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Abstract A Lagrangian numerical scheme for solving nonlinear degenerate Fokker–Planck
equations in space dimensions d ≥ 2 is presented. It applies to a large class of nonlinear diffu-
sion equations, whose dynamics are driven by internal energies and given external potentials,
e.g. the porous medium equation and the fast diffusion equation. The key ingredient in our
approach is the gradient flow structure of the dynamics. For discretization of the Lagrangian
map, we use a finite subspace of linear maps in space and a variational form of the implicit
Euler method in time. Thanks to that time discretisation, the fully discrete solution inherits
energy estimates from the original gradient flow, and these lead to weak compactness of the
trajectories in the continuous limit. Consistency is analyzed in the planar situation, d = 2. A
variety of numerical experiments for the porous medium equation indicates that the scheme
is well-adapted to track the growth of the solution’s support.
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1 Introduction

1.1 Nonlinear Fokker–Planck Equations

Westudy avariationalLagrangian discretization of the following type of initial value problem:

∂tρ = �P(ρ) + ∇ · (ρ ∇V ) on R>0 × R
d , (1.1a)

ρ(·, 0) = ρ0 on R
d . (1.1b)

This problem is posed for the time-dependent probability density function ρ : R≥0 ×R
d →

R≥0, with a given initial density ρ0. We assume that the pressure P : R≥0 → R≥0 can be
written in the form

P(r) = rh′(r) − h(r) for all r ≥ 0, (1.2)

for some non-negative and convex h ∈ C1(R≥0) ∩ C∞(R>0), and that V ∈ C2(Rd) is a
non-negative potential without loss of generality. Problem (1.1) encompasses a large class
of diffusion equations, such as—for power-type nonlinearities P(r) = rm and vanishing
potential V ≡ 0—the heat equation (m = 1), porous medium equations (m > 1) and fast
diffusion equations (m < 1). By a slight abuse of notation, we refer to (1.1) withmore general
P and non-vanishing V as nonlinear Fokker–Planck equations. In this paper, we assume a
degenerate diffusion, that is h(0) = h′(0) = 0, and a confining potential, that is V is convex,
not necessarily strict. For technical reasons, we further need to assume that

lim
s→∞ sh′′(s) = +∞. (1.3)

Since our particular spatio-temporal discretization of the initial value problem (1.1) is based
on the Lagrangian representation of its dynamics, and on its variational formulation, we
briefly recall both of them now.

1.2 Lagrangian Formulation

Equation (1.1) can be written as a transport equation,

∂tρ + ∇ · (ρ v[ρ]) = 0, (1.4a)

with a velocity field v that depends on the solution ρ itself,

v[ρ] = −∇(h′(ρ) + V
)
. (1.4b)

Various further evolution equations can be written in the form (1.4a), such as non-local
aggregation equations (see, e.g., Ambrosio et al. [1]); Keller–Segel type models (see, e.g.,
Blanchet et al. [5]); and also fourth order thin film equations (see, e.g., Otto [34]) or quantum
equations (see, e.g., Gianazza et al. [21]). To simplify the presentation, we stick to equations
of nonlinear Fokker–Planck type (1.1a).

The system (1.4) naturally induces aLagrangian representation of the dynamics,which can
be summarized as follows. Below, the reference density ρ is a probability density supported
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on some compact set K ⊂ R
d , and we use the notation G#ρ for the push-forward of ρ under

a map G : K → R
d ; the definition is recalled in (2.1).

Lemma 1.1 Assume that ρ : [0, T ] × R
d → R≥0 is a smooth positive solution of (1.1). Let

G0 : K → R
d be a given map such that G0

#ρ = ρ0. Further, let G : [0, T ] × R
d → R

d be
the flow map associated to (1.4b), satisfying

∂tGt = v[ρt ] ◦ Gt , G(0, ·) = G0, (1.5)

where ρt := ρ(t, ·) and Gt := G(t, ·) : Rd → R
d . Then, at any t ∈ [0, T ],

ρt = (Gt )#ρ. (1.6)

In short, the solution G to (1.5) is a Lagrangian map for the solution ρ to (1.1). This fact
is an immediate consequence of (1.4a); for convenience of the reader, we recall the proof in
“Appendix A”. Subsequently, (1.6) can be substituted for ρ in the expression (1.4b) for the
velocity, which makes (1.5) an autonomous evolution equation for G:

∂tGt = −∇
[
h′
(

ρ

det DGt

)]
◦ Gt − ∇V ◦ Gt . (1.7)

A more explicit form of (1.7) is derived in (5.2).

1.3 Variational Structure

It is well-known (see Otto [35] or Ambrosio et al. [1]) that (1.1) is a gradient flow for the
relative Renyi entropy functional

E(ρ) =
ˆ
Rd

[
h(ρ(x)) + V (x)ρ(x)

]
dx, (1.8)

with respect to the L2-Wasserstein metric on the space Pac
2 (Rd) of probability densities on

R
d with finite secondmoment. It appears to be less well known (see Evans et al. [20], Carrillo

and Moll [13], or Carrillo and Lisini [12]) that also (1.7) is a gradient flow, namely for the
functional

E(G|ρ) := E(G#ρ) =
ˆ
K

[
h̃

(
det DG

ρ

)
+ V ◦ G

]
ρ dω, h̃(s) := s h(s−1), (1.9)

on the Hilbert space L2(K → R
d ; ρ) of square integrable maps from K to R

d . We shall
discuss these gradient flow structures in more detail in Sect. 2 below.

1.4 Discretization and Approximation Results

Our discretization in space is based on the Lagrangian formulation. Instead of numerically
integrating (1.1a) to obtain the density ρ directly, we approximate the associated Lagrangian
maps G that satisfy (1.7): specifically, we assume that a simplicial decomposition T of K is
given, andwe restrictG to the finite dimensional subspaceAT of continuousmaps from K to
R
d that are piecewise linear with respect to T . A posteriori, we recover an approximation of

ρ via (1.6). That ansatz for the Lagrangian maps corresponds to a simple geometric picture:
the induced densities are piecewise constant on triangles whose vertices move in time.

For the discretization in time, we exploit the aforementioned variational structure of (1.7):
namely, we adopt the celebrated minimizing movement scheme that is known to provide a
robust approximation of gradient flows. In the context at hand, this scheme reads as follows:
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let a time step τ > 0 and an initial condition G0
� ∈ AT be given. (Here and below, �

symbolizes the space-time mesh generated by T on K and τ on R>0.) Then the nth time
iterate Gn

� ∈ AT —that serves as our approximation of G(nτ ; ·)—is chosen inductively for
n = 1, 2, . . . as the minimizer in the respective problem

1

2τ
‖G − Gn

�‖2L2(K→Rd ;ρ)
+ E(G|ρ) −→ min, (1.10)

where the minimization is carried out over the finite dimensional space AT . With the
sequence (Gn

�)n=0,1,... of approximating Lagrangian maps at hand, we define piecewise-
constant-in-time interpolations for the derived density ρ̃� and velocity ṽ� as usual via

ρ̃�(t) = (Gn
�)#ρ, ṽ�(t) = Gn

� − Gn−1
�

τ
with n such that t ∈ ((n − 1)τ, nτ ].

Our analytical results on the scheme can be summarized as follows.

• The sequence of fully discrete minimization problems (1.10) is well-posed: see
Lemma 3.1. We thus obtain a sequence (Gn

�)n=0,1,... for each sufficiently fine discretiza-
tion �.

• TheGn
� are entropy-diminishing and are�-uniformlyHölder continuous: seeLemma4.1.

• Consequently, the induced densities ρ̃� converge weakly to an absolutely continuous
limit trajectory ρ, and the fluxes ρ̃�ṽ� converge weakly to a limit of the form ρv: see
Theorem 4.2. The identification of the limit velocity v, however, is only possible under
strong additional hypotheses: see Corollary 4.5.

• In d = 2 dimensions, we prove numerical consistency in the sense that, if G is a smooth
solution to (1.7), then its restriction to the mesh � satisfies the fully discrete Euler–
Lagrange equations associated to (1.10), with a quantifiable error that vanishes in a
suitable continuous limit: see Theorem 5.2.

• Our previously mentioned consistency results requires that the triangulation T of K is
almost ideally hexagonal: see Eq. (5.7). We discuss why consistency cannot be expected
if that condition is violated: see Remark 5.4.

1.5 Comparison with Results in the Literature

The approach presented in this paper is an alternative to the one developed by Carrillo
et al. [13,15], where G is obtained by directly solving the PDE (1.7) numerically with
finite differences or Galerkin approximation via finite element methods. In other words,
while Carrillo et al. [13,15] follows the strategy minimize first then discretize, our present
approach is to discretize first thenminimize. In the former approach, theminimization (1.10) is
performed on the spatially continuous level, yielding Euler–Lagrange equations that are then
discretized in space; in the present approach, the space of Lagrangian maps is approximated
by the finite dimensional subspaceAT , and the minimization problem (1.10) onAT yields
a nonlinear system of Euler–Lagrange equations that are directly solvable numerically.

Let us mention that other numerical methods have been developed to conserve particu-
lar properties of solutions of the gradient flow (1.1). Finite volume methods preserving the
decay of energy at the semi-discrete level, along with other important properties like non-
negativity and mass conservation, were proposed in the papers [4,8,10]. Particle methods
based on suitable regularizations of the flux of the continuity Eq. (1.1) have been proposed
in the papers [18,27,28,37]. A particle method based on the steepest descent of a regu-
larized internal part of the energy E in (1.8) by substituting particles by non-overlapping
blobs was proposed and analysed in Carrillo et al. [11,14]. Deterministic particle methods
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for diffusions have been recently explored, see [9] and the references therein. High-order
relaxation schemes for nonlinear diffusion problems have been proposed in Cavalli et al.
[16], while high-resolution schemes for nonlinear convection-diffusion problems are intro-
duced in Kurganov et al. [26]. Moreover, the numerical approximation of the JKO variational
scheme has already been tackled by different methods using pseudo-inverse distributions in
one dimension (see [5,7,23,40]) or solving for the optimal map in a JKO step (see [3,25]).
Finally, note that gradient-flow-based Lagrangian methods in one dimension for higher-
order, drift diffusion and Fokker–Planck equations have recently been proposed in the papers
[19,31–33].

There are twomain arguments in favour of our taking this indirect approach of solving (1.7)
instead of solving (1.1). The first is our interest in structure-preserving discretizations: the
scheme that we present builds on the non-obvious “secondary” gradient flow representation
of (1.1) in terms of Lagrangian maps. The benefits include monotonicity of the transformed
entropy functional E and L2 control on the metric velocity for our fully discrete solutions,
that eventually lead to weak compactness of the trajectories in the continuous limit. We
remark that our long-term goal is to design a numerical scheme that makes full use of the
much richer “primary” variational structure of (1.1) in the Wasserstein distance, which is
reviewed in Sect. 2 below. However, despite significant effort in the recent past—see, e.g.,
the references [3,5,14,15,19,22,25,29,36,40]—it has not been possible so far to preserve
features like metric contractivity of the flow under the discretization, except in the rather
special situation of one space dimension (see Matthes and Osberger [29]). This is mainly due
to the non-existence of finite-dimensional submanifolds of Pac

2 (Rd) that are complete with
respect to generalized geodesics.

