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PT -symmetric quantum mechanics began with a study of the Hamiltonian H = p2 + x2(ix)ε.
When ε ≥ 0, the eigenvalues of this non-Hermitian Hamiltonian are discrete, real, and positive.
This portion of parameter space is known as the region of unbroken PT symmetry. In the region
of broken PT symmetry ε < 0 only a finite number of eigenvalues are real and the remaining
eigenvalues appear as complex-conjugate pairs. The region of unbroken PT symmetry has been
studied but the region of broken PT symmetry has thus far been unexplored. This paper presents
a detailed numerical and analytical examination of the behavior of the eigenvalues for −4 < ε < 0.
In particular, it reports the discovery of an infinite-order exceptional point at ε = −1, a transition
from a discrete spectrum to a partially continuous spectrum at ε = −2, a transition at the Coulomb
value ε = −3, and the behavior of the eigenvalues as ε approaches the conformal limit ε = −4.

I. INTRODUCTION

PT -symmetric quantum theory has its roots in a series
of papers that proposed a new perturbative approach to
scalar quantum field theory: Instead of a conventional
expansion in powers of a coupling constant, it was pro-
posed that a perturbation parameter δ be introduced that
measures the nonlinearity of the theory. Thus, to solve a
gφ4 field theory one studies a gφ2(φ2)δ theory and treats
δ as a small parameter. After developing a perturbation
expansion in powers of δ, the parameter δ is set to one to
obtain the results for the gφ4 theory. This perturbative
calculation is impressively accurate and does not require
the coupling constant g to be small [1, 2]. A crucial tech-
nical feature of this idea is that φ2 and not φ be raised to
the power δ in order to avoid raising a negative number
to a noninteger power and thereby generating complex
numbers as an artifact of the procedure.

Subsequently, the δ expansion was used to solve an ar-
ray of nonlinear classical differential equations taken from
various areas of physics: The Thomas-Fermi equation
(nuclear charge density) y′′(x) = [y(x)]3/2/

√
x is modi-

fied to y′′(x) = y(x)[y(x)/x]δ; the Lane-Emdon equation
(stellar structure) y′′(x) + 2y′(x)/x+ [y(x)]n = 0 is mod-
ified to y′′(x) + 2y′(x) + [y(x)]1+δ; the Blasius equation
(fluid dynamics) y′′′(x) + y′′(x)y(x) = 0 is modified to
y′′′(x) + y′′(x)[y(x)]δ = 0; the Korteweg-de Vries equa-
tion (nonlinear waves) ut + uux + uxxx = 0 is modified
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to ut +uδux +uxxx = 0. In each of these cases the quan-
tity raised to the power delta is positive and when δ = 0
the equation becomes linear. Just a few terms in the δ
expansion gives an accurate numerical result [3].

The breakthrough of PT -symmetric quantum theory
was the surprising discovery that to avoid the appearance
of spurious complex numbers it is actually not necessary
to raise a positive quantity to the power δ so long as the
quantity is symmetric under combined space and time
reflection. This fact is highly nontrivial and was totally
unexpected. For example, a quantum-mechanical poten-
tial of form x2(ix)ε does not necessarily lead to complex
eigenvalues because the quantity ix is PT invariant. In-
deed, the non-Hermitian PT -symmetric Hamiltonian

H = p2 + x2(ix)ε (1)

has the property that its eigenvalues are entirely real,
positive, and discrete when ε ≥ 0 (see Fig. 1). The re-
ality of the spectrum was noted in Refs. [4, 5] and was
attributed to the PT symmetry of H. Dorey, Dunning,
and Tateo proved that the spectrum is real when ε > 0
[6, 7]. Following the observation that the eigenvalues
of non-Hermitian PT -symmetric Hamiltonians could be
real, many papers were published in which various PT -
symmetric model Hamiltonians were studied [8].

A particularly interesting feature of PT -symmetric
Hamiltonians is that they often exhibit a transition from
a parametric region of unbroken PT symmetry in which
all of the eigenvalues are real to a region of broken PT
symmetry in which some of the eigenvalues are real and
the rest of the eigenvalues occur in complex-conjugate
pairs. The PT transition occurs in both the classical and
the quantized versions of a PT -symmetric Hamiltonian
[5] and this transition has been observed in numerous
laboratory experiments [9–20].

There have been many studies of the real spectrum of
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FIG. 1: [Color online] Real eigenvalues of the Hamiltonian
H = p2 + x2(ix)ε plotted as functions of the parameter ε.
When ε ≥ 0 (the region of unbroken PT symmetry), the spec-
trum is real, positive, and discrete. However, as ε goes below
0 (ε < 0 is known as the region of broken PT symmetry) the
real eigenvalues begin to merge pairwise and form complex-
conjugate pairs. When −1 < ε < 0, there are only a finite
number of real positive eigenvalues and an infinite number of
complex-conjugate pairs of eigenvalues. When ε ≤ −0.57793,
only one real eigenvalue survives and as ε approaches −1+,
this real eigenvalue becomes infinite. The behavior of the
complex eigenvalues in the region of broken PT symmetry is
not shown in this graph and has not been explored until now.

H in (1) but essentially nothing has been published re-
garding the analytic behavior of the complex eigenvalues
as functions of ε in the region of broken PT symmetry.
However, it is known that there is a sequence of negative-
real values of ε lying between −1 and 0 at which pairs of
real eigenvalues become degenerate and split into pairs
of complex-conjugate eigenvalues. These special values
of ε are often called exceptional points [21]. In general,
eigenvalues usually have square-root branch-point singu-
larities at exceptional points.

Exceptional points in the complex plane, sometimes
called Bender-Wu singularities, explain the divergence of
perturbation expansions [22, 23]. The appearance of ex-
ceptional points is a generic phenomenon. In these early
studies of coupling-constant analyticity it was shown
that the energy levels of a Hamiltonian, such as the
Hamiltonian for the quantum anharmonic oscillator H =
p2+x2+gx4, are analytic continuations of one another as
functions of the complex coupling constant g due to the
phenomenon of level crossing at the exceptional points.
Thus, the energy levels of a quantum system, which are
discrete when g is real and positive, are actually smooth
analytic continuations of one another in the complex-g
plane [24]. A simple topological picture of quantization

emerges: The discrete energy levels of a Hamiltonian for
g > 0 are all branches of a multivalued energy function
E(g) and the distinct eigenvalues of this Hamiltonian cor-
respond with the sheets of the Riemann surface on which
E(g) is defined. Interestingly, it is possible to vary the
parameters of a Hamiltonian in laboratory experiments
and thus to observe experimentally the effect of encircling
exceptional points [16, 25, 26].

