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A rare-variant test for high-dimensional data

Marika Kaakinen!, Reedik Méigiz, Krista Fischer?, Jani Heikkinen!?3, Marjo-Riitta Jarvelin®>67,

Andrew P Morris® and Inga Prokopenko™*!

Genome-wide association studies have facilitated the discovery of thousands of loci for hundreds of phenotypes. However, the
issue of missing heritability remains unsolved for most complex traits. Locus discovery could be enhanced with both improved
power through multi-phenotype analysis (MPA) and use of a wider allele frequency range, including rare variants (RVs). MPA
methods for single-variant association have been proposed, but given their low power for RVs, more efficient approaches are
required. We propose multi-phenotype analysis of rare variants (MARV), a burden test-based method for RVs extended to the
joint analysis of multiple phenotypes through a powerful reverse regression technique. Specifically, MARV models the proportion
of RVs at which minor alleles are carried by individuals within a genomic region as a linear combination of multiple phenotypes,
which can be both binary and continuous, and the method accommodates directly the genotyped and imputed data. The full
model, including all phenotypes, is tested for association for discovery, and a more thorough dissection of the phenotype
combinations for any set of RVs is also enabled. We show, via simulations, that the type | error rate is well controlled under
various correlations between two continuous phenotypes, and that the method outperforms a univariate burden test in all
considered scenarios. Application of MARV to 4876 individuals from the Northern Finland Birth Cohort 1966 for triglycerides,
high- and low-density lipoprotein cholesterols highlights known loci with stronger signals of association than those observed in
univariate RV analyses and suggests novel RV effects for these lipid traits.
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INTRODUCTION
In the past decade, thousands of loci for hundreds of phenotypes have
been identified through genome-wide association studies (GWAS).
Despite these discoveries, the issue of missing heritability! remains
unsolved for most complex traits. While real-life analyses and power
estimations suggest improvements for discovery with very large sample
sizes, for many complex traits the numbers required are unrealistic.
A cost-effective alternative for improved power is to jointly analyse
multiple traits, by taking advantage of the correlation structure
between them.?™

A number of methods for multi-phenotype analysis (MPA) have
been developed, including dimension reduction, and multivariate and
graphical models.” In genetics, MPA was first proposed for linkage
studies,>>®° and recently, a plethora of methods for single-variant
MPA of association has been suggested.!® MPA has been shown to
provide a boost in power for locus discovery,>™ as well as increased
precision of parameter estimates.® There is also a biological advantage
in analysing correlated traits jointly, since detecting loci that affect a
combination of phenotypes could provide suggestions of pleiotropic
effects,” that is, one locus affecting multiple phenotypes in parallel.
Indeed, many of the identified loci from single-phenotype analyses
overlap, especially for epidemiologically correlated traits, for example,
glycaemic traits share up to a half of the loci with other cardiometa-
bolic traits, including type 2 diabetes, lipids, measures of central
obesity, height, blood pressure and hypertension.!! This overlap
suggests shared genetic architecture underlying at least a part of the

observed epidemiological correlations. With joint analysis of multiple
correlated phenotypes, the potentially shared genetic architecture
would be better addressed by direct joint modelling. In addition,
current technology allows for cost-effective deep phenotyping'? such
as the production of the metabolomics data including hundreds or
even thousands of variables. These large-scale omics datasets will be
necessary in understanding the exact relationship between genes and
phenotypes. However, the great potential held by the omics data will
only be achieved via integration and development of highly scalable
computational and quantitative approaches.!> MPA methods will be
particularly useful for the omics data in order to reduce dimensionality
and avoid the penalties posed by correction for multiple testing.
Another way to improve power for locus discovery is to allow for a
wider allele frequency range, including low-frequency and rare
variants (minor allele frequency, MAF <5%, both denoted here by
RVs). Development in technology to produce high-quality, low-cost
sequencing data has had many positive implications for RV identifica-
tion. Although whole-genome/-exome sequencing is still not feasible
at a large scale, that is, sequencing hundreds of thousands of
individuals, accurate RV data can be produced with imputation based
on dense reference panels such as the 1000 genomes project,!* the
UKI10K Project!> or the Haplotype Reference Consortium.'® For
example, imputation to the UK10K reference panel including 7562
haplotypes, after re-phasing with SHAPEIT v2,!7 yielded for variants
with MAF as low as 0.1% an =0.5 with genotyped variants.'8
Combining these factors has led to an increased interest in RV
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COMMON VARIANT MULTI-PHENOTYPE METHODS
(Comparison by Galesloot et al. 2014)