The secondmotivation is that Lagrangian schemes are a natural choice for numerical front
tracking, see, e.g., Budd [6] for first results on the numerical approximation of self-similar
solutions to the porous medium equation. We recall that, due to the assumed degeneracy
P ′(0) = 0 of the diffusion in (1.1), solutions that are compactly supported initially remain
compactly supported for all times. A numerically accurate calculation of the moving edge of
support is challenging, since the solution can have a very complex behavior near that edge, like
the waiting time phenomenon (see Vazquez [38]). Our simulation results for ∂tρ = �(ρ3)—
which possesses an analytically known, compactly supported, self-similar Barenblatt solution
— indicate that our discretization is indeed able to track the edge of support quite accurately.

The expected convergence of our scheme, with implicit Euler stepping in time and piece-
wise linear approximation of the Lagrangian maps, is of first order in both space and time.
This is confirmed in our experiments. For an improved approximation, particularly of the
moving fronts, numerical schemes with a higher order of consistency would be desirable. In
principle, such schemes could be constructed along the same lines, for example, by replacing
the implicit Euler method by a Runge–Kutta method in time, and the piecewise constant
ansatz space AT by finite elements with functions of higher global regularity in space.
However, it is unclear if a similar degree of structure preservation can be achieved for these
schemes, and their analysis would be very different from the one presented here.

1.6 Structure of the Paper

This work is organized as follows. In Sect. 2, we present an overview of previous results
in gradient flows pertaining our work. Section 3 is devoted to the introduction of the linear
set of Lagragian maps and the derivation of the numerical scheme. Section 4 shows the
compactness of the approximated sequences of discretizations andwe give conditions leading
to the eventual convergence of the scheme towards (1.1). Section 5 deals with the consistency
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of the scheme in two dimensions, while Sect. 6 gives several numerical tests showing the
performance of this scheme.

2 Gradient Flow Structures

2.1 Notations from Probability Theory

P(X) is the space of probability measures on a given base set X . We say that a sequence
(μn) of measures in P(X) converges narrowly to a limit μ in that space if

ˆ
X
f (x) dμn(x) →

ˆ
X
f (x) dμ(x)

for all bounded and continuous functions f ∈ C0
b (X). The push-forward T#μ of a measure

μ ∈ P(X) under ameasurablemap T : X → Y is the uniquely determinedmeasure ν ∈ P(Y )

such that, for all g ∈ C0
b (Y ),

ˆ
X
g ◦ T (x) dμ(x) =

ˆ
Y
g(y) dν(y).

With a slight abuse of notation — identifying absolutely continuous measures with their
densities—we denote the space of probability densities on Rd of finite second moment by

Pac
2 (Rd) =

{
ρ ∈ L1(Rd) ; ρ ≥ 0,

ˆ
Rd

ρ(x) dx = 1,
ˆ
Rd

‖x‖2ρ(x) dx < ∞
}

.

Clearly, the reference density ρ, which is supported on the compact set K ⊂ R
d , belongs to

Pac
2 (Rd). If G : K → R

d is a diffeomorphism onto its image (which is again compact), then
the push-forward of ρ’s measure produces again a density G#ρ ∈ Pac

2 (Rd), given by

G#ρ = ρ

det DG
◦ G−1. (2.1)

2.2 Gradient Flow in the Wasserstein Metric

Below, some basic facts about theWasserstein metric and the formulation of (1.1) as gradient
flow in that metric are briefly reviewed. For more detailed information, we refer the reader
to the monographs of Ambrosio et al. [1] and Villani [39].

One of the many equivalent ways to define the L2-Wasserstein distance between ρ0, ρ1 ∈
Pac
2 (Rd) is as follows:

W2(ρ0, ρ1) := inf

{ˆ
Rd

‖T (x) − x‖2ρ0(x) dx ; T : Rd → R
d measurable, T#ρ0 = ρ1

} 1
2

.

(2.2)

The infimum above is in fact a minimum, and the — essentially unique — optimal map
T ∗ is characterized by Brenier’s criterion; see, e.g., Villani [39, Section 2.1]. A trivial but
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essential observation is that if ρ ∈ Pac
2 (Rd) is a reference density with support K ⊂ R

d , and
ρ0 = (G0)#ρ with a measurable G0 : K → R

d , then (2.2) can be re-written as follows:

W2(ρ0, ρ1) = inf

{ˆ
K

‖G(ω) − G0(ω)‖2ρ(ω) dω ; G : K → R
d measurable, G#ρ = ρ1

} 1
2

,

(2.3)

and the essentially unique minimizer G∗ in (2.3) is related to the optimal map T ∗ in (2.2)
via G∗ = T ∗ ◦ G0.

W2 is a metric on Pac
2 (Rd); convergence in W2 is equivalent to weak-� convergence in

L1(Rd) and convergence of the second moment. Since P and hence also h are of super-linear
growth at infinity, each sublevel set E is weak-� closed and thus complete with respect toW2.

As already mentioned above, solutions ρ to (1.1) constitute a gradient flow for the func-
tional E from (1.8) in the metric space (Pac

2 (Rd);W2). In fact, assuming that the potential V
is λ-convex (i.e., ∇2V ≥ λ1), the flow is even λ-contractive as a semi-group, thanks to the
λ-uniform displacement convexity of E (seeMcCann [30], or Daneri and Savaré [17]), which
is a strengthened form of λ-uniform convexity along geodesics. The λ-contractivity of the
flow implies various properties (see Ambrosio et al. [1, Section 11.2]) like global existence,
uniqueness and regularity of the flow, monotonicity of E and its sub-differential, uniform
exponential estimates on the convergence (if λ > 0) or divergence (if λ ≤ 0) of trajectories,
quantified exponential rates for the approach to equilibrium (if λ > 0) and the like.

An important further consequence is that the unique flow can be obtained as the limit for
τ ↘ 0 of the time-discreteminimizing movement scheme (see Ambrosio et al. [1] and Jordan,
Kinderlehrer and Otto [24]):

ρn
τ := argmin

ρ∈Pac
2 (Rd )

Eτ (ρ; ρn−1
τ ), Eτ (ρ, ρ̂) := 1

2τ
W2(ρ, ρ̂)2 + E(ρ). (2.4)

This time discretization is well-adapted to approximate λ-contractive gradient flows. All of
the properties of mentioned above are already reflected on the level of these time-discrete
solutions.

2.3 Gradient Flow in L2

Equation (1.7) is the gradient flow of E on the space L2(K → R
d ; ρ) of square integrable

(with respect to ρ) maps G : K → R
d (see Evans et al. [20] or Jordan et al. [25]). However,

the variational structure behind this gradient flow is much weaker than above: most notably,
E is only poly-convex, but not λ-uniformly convex. Therefore, the abstract machinery for λ-
contractive gradient flows in Ambrosio et al. [1] does not apply here. Clearly, by equivalence
of (1.1) and (1.7) at least for sufficiently smooth solutions, certain properties of the primary
gradient flow are necessarily inherited by this secondary flow, but for instance λ-contractivity
of the flow in the L2-norm seems to fail.

Nevertheless, it can be proven (see Ambrosio, Lisini and Savaré [2]) that the gradient
flow is globally well-defined, and it can again be approximated by the minimizing movement
scheme:

Gn
τ := argmin

G∈L2(K→Rd ;ρ)

Eτ

(
G;Gn−1

τ

)
, Eτ (G; Ĝ) = 1

2τ

ˆ
K

‖G − Ĝ‖2 dρ + E(G|ρ).

(2.5)
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In fact, there is an equivalence between (2.5) and (2.4): simply substitute (Gn−1
τ )#ρ for

ρn−1
τ and G#ρ for ρ in (2.4); notice that any ρ ∈ Pac

2 (Rd) can be written as G#ρ with
a suitable (highly non-unique) choice of G ∈ L2(K → R

d ; ρ). This equivalence was
already exploited in Carrillo et al. [13,15]. Thanks to the equality (2.3), the minimization
with respect to ρ = G#ρ can be relaxed to a minimization with respect to G. Consequently,
if (G0

τ )#ρ = ρ0
τ , then (Gn

τ )#ρ = ρn
τ at all discrete times n = 1, 2, . . .. However, while the

functional Eτ (·; ρn−1
τ ) in (2.4) is (λ + τ−1)-uniformly convex in ρ along geodesics in W2,

the functional Eτ (·;Gn−1
τ ) in (2.5) has apparently no useful convexity properties in G on

L2(K → R
d ; ρ).

3 Definition of the Numerical Scheme

Recall theLagrangian formulation of (1.1) that has been given inLemma1.1. For definiteness,
fix a reference density ρ ∈ Pac

2 (Rd), whose support K ⊂ R
d is a compact, convex polytope.

3.1 Discretization in Space

Our spatial discretization is performed using a finite subspace of linear maps for the
Lagrangian maps G. More specifically: let T be some (finite) simplicial decomposition
of K with nodes ω1 to ωL and n-simplices �1 to �M . In the case d = 2, which is of primary
interest here, T is a triangulation, with triangles �m . The reference density ρ is approxi-
mated by a density ρT ∈ Pac

2 (Rd) that is piecewise constant on the simplices of T , with
respective values

ρm
T := μm

T

|�m | for the simplex masses μm
T :=

ˆ
�m

ρ(ω) dω. (3.1)

The finite dimensional ansatz spaceAT is now defined as the set of maps G : K → R
d that

are globally continous, affine on each of the simplices �m ∈ T , and orientation preserving.
That is, on each �m ⊂ T , the map G ∈ AT can be written as follows:

G(ω) = Amω + bm for all ω ∈ �m, (3.2)

with a suitable matrix Am ∈ R
d×d of positive determinant and a vector bm ∈ R

d .
For the calculations that follow, we shall use a more geometric way to describe the maps

G ∈ AT , namely by the positions G
 = G(ω
) of the images of each node ω
. Denote
by (Rd)LT ⊂ R

L·d the space of L-tuples G = (G
)
L

=1 of points G
 ∈ R

d with the same
simplicial combinatorics (including orientation) as the ω
 in T . Clearly, any G ∈ AT is
uniquely characterized by the L-tuple G of its values, and moreover, any G ∈ (Rd)LT defines
a G ∈ AT .