The purpose of this paper is to study the analytic con-
tinuation of the real eigenvalues shown in Fig. 1 as ε
moves down the negative-ε axis. In Sec. II we show that
there is an infinite-order exceptional point at ε = −1
where there is an elaborate logarithmic spiral (a double
helix) of eigenvalues. The real part of each complex-
conjugate pair of eigenvalues that is formed at excep-
tional points between ε = −1 and ε = 0 approaches +∞
like | ln(ε + 1)|2/3 as ε approaches −1. In contrast, the
imaginary parts of each pair of eigenvalues vanish loga-
rithmically at ε = −1. As ε goes below −1, the real parts
of the eigenvalues once again become finite and the imag-
inary parts of the eigenvalues rise up from 0. As ε goes
from just above to just below −1, the imaginary parts of
the eigenvalues appear to undergo discrete jumps but in
fact they vary continuously as functions of ε.

In Sec. III we discuss the Stokes wedges that charac-
terize the eigenvalue problem as ε goes below −1. We
give plots of the eigenvalues in the region −2 < ε < −1
and perform an asymptotic analysis of the eigenvalues
near ε = −2. As ε approaches −2, the entire spectrum
becomes degenerate; the real parts of all the eigenvalues
approach −1 and the imaginary parts coalesce to 0.

Section IV presents a numerical study of the eigenval-
ues in the region −4 < ε < −2. We show that a transi-
tion occurs at ε = −2 in which the eigenspectrum goes
from being discrete to becoming partially discrete and
partially continuous. The continuous part of the spec-
trum lies on complex-conjugate pairs of curves in the
complex-ε plane. Another transition occurs at ε = −3
(the PT -symmetric Coulomb potential); below ε = −3
some of the discrete eigenvalues become real. As ε ap-
proaches the conformal point ε = −4, the eigenvalues
collapse to the single value 0. Section V gives brief con-
cluding remarks.

II. EIGENVALUE BEHAVIOR AS ε→ −1

A. Stokes wedges

The time-independent Schrödinger eigenvalue problem
for the Hamiltonian H in (1) is characterized by the dif-
ferential equation

− y′′(x) + x2(ix)εy(x) = Ey(x). (2)

The boundary conditions imposed on the eigenfunctions
require that y(x) → 0 exponentially rapidly as |x| → ∞
in a pair of Stokes wedges in the complex-x plane. This
subsection explains the locations of these Stokes wedges.
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As has been previously discussed at length, the poten-
tial x2(ix)ε has a logarithmic singularity in the complex-x
plane when ε is not an integer. Thus, it is necessary to
introduce a branch cut. This branch cut is chosen to run
from 0 to ∞ in the complex-x plane along the positive-
imaginary axis because this choice respects the PT sym-
metry of the Hamiltonian. This is because PT symme-
try translates into left-right symmetry in the complex-
x plane (that is, mirror symmetry with respect to the
imaginary-x axis) [4, 5]. The argument of x on the prin-
cipal sheet (sheet 0 of the Riemann surface) runs from
−3π/2 to π/2. On sheet 1, π/2 < arg x < 5π/2, on sheet
−1, −7π/2 < arg x < −3π/2, and so on.

As explained in Refs. [4, 5], the Stokes wedges in which
the boundary conditions on y(x) are imposed are located
in the complex-x plane in a PT -symmetric fashion. If
ε = 0, the Stokes wedges have angular opening π/2 and
are centered about the positive-x and negative x-axes on
the principal sheet of the Riemann surface. As ε increases
from 0, the wedges get narrower and rotate downwards;
as ε decreases from 0, the Stokes wedges get wider and
rotate upwards. WKB analysis provides precise formulas
for the location of the center line of the Stokes wedges,

θrightwedge, center = − ε

8 + 2ε
π,

θleft wedge, center = −π +
ε

8 + 2ε
π, (3)

the upper edges of the Stokes wedges,

θrightwedge, upper edge =
2− ε
8 + 2ε

π,

θleft wedge, upper edge = −π − 2− ε
8 + 2ε

π, (4)

and the lower edges of the Stokes wedges,

θrightwedge, lower edge = − 2 + ε

8 + 2ε
π,

θleft wedge, lower edge = −π +
2 + ε

8 + 2ε
π. (5)

The locations of the Stokes wedges for eight values of
ε are shown in Fig. 2. As ε decreases to −1, the opening
angles of the wedges increase to 120◦ and the upper edges
of the wedges touch. At the special value ε = −1 the log-
arithmic Riemann surface collapses to a single sheet; the
wedges fuse and are no longer separated. As a result
there are no eigenvalues at all (the spectrum is null) [28].
When ε goes below −1, the wedges are again distinct and
no longer touch; the left wedge rotates in the negative di-
rection and enters sheet −1 while the right wedge rotates
in the positive direction and enters sheet 1.

B. Numerical behavior of the eigenvalues as ε
decreases below 0

Previous numerical studies of the (real) eigenvalues for
ε ≥ 0 were done by using the shooting method. How-

FIG. 2: [Color online] Stokes wedges associated with the
eigenvalue problem for the Hamiltonian H = p2 + x2(ix)ε

for eight values of ε. The locations of center lines, the upper
edges, and the lower edges of the Stokes wedges are given in
(3)-(5). The left wedge is colored blue and the right wedge is
colored red. As ε decreases, the wedges get wider and rotate
upwards. At ε = −1 the two wedges touch and fuse into one
wedge. However, when ε goes below −1, the sheets are again
distinct; the left wedge rotates clockwise into sheet −1 and
the right wedge rotates anticlockwise into sheet 1.

ever, when the eigenvalues become complex, the shoot-
ing method is not effective and we have used the finite-
element method and several variational methods. We
have checked that the eigenvalues produced by these dif-
ferent methods all agree to at least five decimal places.

