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Abstract 

A hierarchic optimisation approach is presented for relieving inaccuracies in conforming 

shell elements arising from locking phenomena. This approach introduces two sets of strain 

modes: i) objective strain modes, defined in the physical coordinate system, and ii) corrective 

strain modes, representing conforming strains enhanced with hierarchic strain modes. This 

leads to two alternative families of element, objective and corrective, both arising from 

minimising the difference between objective and corrective strains. Importantly, the proposed 

approach not only alleviates shear and membrane locking, but it also addresses locking 

arising from element distortion. The application of the proposed optimisation approach is 

demonstrated for a 9-noded quadrilateral Lagrangian shell element, where the membrane, 

bending and transverse shear strains are separately optimised, all within a local co-rotational 

framework that extends the element application to geometric nonlinear analysis. Several 

numerical examples, including cases with geometric and material nonlinearity, are finally 

presented to illustrate the effectiveness of the optimised 9-noded shell element in relieving 

the various sources of locking. 
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phenomena. 
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1 INTRODUCTION 

Ever since the emergence of the displacement-based finite element method, a most serious 

problem that has influenced its application in linear and nonlinear structural analysis has been 

related to the locking phenomenon, in which the element exhibits an over-stiff response 

resulting from its inability to correctly model lower-order modes. The significance of this 

phenomenon is determined by several factors, including the type of structural analysis 

problem, the theory underlying the associated mathematical model, as well as the element 

shape and order. Early forms of locking were observed in the modelling of plate bending 

problems using the Reissner-Mindlin hypothesis [1], where the inability of a mesh of 

conforming elements to bend without inducing transverse shear strains leads to deteriorating 

performance as the plate thickness is reduced, a phenomenon referred to as shear locking. 

Other forms of locking can also arise with conforming elements, such as membrane locking 

when using curved shell elements, and distortion locking when employing isoparametric 

mapping with irregular element shapes.  

 Whilst locking phenomena may be viewed from several different perspectives depending 

on the context of element application, a common feature is the degradation in the 

approximation of various strains over the element domain, principally due to polluting 

higher-order strains. Numerous research efforts have been devoted to addressing this issue 

over the past few decades, which can be grouped under distinct strands, as briefly reviewed in 

the following. 

Uniform reduced integration [2-4] addresses element locking by filtering out higher-order 

stiffness terms via the employment of a reduced number of integration points, which in turn 

suffers from rank deficiency leading to spurious mechanisms. Selective reduced integration 

[5-8] improves the shear locking performance of Reissner-Mindlin plate bending elements by 

employing reduced integration for only the transverse shear strain terms while utilising full 

integration on the remaining terms, which effectively addresses the rank deficiency issue. 

However, such a technique is restricted to plates with uncoupled flexural and transverse shear 

actions, and accordingly it cannot be employed for modelling the nonlinear elasto-plastic 

material response.  
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There are a few enhanced displacement methods in the literature [9-11], which generally 

eliminate shear locking by introducing extra displacement parameters at the expense of 

enlarging the stiffness matrix. On the other hand, the enhanced assumed strain method [12,13] 

addresses locking by enriching the element with enhanced strain fields, where the enhanced 

strain parameters are condensed out using the Hu-Washizu variational principle. Later, 

Korelc and Wriggers [14] used a Taylor series expansion of strains with respect to natural 

coordinates for improving the behaviour of distorted elements and relieving the coupling of 

enhanced modes. Another group of assumed strain methods eliminates polluting higher-order 

strains by sampling and interpolating strain components at selected locations [15-20]. The 

components to be sampled, the locations of the sampling points, and the interpolation 

functions vary in the literature. The Mixed Interpolation of Tensorial Components (MITC) 

family of elements [20-23], as a specific group of the two-level approximation method, 

performs sampling and mapping in a covariant coordinate system. Nevertheless, the 

performance of these strain mapping elements relies strongly on the locations of sampled 

strains for the assumed interpolation, which can lead to degradation of accuracy for irregular 

element shapes. To extend the ability of the elements based on the strain mapping method to 

highly irregular element shapes, Wisniewski and Panasz [24] used corrected shape functions 

in the element formulation, which addresses the sensitivity to mesh distortions, though 

nonlinear equations must be solved for determining the additional parameters describing the 

element distortion. 

In this work, an optimisation approach is proposed for nonlinear shell finite elements 

which not only alleviates shear and membrane locking, but also addresses locking arising 

from element distortion. The concept behind this approach was originally proposed by the 

first author [25] and is elaborated and enhanced in the present paper. This approach can be 

regarded as an assumed strain method, but it has three distinct features. Firstly, it introduces 

the notion of objective strain modes, defined as polynomial functions in terms of physical 

Cartesian element coordinates, which act as the target strain modes for corrective strain 

modes that represent conforming strains enhanced with hierarchic strain modes. The 

objective and corrective strain parameters are obtained from mathematical optimisation, and 
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this leads to two alternative families of element, denoted by acronym keys O and C, in which 

assumed strains based respectively on the objective or corrective strain fields are directly 

mapped at the element level to the conforming strains. Secondly, the hierarchic correcting 

strain modes are established from hierarchic displacement modes defined in the natural 

coordinate system, where modes up to any hierarchic order m can be considered in the 

element optimisation process for both the O and C element families. Importantly, these 

hierarchic strain modes are used solely for the purpose of optimisation of the objective and 

corrective strain fields, and as such do not influence the number of element degrees of 

freedom (DOF). Thirdly, geometric nonlinearity is considered within a co-rotational 

framework [26], with the Reissner-Mindlin hypothesis employed for the local shell element 

response, which enables optimal mapping between objective/corrective and conforming 

strains to be established for an element from the solution of a linear system of equations. In 

this respect, the optimal mapping for individual elements need only be established once, at 

the start of incremental nonlinear analysis, and further computational benefits arise from 

uncoupled mappings of the planar, bending and transverse shear strains, which can be applied 

in the proposed approach even to elements with local geometric nonlinearity. 

Noting the above distinct features, the resulting families of hierarchically optimised 

elements are denoted by acronyms HmOn and HmCn, corresponding respectively to the 

objective (O) and corrective (C) assumed strain families, where m is the order of hierarchic 

displacement fields used for defining the hierarchic correcting strain modes, and n refers to 

the number of element nodes. Thus for example, H3O9 refers to a quadrilateral 9-noded 

Reissner-Mindlin shell element, with quadratic Lagrangian shape functions and cubic 

hierarchic displacement modes (m = 3) for the hierarchic correcting strains, and with the 

assumed strains based on the objective (O) strain modes. 

The paper proceeds with presenting the general formulation of the proposed hierarchic 

optimisation approach. The application of this approach to the local formulation of a 

quadrilateral 9-noded Reissner-Mindlin shell element is then elaborated, leading to the two 

aforementioned families of optimised elements HmO9 and HmC9. To facilitate direct 

comparisons against previous high performing elements, two local MITC9 formulations 
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[22,24] are implemented in the same code alongside the proposed HmO9 and HmC9 elements, 

where minor adjustments are presented in Appendix A focused on ensuring similar 

underlying kinematic assumptions in the local system. This is followed by outlining the 

incorporation of the various local 9-noded element formulations within a co-rotational 

framework, based on the bisector definition of the local system [26], so as to enable the 

modelling of geometric nonlinearity. Several numerical examples are finally provided to 

demonstrate the effectiveness and relative accuracy of the proposed optimised 9-noded 

element formulations compared to the 9-noded conforming element [27], 9-noded Reissner-

Mindlin elements adopting the MITC9 strain-mapping method, and other previously 

developed shell element formulations. 