More explicitly, fix a �m ∈ T , with nodes labelled ωm,0 to ωm,d in some orientation
preserving order, and respective image points Gm,0 to Gm,d . With the standard d-simplex
given by

�d :=
⎧
⎨

⎩
ξ = (ξ1, . . . , ξd) ∈ R

d≥0 ;
d∑

j=1

ξ j ≤ 1

⎫
⎬

⎭
,
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2

(1, 0)

(0, 1)

(0, 0)

Δm

ωm,0

ωm,1

ωm,2

Gm,0

Gm,1

Gm,2

rm
qm

G

Fig. 1 A schematic representation of the spatial discretization for the case d = 2. Note that the upper-
left triangle �m is part of the reference triangulation T , and is fixed in time. In contrast, the upper-right
triangulation given by Gm will change with time; see Sect. 3.2

introduce the linear interpolation maps rm : �d → K and qm : �d → R
d by

rm(ξ) = ωm,0 +
d∑

j=1

(ωm, j − ωm,0)ξ j ,

qm(ξ) = Gm,0 +
d∑

j=1

(Gm, j − Gm,0)ξ j .

Then the affine map (3.2) equals to qm ◦ r−1
m ; this is shown schematically in Fig. 1 for the

case d = 2. In particular, we obtain that

det Am = det Dqm
det Drm

= det Qm
T [G]

2|�m | where Qm
T [G] := (

Gm,1 − Gm,0
∣∣ · · · ∣∣Gm,d − Gm,0

)
.

(3.3)

For later reference, we give a more explicit representation for the transformed entropy E for
G ∈ AT , and for the L2-distance between twomapsG, Ĝ ∈ AT . Substitution of the special
form (3.2) into (1.9) produces

E(G|ρT ) =
∑

�m∈T
μm
T

[
H

m
T (G) + V

m
T (G)

]
(3.4)

with the internal energy [recall the definition of h̃ from (1.9)]

H
m
T (G) := h̃

(
det Am

ρm
T

)
= h̃

(
det Qm

T [G]
2μm

T

)

and the potential energy

V
m
T (G) =

 
�m

V (Amω + bm) dω =
 

�
V
(
rm(ω)

)
dω.
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For the L2-difference of G and G∗, we have

‖G − G∗‖2L2(K ;ρT )
=
ˆ
K

‖G − G∗‖2ρT dω =
∑

�m∈T
μm
T L

m
T (G,G∗). (3.5)

Using Lemma B.1, we obtain on each simplex �m :

L
m
T (G,G∗) :=

 
�m

‖G(ω) − G∗(ω)‖2 dω

=
 

�
‖rm(ω) − r∗

m(ω)‖2 dω

= 2

(d + 1)(d + 2)

∑

0≤i≤ j≤d

(Gm,i − G∗
m,i ) · (Gm, j − G∗

m, j ). (3.6)

3.2 Discretization in Time

Let a time step τ > 0 be given; in the following, we symbolize the spatio-temporal discretiza-
tion by �, and we write � → 0 for the joint limit of τ → 0 and vanishing mesh size in T .

The discretization in time is performed in accordance with (2.5): we modify Eτ from (2.5)
by restriction to the ansatz space AT . This leads to the minimization problem

Gn
� : = argmin

G∈AT

E�
(
G;Gn−1

�
)

where E�(G;G∗)

= 1

2τ
‖G − G∗‖2L2(K ;ρT )

+ E(G|ρT ). (3.7)

For a fixed discretization �, the fully discrete scheme is well-posed in the sense that for
a given initial map G0

� ∈ AT , an associated sequence (Gn
�)n≥0 can be determined by

successive solution of the minimization problems (3.7). One only needs to verify:

Lemma 3.1 For each given G∗ ∈ AT , there exists at least one global minimizer G ∈ AT

of E�(·;G∗).

Remark 3.2 We do not claim uniqueness of the minimizers. Unfortunately, the minimiza-
tion problem (3.7) inherits the lack of convexity from (2.5), whereas the correspondence
between (2.5) and the convex problem (2.4) is lost under spatial discretization. A detailed
discussion of E�’s (non-)convexity is provided in “Appendix C”.

Proof of Lemma 3.1 We only sketch the main arguments. For definiteness, let us choose
(just for this proof) one of the infinitely many equivalent norm-induced metrics on the dL-
dimensional vector space VT of all continuous maps G : K → R

d that are piecewise affine
with respect to the fixed simplicial decompositionT : givenG,G ′ ∈ VT with their respective
point locationsG, G′ ∈ R

dL , i.e.,G = (G
)
L

=1 forG
 = G(ω
), define the distance between

thesemaps as themaximalRd -distance‖G
−G ′

‖of corresponding pointsG
 ∈ G,G ′


 ∈ G′.
Clearly, this metric makes VT a complete space.

It is easily seen that the subset AT — which is singled out by requiring orientation
preservation of the G’s—is an open subset of VT . It is further obvious that the map G �→
E�(G;G∗) is continuous with respect to the metric. The claim of the lemma thus follows if
we can show that the sub-level

Sc := {
G ∈ AT ; E�(G;G∗) ≤ c

}
with c := E(G∗|ρT )
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is a non-empty compact subset of VT . Clearly, G∗ ∈ Sc, so it suffices to verify compactness.
Sc is bounded.We are going to show that there is a radius R > 0 such that no G ∈ Sc has

a distance larger than R to G∗. From non-negativity of E, and from the representations (3.5)
and (3.6), it follows that

c ≥ 1

2τ
‖G − G∗‖2L2(K ;ρT )

≥ μ
T

2τ

∑

�m∈T
L
m
T (G,G∗)

= μ
T

(d + 1)(d + 2)τ

∑

0≤i≤ j≤d

(Gm,i − G∗
m,i ) · (Gm, j − G∗

m, j )

≥ μ
T

2(d + 1)(d + 2)τ

L∑


=1

‖G
 − G∗

‖2,

where μ
T

= min�m μm
T . It is now easy to compute a suitable value for the radius R.

Sc is a closed subset of VT . It suffices to show that the limit G ∈ VT of any sequence
(G(k))∞k=1 of maps G(k) ∈ Sc belongs to AT . By definition of our metric on VT , global
continuity and piecewise linearity of the G(k) trivially pass to the limit G. We still need to
verify that G is orientation-preserving. Fix a simplex �m and consider the corresponding
matrices A(k)

m and Am from (3.2). Since theG(k) converge toG in themetric, also A(k)
m → Am

entry-wise. Now, by non-negativity of h̃, we have for all k that

c ≥ E(G(k)|ρT ) ≥ μm
T h̃

(
det A(k)

m

ρm
T

)

,

and since h̃(s) → +∞ as s ↓ 0, it follows that det A(k)
m > 0 is bounded away from zero,

uniformly in k. But then also det Am > 0, i.e., the mth linear map piece of the limit G
preserves orientation. ��
3.3 Fully Discrete Equations

We shall now derive the Euler–Lagrange equations associated to the minimization prob-
lem (3.7), i.e., for each given G∗ := Gn−1

� ∈ AT , we calculate the variations of E�(G;G∗)
with respect to the degrees of freedom of G ∈ AT . Since that function is a weighted sum
over the triangles �m ∈ T , it suffices to perform the calculations for one fixed triangle �m ,
with respective nodes ωm,0 to ωm,d , in positive orientation. The associated image points are
Gm,0 to Gm,d . Since we may choose any vertex to be labelled ωm,0, it will suffice to perform
the calculations at one fixed image point Gm,0.

• mass term:

∂

∂Gm,0
L
m
T (G,G∗) = 2

(d + 1)(d + 2)

∂

∂Gm,0

∑

0≤i≤ j≤d

(Gm,i − G∗
m,i ) · (Gm, j − G∗

m, j )

= 2

(d + 1)(d + 2)

⎛

⎝2(Gm,0 − G∗
m,0) +

d∑

j=1

(Gm, j − G∗
m, j )

⎞

⎠

• internal energy: observing that—recall (1.2) —

h̃′(s) = d

ds

[
sh(s−1)

] = h(s−1) − s−1h′(s−1) = −P(s−1), (3.8)
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we obtain

∂

∂Gm,0
H

m
T (G) = ∂

∂Gm,0
h̃

(
det Qm

T [G]
2μm

T

)
= 1

2μm
T

P

(
2μm

T

det Qm
T [G]

)
νmT [G],

where

νmT [G] := − ∂

∂Gm,0
det Qm

T [G] = (det Qm
T [G]) (Qm

T [G])−T
d∑

j=1

e j (3.9)

is the uniquely determined vector in R
d that is orthogonal to the (d − 1)-simplex with

corners Gm,1 to Gm,d (pointing away from Gm,0) and whose length equals the (d − 1)-
volume of that simplex.

• potential energy:

∂

∂Gm,0
V
m
T (G) = ∂

∂Gm,0

 
�
V
(
rm(ξ)

)
dξ =

 
�

∇V
(
rm(ξ)

)
(1 − ξ1 − · · · − ξd) dξ.

Now let ω
 be a fixed vertex of T . Summing over all simplices �m that have ω
 as a vertex,
and choosing vertex labels in accordance with above, i.e., such that ωm,0 = ω
 in �m ,
produces the following Euler–Lagrange equation:

0 =
∑

ω
∈�m

μm
T

[
1

(d + 1)(d + 2)τ

(
2(Gm,0 − G∗

m,0) +
d∑

j=1

(Gm, j − G∗
m, j )

)

+ 1

2μm
T

P

(
2μm

T

det Qm
T [G]

)
νmT [G] +

 
�

∇V
(
rm(ξ)

)
(1 − ξ1 − · · · − ξd) dξ

]
.

(3.10)

3.4 Approximation of the Initial Condition

For the approximation ρ0
� = (G0

�)#ρT of the initial datum ρ0 = G0
#ρ, we require:

• ρ0
� converges to ρ0 narrowly;

• E(ρ0
�) is �-uniformly bounded, i.e.,

E := sup E(ρ0
�) < ∞. (3.11)

In our numerical experiments, we always choose ρ := ρ0, in which case G0 : K → R
d can

be taken as the identity on K , and we choose accordingly G0
� as the identity as well. Hence

ρ0
� = ρT , which converges to ρ0 = ρ even strongly in L1(K ). Moreover, since h is convex,

it easily follows from Jensen’s inequality thatˆ
�m

h
(
ρ(x)

)
dx ≥ |�m |h(ρm

T ),

and therefore,

E(ρ0
�) ≤ E(ρ0).

In more general situations, in which G0 is not the identity, a sequence of approximations
G0

� of G0 is needed. Pointwise convergence G0
� → G0 is more than sufficient to guarantee

narrow convergence of ρ0
� to ρ0, but the uniform bound (3.11) might require a well-adapted

approximation, especially for non-smooth G0’s.
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4 Limit Trajectory

In this section, we assume that a sequence of vanishing discretizations � → 0 is given, and
we study the respective limit of the fully discrete solutions (Gn

�)n≥0 that are produced by the
inductive minimization procedure (3.7). For the analysis of that limit trajectory, it is more
natural to work with the induced densities and velocities,

ρn
� := (Gn

�)#ρ, vn� := id − Gn−1
� ◦ (Gn

�)−1

τ
,

instead of the Lagrangian maps Gn
� themselves. Note that vn� is only well-defined on the

support of ρn
�—that is, on the image of Gn

�—and can be assigned arbitrary values outside.
Let us introduce the piecewise constant in time interpolations ρ̃� : [0, T ]×R

d → R≥0, and
ṽ� : [0, T ] × R

d → R
d as usual,

ρ̃�(t) = ρn
�, ṽ�(t) = vn� with n such that t ∈ ((n − 1)τ, nτ ].