Figure 1 may seem to suggest that the real eigenvalues
disappear pairwise at special isolated values of ε. How-
ever, the eigenvalues do not actually disappear; rather,
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FIG. 3: [Color online] Eigenvalues of the Hamiltonian H =
p2 + x2(ix)ε plotted as functions of the parameter ε for
−1.1 < ε < 0. This graph is a continuation of the graph
in Fig. 1. As ε decreases below 0 and enters the region of
broken PT symmetry, real eigenvalues (solid black lines) be-
come degenerate and then form complex-conjugate pairs. The
real parts of these pairs of eigenvalues (solid blue lines) ini-
tially decrease as ε decreases but blow up suddenly as ε ap-
proaches −1. The real parts then decrease as ε decreases be-
low −1. The imaginary parts of the eigenvalue pairs (dashed
red lines) remain finite and appear to suffer discontinuous
jumps at ε = −1. However, a closer look shows that these
dashed lines rapidly decay to 0 near ε = −1 and then rapidly
come back up to different values as ε passes through −1. A
blow-up of the region near ε = −1 is given in Figs. 4.

as each pair of real eigenvalues fuse, these eigenvalues
convert into a complex-conjugate pair of eigenvalues. At
this transformation point both the real and the imaginary
parts of each pair of eigenvalues vary continuously; the
real parts remain nonzero and the imaginary parts move
away from zero as ε goes below the transition point. A
more complete plot of the eigenvalues in Fig. 3 shows that
the real parts of each pair of eigenvalues decay slightly as
ε decreases towards −1, while the imaginary parts grow
slowly in magnitude. However, just as ε reaches −1 the
real parts of the eigenvalues suddenly diverge logarithmi-
cally to +∞ and the imaginary parts of the eigenvalues
suddenly vanish logarithmically. Below ε = −1 the real
parts of the eigenvalues rapidly descend from +∞ and the
imaginary parts of the eigenvalues rise up from 0. This
behavior is depicted in Fig. 3 and a detailed description
of the region −1.05 < ε < −0.95 is shown in Fig. 4.

C. Asymptotic study of the eigenvalues near ε = −1

Figure 3 shows that the eigenvalues are singular at
ε = −1 and suggests that this singularity is more com-
plicated than the square-root branch-point singularities
that occur at standard exceptional points [29]. To iden-
tify the singularity we perform a local asymptotic anal-
ysis about the point ε = −1. We begin by letting
ε = −1 + δ and we treat δ as small (δ << 1). This

FIG. 4: [Color online] Detailed view of Fig. 3 showing the
behavior of the eigenvalues of the Hamiltonian H = p2 +
x2(ix)ε plotted as functions of the parameter ε for −1.05 ≤
ε ≤ −0.95. There is one real eigenvalue for ε > −1 (solid
black line). The real parts of the complex eigenvalues (blue
solid lines) and the real eigenvalue diverge at ε = −1. The
complex eigenvalues occur in complex-conjugate pairs and the
imaginary parts of the eigenvalues rapidly go to 0 at ε = −1.
These behaviors are expressed quantitatively in (14).

allows us to approximate the potential x2(ix)ε in (1) as

−ix
[
1 + δ ln(ix) + O

(
δ2
)]
.

We also expand the eigenfunctions in powers of δ:

ψ(x) = y0(x) + δy1(x) + O
(
δ2
)
.

Because we are treating δ as small, the Stokes wedges
have an angular opening close to 2π/3 and are approx-
imately centered about the angles θL = −7π/6 and
θR = π/6. We construct solutions ψL(x) and ψR(x) in
the left and right Stokes wedges. We then patch together
these eigenfunctions and their first derivatives at the ori-
gin x = 0. The patching condition is

0 = ψR(x)ψ′L(x)− ψL(x)ψ′R(x)

∣∣∣∣
x=0

. (6)

To zeroth order in powers of δ the Schrödinger eigen-
value equation Hψ(x) = Eψ(x) reads

y′′0 (x) + ixy0(x) + Ey0(x) = 0.

Substituting x = reiθL,R reduces this equation to an
Airy equation [27] for the zeroth-order eigenfunctions
y0,(L,R)(x) in the left and right wedges:

y′′0,(L,R)(r)−
(
r − Ee∓iπ/3

)
y0,(L,R)(r) = 0, (7)

where the derivatives are now taken with respect to r.
The boundary conditions on the eigenfunctions in each

wedge require that y0,(L,R)(r) → 0 as r → ∞, so the
solutions to (7) are Airy functions [27]:

y0,(L,R)(x) = CL,R(x)Ai
(
r − Ee∓iπ/3

)
= CL,RAi

(
∓xe±iπ/6 + Ee±2iπ/3

)
, (8)
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where CL,R are multiplicative constants.

The right side of the patching condition (6) for the
zeroth-order solutions is calculated from the Wronskian
identity for Airy functions [27]:

ψ0,R(x)ψ′0,L(x)− ψ0,L(x)ψ′0,R(x)
∣∣
x=0

= −CLCR

[
e−iπ/6Ai

(
Ee−2iπ/3

)
Ai′
(
Ee2iπ/3

)
+ eiπ/6Ai

(
Ee2iπ/3

)
Ai′
(
Ee−2iπ/3

)]
= −iCLCRW

[
Ai
(
Ee2iπ/3

)
,Ai

(
Ee−2iπ/3

)]
= 1

2πCLCR 6= 0. (9)

When δ is exactly 0, the potential is linear in x and
y0,(L,R)(x) are the exact solutions to the Schrödinger
equation. The above calculation shows that these so-
lutions cannot be patched, and thus there are no eigen-
values at all when ε = −1 (δ = 0). This conclusion is
consistent with Fig. 3, which shows that the real parts
of all of the eigenvalues become infinite as ε approaches
−1. The fact that the spectrum is empty at ε = −1 is
not a new result; the absence of eigenvalues of a linear
potential was established in Ref. [28].