 

2 HIERARCHIC OPTIMISATION APPROACH 

The locking phenomena in conforming finite elements is generally characterised by the 

degraded approximation of various strains over the element domain, principally owing to 

polluting higher-order strains. To illustrate this point and introduce the proposed concept of 

hierarchic optimisation, consider the 1D Euler-Bernoulli beam-column element depicted in 

Figure 1, where 3 parameters  1 2, ,    define the element deformed configuration in a local 

co-rotational system. For this basic element, linear and cubic polynomial shape function can 

be employed for the local axial and transverse displacement fields: 
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Although the co-rotational approach [26] allows a linear strain-displacement relationship to 

be employed in the local system for the generalised curvature and centroidal axial strains,   

and c  respectively, the element achieves improved approximation with a coarser mesh if a 

quadratic relationship is used for c   as follows: 
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Focusing on the approximation of ( )c x  according to the compatibility conditions in (2), it is 

evident considering (1) that the conforming ( )c x  is constant over the element when it is 

subjected to pure axial deformation with ( ) 0u x  and ( ) 0v x . However, in the presence of 

bending deformations with ( ) 0v x , the approximation of the conforming ( )c x  is no longer 

the constant function afforded by the element but is instead polluted by a 4th order polynomial 

function of x arising from the  
2

d dv x  term. Accordingly, the approximation of the 

conforming ( )c x  is adversely affected by ( )v x , which leads to membrane locking since the 

element cannot bend without inducing ( )c x , regardless of the value of the axial 

displacement parameter  . In this respect, the recovery of the original constant 

approximation of ( )c x  requires ( )u x  to be a 5th order function, with the terms above 2nd 

order dependent on  1 2,  . An alternative approach, which is more generally applicable to 

different types of element, would be to consider hierarchic strain corrections ( )ch x  obtained 

from a hierarchic axial displacement field ( )hu x , which satisfies the nodal displacement 

boundary conditions, such as the following 5th order field: 

 
2 3 4

1 2 3 4

d
, ( ) ( ) ( ) ( ) ( )

d
        h

ch h

u
u x x x L x x L x x L x x L

x
      (3) 

and then optimise the corrected strain field towards the objective strain field, which is 

constant in the current illustration for the 1D element: 

 , constantc ch co co       (4) 

Extending the above illustrated concept to 2D shell finite elements, the proposed 

optimisation approach is based on employing hierarchic strain parameters, associated with 

hierarchic higher-order shape functions beyond those used in the conforming element 

formulation, such that the combination of the conforming strains ε and the hierarchic 

correcting strains εh, denoted as the corrective strains (ε + εh), offers a close approximation of 

the strain distribution εo afforded by the original element DOFs in terms of physical Cartesian 

element coordinates. In this respect, the objective strain vector εo combines contributions 

from various strain-inducing modes oΨ  associated with the strain field under consideration, 

where the number of such modes depends on the associated DOFs of the conforming element. 

Accordingly, ε is enhanced with εh towards εo: 
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 , ,h o h h h o o o   ε ε ε ε Ψ α ε Ψ α  (5) 

where hΨ  and oΨ  represent the hierarchic and objective strain modes, respectively, while 

hα  and oα  are the respective associated strain parameters. 

The employment of mathematical optimisation leads to a minimisation of the difference 

between the corrective strains (ε + εh) and the objective strains εo. Considering the target of 

optimisation to be a functional integrating the square of this difference over the element 

domain, the strain parameters are easily obtained for a given set of conforming strains ε from 

the solution of the following linear system of equations: 
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ε
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in which 
e  is the element domain. The proposed approach can also accommodate other 

quadratic functionals based on the difference between the corrective and objective strains 

[28], leading to alternative but equally straightforward linear systems of equations for 

determining the strain parameters. 

The determination of the strain parameters hα  and oα  from the conforming strains 

without reference to the element displacement preserves the computational efficiency, 

particularly in the presence of nonlinear strain-displacement relationships, and the 

conforming strains are accordingly enhanced with hierarchic higher-order strains towards the 

objective strains. The enhanced strains can be expressed in either the corrective or the 

objective form, where the difference between the two alternative approaches reduces with 

either the hierarchic order or mesh refinement: 

 (Corrective)h h ε ε Ψ α  (7) 

 o oˆ (Objective)ε Ψ α  (8) 

Unlike previous enhanced assumed strain approaches [12-14], the proposed approach 

leads to two variant element families, depending on whether the corrective (C) or objective 

(O) fields are adopted for the assumed strains. Furthermore, while the corrective strain field 

εh resembles the enhanced assumed strain in previous approaches, its approximation order is 

not capped to a prescribed distribution but can attain any hierarchic order m. On the other 
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hand, the additionally introduced objective strain field εo is similar conceptually to an 

assumed strain field based on sampling at selected locations [16-23], but it is different in two 

ways: i) it utilises a polynomial basis in physical Cartesian coordinates which effectively 

addresses distortion locking in isoparametric element formulations with irregular element 

configuration, and ii) it is recovered via an optimisation process that considers the 

conforming strains ε over the whole element domain rather than at a fixed number of 

sampling points. 

For isoparametric elements, the integration is most effectively carried out with Gaussian 

quadrature, and hence the solution for hα  and oα  can be related to the strains ε(i) at the 

Gauss points as follows: 

 

(1) (1)

( ) ( )

,h h o o
i i
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ε ε

α Γ α Γ
ε ε

 (9) 

in which the subscript (i) represents the Gauss point number. 

Therefore, the enhanced strains at the Gauss points can be determined as follows, 

depending on the alternative approach: 
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in which T  and T̂  are the transformation matrices from conforming strains to corrective 

strains and objective strains, respectively, at the Gauss points. 

Clearly, the above alternative approaches correspond to an assumed strain formulation, 

though the assumed strains are the result of optimisation towards a specific target strain 
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distribution afforded by the original conforming DOFs, as demonstrated in the application to 

a 9-noded curved shell element presented in the next section. For geometrically linear 

elements, which employ a first-order strain-displacement relationship, the assumed strains ε  

or ε̂  can be directly related to the original DOFs via a respective strain operator B  or B̂ , 

since ε is readily related to such DOFs through the conventional conforming B matrix. For 

geometrically nonlinear elements, however, it is more effective to determine the conforming 

strains and then transform these to assumed strains according to (10) or (11). 

In using Gaussian quadrature to integrate and subsequently solve (6), a minimum number 

of sampling points is required, depending on the order and number of hierarchic terms 

considered, which can be more than what is typically required for the conforming element. 

Although this implies that the conforming strains need to be sampled at more points than in 

the typical element, it is still possible to determine the assumed strains at a reduced number 

of points through an additional mapping process beyond the results of (10) or (11). This 

refinement, however, is not considered herein. 

 

3 LOCAL FORMULATION OF OPTIMISED 9-NODED SHELL ELEMENT 

The proposed optimisation approach is applied to relieve membrane, shear and distortion 

locking in a local formulation of a previously developed 9-noded conforming quadrilateral 

Reissner-Mindlin shell element [27], which is formulated in a co-rotational framework [26] 

for large displacement analysis. The local kinematics of the conforming element are first 

presented, and the application of the proposed optimisation approach is detailed, leading to 

the formulation of the two element families HmO9 and HmC9, corresponding respectively to 

the objective and corrective variants of the 9-noded shell element. 

3.1 Local kinematics of 9-noded conforming shell element 

Figure 2 presents three different coordinate systems for the 9-noded Lagrangian shell 

element undergoing large displacements, where (X, Y, Z) is the global Cartesian coordinate 

system, (x, y, z) is the local Cartesian coordinate system, and (ξ, η) is the 2D natural 

coordinate system. As shown in Figure 3, the  x y z, ,c c c  triad describing the orientation of 



10 

 

the local element co-rotational system is defined such that the x- and y-axes always coincide 

with the bisectors of the diagonal vectors generated from the four corner nodes, while the z-

axis is orthogonal to the xy plane [26]. With the employment of the co-rotational system, the 

large-displacement small-strain problem in the global system is transformed in the local 

system to a small-displacement small-strain problem, and the focus of large-displacement 

modelling is shifted from the continuum to the discrete level [26]. 

The local element shape and displacement fields are interpolated with quadratic 

Lagrangian shape functions in terms of natural coordinates ( , )  : 
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in which 
T

i i i ix y zx  are local nodal coordinates of node i in the initial configuration; 

T

i i i iu v wt  are local nodal translations of node i; and 
T

i ix iy r  represents the local 

nodal rotations of node i ( ix  is the nodal rotation about y-axis and iy  is the nodal rotation 

about the negative x-axis). 

The shape functions are of the Lagrangian form: 
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 (14) 

where: ( , )i i   represents the natural coordinates of node i; ( ) 1, 0, 1i i i        and 

( ) 1, 0, 1i i i       . 

The element strain state is fully determined by membrane strains m
ε , bending generalised 

strains b
ε , and transverse shear strains s

ε . Local geometric nonlinearity is addressed through 

quadratic approximation of the membrane strains, while the influence of large displacements 

is accounted for through transformations between the local co-rotational system and the 

global system [27]. Accordingly, various generalised strains are obtained as follows: 
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3.2 Objective strain modes 

A common feature of the locking phenomena is the inability of the element to generate 

some of the lower-order strain modes over the element domain, principally due to polluting 

higher-order strains induced by the underlying element kinematic assumptions, the strain-

displacement relationship, and the irregular element shape. The hierarchic optimisation 

approach aims at restoring the lower-order strain fields by enhancing the conforming strains 

towards a set of prescribed objective strain modes which are of lower-order in terms of 

physical Cartesian coordinates and as afforded by the element DOFs. It is important to note 

that the objective strain modes are defined as polynomial functions of real physical 

coordinates rather than natural coordinates, so that the element is less sensitive to distortion. 