Note that ρ̃(t, ·) ∈ Pac
2 (Rd) and ṽ�(t, ·) ∈ L2(Rd → R

d ; ρ̃�(t, ·)) at each t ≥ 0.

4.1 Energy Estimates

We start by proving the classical energy estimates on minimizing movements for our fully
discrete scheme.

Lemma 4.1 For each discretization � and for any indices n > n ≥ 0, one has the a priori
estimate

E(ρn
�) + τ

2

n∑

n=n+1

(
W2(ρ

n
�, ρn−1

� )

τ

)2

≤ E(ρn). (4.1)

Consequently:

(1) E is monotonically decreasing, i.e., E(ρ̃�(t)) ≤ E(ρ̃�(s)) for all t ≥ s ≥ 0;
(2) ρ̃� is Hölder- 12 -continuous in W2, up to an error τ ,

W2
(
ρ̃�(t), ρ̃�(s)

) ≤
√
2E(ρ0

�)
(|t − s| 12 + τ

1
2
)

for all t ≥ s ≥ 0. (4.2)

(3) ṽ� is square integrable with respect to ρ̃�,
ˆ T

0

ˆ
Rd

‖̃v�‖2ρ̃� dx dt ≤ 2E(ρ0
�). (4.3)

Proof By the definition of Gn
� as a minimizer, we know that E�(Gn

�;Gn−1
� ) ≤

E�(G;Gn−1
� ) for any G ∈ AT , and in particular for the choice G := Gn−1

� , which yields:

1

2τ

ˆ
K

‖Gn
� − Gn−1

� ‖2ρT dω + E(Gn
�|ρT ) ≤ E(Gn−1

� |ρT ). (4.4)

Summing these inequalies for n = n+1, . . . , n, recalling that E(ρn
�) = E(Gn

�|ρT ) by (1.9)

and that W2(ρ
n
�, ρn−1

� )2 ≤ ´
K |Gn

� − Gn−1
� |2ρ dω by (2.3), produces (4.1).

Monotonicity of E in time is obvious.
To prove (4.2), choose n ≤ n such that s ∈ ((n − 1)τ, nτ ] and t ∈ ((n − 1)τ, nτ ]. Notice

that τ(n − n) ≤ t − s + τ . If n = n, the claim (4.2) is obviously true; let n < n in the
following. Combining the triangle inequality for the metric W2, estimate (4.1) above and
Hölder’s inequality for sums, we arrive at
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W2
(
ρ̃�(t), ρ̃�(s)

) = W2(ρ
n
�, ρ

n
�) ≤

n∑

n=n+1

W2(ρ
n
�, ρn−1

� )

≤
⎡

⎣
n∑

n=n+1

τ

⎤

⎦

1
2
⎡

⎣
n∑

n=n+1

W2(ρ
n
�, ρn−1

� )2

τ

⎤

⎦

1
2

= [
τ(n − n)

] 1
2

⎡

⎣τ

n∑

n=n+1

(
W2(ρ

n
�, ρn−1

� )

τ

)2
⎤

⎦

1
2

≤ [t − s + τ ] 1
2

[
2
(E(ρ

n
�) − E(ρn

�)
)] 1

2

≤ [|t − s| 12 + τ
1
2
]E(ρ0

�)
1
2 .

Finally, changing variables using x = Gn
�(ω) in (4.4) yields

τ

2

ˆ
Rd

‖vn�‖2ρn
� dx + E(Gn

�) ≤ E(Gn−1
� ),

and summing these inequalities from n = 1 to n = Nτ yields (4.3). ��
4.2 Compactness of the Trajectories and Weak Formulation

Our main result on the weak limit of ρ̃� is the following.

Theorem 4.2 Along a suitable sequence � → 0, the curves ρ̃� : R≥0 → Pac
2 (Rd) con-

vergence pointwise in time, i.e., ρ̃�(t) → ρ∗(t) narrowly for each t > 0, towards a
Hölder- 12 -continuous limit trajectory ρ∗ : R≥0 → Pac

2 (Rd).
Moreover, the discrete velocities ṽ� possess a limit v∗ ∈ L2(R≥0 × R

d ; ρ∗) such that

ṽ�ρ̃�
∗
⇀ v∗ρ∗ in L1(R≥0 × R

d), and the continuity equation

∂tρ∗ + ∇ · (ρ∗v∗) = 0 (4.5)

holds in the sense of distributions.

Remark 4.3 The Hölder continuity of ρ∗ implies that ρ∗ satisfies the initial condition (1.1b)
in the sense that ρ∗(t) → ρ0 narrowly as t ↓ 0.

Proof of Theorem 4.2 We closely follow an argument that is part of the general convergence
proof for the minimizing movement scheme as given in Ambrosio et al. [1, Section 11.1.3].
Below, convergence is shown for some arbitrary but fixed time horizon T > 0; a standard
diagonal argument implies convergence at arbitrary times.

First observe that by estimate (4.2)—applied with 0 = s ≤ t ≤ T—it follows that
W2(ρ̃�(t), ρ0

�) is bounded, uniformly in t ∈ [0, T ] and in �. Since further ρ0
� converges

narrowly to ρ0 by our hypotheses on the initial approximation, we conclude that all densities
ρ̃�(t) belong to a sequentially compact subset for the narrow convergence. The second

observation is that the term on the right hand side of (4.2) simplifies to (2E)
1
2 |t − s| 12 in the

limit � → 0. A straightforward application of the “refined version” of the Ascoli-Arzelà
theorem (Proposition 3.3.1 in Ambrosio et al. [1]) yields the first part of the claim, namely
the pointwise narrow convergence of ρ̃� towards a Hölder continuous limit curve ρ∗.
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It remains to pass to the limitwith the velocity ṽ�. Towards that end,wedefine a probability
measure γ̃� ∈ P(ZT ) on the set ZT := [0, T ] × R

d × R
d as follows:

ˆ
ZT

ϕ(t, x, v) dγ̃�(t, x, v) =
ˆ T

0

ˆ
Rd

ϕ
(
t, x, ṽ�(t, x)

)
ρ̃�(t, x) dx

dt

T
,

for every bounded and continuous function ϕ ∈ C0
b (ZT ). For brevity, let M̃� ∈ P([0, T ] ×

R
d) be the (t, x)-marginals of γ̃�, that have respective Lebesgue densities ρ�(t,x)

T on [0, T ]×
R
d . Thanks to the result from the first part of the proof, M̃� converges narrowly to a limit

M∗, which has density ρ∗(t,x)
T . On the other hand, the estimate (4.3) implies that

ˆ
ZT

|v|2 dγ̃�(t, x, v) =
ˆ

[0,T ]×Rd
|̃v�(t, x)|2 dM̃�(t, x) ≤ 2E .

We are thus in the position to apply Theorem 5.4.4 in Ambrosio et al. [1], which yields
the narrow convergence of γ̃� towards a limit γ∗. Clearly, the (t, x)-marginal of γ∗ is M∗.
Accordingly, we introduce the disintegration γ(t,x) of γ∗ with respect to M∗, which is well-
defined M∗-a.e.. Below, it will turn out that γ∗’s v-barycenter,

v∗(t, x) :=
ˆ
Rd

v dγ(t,x)(v), (4.6)

is the sought-for weak limit of ṽ�. The convergence ṽ�ρ̃�
∗
⇀ v∗ρ∗ and the inheritance of

the uniform L2-bound (4.3) to the limit v∗ are further direct consequences of Theorem 5.4.4
in Ambrosio et al. [1].

The key step to establish the continuity equation for the just-defined v∗ is to evaluate the
limit as � → 0 of

J�[φ] := 1

τ

[ˆ T

0

ˆ
Rd

φ(t, x)ρ̃�(t, x) dx dt −
ˆ T

0

ˆ
Rd

φ(t, x)ρ̃�(t − τ, x) dx dt

]

for any given test function φ ∈ C∞
c ((0, T ) × R

d) in two different ways. First, we change
variables t �→ t + τ in the second integral, which gives

J�[φ] =
ˆ T

0

ˆ
Rd

φ(t, x) − φ(t + τ, x)

τ
ρ̃�(t, x) dx dt

�→0−→

−
ˆ T

0

ˆ
Rd

∂tφ(t, x) ρ∗(t, x) dx dt.

For the second evaluation, we write

ρn−1
� = (

Gn−1
� ◦ (Gn

�)−1)
#ρ

n
� = (

id − τvn�
)
#ρ

n
�,

and substitute accordingly x �→ x − τ ṽ�(t, x) in the second integral, leading to

J�[φ] =
ˆ T

0

ˆ
Rd

φ(t, x) − φ
(
t, x − τ ṽ�(t, x)

)

τ
ρ̃�(t, x) dx dt

=
ˆ T

0

ˆ
Rd

∇φ(t, x) · ṽ�(t, x)ρ̃�(t, x) dx dt + e�[φ]

=
ˆ
ZT

∇φ(t, x) · v dγ̃�(t, x, v) + e�[φ]
�→0−→

ˆ
ZT

∇φ(t, x) · v dγ∗(t, x, v)
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=
ˆ

[0,T ]×Rd
∇φ(t, x) ·

[ˆ
Rd

v dγ(t,x)(v)

]
dM∗(t, x)

=
ˆ T

0

ˆ
Rd

∇φ(t, x) · v∗(t, x)ρ∗(t, x) dx dt.

The error term e�[φ] above is controlled via Taylor expansion of φ and by using (4.3),

∣
∣e�[φ]∣∣ ≤

ˆ T

0

ˆ
Rd

τ

2
‖φ‖C2

∥
∥̃v�(t, x)

∥
∥2ρ̃�(t, x) dx dt ≤ E‖φ‖C2T τ.

Equality of the limits for both evaluations of J�[φ] for arbitrary test functions φ shows the
continuity Eq. (4.5). ��

Unfortunately, the convergence provided by Theorem 4.2 is generally not sufficient to
conclude that ρ∗ is a weak solution to (1.1), since we are not able to identify v∗ as v[ρ∗]
from (1.4b). The problem is two-fold: first, weak-� convergence of ρ̃� is insufficient to pass
to the limit inside the nonlinear function P . Second, even if we would know that, for instance,

P(ρ̃�)
∗
⇀ P(ρ∗), wewould still need a�-independent a priori control on the regularity (e.g.,

maximal diameter of triangles) of the meshes generated by the Gn
� to justify the passage to

limit in the weak formulation below.
The main difficulty in the weak formulation that we derive now is that we can only use

“test functions” that are piecewise affine with respect to the changing meshes generated by
the Gn

�. For definiteness, we introduce the space

D(T ) :=
{
� : K → R

d ; � is globally continuous, and is piecewise affine w.r.t. �m

}
.