* Direct methods, e.g. MV-SNPTEST, MultiPhen, MV-BIMBAM
* Indirectmethods, e.g. MV-PLINK, PCHAT, UV-PCA
* Univariate-based methods, e.g. TATES, UM-MA

Figure 1 Comparison of MARV with previously proposed RV multi-phenotype association analysis methods. Upper blocks: Established rare-variant single-
phenotype methods!® and common-variant multi-phenotype methods!® based on the individual level data. Lower block: Previously proposed RV multiple-

phenotype methods2%-24 versus our proposed MARV method.

association analysis, resulting in the development of burden tests using
collapsing techniques, variance-component tests and combinations of
these two.!?

We suggest integrating MPA with RV association analysis to further
increase the power of locus discovery and to provide novel biological
insights into complex trait genetics. Currently available methods for
MPA are mostly tailored for single-variant associations, and are thus
underpowered to detect RV associations. Some recently developed
methods have addressed MPA for RVs,%2% but they suffer, for
example, from scalability limitations, their inability to combine
continuous and binary phenotypes or to analyse different phenotype
combinations, and finally, the lack of efficient computational tools
(Figure 1). Here we introduce a burden test-based multi-phenotype
analysis of RVs, MARV, which has several advantages over the few
previously proposed methods that we are aware of: it is applicable
to sequencing, imputed or genotyping data, allows for both binary
and  continuous  phenotypes, provides association  results
for all phenotype combinations, including univariate tests
within one run, and is implemented into a simple to use and
computationally efficient software tool that can analyse millions of
variants (Figure 1).

MATERIALS AND METHODS

Multi-phenotype analysis of rare variants through reverse
regression

Our method is based on the RV burden test approach,”>® in which RVs within
a genomic region, defined by positional boundaries and/or annotation, for
example, are collapsed into one variable. Specifically, within a genomic region,
we calculate the proportion of RVs at which an individual i carries minor
alleles: r;n;” !, where r; is the number of minor alleles at RVs and #; is the total
number of RVs. We then model this proportion as a linear combination of K
phenotypes, that is, we use ‘reverse regression’ as compared to standard GWAS,
with the genotype data as the outcome and the phenotypes as the predictors, in
the same way as in the MultiPhen approach for common variants.?” Thus, the
model becomes

E(rini ') = o+ Py;,

where r;n;~ ! is the proportion of minor alleles for ith individual, y; represents
the phenotype data for individual i, with corresponding regression coefficients
B=(p1,..., Px). The modelling is performed via weighted linear regression with
the following weights: the proportion of successfully genotyped or imputed RVs
within the region of interest. Parameter estimates are obtained via least squares
estimation. Then, a likelihood ratio test is constructed by comparing the
weighted log likelihoods of the fitted model against a null model where f=0.
The test statistic has an approximate y? distribution with K degrees of freedom.

989

European Journal of Human Genetics



A rare-variant test for High-Dimensional data
M Kaakinen et al

990

The method described has been implemented in a freely available software tool
MARV,?® which is available at https://github.com/ImperialStatGen/MARYV.

The methodology is flexible such that it can accommodate both quantitative
and binary phenotypes, as well as directly genotyped and imputed RVs. For
imputed RVs, instead of using the 0/1 indicator for the absence/presence of
minor allele, we use the posterior probability that an individual is heterozygous
or rare homozygous. For discovery purposes, the full model, including all the
phenotypes is fitted. However, to allow further investigation of the loci reaching
genome-wide significance after correction for multiple testing to take into
account the number of regions tested within the analysis, we have implemented
in the MARV software the possibility to analyse all phenotype combinations.
For model selection purposes, MARV further calculates the Bayesian informa-
tion criterion, BIC = —2e¢In(L) + KeIn(N), where L is the estimated likelihood
of the model, K is the number of parameters and N is the number of
observations.