Next, we perform a first-order O
(
δ1
)

analysis. We
set y1(x) = Q(x)y0(x). (This substitution is motivated
and explained in detail in Ref. [24].) The first-order
Schrödinger equation now reads

y′′1 (x) + ixy1(x) + ix ln(ix)y0(x) + Ey1(x) = 0.

We multiply this equation by the integrating factor y0(x)
and insert the leading-order approximation to the eigen-
functions and obtain[

y20(x)Q′(x)
]′

= −ix ln(ix)y20(x).

We then integrate this equation along the center ray of
each Stokes wedge:

Q′L,R(x) = i

∫ ∓ exp(∓iπ/6)∞

0

dt t ln(it)

[
y0,(L,R)(t)

y0,(L,R)(x)

]2
= ie∓iπ/3

∫ ∞
0

ds s ln
(
∓se∓iπ/6

)
×

[
y0,(L,R)

(
∓ se∓iπ/6

)
y0,(L,R)(x)

]2
= ie∓iπ/3

∫ ∞
0

ds s ln
(
se±2iπ/3

)
×

[
Ai
(
s+ Ee±2iπ/3

)
Ai
(
∓xe±iπ/6 + Ee±2iπ/3

)]2 . (10)

Thus, to first order in δ with ψ(x) = y0(x)[1 + δQ(x)]

the patching condition (6) becomes

0 = [1 + δQR(0) + δQL(0)]
[
y0,R(x)y′0,L(x)

−y0,L(x)y′0,R(x)
]
x=0

+δy0,L(x)y0,R(x) [Q′L(0)−Q′R(0)]

= CLCR

{
− 1

2π + δAi
(
Ee−2πi/3

)
Ai
(
Ee2πi/3

)
× [Q′L(0)−Q′R(0)]} , (11)

where we have used the zeroth-order patching condition
(6) and the leading-order eigenfunction (8). Note that
because the Schrödinger equation is linear we are free to
choose QL(0) +QR(0) = 0.

For large E, we use the asymptotic expansion of the
Airy function [27]

Ai(x)∼ 1
2
√
π
x−1/4 exp

(
− 2

3x
3/2
)

(|x| → ∞, |arg x| < π).

Thus, the patching condition for |E| → ∞ becomes

2
δ ∼

1√
E

exp
(
4
3E

3/2
)

[Q′R(0)−Q′L(0)] . (12)

Note that because we are treating δ as small, the dif-
ference Q′R(0) − Q′L(0) is approximately a positive real
number. For real E this difference is exactly real because
Q′R(0) and −Q′L(0) are complex conjugates.

We expand the right side of (12) to first order in β/α,
where α = ReE > 0 and β = ImE. This expansion is
justified because, as we can see in Fig. 3, the imaginary
parts are small compared with the real parts near ε = −1.
The patching condition (12) then becomes

2
δ ∼ α−1/2

(
1 + iβα

)−1/2
exp

[
4
3α

3/2
(

1 + iβα

)3/2]
= α−1/2

(
1− i β2α

)
exp

(
4
3α

3/2
)

exp
(
−2iα1/2β

)
+O

(
β2

α2

)
. (13)

Hence, when δ is positive, we obtain the condition

arg 2
δ = arctan

(
− β

2α

)
− 2α1/2β = 2mπ,

where m is an integer. This result simplifies because
the arctangent term is small; to leading-order we obtain
2α1/2β = 2mπ. Similarly when δ < 0, we find that
2α1/2β = (2m+ 1)π.

We conclude that for either sign of δ we obtain a sim-
ple formula for the real part of the eigenvalues. Specifi-
cally, if we combine the above three equations, we obtain
2
|δ| ∼ α−1/2 exp

(
4
3α

3/2
)
. Hence, in the neighborhood of

ε = −1 (that is, when δ is near 0), the real parts of the
eigenvalues are logarithmically divergent while the imag-
inary parts of the eigenvalues remain finite:

ReE ∼
(
− 3

4 ln |δ|
)2/3

, ImE ∼ nπ
2
√
ReE

, (14)

where n is an even integer for δ > 0 and n is an odd
integer for δ < 0. Evidently, the imaginary parts of the
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eigenvalues vary rapidly as ε passes through −1 because
there is a logarithmic singularity at ε = −1. A blow-up
of the region −1.05 < ε < 1.05 is given in Fig. 4.

To visualize the behavior of the eigenvalues near ε =
−1 more clearly, we have plotted the imaginary and real
parts of the eigenvalues in the complex -ε plane in the left
and right panels of Fig. 5. Observe that the imaginary
parts of the eigenvalues lie on a helix and that the real
parts of the eigenvalues lie on a it double helix as ε winds
around the logarithmic singularity at ε = −1. This loga-
rithmic singularity is an infinite-order exceptional point,
which one discovers only very rarely in studies of the an-
alytic structure of eigenvalue problems.

III. EIGENVALUE BEHAVIOR AS ε→ −2

In Fig. 6 we plot the first three complex-conjugate pairs
of eigenvalues in the range −2.0 ≤ ε ≤ −1.1. Note that
the eigenvalues Ek coalesce to the value −1 as ε ap-
proaches −2. As ε decreases towards −2 the real part
of Ek becomes more negative as k increases, and the
spectrum becomes inverted; that is, the higher-lying real
parts of the eigenvalues when ε is near −1.7 (for exam-
ple) decrease as ε decreases and they cross when ε is near
−1.3. This crossing region is shown in detail in Fig. 7.