In the following, a complete set of lower-order objective strain modes specific to the 9-noded 

shell element is presented, based on which the hierarchic optimisation approach is performed 

separately for the generalised membrane, bending and transverse shear strains to eliminate 

locking.  
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The planar displacements (u, v) for a 9-noded shell element can generate three rigid body 

modes and fifteen membrane strain-inducing modes. Therefore, fifteen low-order objective 

planar modes can be afforded by this element, for which the corresponding membrane strains 

are expressed as: 
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where m
oΦ are objective planar strain-inducing modes from Pascal’s triangle, given by: 
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The transverse displacement field (w) for the 9-noded shell element can generate one rigid 

body mode and eight transverse shear strain modes. Therefore, eight low-order objective 

transverse modes can be afforded by this element, for which the corresponding transverse 

shear strains are expressed as: 

 
, ,s z s z

o o

x

y

 
  

  


 
  

Ψ Φ  (18) 

where ,s z
oΦ  are objective transverse strain-inducing modes given by: 

 
, 2 2 2 2 2 2s z

o x y x xy y x y xy x yΦ  (19) 

The rotational fields ( , )x y   of a 9-noded element can generate fifteen curvature-inducing 

modes, with the objective curvature modes being the same as the above membrane strain 

modes: 

 
b m
o oΨ Ψ  (20) 

With four rigid body modes already accounted for in relation to the planar and transverse 

displacement field, the remaining two rigid body modes are generated by combining the two 
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constant rotation modes with a linear distribution of the transverse displacement. This leaves 

one rotational mode that generates no curvatures but a linear transverse shear strain mode 

T, ,s
o y x  Ψ , which is not included in (18). Therefore, a complete objective set of 

transverse shear strain modes is given by: 

 
, ,s s z s

o o o
 

 
Ψ Ψ Ψ  (21) 

Accordingly, there are in total 39 objective strain modes for the 9-noded shell element 

(15 membrane m
oΨ , 15 curvature b

oΨ ,  and 9 transverse shear s
oΨ ), which ensure the correct 

rank of the element stiffness matrix. In the following, the hierarchic optimisation approach is 

employed to address shear, membrane and distortion locking in the local element formulation 

with the employment of the above objective strain modes m
oΨ , b

oΨ , and s
oΨ .  

3.3 Shear Locking 

Consideration is first given to the transverse shear strains in (15c). It is clear that the 

conforming element cannot bend in any arbitrary mode ( , )x y  , as allowed by its rotational 

DOFs, without polluting ( , )xz yz   with second-order terms. Although the transverse 

displacement field (w) via the associated translational DOFs, offers an effective first-order 

approximation of ( , )xz yz  , the polluting terms from ( , )x y   can lead to a significant 

overestimation of the transverse shear strain energy, hence causing shear locking. These 

polluting terms can be filtered out by introducing hierarchic correcting strain modes, with the 

aim of achieving the first-order approximation of ( , )xz yz   afforded by the element, as given 

by the objective shear strain modes 
s
oΨ . 

The hierarchic transverse displacement modes, which are used to establish the hierarchic 

strains, are defined as polynomial functions of natural coordinates (ξ, η). The hierarchic 

optimisation approach can utilise hierarchic modes up to any order, where complete cubic 

and quartic displacement modes are considered below: 

 
3 4( , ) ,s s s

h h h h h hw    Φ α Φ Φ Φ  (22) 

 
3 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h                  Φ  (23) 

 
4 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h                        Φ  (24) 
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with: 

 2 2 2( ) ( 1), ( ) ( 1), ,                (25) 

The corresponding hierarchic shear strains are therefore obtained from: 

 ,

xzh
s s s s s
h h h h h h

yzh

x x
w

y y





     
         

        
 

     
         

ε Ψ α Ψ Φ  (26) 

where s
hΨ  represents the hierarchic shear strain modes, and 

s
hα  are associated hierarchic 

strain parameters. 

The objective shear strain field is, on the other hand, defined as: 

 
xzos s s

o o o
yzo





  
  
  

ε Ψ α  (27) 

where s
oΨ  is given in (21), and 

s
oα  are associated objective strain parameters.  

With s
oΨ  and s

hΨ  selected, the assumed transverse shear strains can be obtained from the 

corresponding conforming shear strains in accordance with the hierarchic optimisation 

approach via (6)-(11). For both corrective (C) and objective (O) approaches, the optimisation 

procedure can be applied with hierarchic modes up to any complete polynomial order (m = 3, 

4, …), where it can be shown that the minimum number of sampling Gauss points required is 

2( 1)m . This leads to variant 9-noded elements characterised by acronym keys such as 

H3O9 for an objective strain element with 3rd order hierarchic modes and H4C9 for a 

corrective strain element with 4th order hierarchic modes, respectively. It is even possible for 

the optimisation to be undertaken without hierarchic correcting strain modes, in which case 

the assumed strains are the objective strains that offer a best fit of the conforming strains, 

leading to an element denoted by H2O9. 

3.4 Membrane Locking 

From (15a), it is evident that a curved shell element cannot deform in any arbitrary 

transverse mode (w), as allowed by its translational DOFs, without polluting the membrane 

strains ( , , )x y xy    with higher-order terms. Although the planar displacement fields (u, v), 
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via the associated translational DOFs, offer an effective first-order approximation of 

( , , )x y xy   , the polluting terms from (w) can lead to a significant overestimation of the 

membrane strain energy. In addressing membrane locking, hierarchic planar translational 

parameters can be introduced to filter out the higher-order strain terms and achieve the first-

order approximation of ( , , )x y xy    afforded by the element, as given by the objective strain 

modes
m
oΨ .  

The hierarchic planar displacements, which are used to establish the hierarchic correcting 

membrane strains, are defined in terms of natural coordinates (ξ, η). Again, the proposed 

optimisation approach can utilise hierarchic modes up to any order, where complete cubic 

and quartic modes are provided below:  

 

3 4

3 4

( , )
,

( , )

h h hm m m
h h h

h h h

u

v

 

 

  
    

    

Φ 0 Φ 0
Φ α Φ

0 Φ 0 Φ
 (28) 

where 3
hΦ  and 4

hΦ  are defined in (23) and (24), respectively. 

The corresponding hierarchic membrane strain fields are then obtained from: 

 

0 0

0 , 0

xh

hm m m m m
yhh h h h h

h

xyh

x x

u

vy y

y x y x







     
   

      
 

      
         

       
        
             

ε Ψ α Ψ Φ  (29) 

where m
hΨ  represents the hierarchic membrane strain modes, and m

hα  are corresponding 

strain parameters. 

The objective membrane strain fields are given as: 

 

xo
m m m
o yo o o

xyo







 
  

  
 
  

ε Ψ α  (30) 

where m
oΨ  is given by (16)-(17), and 

m
oα  are associated strain parameters.  

Similar to optimisation for shear locking, the assumed strains can now be obtained in 

accordance with Section 2, where similar alternative approaches and levels of hierarchic 

optimisation may be employed. 
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3.5 Distortion Locking 

As presented in Section 3.2, the objective shear and membrane strain modes are firstly 

defined as complete polynomial functions in terms of physical (x,y) coordinates, which 

readily addresses locking due to polluting higher-order terms as a result of distortion in the 

isoparametric element shape. For a complete treatment of distortion locking, however, it may 

also be necessary to filter out the polluting bending strains due to element distortion. The 

bending strains exhibit no sign of locking for regular element shapes, as implied by (15b); 

however, this is not the case for distorted elements, where the non-constant Jacobian matrix J 

results in conforming bending strains that are non-polynomial in terms of physical 

coordinates, thus leading to locking due to polluting non-polynomial approximation. Similar 

to the membrane and shear locking treatment, the polynomial approximation of bending 

strains afforded by the element in terms of physical coordinates may be restored by 

employing the optimisation approach. The objective and hierarchic bending strain modes are 

respectively given by (20) and (31): 

 b m
h hΨ Ψ  (31) 

Since b
oΨ  and b

hΨ  are identical to m
oΨ  and m

hΨ , the transformation of the conforming to 

assumed bending strains is identical to that relating the conforming and assumed membrane 

strains, as detailed in the previous section. 