Lemma 4.4 Assume S : Rd → R
d is such that S ◦ Gn

� ∈ D(T ). Then:

ˆ
Rd

P(ρn
�)∇ · S dx −

ˆ
Rd

∇V · S ρn
� dx =

ˆ
Rd

S · vn�ρn
� dx . (4.7)

Proof For all sufficiently small ε > 0, let Gε = (id + S) ◦ Gn
�. By definition of Gn

� as a

minimizer, we have that E�(Gε;Gn−1
� ) ≥ E�(Gn

�;Gn−1
� ). This implies that

0 ≤ 1

ε

ˆ
K

(
1

2τ

[‖Gε − Gn−1
� ‖2 − ‖Gn

� − Gn−1
� ‖2]

+
[
h̃

(
det DGε

ρT

)
− h̃

(
det DGn

�
ρT

)]
+ [

V ◦ Gε − V
])

ρT dω. (4.8)

We discuss limits of the three terms under the integral for ε ↘ 0. For the metric term:

1

2τε

[
‖Gε − Gn−1

� ‖2 − ‖Gn
� − Gn−1

� ‖2
]

= Gn
� − Gn−1

�
τ

· Gε − Gn
�

ε
+ 1

2τε
‖Gε − Gn

�‖2

=
[(

id − T n
�

τ

)
· S
]

◦ Gn
� + ε

2τ
‖S‖2 ◦ Gn

�,

and since S is bounded, the last term vanishes uniformly on K for ε ↘ 0. For the internal
energy, since DGε = D(id + εS) ◦ Gn

� · DGn
�, and recalling (3.8),
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1

ε

[
h̃

(
det DGε

ρT

)
− h̃

(
det DGn

�
ρT

)]

= 1

ε

[
h̃

(
det DGn

�
ρT

det(1 + εDS) ◦ Gn
�

)
− h̃

(
det DGn

�
ρT

)]

ε↘0−→ det DGn
�

ρT
h̃′
(
det DGn

�
ρT

)(
lim
ε↘0

det(1 + εDS)

ε

)
◦ Gn

�

= −det DGn
�

ρT
P

(
ρT

det DGn
�

)

tr[DS] ◦ Gn
�

= −det DGn
�

ρT

[
P(ρn)∇ · S] ◦ Gn

�.

Since the piecewise constant function det DGn
� has a positive lower bound, the convergence

as ε ↘ 0 is uniform on K . Finally, for the potential energy,

1

ε

[
V ◦ (id + εS) ◦ Gn

� − V ◦ Gn
�
] ε↘0−→ [∇V · S] ◦ Gn

�.

Again, the convergence is uniform on K . Passing to the limit in the integral (4.8) yields

0 ≤
ˆ
K

[(
id − T n

�
τ

)
· S
]

◦ Gn
�ρT dω

−
ˆ
K

[
P(ρn)∇ · S] ◦ Gn

� det DGn
� dω +

ˆ
K

[∇V · S] ◦ Gn
�ρT dω.

The same inequality is true with−S in place of S, hence this inequality is actually an equality.
Since ρn

� = (Gn
�)#ρT , a change of variables x = Sn�(ω) produces (4.7). ��

Corollary 4.5 In addition to the hypotheses of Theorem 4.2, assume that

(1) P(ρ̃�)
∗
⇀ p∗ in L1([0, T ] × �);

(2) each Gn
� is injective;

(3) as � → 0, all simplices in the images of T under Gn
� have non-degenerate interior

angles and tend to zero in diameter, uniformly w.r.t. n.

Then ρ∗ satisfies the PDE

∂tρ∗ = �p∗ + ∇ · (ρ∗∇V ) (4.9)

in the sense of distributions.

Proof Let a smooth test function ζ ∈ C∞
c (Rd → R

d) be given. For each � and each n, a
ζ n
� : Rd → R

d with ζ n
� ◦ Gn

� ∈ D(T ) can be constructed in such a way that

ζ n
� → ζ, ∇ · ζ n

� → ∇ · ζ (4.10)

uniformly on Rd , and uniformly in n as � → 0. This follows from our hypotheses on the �-
uniform regularity of the Lagrangian meshes: inside the image ofGn

�, one can simply choose
ζ n
� as the affine interpolation of the values of ζ at the points Gn

�(ω
). Outside, one can take
an arbitrary approximation of ζ that is compatible with the piecewise-affine approximation
on the boundary of Gn

�’s image; one may even choose ζ n
� ≡ ζ at sufficient distance to that

boundary. The uniform convergences (4.10) then follow by standard finite element analysis.
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Further, let η ∈ C∞
c (0, T ) be given. For each t ∈ ((n − 1)τ, nτ ], substitute S(t, x) :=

η(t)ζ n
�(x) into (4.7). Integration of these equalities with respect to t ∈ (0, T ) yields

ˆ T

0

ˆ
Rd

P(ρ̃�)∇ · S dx dt −
ˆ T

0

ˆ
Rd

∇V · S dx dt =
ˆ T

0

ˆ
Rd

S · ṽ�ρ̃� dx dt.

We pass to the limit � → 0 in these integrals. For the first, we use that P(ρ̃)
∗
⇀ p∗ by

hypothesis, for the last, we use Theorem 4.2 above. Since any test function S ∈ C∞
c ((0, T )×

�) can be approximated in C1 by linear combinations of products η(t)ζ(x) as above, we
thus obtain the weak formulation of

ρ∗v∗ = ∇ p∗ + ρ∗∇V .

In combination with the continuity Eq. (4.5), we arrive at (4.9). ��

Remark 4.6 In principle, our discretization can also be applied to the linear Fokker–Planck

equationwith P(r) = r and h(r) = r log r . In that case, one automatically has P(ρ̃)
∗
⇀ p∗ ≡

P(ρ∗) thanks to Theorem 4.2. Corollary 4.5 above then provides an a posteriori criterion for
convergence: if the Lagrangian mesh does not deform too wildly under the dynamics as the
discretization is refined, then the discrete solutions converge to the genuine solution.

5 Consistency in 2D

In this section, we prove consistency of our discretization in the following sense. Under
certain conditions on the spatial discretization T , any smooth and positive solution ρ to the
initial value problem (1.1) projects to a discrete solution that satisfies the Euler–Lagrange
equations up to a controlled error. We restrict ourselves to d = 2 dimensions.

5.1 Smooth Lagrangian Evolution

First, we derive an alternative form of the velocity field v from (1.4b) in terms of G.

Lemma 5.1 For ρ = G#ρ with a smooth diffemorphism G : K → R
d , we have

v[ρ] ◦ G = V[G] := P ′
(

ρ

det DG

)
(DG)−T

(
tr12

[
(DG)−1D2G

]T − ∇ρ

ρ

)
− ∇V ◦ G.

(5.1)

Consequently, the Lagrangian map G—relative to the reference density ρ — for a smooth
solution ρ to (1.1) satisfies

∂tG = V[G]. (5.2)

Proof On the one hand,

D
[
h′(ρ) ◦ G

] = [
Dh′(ρ)

] ◦ G DG,

and on the other hand, by definition of the push forward,
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D
[
h′(ρ) ◦ G

] = Dh′
(

ρ

det DG

)

= h′′
(

ρ

det DG

) (
ρ

det DG

) (
Dρ

ρ
− tr12

[
(DG)−1D2G

]
)

= [
ρh′′(ρ)

] ◦ G

(
Dρ

ρ
− tr12

[
(DG)−1D2G

]
)

.

Hence

∇h′(ρ) ◦ G = [
ρh′′(ρ)

] ◦ G (DG)−T
(∇ρ

ρ
− tr12

[
(DG)−1D2G

]T
)

.

Observing that (1.2) implies that rh′′(r) = P ′(r), we conclude (5.2) directly from (1.4b). ��
5.2 Discrete Euler–Lagrange Equations in Dimension d = 2

In the planar case d = 2, the Euler–Lagrange equation (3.10) above can be rewritten in a
more convenient way.

In the following, fix some vertexω× of the triangulation, which is incident to precisely six
triangles. For convenience, we assume that these are labelled �0 to �5 in counter-clockwise
order. Similarly, the six neighboring vertices are labeledω0 toω5 in counter-clockwise order,
so that �k has vertices ωk and ωk+1, where we set ω6 := ω0.

Using these conventions and recalling Lemma B.2, the expression for the vector ν in (3.9)
simplifies to

νkT = −J(Gk+1 − Gk), where J =
(
0 −1
1 0

)
.

Summing the Euler–Lagrange equation (3.10) over �0 to �5, we obtain

p× = J×, (5.3)

where the momentum term p× and the impulse J×, respectively, are given by

p× = 1

12

5∑

k=0

μk
T

[
2

(
G× − G∗×

τ

)
+
(
Gk − G∗

k

τ

)
+
(
Gk+1 − G∗

k+1

τ

)]
(5.4)

J× =
5∑

k=0

μk
T

[
1

2μk
T

P

(
2μk

T

det(Gk − G×|Gk+1 − G×)

)

J(Gk+1 − Gk) (5.5)

−
 

�
∇V

(
(1 − ξ1 − ξ2)G× + ξ1Gk + ξ2Gk+1

)
(1 − ξ1 − ξ2) dξ

]
. (5.6)

We shall now prove our main result on consistency. The setup is the following: a sequence of
triangulations Tε on K , parametrized by ε > 0, and a sequence of time steps τε = O(ε) are
given. We assume that there is an ε-independent region K ′ ⊂ K on which the Tε are almost
hexagonal in the following sense: each node ω× ∈ K ′ of Tε has precisely six neighbors—
labelledω0 toω5 in counter-clockwise order—and there exists a rotation R ∈ SO(2) such that

R(ωk − ω×) = εσk + O(ε2) with σk =
(
cos π

3 k
sin π

3 k

)
(5.7)

for k = 0, 1, . . . , 5.
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Now, let G : [0, T ] × K → R
d be a given smooth solution to the Lagrangian evolution

Eq. (5.2), and fix a time t ∈ (0, T ). For all sufficiently small ε > 0, we define maps
Gε,G∗

ε ∈ ATε by linear interpolation of the values of G(t; ·) and G(t − τ ; ·), respectively,
on Tε . That is, Gε(ω
) = G(t;ω
) and G∗

ε(ω
) = G(t − τ ;ω
), at all nodes ω
 in Tε.
Theorem 5.2 below states that the pair Gε,G∗

ε is an approximate solution to the discrete
Euler–Lagrange equations (5.3) at all nodes ω× of the respective triangulation Tε that lie in
K ′.

The hexagonality hypothesis on theTε is strong, but some very strong restriction ofATε ’s
geometry is apparently necessary. See Remark 5.4 following the proof for further discussion.

Theorem 5.2 Under the hypotheses and with the notations introduced above, the Euler–
Lagrange equation (5.3) admits the following asymptotic expansion:

p× =
√
3

2
ε2 ρ(ω×)∂t G(t;ω×) + O(ε3), (5.8a)

J× =
√
3

2
ε2 ρ(ω×)V[G](t;ω×) + O(ε3), (5.8b)

as ε → 0, uniformly at the nodes ω× ∈ K ′ of the respective Tε .