FIG. 5: [Color online] Behavior of the eigenvalues of the Hamiltonian H = p2 + x2(ix)ε as the parameter ε winds around the
exceptional point at ε = −1 in a circle of radius 0.05 in the complex-ε plane. This singular point is an infinite-order exceptional
point, and all of the complex eigenvalues analytically continue into one another as one encircles the exceptional point. The
lines are shaded blue when Re ε > 0 and red when Im ε < 0. The behavior of the imaginary parts of the eigenvalues (left panel)
are easier to visualize because they exhibit a simple logarithmic spiral. The dot shows that the imaginary part of an eigenvalue
(the eigenvalue shown in black in Figs. 3 and 4) vanishes (the eigenvalue is real) when Re ε > 0. However, as we wind in
one direction the imaginary parts of the eigenvalues increase in a helical fashion and as we wind in the opposite direction the
imaginary parts of the eigenvalues decrease in a helical fashion. As we pass the real-ε axis we pass through the values plotted
on the red dashed lines shown in Figs. 3 and 4. A shaded cylinder has been drawn to assist the eye in the following this helix.
The behavior of the real parts of the eigenvalues (right panel) is more complicated because the curves form a double helix. The
two helices intersect four times each time the singular point at ε = −1 is encircled, and they intersect at 90◦ intervals. If we
begin at the dot, we see that the real parts of the eigenvalues increase as we rotate about ε = −1 in either direction. Each time
ε crosses the real axis in the complex-ε plane the curves pass through the values shown at the left and right edges of Fig. 4.
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FIG. 6: [Color online] First three complex-conjugate pairs of
eigenvalues of the Hamiltonian H = p2 + x2(ix)ε plotted as
functions of ε for −2 ≤ ε ≤ −1.1. This figure is a continuation
of Fig. 3. Note that the real parts of the eigenvalues coalesce
to −1 and the imaginary parts coalesce to 0 as ε approaches
−2. The results of a WKB calculation of these eigenvalues
near ε = −2 is given in (29). Note that the real parts of the
eigenvalues cross near ε = −1.3, but they do not all cross at
the same point as can be seen in Fig. 7.

The objective of this section is to explain the behavior
of the eigenvalues as ε approaches −2 by performing a
local analysis near ε = −2. To do so we let

ε = −2 + δ

and treat δ as small (δ << 1) and positive. With this
change of parameter (2) becomes

− y′′(x)− (ix)δy(x) = Ey(x). (15)

The boundary conditions on y(x), which we can deduce
from Fig. 2, are that the eigenfunctions y(x) must vanish
asymptotically at the ends of a path that originates at
e−3πi/2∞ in the complex-x plane, goes down to the ori-
gin along the imaginary axis, encircles the origin in the
positive direction, goes back up the imaginary axis, and
terminates at eπi/2∞. The eigenfunctions are required
to vanish at the endpoints e−3πi/2∞ and eπi/2∞.

We now make the crucial assumption that it is valid to
expand the potential term in (15) as a series in powers
of δ. To second order in δ we then have

−y′′(x)− δ ln(ix)y(x)− 1
2δ

2[ln(ix)]2y(x)

= (E + 1)y(x). (16)

In this form one can see that to every order in powers
of δ the potential terms in the Schrödinger equation are
singular at x = 0. As a consequence, the solution y(x)
vanishes at x = 0. (One can verify that y(0) = 0 by ex-
amining the WKB approximation to y(x); the prefactor
[V (x)− E]−1/4 vanishes logarithmically.)

We then make the change of independent variable t =
−ix. In terms of t (16) becomes

−y′′(t) + δ ln(−t)y(t) + 1
2δ

2[ln(−t)]2y(t)

= −(E + 1)y(t). (17)

FIG. 7: [Color online] Detail of Fig. 6 showing the behavior of
the real parts of the first six eigenvalues of the Hamiltonian
H = p2 + x2(ix)ε for −1.4 ≤ ε ≤ −1.2. The real parts of
the eigenvalues cross almost at the same value of ε but the
imaginary parts of the eigenvalues remain well separated.

This eigenvalue equation is posed on a contour on the
real-t axis that originates at t = +∞, goes down the
positive-real t axis, encircles the origin in the positive di-
rection, and goes back up to e2πi∞, and y(t) is required
to vanish at the endpoints of this contour. We then re-
place ln(−t) with ln(t)± iπ:

−y′′(t) + δ[ln(t)± iπ]y(t) + 1
2δ

2[ln(t)± iπ]2y(t)

= −(E + 1)y(t). (18)

Next, we make the scale change

t = s/
√
δ.

This converts (18) into the Schrödinger equation

− y′′(s) + ln(s)y(s) + δU(s)y(s) = Fy(s), (19)

where the energy term F is given by

F = −(E + 1)/δ + 1
2 ln(δ)∓ iπ − 1

8δ[ln(δ)]2

+ 1
2δπ

2 ± 1
2δiπ ln(δ) (20)

and the order δ term in the potential is given by

U(s) = 1
2 [ln(s)]2 − 1

2 ln(δ) ln(s)± iπ ln(s). (21)

Our procedure will be as follows. First, we neglect the
U(s) term in (19) because δ is small and we use WKB
theory to solve the simpler Schrödinger equation

− y′′0 (s) + ln(s)y0(s) = F0y0(s). (22)

Second, we find the energy shift ∆F due to the U(s) term
in (19) by using first-order Rayleigh-Schrödinger theory
[24]; to wit, we calculate the expectation value of U(s) in
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the WKB approximation to y0(s) in (22). Having found
F = F0 + ∆F , we obtain the energy E from (20):

E = −1− Fδ + 1
2δ ln(δ)∓ iπδ − 1

8δ
2[ln(δ)]2

+ 1
2π

2δ2 ± 1
2 iπδ

2 ln(δ). (23)

This approach gives a very good numerical approxima-
tion to the energies shown in Fig. 6.

The standard WKB quantization formula for the eigen-
values F0 in a single-well potential V (s) (the two-turning-
point problem) is

(
n+ 1

2

)
π =

∫ s2

s1

ds
√
F0 − V (s) (n >> 1). (24)

For (22) the potential V (s) is ln(s) and the boundary con-
ditions on y0(s) are given on the positive half line: y0(s)
vanishes at s = 0 and at s = +∞. In order to apply
(24) we extend the differential equation to the whole line
−∞ < s < +∞ by replacing ln(s) with ln(|s|) and con-
sider only the odd-parity solutions. Thus, we must replace
the integer n in (24) with 2k + 1, where k = 0, 1, 2, . . ..
The turning points are given by s1 = −eF0 and s2 = eF0 .
Hence, the WKB formula (24) becomes

(
2k + 1 + 1

2

)
π =

∫ eF0

−eF0

ds
√
F0 − ln(|s|)

= 2

∫ eF0

0

ds
√
F0 − ln(s) (k >> 1).