3.6 Modification of hierarchic strains 

In order to ensure the proposed elements pass the constant mode patch tests, all hierarchic 

strain modes require zero mean values throughout the element domain [13]. Therefore, an 

additional measure is taken to enforce zero mean constraints on each strain mode which is 

achieved via integration over the physical element domain 
e  as follows: 

    
 , d

, , ( 1 3, j 1 15)
e

m e
hm m

h h e

i j
i j i j i


     



 Ψ
Ψ Ψ  (32a) 

    , , ( 1 3, j 1 15)b m
h hi j i j i    Ψ Ψ  (32b) 

    
 , d

, , (i 1 2, j 1 9)
e

s e
hs s

h h e

i j
i j i j 


     



 Ψ
Ψ Ψ  (32c) 
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Accordingly, the modified hierarchic strain modes m
hΨ , b

hΨ , and s
hΨ  replace the original 

modes m
hΨ , b

hΨ , and s
hΨ  in performing the hierarchic optimisation, thus replacing (6) with: 

 

T T T

T T T
d d

e e

h h h o h he e

oo h o o o
 

              
          

 
 
 
 

Ψ Ψ Ψ Ψ α Ψ
ε

αΨ Ψ Ψ Ψ Ψ
 (33) 

In comparison with other locking-free shell elements, the proposed optimised shell 

elements have several distinct features. Firstly, the adoption of the co-rotational system for 

geometrically nonlinear analysis forms the basis of the hierarchic optimisation approach. As 

presented in Section 4, a co-rotational coordinate system is employed to exclude rigid-body 

rotations from the local element response, hence enabling simpler or even linear relationships 

between the strain and local displacement fields in geometrically nonlinear analysis. Within 

the co-rotational framework, all higher-order strain terms in the local system are therefore 

regarded as polluting terms, and these are filtered out by enriching conforming strains with 

hierarchic (corrective) strain modes and targeting the corrected strain fields at an objective 

smooth distribution. In this respect, computational benefits arise from the fact that the 

optimal mapping for individual elements need only be established once, at the start of 

incremental nonlinear analysis. Secondly, the optimised shell elements not only overcome 

shear locking and membrane locking, as some other methods [5-8,16,19-23] do, but also 

relieve inaccuracy arising from element distortion, which might be particularly beneficial for 

analysing practical problems where numerical models with irregular meshes are inevitably 

required. Different from other methods for curing distortion locking [14,24] where additional 

parameters and corrected shape functions are defined to describe element distortion and 

nonlinear equations are required to be solved for deriving the additional parameters, the 

proposed method automatically deals with element distortion; this is achieved by defining the 

objective strain modes as polynomial functions in terms of physical element coordinates, 

where significant computational savings are realised by avoiding the need for additional 

strain parameters and for solving nonlinear equations. Finally, the proposed optimised shell 

elements pass the constant strain patch tests and zero energy mode tests, ensuring the reliable 

and stable performance of these elements in solving various plate and shell problems. 
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4 BISECTOR CO-ROTATIONAL COORDINATE SYSTEM 

The above local formulations of 9-noded optimised shell elements are framed in a bisector 

co-rotational system, which was originally proposed by the first author for a 4-noded shell 

element [26] and later applied to a 9-noded conforming curved shell element [27]. In this co-

rotational system, the local x- and y-axes are chosen as the bisectors of the two diagonals of 

the undeformed element, and rigid body rotations are extracted by orienting these local planar 

axes so as to also bisect the element diagonals in the current deformed configuration 

(Figure 3). 

The triad ( , ,x y zc c c ) defining the current orientation of the local co-rotational system 

relative to the global system is simply obtained as: 

 13 24 13 24

13 24 13 24

, ,x y z x y

 
   

 

c c c c
c c c c c

c c c c
 (34) 

with: 

 ,
ij o

ij ij ij j i

ij

   
v

c v v d d
v

 (35) 

where o
ijv  is the vector connecting node i to node j in the initial element configuration, and 

T
, ,i i i iU V Wd  represents the global translational displacements of node i. Details of the 

transformation between global and local systems are provided in [26]. 

This simple definition automatically satisfies the orthogonality requirement for the two 

planar axes, and importantly it leads to a relative local orientation of the deformed to the 

undeformed configuration which is invariant to nodal ordering. The employment of this co-

rotational system to the optimised elements leads to identical optimisation directions with 

different node sequences. Therefore, the variants of the optimised 9-noded element preserve 

the invariance characteristics.  

5 NUMERICAL EXAMPLES 

The proposed 9-noded optimised shell elements have been implemented in ADAPTIC [29] 

v2.14.4, which is used hereafter in several numerical examples to demonstrate the accuracy 
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of the various element variants. For comparison purposes, 9-noded Reissner-Mindlin shell 

elements utilising the original and modified MITC9 strain-mapping schemes [22-24] for the 

local element response, as presented in Appendix A, are also considered with the same co-

rotational approach for large displacement analysis. In presenting the results, the various 

element variants are referred to by acronym keys, as listed in Table 1.  

It is worth noting that the elements MITC9* and MITC9is* employ the original ‘MITC9’ 

[22] and the modified ‘MITC9is’ [24] strain-mapping schemes, respectively, where in the 

local MITC9* formulation a varying basis is used for sampling and mapping covariant strains, 

whereas for the MITC9is* formulation, a constant Jacobian matrix evaluated at the element 

centre is used for mapping covariant strains so as to satisfy the patch test [24]. In addition, the 

asterisk symbol ‘*’ in the acronym keys MITC9* and MITC9is* indicates that there are 

minor differences of both elements from the original MITC9 and MITC9is elements owing to 

the employment of a local co-rotational coordinate system along with a low-order strain-

displacement relationship, the neglect of the transverse normal strain, and the decoupled 

mapping of planar strains and transverse shear strains, as detailed in Appendix A. 

5.1 Basic element tests 

A set of basic element tests has been used to investigate the performance of the proposed 

optimised elements (H2O9, H3O9, H4O9, H3C9, H4C9) and the MITC9* and MITC9is*, 

including zero energy mode tests, isotropic element tests and constant strain patch tests.  

In the zero energy mode tests, the eigenvalues of the stiffness matrix of an unsupported 

shell element are calculated for each of the element type, and the number of zero eigenvalues 

is counted. All the considered element types have exactly 6 zero eigenvalues for both regular 

and irregular element shapes, hence passing the zero energy mode test. In the isotropic 

element test, a shell element with irregular element shape is subjected to different loading 

sets. In each loading case, the variation of the element stiffness matrix to different numbering 

sequences is investigated. It is found that the element stiffness matrices of all the optimised 

shell elements are invariant to nodal ordering, owing to the invariance characteristic of the 

bisector co-rotational system employed for the elements [26], which a priori prescribes the 
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optimisation directions. The MITC9* and MITC9is* elements also pass the isotropic element 

test because of the fixed positions of tying points for strain mapping. In the constant strain 

patch tests, the five-element patch suggested by MacNeal and Harder [30] is adopted to 

investigate the displacement and strain distributions in the patch using different shell 

elements. A further distorted five-element patch is also used to study the sensitivity of the 

element types to element distortion due to shifting of the edge nodes and interior nodes from 

the mid-positions. Details of the patch tests and associated results are provided in 

Appendix B. All the optimised 9-noded elements (H2O9, H3O9, H4O9, H3C9 and H4C9) 

pass the patch tests for both patch patterns owing to the enforcement of zero mean on each 

hierarchic strain mode. The MITC9is* passes the patch tests for the relatively regular patch 

pattern, but small errors are generated in the irregular mesh. The MITC9* yields small errors 

for the relatively regular mesh, but as expected [24] it fails in the constant strain patch test for 

the highly distorted mesh, evident from the large relative errors in predicting displacements 

and strains (see Appendix B). 

5.2 Clamped square plate under uniform loading 

The convergence rates of the optimised elements are investigated in this linear problem, 

where a 2L×2L square plate is clamped at all four edges and subjected to a uniformly 

distributed pressure, as shown in Figure 4. Three thickness-to-length ratios (t/L) are 

considered to investigate the performance of various element formulations in addressing 

locking. The geometric and material parameters are given as: L = 1.0, E = 1.7472107, and ν 

= 0.3. Due to symmetry, a quarter of the plate is modelled with 22, 44, 88, and 1616 

meshes of various 9-noded element types. Soft boundary conditions are used along the 

clamped edges AB and BC, and symmetric boundary conditions employed for the edges OA 

and OC as follows: 0yu w      along edge AB, 0xv w    along edge BC, 0xu    

along edge OA, and 0yv     along edge OC. The Jacobian matrix is constant in this 

example, which leads to identical results between the MITC9* and MITC9is* models. The 

convergence curves of the considered 9-noded elements are presented in Figure 5, with the 

relative error in the strain energy as a measure of accuracy: 
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  (36) 

where U represents the total strain energy of a coarse mesh with an element length of he; 

refU  represents the reference value, which is taken as the strain energy obtained from a fine 

mesh (128128) of the H3O9 element. The results of the original MITC9 shell element [23] 

are also plotted in Figure 5, though employing a different accuracy measure: 
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where ref


u  is the vector of reference nodal displacement values; 
u  is the finite element 

solution of nodal displacements;  
s

  is the s-norm [22]. In linear elastic analysis with 

conforming element formulation, (36) and (37) are equivalent. Even though this equivalence 

does not strictly hold for hierarchic optimised formulations or mixed formulations, it can still 

be used for a general comparative assessment of the convergence rate. For both measures of 

accuracy, the optimal convergence rate is of a fourth order, with the discretisation error being 

4( )eO h  (he is the nominal element length), which is depicted in Figure 5 with a solid straight 

line. 