Remark 5.3 Up to an error O(ε3), the geometric pre-factor
√
3
2 ε2 equals to one third of the

total area of the hexagon with vertices ω0 to ω5, and is thus equal to the integral of the
piecewise affine hat function with peak at ω×.

Proof of Theorem 5.2 Throughout the proof, let ε > 0 be fixed; we shall omit the ε-index
for Tε and τε . First, we fix a node ω× of T ∩ K ′. Thanks to the equivariance of both (5.2)
and (5.3) under rigid motions of the domain, we may assume that R in (5.7) is the identity,
and that ω× = 0.

We collect some relations that are helpful for the calculations that follow. Trivially,

5∑

k=0

σk = 0,
5∑

k=0

ωk = O(ε2). (5.9)

Moreover, we have that

|�k | = det(ωk |ωk+1) = ε2 det(σk |σk+1) + O(ε3) =
√
3

4
ε2 + O(ε3). (5.10)

On the other hand, by definition of μk
T in (3.1), it follows that

μk
T = |�k |

 
�k

ρ dω = 1

2
det(ωk |ωk+1)

[
ρ

(
ωk + ωk+1

3

)
+ O(ε)

]

= 1

2
det(ωk |ωk+1)

[
ρ× + ε∇ρ× · σk + σk+1

3
+ O(ε2)

]
. (5.11)

Combining (5.10) and (5.11) yields

μk
T = ε2

(√
3

4
ρ× + O(ε)

)

. (5.12)

In accordance with the definition of Gε and G∗
ε from G detailed above, let G× := G(t, ω×)

and G∗× = G(t − τ, ω×), and define Gk , G∗
k for k = 0, . . . , 5 in the analogous way. Further,

we introduce DG× = DG(t, ω×), D2G× = D2G(t, ω×), ∂tG× = ∂tG(t, ω×).
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To perform an expansion in the momentum term, first observe that
G(t − τ ;ωk) = G(t;ωk) − τ∂t G(t;ωk) + O(τ 2),

for each k = 0, 1, . . . , 5, and so, using that τ = O(ε) by hypothesis,
Gk − G∗

k

τ
= ∂tG(t;ωk) + O(τ ) = ∂tG× + O(ε) + O(τ ) = ∂tG× + O(ε).

Using (5.12) and then (5.9) yields

p× = 1

12τ

5∑

k=0

ε2

(√
3

4
ρ× + O(ε)

)
[
4∂tG× + O(ε)

]

=
√
3

2
ε2 ρ×∂tG× + O(ε3).

This is (5.8a).
For the impulse term, we start with a Taylor expansion to second order in space:

Gk = G× + DG×ωk + 1

2
D2G× : [ωk]2 + O(ε3).

We combine this with the observation that (ωk |ωk+1)
−1 = O(ε−1) to obtain:

μk
T

det(Gk − G×|Gk+1 − G×)

= det(ωk |ωk+1)

det DG×
ρ× + ε∇ρ× · σk+σk+1

3 + O(ε2)

det
[
(ωk |ωk+1) + 1

2 (DG×)−1
(
D2G× : [ωk ]2

∣∣D2G× : [ωk+1]2
)+ O(ε3)

]

= ρ×
det DG×

1 + ε
∇ρ×
ρ×

· σk + σk+1

3
+ O(ε2)

det
[
1 + 1

2 (DG×)−1
(
D2G× : [ωk ]2

∣∣D2G× : [ωk−1]2
)
(ωk |ωk+1)−1 + O(ε2)

]

= ρ×
det DG×

(
1 + ε

{
χk − 1

2
ϑk

}
+ O(ε2)

)
,

where

χk = ∇ρ×
ρ×

· σk + σk+1

3
,

ϑk = tr
[(

(DG×)−1D2G× : [σk]2
∣∣(DG×)−1D2G× : [σk+1]2

)
(σk |σk+1)

−1] .

Plugging this in leads to

5∑

k=0

{
1

2
P

(
ρ×

det DG×

)
+ ε

2
P ′
(

ρ×
det DG×

){
χk − 1

2
ϑk

}
+ O(ε2)

}
JDG×(ωk+1 − ωk)

= 1

2
P

(
ρ0

det DG×

)
JDG×

(
5∑

k=0

(ωk+1 − ωk)

)

+ ε2

4
P ′
(

ρ×
det DG×

)
JDG×JT

(
5∑

k=0

{2χk − ϑk} J(σk+1 − σk)

)

+ O(ε3)

= 0 +
√
3

2
ε2P ′

(
ρ×

det DG×

)
(DG×)−T

{
tr12

[
(DG×)−1D2G×

]T − ∇ρ×
ρ×

}
+ O(ε3),

where we have use the auxiliary algebraic results from Lemmas B.2, B.3 and B.4.
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For the remaining part of the impulse term, a very rough approximation is sufficient:

∇V (g) = ∇V (G×) + O(ε)

holds for any g that is a convex combination of G×,G0, . . . ,G5, where the implicit constant
is controlled in terms of the supremum of D2V and DG on K ′. With that, we simply have,
using again (5.12):

5∑

k=0

μk
T

 
�

∇V
(
(1 − ξ1 − ξ2)G× + ξ1Gk + ξ2Gk+1

)
(1 − ξ1 − ξ2) dξ

= 6ε2
(√

3

4
ρ× + O(ε)

)
(∇V (G×) + O(ε)

) =
√
3

2
ε2 ρ×∇V (G×) + O(ε3).

Together, this yields (5.8b). ��
Remark 5.4 The hypotheses of Theorem (5.2) require that the Tε are almost hexagonal on
K ′. This seems like a technical hypothesis that simplifies calculations, but apparently, some
strong symmetry property of the Tε is necessary for the validity of the result.

To illustrate the failure of consistency—at least in the specific form considered here—
assume that V ≡ 0 and ρ ≡ 1, and consider a sequence of triangulationsTε for which there is
a node ω× such that (5.7) holds with the σk being replaced by a different six-tuple of vectors
σ ′
k . Repeating the steps of the proof above, it is easily seen thatp× = aε2 ∂tG(t;ω×)+O(ε3),

with an ε-independent constant a > 0 in place of
√
3/2, and that

J× = −ε2

4
P ′
(

1

det DG×

)
(DG×)−T

5∑

k=0

ϑ ′
kJ(σ

′
k+1 − σ ′

k) + O(ε3),

with

ϑ ′
k = tr

[(
(DG×)−1D2G× : [σ ′

k]2
∣∣(DG×)−1D2G× : [σ ′

k+1]2
)
(σ ′

k |σ ′
k+1)

−1] .

If a result of the form (5.8b)—with
√
3/2 replaced by a—was true, then this implies in

particular that

5∑

k=0

ϑ ′
kJ(σ

′
k+1 − σ ′

k) = a′ tr12
[
(DG×)−1D2G×

]
(5.13)

holds with some constant a′ > 0 for arbitrary matrices DG× ∈ R
2×2 of positive determinant

and tensors D2G× ∈ R
2×2×2 that are symmetric in the second and third component. A

specific example for which (5.13) is not true is given by

σ ′
0 =

(
1

0

)
= −σ ′

3, σ ′
1 =

( 1
2
1
2

)
= −σ ′

4, σ ′
2 =

(
0

1

)
= −σ ′

5, (5.14)

in combination with DG× = 1, and a D2G× that is zero except for two ones, at the positions
(1, 2, 2) and (2, 1, 1). In Lemma B.5, we show that the left-hand side in (5.13) equals to

(1
1

)
;

on the other hand, the right-hand side is clearly zero.
Note that this counter-example is significant, insofar as the skew (in fact, degenerate)

hexagon described by the σ ′
k in (5.14) corresponds to a popular method for triangulation of

the plane.
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6 Numerical Simulations in d = 2

6.1 Implementation

The Euler–Lagrange equations for the d = 2-dimensional case have been derived in (5.3).
We perfom a small modification in the potential term in order to simplify calculations with
presumably minimal loss in accuracy:

Z×[G;G∗] =
5∑

k=0

μk
T

12

[
2

(
G× − G∗×

τ

)
+
(
Gk − G∗

k

τ

)
+
(
Gk+1 − G∗

k+1

τ

)]

+
5∑

k=0

[
1

2
h̃′
(
det(Gk − G×|Gk+1 − G×)

2μk
T

)

J(Gk+1 − Gk)

+ μk
T

6
∇V (Gk+ 1

2
)

]
,

with the short-hand notation

Gk+ 1
2

= 1

3
(G× + Gk + Gk+1).

On the main diagonal, the Hessian amounts to

H××[G] =
(

5∑

k=0

μk
T

6τ

)

12

+
5∑

k=0

1

4μk
T

h̃′′
(
det(Gk−G×|Gk+1−G×)

2μk
T

)
[
J(Gk+1−Gk)

][
J(Gk+1 − Gk)

]�

+
5∑

k=0

μk
T

18
∇2V (Gk+ 1

2
)

Off the main diagonal, the entries of the Hessian are given by

H×k[G] = μk
T + μk−1

T

12τ
12

+ 1

4μk
T

h̃′′
(
det(Gk − G×|Gk+1 − G×)

2μk
T

)
[
J(Gk+1 − Gk)

][
J(Gk+1 − G×)

]�

− 1

4μk−1
T

h̃′′
(
det(Gk−1 − G×|Gk − G×)

2μk−1
T

)
[
J(Gk − Gk−1)

][
J(Gk−1 − G×)

]�

+ μk
T

18
∇2V (Gk+ 1

2
) + μk−1

T

18
∇2V (Gk− 1

2
).

The scheme consists of an inner (Newton) and an outer (time stepping) iteration. We start
from a given initial density ρ0 and define the solution at the next time step inductively by
applying Newton’s method in the inner iteration. To this end we initialise G(0) := Gn with
Gn , the solution at the nth time step, and define inductively

G(s+1) := G(s) + δG(s+1),
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where the update δG(s+1) is the solution to the linear system

H[G(s)]δG(s+1) = −Z[G(s);Gn].
The effort of each inner iteration step is essentially determined by the effort to invert the sparse
matrix H[G(s)]. As soon as the norm of δG(s+1) drops below a given stopping threshold,
define Gn+1 := G(s+1) as approximate solution in the n + 1st time step.

In all experiments the stopping criterion in the Newton iteration is set to 10−9.

6.2 Numerical Experiments

In this section we present results of our numerical experiments for (1.1) with a cubic porous-
medium nonlinearity P(r) = r3 and different choices for the external potential V ,

∂tρ = �(u3) + ∇ · (u∇V ). (6.1)

Numerical experiment 1: unconfined evolution of Barenblatt profile

As a first example, we consider the “free” cubic porous medium equation, that is (6.1) with
V ≡ 0. It is well-known (see, e.g., Vazquez [38]) that in the long-time limit t → ∞, arbitrary
solutions approach a self-similar one,

ρ∗(t, x) = t−dαB3
(
t−αx

)
with α = 1

6
, (6.2)

where B3 is the associated Barenblatt profile

B3(z) =
(
C3 − 1

3
‖z‖2

) 1
2

+
, (6.3)

where C3 = (2π)− 2
3 ≈ 0.29 is chosen to normalize B3’s mass to unity.