The substitution s = ueF0 simplifies this equation to

(
2k + 3

2

)
π = 2eF0

∫ 1

0

du
√
− ln(u)

and the further substitution v = − ln(u) reduces the in-
tegral to a Gamma function:∫ 1

0

du
√
− ln(u) =

∫ ∞
0

dv e−vv1/2 = Γ
(
3
2

)
= 1

2

√
π.

Thus, the WKB approximation to the eigenvalues F0 is

F0 = ln
[(

2k + 3
2

)√
π
]
, (25)

which is valid for large k.
Next, we calculate the order-δ correction ∆F to (25)

due to the potential U(s) in (19). To do so we calculate
the expectation value of U(s) in the WKB eigenfunction
y0(s) of (22):

∆F = δ

∫ ∞
0

dsU(s)[y0(s)]2
/∫ ∞

0

ds [y0(s)]2, (26)

where U(s) is given in (21).
Integrals of this type are discussed in detail in Chap. 9

of Ref. [24]. To summarize the procedure, in the
classically-forbidden region beyond the turning point,
y0(s) is exponentially small, and the contribution to

the integral from this region is insignificant. In the
classically-allowed region the square of the eigenfunction
has the general WKB form

[y0(s)]2 =
C√

F0 − V (s)
sin2

[
φ+

∫ s

dr
√
F0 − V (r)

]
,

where C is a multiplicative constant and φ is a constant
phase shift.

Making the replacement sin2 θ = 1
2 −

1
2 cos(2θ), we ob-

serve that because of the Riemann-Lebesgue lemma, the
cosine term oscillates to zero for large quantum number
k, and we may replace [y0(s)]2 in the integrals in (26) by
the simple function 1

2 [F0 − V (s)]−1/2. Thus, the shift in
the eigenvalues is given by

∆F = δ

∫ eF0

0

ds ln(s)√
F0 − ln(s)

[
1
2 ln(s)− 1

2 ln(δ)± iπ
]

/∫ eF0

0

ds√
F0 − ln(s)

. (27)

After making the previous changes of variable s = eF0u
followed by v = − ln(u), we obtain

∆F = δ

∫ ∞
0

dv e−v(F0 − v)v−1/2
[
1
2 (F0 − v)

− 1
2 ln(δ)± iπ

]/∫ ∞
0

dv e−vv−1/2,

which evaluates to

∆F = 1
8δ
[
4F 2

0 − 4F0 + 3− 4F0 ln(δ)

+2 ln(δ)± iπ(8F0 − 4)] . (28)

Finally, we substitute F = F0 +∆F in (23) to obtain the
eigenvalues Ek:

Ek = −1 + δ
[
1
2 ln(δ)− F0

]
− 1

8δ
2
{

[ln(δ)]2 + 2 ln(δ)

−4 ln(δ)F0 + 3− 4π2 − 4F0 + 4F 2
0

}
±i
{
−δπ + 1

2δ
2 [π ln(δ) + π − 2F0]

}
, (29)

where F0 is given in (25).
To verify these results, in Tables I and II we compare

our numerical calculation of ReEk and ImEk with the
asymptotic prediction in (29).

IV. EIGENVALUE BEHAVIOR FOR −4 < ε < −2

This section reports our numerical calculations of the
eigenvalues for ε between −2 and −4. We rotate x in (2)
by 90◦ by making the transformation s = ix. In the s
variable the eigenvalue equation (2) becomes

ψ′′(s)− s2+εψ(s) = Eψ(s). (30)

In the x variable the center-of-wedge angles (3) are −π+
επ/(8 + 2ε) and −επ/(8 + 2ε) but in the s variable these
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k Numerical value of O(δ2) calculation relative

ReEk at δ = 0.01 of ReEk in (29) error

0 −1.0352 −1.0414 8.70 %

2 −1.0426 −1.0461 0.33 %

4 −1.0469 −1.0493 0.30 %

6 −1.0499 −1.0518 0.18 %

8 −1.0523 −1.0538 0.15 %

10 −1.0542 −1.0555 0.12 %

12 −1.0559 −1.0569 0.10 %

TABLE I: Comparison of the real parts of the eigenvalues
of the differential equation (15) at δ = 0.01 with the asymp-
totic approximation in (29). The rate at which the accuracy
increases with increasing k is similar to the increase in accu-
racy of the standard WKB approximation to the eigenvalues
of the quartic anharmonic oscillator [24].

k Numerical value of O(δ2) calculation relative

ImEk at δ = 0.01 of ImEk in (29) error

0 0.03397 0.03210 5.3 %

2 0.03352 0.03220 3.8 %

4 0.03339 0.03224 3.4 %

6 0.03334 0.03226 3.2 %

8 0.03332 0.03228 3.1 %

10 0.03332 0.03229 3.0 %

12 0.03333 0.03231 3.0 %

TABLE II: Comparison of the imaginary parts of the eigen-
values of the differential equation (15) at δ = 0.01 with the
asymptotic approximation in (29).

angles are simply ∓2π/(4 + ε). Thus, the integration
contour makes 2/(4 + ε) loops around the logarithmic
branch-point at the origin in the complex-s plane.

For example, if ε = −3 (this is the complex PT -
symmetric version of the Coulomb potential for which
H = p2 + i/x [30]), the contour loops around the origin
exactly twice; it goes from an angle −2π to the angle 2π.
Looping contours for other complex eigenvalue problems
have been studied in the past and have been called “to-
boggan contours” [31]. In the PT -symmetric Coulomb
case the contour is shown in Fig. 8. Figure 9 shows the
contours for the cases ε = −2.5 and ε = −3.5.