All the considered 9-noded elements show roughly optimal convergence rates with no 

significant upward shifting as the thickness is reduced (except for H3C9 and H4C9). In this 

problem, the MITC9* and the H2O9 elements seem to have marginally better accuracy, 

followed by the H3O9 and H4O9 elements. It is also observed that the results of the 

optimised elements with the objective alternative (H2O9, H3O9, and H4O9) are comparable 

to the MITC9 results [23] in terms of both the convergence rate and accuracy, while the 

accuracy of the MITC9* element, as implemented in this work, is even higher than the 

original MITC9 element, which may result from rounding errors, different accuracy 

measurement and the formulation differences.   
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5.3 Cylindrical shell under sinusoidal loading 

A cylindrical shell, which has a length of 2L, a radius of R, and a constant thickness t, is 

subject to a periodic pressure 0( ) p cos(2 )p   . The geometric, material, and loading 

properties are given as: L = R = 1.0, E = 2.0105, ν = 1/3, and 0 1.0p  . Two alternative 

boundary conditions at both curved ends are considered: a free boundary condition 

corresponding to a bending-dominant problem, and a fully clamped boundary condition 

corresponding to a membrane-dominant problem. Due to symmetry, and noting that the 

response is virtually linear under the applied loading, a sixteenth of the model is analysed 

with a uniform mesh pattern, as shown in Figure 6.  

Figures 7-8 present the convergence rates of various 9-noded optimised elements with free 

and clamped boundary conditions, respectively. The relative error measure (36) is employed, 

and the optimal convergence rate is also depicted in the figures. In the bending-dominant 

problem, all the considered elements show comparable accuracy and good convergence rates, 

though not optimal. Furthermore, the convergence curves have no evidence of shifting 

upwards with thickness changes. These elements also perform generally well in the 

membrane-dominant problem. Figures 9-10, also provide the comparison of the H3O9 and 

MITC9* results against the MITC9 results [31] with the same accuracy measure. The results 

show that the H3O9 and MITC9* have comparable convergence rates and accuracy. The 

MITC9 results have better accuracy in particular for a relatively large thickness-to-length 

ratio (t/L = 0.01), except for the free end case with a small thickness-to-length ratio (t/L = 

0.0001) where the MITC9 element shows a significant degradation of the convergence rate. 

5.4 Plane-stress cantilever 

The problem is depicted in Figure 11, where a cantilever beam, with a length L, a depth-

to-length ratio of 1/10, and a width t, is fully clamped at one end and loaded with a transverse 

force at the other end. This is a plane-stress problem and was presented by Cook et al. [32] to 

establish the influence of distortion locking on the conforming 9-noded planar element, 

where meshes (A)–(C) were considered. A further mesh (D) is also considered here, in which 

the interior element nodes are kept in their original location, leading to increased sensitivity 
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to distortion locking. Geometric and material parameters are given as: L = 100, t = 1, E = 107 

and ν = 0.3. An end load P = 2500 is uniformly applied on the free edge. The predicted 

displacements with various meshes and 9-noded element types, normalised by Euler-

Bernoulli solution of the transverse tip displacement, are provided in Table 2. It is worth 

noting that even though the Euler-Bernoulli solution is not accurate owing to the neglect of 

the contribution from transverse shear, the objective for the normalisation is simply to offer a 

non-dimensional basis for comparing the various predictions. 

It is clear that among the optimised element variants the ones using third or fourth order 

hierarchic modes provide an effective relief from distortion locking observed with the 

conforming element, where the objective alternative approach offers marginally better 

predictions than the corrective approach. The H3O9 element provides virtually identical 

accuracy to the H4O9 element with fewer Gauss points required. On the other hand, the 

MITC9* element in mesh (B)–(D) exhibits significant distortion locking owing to highly 

irregular element shapes. The accuracy of the MITC9is* element is less sensitive to distorted 

meshes (B) and (C), but is significantly degraded in mesh (D) where the internal node is 

highly eccentric from the element centre, in which case the Jacobian extracted at the element 

centre no more represents an average over the element.  

5.5 Square plate under transverse point load 

The linear bending response of a clamped square plate subject to a central transverse point 

load P is investigated, where a quarter-model is considered using regular and distorted 

meshes, as shown in Figure 12. Hard boundary conditions are applied along the clamped 

edges, and symmetric boundary conditions are applied along edges OA and OC. The 

geometric and material parameters are given as: L = 20, t = 0.2, E = 2.1106 and ν = 0.3. The 

non-dimensional central deflection ( Cw ) is given as: 
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The predictions of Cw  with various 9-noded quadrilateral elements, normalised by the 

reference value of 0.00560 [33], are presented in Table 3. Clearly, the conforming element 
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CNF9 exhibits shear locking, which is compounded in the distorted meshes. Again, the 

proposed optimisation approach shows good accuracy even with the coarse meshes, whether 

regular or distorted. In this respect, the objective alternative approach, using third or fourth 

order hierarchic optimisation, is typically better than the corrective alternative, particularly 

for the coarser meshes. In this example, the coarse meshes of the MITC9* element provide 

sufficient accuracy despite distorted element shapes. On the other hand, the results of the 

MITC9is* element are less accurate than the MITC9* elements for mesh (B) and (D), still 

resulting from the inability of the constant Jacobian CJ  to represent an element average. 

5.6 Pinched cylinder with rigid diaphragms 

A cylindrical shell, supported by two rigid diaphragms at both ends, is loaded with two 

unit forces P, as shown in Figure 13. Geometric and material parameters are given as: R = 

300, L/R = 2, R/t = 100, E = 3106 and ν = 0.3. Due to symmetry, an octant of the shell is 

modelled with uniform meshes (2×2, 4×4 and 8×8) of the 9-noded shell elements H3O9, 

MITC9* and MITC9is*. This problem was also analysed by Kulikov and Plotnikova [34] 

with uniform meshes of a four-noded degenerated shell element TMS4SA, and by Kim et al. 

[35] with meshes of an 8-noded solid-shell element XSOLID85. Table 4 shows the meshes of 

various shell or solid-shell elements that correspond to the same number of overall DOFs. By 

normalising the predicted deflection at the point of loading by the analytical solution 

0.1824810-4 [36], the results of various models with various element types are listed in 

Table 5. By comparing the results of the H3O9 element to those of other models having the 

same number of DOFs, it is evident that the H3O9 element yields sufficient accuracy even in 

coarse meshes. 

5.7 Hemispherical shell under two pairs of pinching forces 

A hemispherical shell, with radius R and thickness t, is subjected to two inward and two 

outward forces 90 apart, as depicted in Figure 14. Due to symmetry, only a quarter of the 

hemisphere is modelled with 3N×N meshes of the considered 9-noded quadrilateral shell 

elements, where 3 denotes three subdomains in the quarter model, and N the number of 
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elements per side for each subdomain. A 366 discretisation pattern is illustrated in 

Figure 15, where 66 9-noded shell elements are employed in each of the three subdomains. 

Linear elastic problem 

The performance of the considered shell formulations is firstly investigated considering a 

linear elastic material and excluding geometric nonlinearity. The material and geometric 

parameters are given as follows: E = 6.825×107, ν = 0.3, R = 10 and t = 0.04. The magnitudes 

of the concentrated forces F in Figure 14 are fixed to a unit value. It is worth noting that the 

shell elements are doubly curved, which may lead to significant locking if the shell thickness 

is small, particularly for coarse meshes. Various meshes (32×2, 33×3, 34×4 and 36×6) 

of the proposed optimised shell elements and the MITC9* and MITC9is* are employed to 

investigate their efficiency and accuracy. A linear numerical solution of the radial 

displacement at the point of load was previously obtained as 0.0924 [37], which is used here 

as a reference value. Table 6 reports the predicted radial displacements by various meshes 

and element types, normalised by the reference value. 

Among the optimised element variants, the objective alternative approach (except H2O9) 

provides more accurate predictions than the corrective approach in particular for coarser 

meshes. As the mesh is refined, the results obtained from the corrective approach become 

closer to those of the objective counterpart. Evidently, the H3O9 and H4O9 exhibit much 

higher accuracy than all other element types for all the meshes, indicating an effective relief 

of locking, with the H3O9 element being more efficient because of less Gauss points required. 

The MITC9* and MITC9is* results become accurate for a 34×4 mesh, though noticeable 

locking is exhibited for coarser meshes.  

Materially and geometrically nonlinear problem  

The performance of the 9-noded shell elements in modelling both geometric and material 

nonlinearity is considered here. The radius of the hemisphere is R = 10, and a bi-linear elasto-

plastic material model with isotropic strain hardening is applied, with the material parameters 

given as: E = 1.0×101, ν = 0.2, σy = 0.2, and H = 9.0, where H is a hardening parameter 

related to plastic strains. Two cases are considered for the shell thickness: t = 0.05 and 0.5. 
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Five Gauss points are employed across the shell thickness, which provides a convergent 

though-thickness solution for both the optimised and the mixed shell elements.  