In this experiment, we are only interested in the quality of the numerical approximation for
the self-similar solution (6.2). To reduce numerical effort, we impose a four-fold symmetry
of the approximation: we use the quarter circle as computational domain K , and interprete
the discrete function thereon as one of four symmetric pieces of the full discrete solution. To
preserve reflection symmetry over time, homogeneous Neumann conditions are imposed on
the artificial boundaries. This is implemented by reducing the degrees of freedomof the nodes
along the x- and y-axes to tangential motion. We initialize our simulation with a piecewise
constant approximation of the profile of ρ∗ from (6.3) at time t = 0.01. We choose a time
step τ = 0.001 and the final time T = 2. In Fig. 2, we have collected snapshots of the
approximated density at different instances of time. The Barenblatt profile of the solution is
very well pertained over time.

Remark 6.1 It takes less than 2min to complete this simulation on standard laptop (Matlab
code on a mid-2013 MacBook Air 11” with 1.7 GHz Intel Core i7 processor).

Figure 3 shows surface plots of the discrete solution at different times in comparison with
the Barenblatt profile at the respective time. By construction of the scheme, the initial mass
is exactly conserved in time as the discrete solution propagates. The left plot in Fig. 4 shows
the decay in the energy and gives quantitative information about the difference of the discrete
solution to the analytical Barenblatt solution. The numerical solution shows good agreement
with the analytical energy decay rate c = 2/3.
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Fig. 2 Numerical experiment 1: fully discrete evolution of our approximation for the self-similar solution to
the free porous medium equation. Snapshots are taken at times t = 0.02, t = 0.1, t = 0.25, and t = 2.0

Fig. 3 Numerical experiment 1: comparison of the discrete solution (interpolated surface plots with triangu-
lation) with the Barenblatt profile (solid and dashed black lines along the identity) at different times

We also compute the l1-error of the discrete solution to the exact Barenblatt profile and
observe that it remains within the order of the fineness of the triangulation. The mass of the
discrete solution is perfectly conserved, as guaranteed by the construction of our method.

To estimate the convergence order of our method, we run several experiments with the
above initial data on different meshes. We fix the ratio τ/h2max = 0.4 and compute the l1-
error at time T = 0.2 on triangulations with hmax = 0.2, 0.1, 0.05, 0.025. We expect the
error to decay as a power of hmax. The double logarithmic plot should reveal a line with its
slope indicating the numerical convergence order. The right plot in Fig. 4 shows the result,
the estimated numerical convergence order which is obtained from a least-squares fitted line
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Fig. 4 Numerical experiment 1: decay of the energy of the discrete solution in comparison with the analytical
decay t−2/3 of the Barenblatt solution (left). Numerical convergence for fixed ratio τ/h2max = 0.4 (right)

through the points is equal to 1.18. This indicates first order convergence of the scheme with
respect to the spatial discretisation parameter hmax.

Numerical experiment 2: Asymptotic self-similarity

In our second example, we are still concerned with the free cubic porous medium Eq. (6.1)
with V ≡ 0. This time, we wish to give an indication that the discrete approximation of
the self-similar solution from (6.2) from the previous experiment might inherit the global
attractivity of its continuous counterpart. More specifically, we track the discrete evolution
for the initial datum

ρ0(x, y) = 3000(x2 + y2) exp[−5(|x | + |y|)] + 0.1 (6.4)

until time T = 0.1 and observe that it appears to approach the self-similar solution from
above. Snapshots of the simulation are collected in Fig. 5.

Numerical experiment 3: two peaks merging into one under the influence of a confining
potential

In this example we consider as initial condition two peaks, connected by a thin layer of mass,
given by

ρ0(x, y) = exp[− 20((x − 0.35)2 + (y − 0.35)2)] + exp[− 20((x + 0.35)2

+ (y + 0.35)2)] + 0.001. (6.5)

We choose a triangulation of the square [−1.5, 1.5]2 and initialise the discrete solution
piecewise constant in each triangle, with a value corresponding to (6.5), evaluated in the
centre of mass of each triangle. We solve the porous medium equation with a confining
potential, i.e. (1.1) with P(r) = rm and V (x, y) = 5(x2 + y2)/2. The time step is τ = 0.001
and the final time is T = 0.2.

Figure 6 shows the evolution from the initial density. As time increases the peaks smoothly
merge into each other. As the thin layer around the peaks is also subject to the potential the
triangulated domain shrinks in time. Even if we do not know how to prevent theoretically the
intersection of the images of the discrete Lagrangian maps, this seems not to be a problem in
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Fig. 5 Numerical experiment 2: fully discrete evolution for the initial density from (6.4) under the free porous
medium equation. Snapshots are taken at times t = 0.001, t = 0.005, t = 0.01, t = 0.025, and t = 0.1

practice. As time evolves, the discrete solution approaches the steady state Barenblatt profile
given by

B(z) =
(
C − 5

3
||z||2

) 1
2

+
, (6.6)

where C is chosen as the mass of the density. The plot in Fig. 7 shows the exponential decay
of the l1-distance of the discrete solution to the steady state Barenblatt profile (6.6). We
observe that the decay agrees very well with the analytically predicted decay exp(−5t) until
t = 0.08. For larger times, one would monitor triangle quality numerically, and re-mesh,
locally coarsening the triangulation where necessary.
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Fig. 6 Numerical experiment 3: evolution of two peaks merging under the porous medium equation with a
confining potential

Numerical experiment 4: one peak splitting under the influence of a quartic potential

We consider as the initial condition

ρ0(x, y) = 1 − (x2 + y2). (6.7)
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Fig. 7 Numerical experiment 3:
two merging peaks: plot of the
l1-distance of the discrete
solution to the steady state
Barenblatt profile in comparison
with the analytical decay
c exp(−5t)
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We choose a triangulation of the unit circle and initialise the discrete solution piecewise
constant in each triangle, with a value corresponding to (6.7), evaluated in the centre of mass
of each triangle. We solve the porous medium equation with a quartic potential, i.e. (1.1)
with P(r) = rm and V (x) = 5(x2 + (1 − y2)2)/2. The time step is τ = 0.005 and the final
time is T = 0.02.

Figure 8 shows the evolution of the initial density. As time increases the initial density
is progressively split, until two new maxima emerge which are connected by a thin layer.
For larger times, when certain triangles become excessively distorted, one would monitor
triangle quality numerically, and re-mesh, locally refining the triangulation where neces-
sary.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Proof of the Lagrangian representation

Proof of Lemma 1.1 We verify that the density function given by (G−1
t )#ρt on K ⊂ R

d is
constant with respect to time t ; the identity (1.6) then follows since

ρt = (Gt ◦ G−1
t )#ρt = (Gt )#

[
(G−1

t )#ρt
] = (Gt )#

[
(G−1

0 )#ρ
0] = (Gt )#ρ.

Firstly, from the definition of the inverse,

G−1
t ◦ Gt = id

for all t , differentiating with respect to time yields

D(G−1
t ) ◦ Gt ∂tGt + ∂t (G

−1
t ) ◦ Gt = 0,

and so, using (1.5) and (1.4b),

∂t (G
−1
t ) = −D(G−1

t )(∂t Gt ◦ G−1
t ) = −D(G−1

t )v[ρt ]. (A.1)
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Fig. 8 Numerical experiment 4: evolution of the initial density under the porous medium equation with a
quartic potential

Now, let ϕ be a smooth test function, and consider

d

dt

ˆ
ϕ (G−1

t )#ρt = d

dt

ˆ
(ϕ ◦ G−1

t )ρt

=
ˆ

(ϕ ◦ G−1
t )∂tρt +

ˆ
Dϕ ◦ G−1

t ∂t (G
−1
t )ρt

= −
ˆ

(ϕ ◦ G−1
t )[∇ · (ρtv(ρt ))]

−
ˆ

(Dϕ ◦ G−1
t )D(G−1

t ) v(ρt )ρt by (1.1) and ((1.5))

=
ˆ

(Dϕ ◦ G−1
t )D(G−1

t ) [v(ρt ) − v(ρt )]ρt integrating by parts

= 0.

As ϕ was arbitrary, (G−1
t )#ρt is constant with respect to time. ��

Appendix B: Technical lemmas

Lemma B.1 Given g0, g1, . . . , gd ∈ R
d , then

 
�d

∥∥∥g0 +
d∑

j=1

ω j (g j − g0)
∥∥∥
2
dω = 2

(d + 1)(d + 2)

∑

0≤i≤ j≤d

gi · g j . (B.1)
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Proof Thanks to the symmetry of the integral with respect to the exchange of the components
ω j , the left-hand side of (B.1) equals to

‖g0‖2 + 2

( 
�

ωd dω

) ∑

1≤ j≤d

g0 · (g j − g0)

+
( 

�
ω2
d dω

) ∑

1≤ j≤d

‖g j − g0‖2 + 2

( 
�

ωd−1ωd dω

) ∑

1≤i< j≤d

(gi − g0) · (g j − g0).

(B.2)

We calculate the integrals, using Fubini’s theorem. First integral:

 
�

ωd dω = 1

|�d |
ˆ 1

0
ωd (1 − ωd)

d−1|�d−1| dωd

= |�d−1|
|�d |

ˆ 1

0
(1 − z) zd−1 dz = d

(
1

d
− 1

d + 1

)
= 1

d + 1
.

Second integral:

 
�

ω2
d dω = 1

|�d |
ˆ 1

0
ω2
d (1 − ωd)

d−1|�d−1| dωd

= |�d−1|
|�d |

ˆ 1

0
(1 − z)2 zd−1 dz = d

(
1

d
− 2

d + 1
+ 1

d + 2

)
= 2

(d + 1)(d + 2)
.

Third integral:

 
�

ωd−1ωd dω = 1

|�d |
ˆ 1

0

[ˆ 1−ωd

0
ωd−1ωd (1 − ωd−1 − ωd)

d−2|�d−2| dωd−1

]
dωd

= |�d−2|
|�d |

ˆ 1

0

[ˆ z

0
(1 − z)(z − y) yd−2 dy

]
dz

= d(d − 1)
ˆ 1

0

[
1

d − 1
− 1

d

]
(1 − z)zd dz

= 1

d + 1
− 1

d + 2
= 1

(d + 1)(d + 2)
.

