 3
cmt-13 120 11 720 50 240 1,547.06 1,558.19 1,566.64 95 1,544.90 1,550.57 1,558.64 3,087

cmt-14 100 11 1040 90 240 847.43 847.43 847.43 2 835.11 835.31 836.70 1

gol-01 240 9 650 0 660 5,694.68 5,736.31 5,786.97 2,876 5,698.06 5,742.69 5,781.46 682

gol-02 320 10 900 0 840 8,557.12 8,644.37 8,765.58 584 8,544.31 8,595.61 8,669.85 3,362
gol-03 400 10 1200 0 1080 11,362.36 11,556.63 11,769.02 423 11,423.06 11,537.64 11,622.89 1,894

gol-04 480 10 1600 0 1200 14,134.17 14,293.78 14,479.57 3,505 13,975.76 14,182.68 14,351.98 3,413

gol-05 200 5 1800 0 1080 6,466.68 6,560.29 6,738.52 818 6,460.98 6,574.13 6,665.41 492
gol-06 280 7 1500 0 1080 8,414.28 8,516.33 8,592.39 1,666 8,415.21 8,530.00 8,595.63 2,625

gol-07 360 9 1300 0 1080 10,266.87 10,409.49 10,574.95 3,012 10,203.57 10,333.52 10,411.69 3,583

gol-08 440 11 1200 0 1080 12,078.23 12,202.96 12,306.87 1,830 12,074.27 12,166.00 12,253.10 3,046
gol-09 255 14 ∞ 0 1200 570.63 577.92 583.60 1,224 562.65 568.35 572.25 3,537

gol-10 323 16 ∞ 0 1200 736.41 743.12 746.36 2,750 724.61 731.17 735.08 3,151

gol-11 399 18 ∞ 0 1200 925.88 933.12 940.25 2,347 912.17 918.26 927.10 3,043
gol-12 483 19 ∞ 0 1200 1,181.15 1,192.50 1,213.49 2,099 1,114.85 1,127.18 1,135.78 3,332

gol-13 252 26 ∞ 0 1200 844.05 849.95 853.71 3,424 838.49 841.72 845.25 1,286
gol-14 320 30 ∞ 0 1200 1,080.59 1,084.47 1,088.18 2,218 1,070.32 1,075.00 1,082.29 2,589

gol-15 396 33 ∞ 0 1200 1,341.21 1,352.83 1,358.16 3,109 1,331.96 1,337.92 1,343.65 2,560

gol-16 480 37 ∞ 0 1200 1,641.95 1,677.06 1,699.75 3,569 1,629.12 1,635.50 1,647.92 3,139
gol-17 240 22 ∞ 0 240 713.68 716.97 721.15 2,689 701.42 705.45 708.65 2,974

gol-18 300 27 ∞ 0 240 1,012.90 1,015.86 1,017.29 2,132 991.54 996.41 1,002.97 2,445

gol-19 360 33 ∞ 0 240 1,389.32 1,399.93 1,404.73 2,160 1,369.57 1,373.81 1,376.83 2,373
gol-20 420 38 ∞ 0 240 1,860.84 1,871.24 1,876.39 2,910 1,827.02 1,832.72 1,841.28 3,569

†Instances “cmt” are from Christofides et al. (1979), while instances “gol” are from Golden et al. (1998).

parameter setting (α,β) = (0.0,0.0)). The results of this sensitivity analysis are reported in Table 6.

We observe that the robust solutions are slightly more expensive than their deterministic counter-

parts, with values monotonically increasing as the size of the uncertainty set increases. The largest

increases are exhibited for parameter setting (α,β) = (0.2,1.0) and are 4.37% and 4.09% for the

uncertainty supports QB and QF , respectively. This indicates that selecting modestly more expen-

sive routes (in the order of 5%) suffices to immunize the delivery schedule for a considerable random

increase in customer demands (up to 20%). No significant difference can be observed between the

two support types. These findings are in agreement with what has been reported in Gounaris et al.

(2013) for different problem instances.
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Table 6 Increase in transportation costs relative to the deterministic CVRP solutions for the supports QB (left)
and QF (right). The tables report the averages across the 14 benchmark instances from Christofides et al. (1979).

α\β 0.00 0.25 0.50 0.75 1.00

0.00 0.00% 0.00% 0.00% 0.00% 0.00%
0.05 0.78% 0.94% 0.96% 0.97% 1.00%
0.10 1.51% 1.73% 1.81% 1.81% 1.91%
0.15 2.45% 2.72% 2.83% 2.84% 2.86%
0.20 3.84% 4.11% 4.17% 4.22% 4.37%

α\β 0.00 0.25 0.50 0.75 1.00

0.00 0.00% 0.00% 0.00% 0.00% 0.00%
0.05 0.26% 0.45% 0.52% 0.59% 0.75%
0.10 0.62% 0.87% 1.04% 1.28% 1.80%
0.15 0.93% 1.24% 1.84% 2.15% 2.71%
0.20 1.34% 1.91% 2.65% 3.21% 4.09%

6. Conclusions

In this paper we have developed an Adaptive Memory Programming metaheuristic for the Robust

Capacitated Vehicle Routing Problem (RCVRP) under demand uncertainty. Metaheuristics for

vehicle routing problems have in common that their efficiency and effectiveness strongly depends

on the neighborhood size and speed of neighborhood evaluation. While route feasibility can be

checked very efficiently in deterministic problems, verification of robust route feasibility in the

RCVRP requires the solution of an optimization problem for each candidate route. We have pre-

sented two classes of polyhedral uncertainty sets for which route feasibility can be determined very

efficiently: budget sets and factor models. Our numerical results demonstrate the effectiveness of

our framework on benchmark instances from the literature with up to 483 customers and 38 vehi-

cles. We have identified new best solutions for 123 instances and, by combining our heuristic with

a branch-and-cut algorithm, we have solved 3 instances to global optimality for the first time.
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