For the case of t = 0.5, nonlinear analysis was carried out with thirty load steps, and the 

load-deflection curves at the pinching points A and B for various meshes (33×3, 36×6 and 

312×12) of the H3O9 and MITC9* are plotted in Figure 16, where it is evident that a 366 

mesh can provide a convergent solution for both the H3O9 and the MITC9*. It is worth 

noting that in this case the MITC9is* results are almost identical to MITC9*, which are 

therefore not presented. In Figure 17, the load-deflection curves for the 36×6 mesh of both 

the H3O9 and the MITC9* are compared against the results of others, including those from 

Bestch and Stein [37] using a 31616 mesh of a 4-noded quadrilateral element, Eberlein and 

Wriggers [38] using a 31212 mesh of a 4-noded quadrilateral element with 5 Gauss points 

along the shell thickness, and Li et al. [39] using a 366 mesh of a 6-noded triangular shell 

element with 6 Gauss points along the shell thickness. In addition, the results using the 

312×12 mesh of the H3O9 element are used as a reference solution, which are also shown in 

Figure 17. Evidently, the results from the 36×6 H3O9 and MITC9is* models exhibit 

comparable accuracy with the results by Bestch and Stein [37], but with a reduced number of 

overall DOFs. In addition, the FE models by Eberlein and Wriggers [38] and Li et al. [39], 

which have the same overall DOFs with the H3O9 and MITC9is* models, show degraded 

accuracy, evident from the stiffer response. Figure 18 shows the deformed configuration of 

the pinched hemisphere for a 36×6 mesh of the H3O9 with F = 30×10-3. It is worth noting 

that in this geometrically and materially nonlinear problem, the planar and transverse shear 

strains are generally less than 10% throughout the analysis, except for the horizontal planar 

strain in the shell element to which the outward load is directly applied (i.e. the shell element 

that Point A is attached to) in the last load step (F = 30×10-3). Generally, this problem can be 

regarded as a small-to-moderate strain problem, and the co-rotational approach is therefore 

considered to be applicable.  

For the thinner shell case (t = 0.05), a convergence study is also carried out, with the load-

deflection curves for various meshes (33×3, 36×6 and 312×12) of the H3O9, MITC9* 

and MITC9is* being displayed in Figure 19. It is observed that the coarse 33×3 mesh of the 
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H3O9 already captures the response of the structure throughout the deformation history. Even 

though the load-deflection curves predicted by the 33×3 mesh of the MITC9* are also quite 

close to the reference solution, there is a noticeable difference in the slopes of the curves in 

the small displacement range. The results of the 33×3 mesh of the MITC9is* deviate 

significantly from the other curves, even in the linear elastic range, hence indicating the lack 

of accuracy owing to the use of an averaged Jacobian in the strain mapping. For the finer 

36×6 mesh, where the element shape is more regular and the local plasticity is much better 

to be captured, the MITC9* and MITC9is* results show sufficiently high accuracy 

comparable to that of the H3O9 element. Table 7 lists the CPU times for the H3O9 and 

MITC9is* models with various mesh sizes, where the reported CPU times are normalised 

relative to that of the 33×3 MITC9is* model. As evident from Table 7, for the same mesh, 

the MITC9is* model is more computationally efficient than the H3O9 model, principally 

owing to fewer sampling Gauss points employed for each shell element, as indicated in 

Table 1. It is also observed that as the mesh is refined the H3O9-to-MITC9is* computation 

time ratio reduces from 2.1 to 1.3, in which case solving the large set of nonlinear 

equilibrium equations controls the computation time while the processing time for the locking 

elimination scheme becomes less dominant.  

5.8 Annular plate subject to end loading 

An annular plate is fully clamped at one end and subjected to a uniform transverse loading 

p at the other end, as is shown in Figures 20-21. The geometric and material properties are 

specified as: R1 = 6, R 2 = 10, t = 0.03, E = 2.1×107 and ν = 0.0. The plate is modelled with 

153 and 606 meshes of various optimised 9-noded elements, and nonlinear analysis is 

performed with 30 load steps  up to a uniform loading of p = 6.  

The load-displacement curves at points A and B for the 153 mesh of various optimised 

elements are plotted in Figure 22, with the results from a fine mesh (609) of H3O9 used as a 

reference solution. The accuracy and efficiency of the optimised shell elements are compared 

in Table 8, where predictions of the final displacement along the z-axis at Point A and the 

overall CPU times are provided. It is worth noting that the displacement at Point A for each 
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model has been normalised by the reference value predicted by the 606 H3O9 model. In 

addition, for each mesh size, the reported CPU times are normalised relative to that of the 

associated H2O9 model. As indicated in Table 1, as the hierarchic order increases, more 

sampling Gauss points are employed, which accounts for the increased CPU time for the 

optimised elements with third or fourth hierarchic orders, in comparison with that for the 

H2O9 counterpart. However, as the mesh is refined, the difference in the computational 

efficiency for various hierarchic orders reduces, owing to the dominance on computing 

demand of solving equilibrium equations rather than the locking elimination process. In 

addition, it is observed from Table 8 and Figure 22 that the H3O9 and H4O9 results are more 

accurate than other optimised elements for the coarser mesh. For the finer 606 mesh, all the 

optimised element models converge to the reference solution.  

The H3O9 results are also compared with the MITC9* and MITC9is* results in Figure 23. 

Also presented are results with a 153 mesh of 9-noded hybrid stress elements by Sansour 

and Kollmann [40] and a 3061 mesh of 8-noded solid-shell elements by Norachan et al. 

[41], where all models have comparable number of DOFs. In this example, the meshes of the 

H3O9 and the MITC9* elements yield more accurate results than others.  

5.9 Pinched hemispherical shell with 18 cut-off 

Consideration is given here to a large displacement problem where a hemispherical shell 

with an 18°circular cut-off at its top is subjected to symmetric concentrated forces at its base, 

as shown in Figures 24-25. The geometric and material parameters are: R = 10, t = 0.04, 

E = 6.825107, and ν = 0.3. Due to symmetry, a quarter of the shell is modelled with three 

uniform meshes (44, 88 and 1616) of various 9-noded element types. This problem has 

been studied by Celigoj [42] using a 1616 mesh of a 9-noded shell element, which is used 

hereafter as a reference solution.  

The load-displacement curves of the radial displacement at point B predicted by the 44 

mesh of the conforming and the optimised element variants are depicted in Figure 26, 

compared against the reference solution by Celigoj. Clearly, noticeable locking phenomenon 

is exhibited in the conforming element model, mainly attributed to membrane locking. The 
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optimised elements H3O9 and H4O9 provide better approximations of the shell response than 

the corrective alternative approach for this coarse mesh (44), though this difference will 

diminish with mesh refinement. It is also observed that the equilibrium paths of the coarse 

mesh with H2O9 deviate from the other curves in terms of the curve shapes, indicating the 

importance of the inclusion of correction hierarchic strain modes in the optimisation.  

In Figure 27, load-displacement curves of the radial displacement at points A and B 

predicted by the meshes of H3O9, MITC9* and MITC9is* are compared with Celigoj’s 

solution. For the coarse mesh (44), the optimised elements H3O9 and H4O9 show better 

accuracy than the mixed elements MITC9* and MITC9is*. As the mesh is refined to (88), 

all the elements converge to Celigoj’s solution. 

The sensitivity of the element performance to distortion is also investigated with 44 and 

88 irregular meshes, which are obtained by moving the three nodes (C, D, E) in a regular 

mesh to positions (C’, D’, E’). An 88 mesh is illustrated in Figure 28, while the larger points 

in the figure also indicate the node positions for a 44 mesh. By changing the positions of the 

inward and outward forces, two sets of results are readily obtained with the distorted meshes. 

Figures 29-30 depict the two sets of load-displacement curves with the H3O9, MITC9* and 

MITC9is* elements. It is evident that in the coarser mesh, the H3O9 element provides better 

predictions than the mixed elements for both distortion cases. On the other hand, the 

MITC9is* element performs better than MITC9* element in one distortion case but is not as 

accurate in the other one. Nevertheless, all the solutions converge in the finer mesh.  

6 CONCLUSIONS 

This paper presents a hierarchic optimisation approach which can be applied to 

conforming elements with the aim of relieving the inaccuracies arising from locking 

phenomena. The proposed approach is based on filtering out polluting strains at the element 

level using hierarchic strain modes, hence restoring the strain field to the distribution afforded 

by the conforming formulation. 

The application of the proposed approach is demonstrated using a 9-noded Lagrangian 

shell element, where a co-rotational framework is employed to maintain a simpler strain-
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displacement relationship in the local element system even for geometrically nonlinear 

analysis, and the membrane, bending, and transverse shear strains are separately enhanced in 

the local system. On one hand, hierarchic strain modes in terms of natural coordinates are 

added to the conforming strains so as to filter out higher-order polluting strain terms and to 

smooth the strain distribution in the element domain; on the other hand, objective (or target) 

strain modes are defined in terms of physical coordinates, hence effectively reducing 

sensitivity to element shape distortion. Accordingly, by minimising the difference between 

the corrected strains and the objective strains, all strain parameters can be determined, and 

strain fields are smoothed to approach the optimal distribution. It is worth noting that the 

proposed optimised shell elements not only remedy shear locking and membrane locking, as 

other locking-elimination methods may achieve, but also relieve distortion locking arising 

from irregular element shapes, which may be required for modelling complex geometric 

structural configurations. 