To solve these eigenvalue problems with looping con-
tours we introduce the change of variable

s(t) =
1

1− t2
exp

2πit

4 + ε
, (31)

which parametrizes the looping path in the complex-s
plane in terms of the real variable t. As t ranges from −1
to +1, the path in the complex-s plane comes in from in-
finity in the center of the left Stokes wedge, loops around
the logarithmic branch-point singularity at the origin,
and goes back out to infinity in the center of the right
Stokes wedge. In terms of the t variable the eigenvalue
equation (30) has the form

ψ′′(t)

[s′(t)]2
− s′′(t)

[s′(t)]3
ψ′(t)− [s(t)]2+εψ(t) = Eψ(t), (32)

where ψ(t) satisfies ψ(−1) = ψ(1) = 0.
To solve this eigenvalue problem we use the Arnoldi

algorithm, which has recently come available on Mathe-
matica [32]. This algorithm finds low-lying eigenvalues,
whether or not they are real. We apply the Arnoldi al-

FIG. 8: [Color online] Contour in the complex-s plane for the complex Coulomb potential ε = −3. The contour comes in from
∞ parallel to the positive-real axis at an angle of −2π in the center of the left Stokes wedge (right panel). Next, it loops around
the origin in the positive direction (center panel). Finally, it goes back out to ∞ parallel to the positive-real axis at an angle
of 2π in the center of the right Stokes wedge (left panel). The total rotation about the origin is 4π.
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FIG. 9: [Color online] Eigenvalue contours in the complex-s
plane for the cases ε = −2.5 and ε = −3.5.

gorithm to (32) subject to the homogeneous Dirichlet
boundary conditions ψ(−1 + η) = ψ(1 − η) = 0 and let
η → 0+. There are two possible outcomes: (i) In this
limit, some eigenvalues rapidly approach limiting values;
these eigenvalues belong to the discrete part of the spec-
trum. (ii) Other eigenvalues become dense on curves in
the complex plane as η → 0+; these eigenvalues belong
to the continuous part of the spectrum.

A. ε slightly below −2

As soon as ε goes below −2, the eigenvalues explode
away from the value −1 (shown at the left side of Fig. 6).
In Fig. 10 we plot about 100 eigenvalues for ε = −2.0001
and −2.001. In each plot we see both discrete and con-

FIG. 10: [Color online] Eigenvalues of the Hamiltonian H = p2 +x2(ix)ε for ε = −2.0001 and −2.001. The spectrum lies in the
left-half complex plane and is partly continuous partly discrete. The eigenvalues in the continuous part of the spectrum lie on
a pair of complex-conjugate curves that radiate away from −1 and as we calculate more eigenvalues, the points on these curves
become denser. The discrete part of the spectrum consists of eigenvalues lying on two complex-conjugate curves that are much
closer to the negative-real axis. There is an elaborate structure near ε = −1. Note that as ε goes below −2, the eigenvalues
move away from the point −1; specifically, for ε = −2.0001 the distance from −1 to the nearest eigenvalue is about 0.0005 and
for ε = −2.001 the distance to the nearest eigenvalue is about 0.008.
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FIG. 11: [Color online] Discrete and continuous parts of
the spectrum of the PT -symmetric Hamiltonian H = p2 +
x2(ix)ε, for the case ε = −2.6. The discrete eigenvalues (or-
ange squares) occur in pairs in the left-half complex plane.
The continuous eigenvalues (blue dots) lie on two complex-
conjugate pairs of curves in the right-half complex plane. As
we decrease the cell size in the Arnoldi algorithm, the dots be-
come dense on these curves. The continuous curves of eigen-
values originate slightly to the left of the origin.

tinuous eigenvalues. The continuous eigenvalues lie on a
complex-conjugate pair of curves in the left-half plane;
the discrete eigenvalues also lie in the left-half plane but
closer to the real axis.

B. Discrete and continuous eigenvalues

While the purpose of Fig. 10 is to show that the eigen-
values explode away from −1 as ε goes below −2, it is
also important to show how to distinguish between dis-
crete and continuous eigenvalues. To illustrate this we
apply the Arnoldi algorithm at ε = −2.6. Our results are
given in Fig. 11 for η = 0.01. The spectrum in this case
is qualitatively different from the spectrum near ε = −2;
there are now two pairs of curves of continuous eigenval-
ues, and these curves are now in the right-half complex
plane. The discrete eigenvalues are still in the left-half
complex plane but further from the negative real axis.
There is an elaborate spectral structure near the origin
and this is shown in Fig. 12. (We do not investigate this
structure in this paper and reserve it for future research.)

We emphasize that when the Arnoldi algorithm is used
to study a spectrum, it can only return discrete values.
Thus, one must determine whether an Arnoldi eigenvalue
belongs to a discrete or a continuous part of the spec-

FIG. 12: [Color online] Detail of Fig. 11 showing the elaborate
structure of the spectrum near the origin in the complex-
eigenvalue plane for ε = −2.6.

trum. To distinguish between these two possibilities we
study the associated eigenfunctions and observe how they
obey the boundary conditions. Plots of discrete and con-
tinuous eigenfunctions associated with eigenvalues shown
in Fig. 11 are given in Figs. 13 and 14.

In Fig. 13 we plot the absolute values of the eigen-
functions corresponding to the complex-conjugate pair of
eigenvalues E = −1.79±4.31i for ε = −2.6. Observe that
as t approaches the boundaries −1 and 1, the eigenfunc-
tions decay to 0 exponentially. We conclude from this
that the eigenvalues are discrete. This result can then
be verified by taking finer cell sizes in the Arnoldi algo-
rithm. As the cell size decreases, the numerical values of
E are stable. In contrast, in Fig. 14 in which the absolute
values of the eigenfunctions corresponding to the pair of
eigenvalues E = −0.01 ± 0.18i are plotted, we see that
the eigenfunctions vanish exponentially at one endpoint
but vanish sharply at the other endpoint. We therefore
identify these eigenvalues as belonging to the continuous
spectrum. Decreasing the Arnoldi cell size results in a
denser set of eigenvalues along the same curve.
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FIG. 13: [Color online] Absolute values of the eigenfunctions
ψ(t) for the discrete eigenvalues −1.79 ± 4.31i for ε = −2.6.
The eigenfunctions satisfy homogeneous boundary conditions
at ±(1− η) for η = 0.01 and look like bound-state eigenfunc-
tions in the sense that the eigenfunctions decay to 0 exponen-
tially fast at both boundary points. The left and right panels
are interchanged under t → −t, which corresponds to a PT
reflection.