Substitute this into (B.2):

(
1 − 2

d + 1
+ d2 + d

(d + 1)(d + 2)

)
‖g0‖2 +

(
2

d + 1
− 2d + 2

(d + 1)(d + 2)

) ∑

1≤ j≤d

g0 · g j

+ 2

(d + 1)(d + 2)

∑

1≤ j≤d

‖g j‖2 + 2

(d + 1)(d + 2)

∑

1≤i< j≤d

gi · g j

= 2

(d + 1)(d + 2)

⎛

⎝‖g0‖2 +
∑

1≤ j≤d

g0 · g j +
∑

1≤ j≤d

‖g j‖2 +
∑

1≤i< j≤d

gi · g j

⎞

⎠ .

Collecting terms yields the right-hand side of (B.1). ��
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Lemma B.2 For each A ∈ R
2×2, we have JAJT = (det A) A−T .

Proof This is verified by direct calculation:

JAJT =
(
0 −1
1 0

)(
a11 a12
a21 a22

)(
0 1

−1 0

)
=
(

a22 −a21
−a12 a11

)
= (det A) A−T .

��
Lemma B.3 With σk ∈ R

2 defined as in (5.7), we have that

5∑

k=0

J(σk − σk+1)

(
σk + σk+1

3

)T

= √
3 1.

Proof With the abbreviations φx = π
3 x and ψ = π

3 :

5∑

k=0

J(σk − σk+1)

(
σk + σk+1

3

)T

= 1

3

5∑

k=0

(
sin φk+1 − sin φk

cosφk − cosφk+1

)(
cosφk + cosφk+1

sin φk + sin φk+1

)T

= 1

3

5∑

k=0

(
2 sin

ψ

2

)(
cosφk+ 1

2

sin φk+ 1
2

) (
2 cos

ψ

2

)(
cosφk+ 1

2

sin φk+ 1
2

)T

= sinψ

3

5∑

k=0

(
2 cos2 φk+ 1

2
2 cosφk+ 1

2
sin φk+ 1

2

2 cosφk+ 1
2
sin φk+ 1

2
2 sin2 φk+ 1

2

)

=
√
3

6

5∑

k=0

[
1 +

(
cosφ2k+1 sin φ2k+1

sin φ2k+1 − cosφ2k+1

)]
= √

3 1.

��
Lemma B.4 Let the scheme B := (bpqr )p,q,r∈{1,2} ∈ R

2×2×2 of eight numbers bpqr ∈ R

be symmetric in the last two indices, bpqr = bprq . With σk ∈ R
2 defined as in (5.7), we have

that

5∑

k=0

tr
[(

σk
∣∣σk+1

)−1(
B : [σk]2

∣∣B : [σk+1]2
)]
J(σk − σk+1) = 2

√
3 tr12[B]T . (B.3)

Proof In principle, this lemma can be verified by a direct calculation, by writing out the six
terms in the sum explicitly and using trigonometric identities. Below, we give a slightly more
conceptual proof, in which we use symmetry arguments to reduce the number of expressions
significantly.

For the matrix involving B, we obtain
(
B : [σk]2

∣∣B : [σk+1]2
)

=
(
b111σ 2

k,1 + b122σ 2
k,2 + 2b112σk,1σk,2 b111σ 2

k+1,1 + b122σ 2
k+1,2 + 2b112σk+1,1σk+1,2

b211σ 2
k,1 + b222σ 2

k,2 + 2b212σk,1σk,2 b211σ 2
k+1,1 + b222σ 2

k+1,2 + 2b212σk+1,1σk+1,2

)
,

while clearly

(
σk
∣∣σk+1

)−1 = 2√
3

(
σk+1,2 −σk+1,1

−σk,2 σk,1

)
.

123



J Sci Comput

The sum of the diagonal entries of the matrix product are easily calculated,

Tk := tr
[(

σk
∣
∣σk+1

)−1(
B : [σk]2

∣
∣B : [σk+1]2

)] = 2√
3

2∑

p,q,r=1

bpqrγpqr,k,

with the trigonometric expressions

γ111,k = σ 2
k,1σk+1,2 − σ 2

k+1,1σk,2, γ122,k = σ 2
k,2σk+1,2 − σ 2

k+1,2σk,2,

γ112,k = γ121,k = σk,1σk,2σk+1,2 − σk+1,1σk+1,2σk,2,

γ211,k = σ 2
k+1,1σk,1 − σ 2

k,1σk+1,1, γ222,k = σ 2
k+1,2σk,1 − σ 2

k,2σk+1,1,

γ212,k = γ221,k = σk+1,1σk+1,2σk,1 − σk,1σk,2σk+1,1.

To key step is to calculate the sum over k = 0, 1, . . . , 5 of the products of Tk with the
respective vector

ηk = J(σk − σk+1) =
(

σk+1,2 − σk,2
σk,1 − σk+1,1

)
.

Several simplifications of this sum can be performed, thanks to the particular form of the
γpqr,k and elementary trigonometric identities. First, observe that σk+3 = −σk , and hence
that γpqr,k+3 = −γpqr,k . Since further ηk+3 = −ηk , it follows that

γpqr,k+3ηk+3 = γpqr,kηk . (B.4)

Second, η can be evaluated explicitly for k = 1, 2, 3:

η0 = 1

2

(√
3
1

)
, η1 =

(
0
1

)
, η2 = 1

2

(−√
3

1

)
. (B.5)

Third, since σ0,1 = −σ3,1 and σ1,1 = −σ2,1, as well as σ0,2 = σ3,2 and σ1,2 = σ2,2, we
obtain that

γpqr,1 = 0 if p + q + r is odd, and γpqr,2 = (−1)p+q+rγpqr,0. (B.6)

By putting this together, we arrive at

5∑

k=0

γpqr,kηk
(B.4)= 2

2∑

k=0

γpqr,kηk

(B.5)=
( √

3
(
γpqr,0 − γpqr,2

)

γpqr,0 + 2γpqr,1 + γpqr,2

)

(B.6)=
( √

3
(
1 − (−1)p+q+r

)
γpqr,0(

1 + (−1)p+q+r
)(

γpqr,0 + γpqr,1
)
)

=
(
2
√
3 γpqr,0 (1 − epqr )

2
(
γpqr,0 + γpqr,1

)
epqr

)
,

where epqr = 1 if p + q + r is even, and epqr = 0 if p + q + r is odd. By elementary
computations,

p + q + r odd, k = 0 : γ111,0 =
√
3
2 , γ122,0 = 0, γ212,0 = γ221,0 =

√
3
4 ;

p + q + r even, k = 0 : γ211,0 = − 1
4 , γ222,0 = 3

4 , γ112,0 = γ121,0 = 0;
p + q + r even, k = 1 : γ211,1 = 1

4 , γ222,1 = 3
4 , γ112,1 = γ121,1 = 3

4 ,

and so the final result is:
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5∑

k=0

tr
[(

σk
∣
∣σk+1

)−1(
B : [σk]2

∣
∣B : [σk+1]2

)]
J(σk − σk+1)

=
5∑

k=0

Tkηk = 2√
3

2∑

p,q,r=1

(

bpqr

5∑

k=0

γpqr,kηk

)

= 2
√
3

(
b111 + b212
b222 + b112

)
,

which is (B.3). ��

Lemma B.5 With σ ′
k ∈ R

2 defined as in (5.14), and with B = (bpqr )p,q,r∈{1,2} ∈ R
2×2×2

such that bpqr = 0 except for b122 = b211 = 1, we have that

5∑

k=0

tr
[(

σ ′
k

∣
∣σ ′

k+1

)−1(
B : [σ ′

k]2
∣
∣B : [σ ′

k+1]2
)]
J(σk − σk+1) = −

(
1

1

)
. (B.7)

Proof This is a slightly tedious, but straightforward calculation. First, by the choice of B,

βk := (
B : [σ ′

k]2
∣
∣B : [σ ′

k+1]2
) =

(
(σ ′

k,2)
2 (σ ′

k+1,2)
2

(σ ′
k,1)

2 (σ ′
k+1,1)

2

)
,

and so, by definition of the σ ′
k in (5.14),

β0 = β3 =
(
0 1

4
1 1

4

)
, β0 = β3 =

( 1
4 1
1
4 0

)
, β0 = β3 =

(
1 0
0 1

)
.

For the inverse matrices Sk := (
σ ′
k

∣∣σ ′
k+1

)−1, we obtain

S0 =
(
1 −1
0 2

)
= −S3, S1 =

(
2 0

−1 1

)
= −S4, S2 =

(
0 1

−1 0

)
= −S5.

For the traces Tk := tr
[
Skβk

]
, we thus obtain the values:

T0 = T1 = −1

2
, T3 = T4 = 1

2
, T2 = T5 = 0.

In conclusion,

5∑

k=0

Tk J(σk − σk+1) = J

[
−1

2
(σ0 − σ2) + 1

2
(σ3 − σ5)

]
= J

(−1

1

)
= −

(
1

1

)
,

which is (B.7). ��

Appendix C: Lack of convexity

Below, we discuss why the minimization problem (3.7) is not convex. More precisely, we
show that G �→ E�(G; Ĝ) is not convex as a function of G on the affine ansatz space
AT . Since E�(G; Ĝ) is a convex combination of the expressions Hm

(
(Am |bm); ( Âm |b̂m)

)
,

it clearly suffices to discuss the convexity of the latter.
We consider a curve s �→ (Am + sαm |bm + sβm) and evaluate the second derivatives of

the components of the functional at s = 0. First,
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I := d2

ds2

∣
∣
∣
∣
s=0

(
1

2τ

 
�m

∣
∣(Am − Âm + sαm)ω + (bm − b̂m) + sβm

∣
∣2 dω

)

= 1

τ

 
�m

|αmω + βm |2 dω.

Second,

II := d2

ds2

∣
∣
∣
∣
s=0

 
�m

V
(
(Am + sαm)ω + (bm + sβm)

)
dω

=
 

�m

(αmω + βm)T · ∇2V (Amω + bm) · (αmω + βm) dω.

If we assume that ∇2V ≥ λ1, then we obtain for the sum of these two contributions that

I + II ≥
(
1

τ
+ λ

) 
�m

|αmω + βm |2 dω.

For the remaining term, however, we obtain — using the abbreviations g̃(s) = sh̃′(s) and
f̃ (s) = sg̃′(s) — that

d2

d2s

∣∣∣∣
s=0

h̃

(
det(Am + sαm)

ρm

)

= d

ds

∣∣∣∣
s=0

{
g̃

(
det(Am + sαm)

ρm

)
tr
[
(Am + sαm)−1αm

]}

= f̃

(
det Am

ρm

) (
tr
[
A−1
m αm

])2 − g̃

(
det Am

ρm

)
tr
[(
A−1
m αm

)2]
.

Now observe that f̃ (s) = P ′(1/s) − sP(1/s) is a non-negative, and g̃(s) = −sP(1/s) is
a non-positive function. Thus, from the two terms in the final sum, the first one is generally
non-negative whereas the second one is of indefinite sign. Choosing

αm := Am

(
0 1
1 0

)
, such that

(
tr
[
A−1
m αm

])2 = 0, tr
[(
A−1
m αm

)2] = 2,

the sum is obviously negative.
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