Several numerical examples are used to demonstrate the effectiveness of the proposed 

9-noded optimised elements. For comparison purposes, the results by two Reissner-Mindlin 

shell elements based on the MITC9 strain-mapping schemes, are also presented. Numerical 

tests have shown that all of the optimised 9-noded elements pass the fundamental element 

tests, confirming the stability, element isotropy, and absence of rank deficiency in the 

proposed approach. Among the optimised elements, the H2O9 element, which employs no 

hierarchic strain enhancement towards the objective strains, results in degraded performance 

in curved shell problems compared to element variants with hierarchic corrections, which 

highlights the importance of the inclusion of higher-order strain modes in the optimisation. 

Furthermore, for the same hierarchic order m, the objective HmO9 element yields superior 

results to the corrective HmC9 element in terms of both accuracy and convergence rate, with 

the objective H3O9 element based on third-order hierarchic optimisation providing both 

effectiveness and efficiency. The performance of H3O9 is also generally comparable to the 

mixed elements based on the MITC9 formulations, but importantly it shows better accuracy 

in coarse meshes with irregular element shapes, demonstrating an effective relief of not only 

shear and membrane locking but also distortion locking.  
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APPENDIX A: MIXED FORMULATIONS OF REISSNER-MINDLIN SHELL 

ELEMENTS BASED ON MITC9 ELEMENT  

 

The general MITC formulation procedure can be summarised as follows: 

(i) Evaluate Green strains directly from displacement fields at a set of prescribed tying 

points. 

(ii) Transform the extracted Green strains into corresponding covariant strain components: 

 
T

2 2ε J E J  (A.1) 

where 2E  is the Green strain tensor in terms of Cartesian coordinates; 2ε  is the 

covariant strain tensor; and J  is the Jacobian matrix, which is expressed as: 
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(iii) Interpolate covariant strain fields with the use of the extracted covariant strains: 

 ,ε ( , , )AS DI
rs rs rs T    H ε  (A.3) 

where: , ( , , )r s    ; the superscript ‘AS’ and ‘DI’ refers respectively to the 

assumed strain distribution and the distribution obtained directly from displacement 

fields; rsH  is a row vector of interpolation functions associated with the tying points; 

,
DI
rs Tε  consists of the covariant strain values extracted at the tying points. 

(iv) Transform the assumed covariant strain fields to the corresponding Green strain fields 

in terms of real coordinates, obtained from: 

 
T 1

2 2
AS AS E J ε J  (A.4) 

(v) Replace displacement-based strains with the assumed strain distributions obtained 

from (iv) in the element formulation. 

The MITC9 [22] quadrilateral shell element performs well, but it does not pass the patch 

test for irregular element shapes due to the varying basis used for sampling and mapping 
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covariant strains. Wisniewski and Panasz resolved the issue by using a constant Jacobian 

matrix evaluated at the element centre [24]. This is equivalent to replacing (A.1) and (A.4) 

with: 

 
T

2 2C Cε J E J  (A.5) 
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2 2
AS AS

C C
 E J ε J  (A.6) 

where CJ  is the Jacobian matrix evaluated at the element centre ( 0, 0   ).  

The original MITC9 [22] and the improved MITC9is [24] strain mapping approaches have 

been adopted in the local kinematics of curved Reissner-Mindlin shell elements [43,44] 

employing a low-order strain-displacement relationship, the incorporation of which in the co-

rotational system hence allowing large displacement analysis.  

The mixed Reissner-Mindlin shell elements, denoted as ‘MITC9*’ and ‘MITC9is*’, 

respectively, are associated with several assumptions that differ them from the elements 

MITC9 [22] and MITC9is [24]: (i) the elements are applicable to small-strain problems only; 

(ii) the elements are shallow and thin, so that the natural coordinate axis   is taken to have 

an identical orientation to the local z-axis; and (iii) the transverse normal strain z  is ignored.  

Accordingly, the Jacobian matrix can be simplified to: 
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where t is the shell thickness. This simplification enables decoupled relationships between 

real strains and covariant strains, with each set of the generalised real strains related to their 

covariant counterparts only, which are expressed thus as: 

 T

1

2

1

2

x xy

p p

xy y

 

 

  

 
 

 
  

   
  
  

J J  (A.8) 
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where pJ  is a sub-matrix of J : 

 

 p

x x

y y

 

 

  
  
 
  

   

J  (A.11) 

The local MITC9* formulation is derived by employing the strain transformations (A.8)-

(A.10) with pJ  evaluated at each sampling station, whereas the local MITC9is* formulation 

is obtained by using (A.8)-(A.10) with a constant pJ  evaluated at the element centre only 

[44]. The positions of the tying points for both elements are shown in Figure A.1, where the 

associated interpolation functions for the covariant strains can be found elsewhere [22]. 

For geometrically nonlinear problems that do not involve severe element distortion, the 

local MITC9* and MITC9is* formulations, in combination with the co-rotational framework, 

have been shown recently to provide good accuracy in the nonlinear analysis of both 

monolithic and laminated plate and shell structures [44-47]. 
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APPENDIX B: FIVE-ELEMENT PATCH TESTS  

The five-element patch suggested by MacNeal and Harder [30], as shown in Figure B.1, is 

employed to illustrate the membrane and out-of-plane bending behaviour of the considered 

9-noded shell elements. In the patch, edge nodes and internal nodes are placed at the middle 

positions. The geometric properties of the rectangular plate are: L = 0.24, W = 0.12 and 

t = 0.001. It has a Young’s modulus of E = 106 and a Poisson’s ratio of ν = 0.25. In the 

membrane patch test, the boundary conditions at the external nodes are: 

 3 31 1
10 , 10 , 0

2 2
x yu x y v y x w      

         
   

  

which correspond to a constant membrane strain state where 0.001x y xy     .  

In the out-of-plane bending patch test, the boundary conditions at the external nodes are: 

 
 2 2

3 3 31 1
0, 10 , 10 , 10

2 2 2
x y

x xy y
u v w x y y x   

     
         

   
  

which correspond to a constant bending strain state where 0.001x y xy     .  

The patch tests are conducted on various quadrilateral element types, with the nodal 

displacements inside the patch and the strains evaluated at each element centre compared 

against reference values. The maximum relative errors in the nodal displacements and strain 

components are listed in Tables B.1 and B.2 for the membrane and bending patch tests, 

respectively. Clearly, all the optimised 9-noded elements and the MITC9is* pass the patch 

tests. The results with MITC9*, however, yield small errors, as confirmed previously by 

Wisniewski and Panasz [24]. 

A further step is taken to investigate the behaviour of the considered 9-noded elements in a 

more irregular mesh, where the original patch is distorted by shifting four edge nodes 13, 14, 

15 and 16, either parallel or perpendicular to the edges, and moving the internal node 25 

along the x direction, as illustrated in Figure B.2. All the shifts of nodal positions are of a 

magnitude d = 0.01. Results of the membrane patch test with this distorted mesh are given in 

Table B.3. As expected, all the optimised 9-noded elements pass the test owing to the 

enforcement of zero mean on each hierarchic strain mode. The results with MITC9is* are 

also good, though small errors are generated in this case. However, MITC9* fails in the 
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constant strain patch test, evident from the large relative errors in predicting displacements 

and strains. 

 



Table 1: Considered variants of 9-noded Reissner-Mindlin shell element. 

Acronym key Strain field Hierarchic order Sampling Gauss points 

CNF9 Conforming - 33 

H2O9 Assumed, objective - 33 

H3O9 Assumed, objective 3 44 

H4O9 Assumed, objective 4 55 

H3C9 Assumed, corrective 3 44 

H4C9 Assumed, corrective 4 55 

MITC9* Assumed, MITC9* - 33 

MITC9is* Assumed, MITC9is* - 33 

 

  



Table 2: Normalised cantilever displacement predictions using various 9-noded elements. 

Acronym key Mesh (A) Mesh (B) Mesh (C) Mesh (D) 

CNF9 0.954 0.791 0.737 0.476 

H2O9 0.954 0.812 0.904 0.464 

H3O9 0.954 0.830 0.971 0.972 

H4O9 0.954 0.827 0.972 0.972 

H3C9 0.954 0.824 0.913 0.954 

H4C9 0.954 0.827 0.972 0.972 

MITC9* 0.990 0.255 0.712 0.535 

MITC9is* 0.990 0.805 0.958 0.604 

 

  



Table 3: Normalised plate central deflection Cw  using various 9-noded elements. 