FIG. 14: [Color online] Absolute values of the eigenfunctions
for the continuum eigenvalues −0.01 ± 0.18i for ε = −2.6.
These eigenvalues belong to the continuous spectrum. The
indication that they are part of the continuous spectrum is
that at one of the boundary points the eigenfunctions sud-
denly drop to 0 rather than decaying exponentially to 0. As
in Fig. 13, the left and right panels are interchanged under
t→ −t, which corresponds to a PT reflection.

C. Complex Coulomb potential ε = −3

For the Coulomb potential ε = −3, (30) becomes

ψ′′(s)− 1

s
ψ(s) = Eψ(s),

which is a special case of the Whittaker equation

w′′(z) +

[
−1

4
+
κ

z
+

1
4 − µ

2

z2

]
w(z) = 0

with µ2 = 1
4 [27]. The boundary conditions are unusual

(they differ from those in conventional atomic physics)
in that ψ(s)→ 0 as |s| → ∞ with arg(s) = ±2π. Rather
than performing an analytic solution to the eigenvalue
problem, we simply present the numerical results, which
are obtained by solving (32) with ε = −3. Figure 15
displays about 100 eigenvalues, which lie on two pairs
of complex-conjugate curves in the left-half plane. These
eigenvalues are part of the continuous spectrum. A blow-
up of the region around the origin is shown in Fig. 16.

FIG. 15: [Color online] Eigenvalues for the Coulomb case ε =
−3. There are no discrete eigenvalues and the continuum
eigenvalues lie on four curves in the left-half complex plane.

FIG. 16: [Color online] Detail of the region around the origin
in the complex eigenvalue plane of Fig. 15 for ε = −3. For
this figure we have chosen η = 0.999 and have taken the very
small cell size 0.00001.

The Coulomb case ε = −3 is a transition point be-
tween the regions ε > −3 and ε < −3. In the first region
the discrete eigenvalues occur in complex-conjugate pairs
and there are no real discrete eigenvalues (as we see in
Fig. 11). In the region ε < −3 the discrete spectrum
includes both real and complex-conjugate pairs of eigen-
values in addition to the continuous spectrum. Figure 17
illustrates the typical distribution of eigenvalues in the
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latter region for the choice ε = −3.8. In Fig. 18 we
display the eigenfunction for the real discrete eigenvalue
E = 0.0804. Unlike the eigenfunctions in Figs. 13 and 14
this eigenfunction is symmetric in t.

FIG. 17: [Color online] Eigenspectrum for ε = −3.8. The con-
tinuous part of the spectrum (blue dots) lies on two complex-
conjugate pairs of curves in the left-half plane and resembles
that of the Coulomb case (see Fig. 15). The discrete part of
the spectrum (orange squares) consists of complex-conjugate
eigenvalues in the left-half plane and real eigenvalues on the
positive-real axis.

FIG. 18: [Color online] Plot of the absolute value of the
eigenfunction associated with the discrete real eigenvalue
E = 0.0804 for ε = −3.8.

D. Conformal limit ε→ −4

The limit ε → −4 is the conformal limit of the the-
ory and thus the behavior of the eigenvalues in this limit

is interesting to determine. It is difficult to study this
limit because the eigenvalue equation in the complex-
s plane follows a contour that loops around the origin
many times when ε is near −4. Indeed, the number of
loops approaches∞ as ε→ −4 and, as a consequence, we
are less confident about the dependability of the Arnoldi
algorithm that we are using to obtain our numerical re-
sults. Nevertheless, we have studied the spectrum for
values of ε that are slightly greater than −4 and examine
the trend as ε moves closer to −4. We find that in this
limit the entire spectrum collapses to the origin. It is
not easy to demonstrate this by studying the continuous
part of the spectrum; these points merely become denser
in the vicinity of the origin. However, the discrete eigen-
values move toward the origin as ε → −4. In Table III
we show the behavior of the first three real eigenvalues
as δ → 0, where ε = −4 + δ. These data are plotted in
Fig. 19. This figure suggests that the eigenvalues vanish
linearly with δ.

δ First real Second real Third real

eigenvalue eigenvalue eigenvalue

0.15 0.173 0.440 0.807

0.12 0.114 0.321 0.628

0.08 0.080 0.230 0.454

0.06 0.060 0.177 0.351

0.04 0.035 0.116 0.236

0.02 0.012 0.049 0.106

TABLE III: First three real discrete eigenvalues as a function
of δ, where ε = −4 + δ. All the eigenvalues approach 0 as
δ → 0. In fact, Fig. 19 indicates that they approach zero in a
linear fashion.

FIG. 19: [Color online] First three real eigenvalues of the
Hamiltonian H = p2 + x2(ix)ε plotted as functions of the pa-
rameter δ, where ε = −4+δ. The eigenvalues clearly approach
0 as δ → 0 and we see strong evidence that the eigenvalues
vanish linearly with δ.
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V. CONCLUSIONS

In this paper we have studied the eigenvalues of H in
(1) for −4 < ε < 0 and we have shown that there is a
rich analytic structure as a function of the parameter ε.
We have identified transition points at the integer values
ε = 0, −1, −2, −3. Just above ε = 0 the eigenvalues are
all real and positive but below ε = 0 the eigenvalues split
sequentially into complex-conjugate pairs and all of the
eigenvalues but one are complex below about ε = −0.58.
At ε = −1 the real parts of the eigenvalues approach ∞
but the imaginary parts of the eigenvalues all vanish.

Below ε = −1 the eigenvalues are once again finite, but
as ε approaches −2 the entire spectrum coalesces to the
value −1. Below ε = −2 the eigenvalues explode away
from the value −1 and a new feature of the spectrum
arises: The spectrum is partly continuous and partly dis-
crete. The continuous part of the spectrum lies along
complex-conjugate pairs of lines in the complex plane

that begin near the origin and run off to ∞. By con-
trast, the eigenvalues belonging to the discrete part of
the spectrum have negative real parts.

At the Coulomb value ε = −3 the continuous parts
of the spectrum swing around to the negative complex
plane and the discrete eigenvalues disappear. Below the
Coulomb transition the discrete eigenvalues reappear and
some of the discrete eigenvalues are now real. As ε ap-
proaches the conformal point −4, the spectrum appears
to implode to the origin.
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