Acronym key Mesh (A) Mesh (B) Mesh (C) Mesh (D) 

CNF9 0.718 0.269 0.925 0.638 

H2O9 1.006 0.955 1.006 0.959 

H3O9 0.974 0.965 1.001 0.996 

H4O9 0.973 0.958 1.001 0.996 

H3C9 0.916 0.856 0.997 0.981 

H4C9 0.917 0.899 0.997 0.990 

MITC9* 1.005 1.000 1.005 1.003 

MITC9is* 1.005 0.882 1.005 0.960 

 

  



Table 4: Meshes of various elements that have the same overall number of DOFs. 

Mesh code 
9-noded shell elements 

(H3O9, MITC9*, MITC9is*) 

4-noded shell element 

(TMS4SA [34]) 

8-noded solid-shell element 

(XSOLID85 [35]) 

Mesh 1 2×2 4×4 4×4×1 

Mesh 2 4×4 8×8 8×8×1 

Mesh 3 8×8 16×16 8×8×1 

Note that the ‘1’ in meshes of XSOLID85 means that a single layer of the XSOLID85 element is 

applied along the shell thickness direction. 

 

  



Table 5: Normalised deflections at the point of loading for the pinched cylinder problem. 

Acronym key Mesh 1 Mesh 2 Mesh 3 

H3O9 0.816 0.938 0.988 

MITC9* 0.711 0.962 1.000 

MITC9is* 0.711 0.962 1.000 

TMS4SA [34] 0.890 0.941 0.986 

XSOLID85 [35] 0.382 0.751 0.932 

 

  



 

Table 6: Normalised deflection at the point of loading for the pinched hemispherical shell. 

Element type 
Mesh 

322 333 344 366 

H2O9 0.527 0.481 0.917 0.981 

H3O9 0.976 0.998 1.001 1.001 

H4O9 0.980 0.995 0.999 1.001 

H3C9 0.859 0.722 0.990 0.997 

H4C9 0.886 0.923 0.990 0.997 

MITC9* 0.932 0.879 0.997 0.999 

MITC9is* 0.936 0.740 0.998 0.999 

 

 

  



Table 7: Normalised CPU time for various models. 

Element type Mesh Normalised CPU time 

MITC9is* 

3×3×3 1.0 

3×6×6 6.2 

3×12×12 56.8 

 

3×3×3 2.1 

3×6×6 10.3 

3×12×12 73.4 

 

  



Table 8: Comparison of accuracy and computation time for various models. 

Element type 

15×3 mesh 60×6 mesh 

Aw  
Normalised  

CPU time Aw  
Normalised  

CPU time 

H2O9 0.94 1.0 1.00 1.0 

H3O9 1.00 2.3 1.00 1.7 

H4O9 0.99 4.3 1.00 3.0 

H3C9 0.96 2.2 1.00 2.0 

H4C9 0.99 4.4 1.00 3.0 

 

  



 

 

Table B.1: Relative error of displacements and strains in membrane patch test. 

Acronym key Maximum error 

in u 

Maximum error 

in v 

Maximum error 

in x  

Maximum error 

in 
y  

Maximum error 

in 
xy  

H2O9 0.000 0.000 0.000 0.000 0.000 

H3O9 0.000 0.000 0.000 0.000 0.000 

H4O9 0.000 0.000 0.000 0.000 0.000 

H3C9 0.000 0.000 0.000 0.000 0.000 

H4C9 0.000 0.000 0.000 0.000 0.000 

MITC9* 0.054 0.031 0.010 0.015 0.022 

MITC9is* 0.000 0.000 0.000 0.000 0.001 

  



Table B.2: Relative error of displacements and strains in bending patch test. 

Acronym key Maximum 

error in w 

Maximum 

error in x  

Maximum 

error in 
y  

Maximum 

error in x  

Maximum 

error in 
y  

Maximum 

error in xy  

H2O9 0.000 0.000 0.000 0.000 0.000 0.000 

H3O9 0.000 0.000 0.000 0.000 0.000 0.000 

H4O9 0.000 0.000 0.000 0.000 0.000 0.000 

H3C9 0.000 0.000 0.000 0.000 0.000 0.000 

H4C9 0.000 0.000 0.000 0.000 0.000 0.000 

MITC9* 0.018 0.028 0.049 0.004 0.012 0.009 

MITC9is* 0.000 0.000 0.000 0.000 0.000 0.000 

 



Table B.3: Relative error of displacements and strains in membrane patch test (distorted mesh). 

Acronym key Maximum error 

in u 

Maximum error 

in v 

Maximum error 

in x  

Maximum error 

in 
y  

Maximum error 

in xy  

H2O9 0.000 0.000 0.000 0.000 0.000 

H3O9 0.000 0.000 0.000 0.000 0.000 

H4O9 0.000 0.000 0.000 0.000 0.000 

H3C9 0.000 0.000 0.000 0.000 0.000 

H4C9 0.000 0.000 0.000 0.000 0.000 

MITC9* 0.212 0.112 0.040 0.435 0.210 

MITC9is* 0.005 0.005 0.007 0.005 0.007 

 

 



 

 

Figure 1: Configuration and deformation parameters for a local Euler-Bernoulli beam-column element. 



 

Figure 2: Global, local and natural coordinates for 9-noded shell element. 

  



 

 

Figure 3: Bisector local coordinate system and global nodal parameters for 9-noded quadrilateral shell 

element. 

  



 

Figure 4: A quarter-model of a clamped square plate subjected to uniform pressure. 
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a. t/L = 0.0001 

 

b. t/L = 0.001 

 

c. t/L = 0.01 

Figure 5: Convergence curves of various elements for the clamped square plate problem. 
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Figure 6: Cylindrical shell under periodical loading. 

  



 

 

a. t/L = 0.0001 

 

b. t/L = 0.001 

 

c. t/L = 0.01 

Figure 7: Convergence curves of various optimised elements for the cylindrical shell problem (free 

boundary). 
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a. t/L = 0.0001 

 

b. t/L = 0.001 

 

c. t/L = 0.01 

Figure 8: Convergence curves of various optimised elements for the cylindrical shell problem 

(clamped boundary). 
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a. t/L = 0.0001 

 

b. t/L = 0.001 

 

c. t/L = 0.01 

Figure 9: Convergence curves of H3O9, MITC9* and MITC9 elements for the cylindrical shell 

problem (free boundary). 
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a. t/L = 0.0001 

 

b. t/L = 0.001 

 

c. t/L = 0.01 

Figure 10: Convergence curves of H3O9, MITC9* and MITC9 elements for the cylindrical shell 

problem (clamped boundary). 
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Figure 11: Cantilever modelled with different meshes using two 9-noded elements. 

  



 

Figure 12: A quarter-model of a square plate using different mesh patterns of 9-noded elements. 
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Figure 13: Pinched cylindrical shell supported by rigid diaphragms. 

  



 

Figure 14: Pinched hemispherical shell. 

  



 

 

Figure 15: A 36×6 mesh of the quarter model. 



 

Figure 16: Convergence study of the hemispherical shell problem (t = 0.5). 
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Figure 17: Comparison of load-deflection curves for the hemispherical shell problem (t = 0.5). 
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Figure 18: Deformed shape of the hemispherical shell (F = 30×10-3). 

  



 

Figure 19: Convergence study of the hemispherical shell problem (t = 0.05). 
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Figure 20: Annular plate subject to a uniform loading applied along the free edge. 



 

Figure 21: Deformed configuration of the annular plate problem (p = 6). 



 

Figure 22: Load-displacement curves for a 153 mesh of various optimised elements. 
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Figure 23: Load-displacement curves for meshes of various elements having the same number of 

DOFs. 
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Figure 24: Pinched hemispherical shell with an 18 cut-off. 

  



 

 

Figure 25: Deformed configuration of pinched hemispherical shell with an 18 cut-off (P = 320). 



 

Figure 26: Load-displacement curves of the radial displacement at point B with different element 

types (44 mesh).   

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8

CNF9

H2O9

H3O9

H4O9

H3C9

H4C9

Celigoj [42]

L
o

a
d

 P

Displacement 



 

 

 

a. 44 mesh 

  

b. 88 mesh 

Figure 27: Load-displacement curves of the radial displacements with different meshes (Cont’d…). 
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c. 1616 mesh 

Figure 27: Load-displacement curves of the radial displacements with different meshes. 
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Figure 28: 88 irregular meshes of a quarter model. (Distorted mesh 1 corresponds to the inward and 

outward forces denoted in black, while Distorted mesh 2 corresponds to the forces denoted in grey.)
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a. 44 mesh 

 

b. 88 mesh 

Figure 29: Load-displacement curves for meshes of different elements (distorted mesh 1).  
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a. 44 mesh 

 

b. 88 mesh 

Figure 30: Load-displacement curves for meshes of different elements (distorted mesh 2). 
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Figure A.1: Positions of tying points for MITC9 element [22] ( a 1/ 3 , b 3 5 , and c 1 ). 

  



 

 

Figure B.1: Five-element patch test. 

  



 

 

Figure B.2: Five-element patch test (distorted mesh). 
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