Genotype simulations
To evaluate the type I error rate and power of our method, we simulated
genetic variants by using a model that results in an allele spectrum similar to
that observed in the European population.?’ Specifically, we used the forward
simulation software tool ForSim®” and the hybrid model for population history
proposed previously.?? In brief, the ancestral population size was assumed to be
8100 for 50 000 generations, followed by a bottleneck population size of 2000.
After this time the population expands with an exponential growth rate of
1.29% for over 370 generations, resulting in a modern effective population size
of 227 650. With a maximum number of offspring set to two, the simulation
resulted in a population of about 500 000 individuals. The mutation rate was
assumed to be 2.0 x 10~ bp per generation. This hybrid model has features of
two published demographic histories*"*> and has been shown to recapitulate
the number and frequency distributions of both rare and common synonymous
sites, as well as empirically observed patterns of linkage disequilibrium between
common variants.>

We modelled loci as a series of 8 exons and 7 introns (alternating), with
exons of length 300 bp and introns of length 3 kb such that the total coding
length is 2.4 kb and the total transcript length is 23.4 kb, which corresponds to
an “average” protein-coding gene from the RefSeq database.’’ Around each
transcript, we also simulated 100 kb of neutral genomic target flanking both
sides of the gene.?” The simulation resulted in 16 616 SNPs, of which 96% have
a MAF<5%. We randomly sampled SNPs as causal irrespective of their
functional impact such that the MAF of any individual causal SNP was <2%
and the sum of the MAFs did not exceed 5%.%> This resulted in 146 causal
SNPs that were used for all the tested scenarios. For the selected SNPs, we
randomly sampled individuals from this final population to achieve 10 000
replicates of studies of 1000 and 5000 individuals.

Phenotype simulations
We simulated two continuous phenotypes from a multivariate normal
distribution, such that

Y= [J’z)’z}T =pg+ ... +hug.te

where g is the causal variant and f the effect for each causal variant, k=1,
...,146, and € ~ MVN(0,Zy), Zy=cov(yy,y,) = {dlz P122] = { ! Plz}
P 02 P 1
and p,, € [~0.9, 0.9]. We used the function mvrnorm in the statistical software
R.2* The genetic effects S} were considered under three scenarios, including (1)
no effect (for type I error rate assessment), that is, =05 (2) all causal genetic
variants having a trait-increasing effect (f;y=0.1), and (3) half of the causal
variants having a trait-increasing effect (f;=0.1) and half having a trait-
decreasing effect (f=-0.1). Scenarios (2) and (3) were further considered
in situations when there are effects on (a) both phenotypes in the same
direction with same magnitudes, (b) both phenotypes in opposing directions
with same magnitudes, (c) both phenotypes in the same direction with different
magnitudes (the effect on phenotype two is half of that for phenotype one), and
d) only on one of the phenotypes.
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Type I error rate and power estimation

We estimated the type I error rate and power of our method using the full
model by calculating the proportion of the 10 000 replicate analyses, in which
P<0.05 for the test of association. Since we analysed only the full model and
one genomic region, no correction for multiple testing was applied.

We compared the power of MARV to that of a recently published multi-
phenotype RV method GAMuT,® which is based on a non-parametric
distance-covariance test. This method requires a phenotype similarity matrix,
either by using a projection matrix or by using user-selected linear kernel
functions. For our estimates, we constructed the similarity projection matrix.
The genotypic similarity matrix was calculated assuming a linear kernel for
genotypes, where weights are functions of MAF, following the notation from
Broadaway et al?* The method then constructs the test and provides the
P-value as the output. Similarly to MARV, we estimated the power of GAMuT
by calculating the proportion of the 10 000 replicate analyses in which P<0.05
for the test of association.

In addition, we compared the power of MARV over a univariate RV test by
calculating associations between the simulated RVs and the two phenotypes
separately using the GRANVIL software.® To assess power, we calculated the
proportion of tests for which P<0.025, where the level of significance is
Bonferroni corrected for two tests performed.

Experimental setup

To examine our method with a real dataset, we analysed the data for
triglycerides (TG), low-density lipoprotein (LDL) and high-density lipoprotein
(HDL) cholesterol from individuals belonging to the Northern Finland Birth
Cohort 1966 (NFBC1966) and having participated in the 31-year clinical
examination. The cohort covers over 96% of all births in the two northernmost
provinces of Finland in 1966 (N=12068 live-born children).’> The Ethics
Committees of the University of Oulu and Northern Ostrobothnia Hospital
District have approved the study, and the individuals used for the analyses have
provided written informed consent.

At the clinical examination, blood samples were drawn after overnight
fasting. Samples were stored at —70 °C until analysed. Enzymatic assays of
fasting HDL cholesterol and TG were measured using Hitachi 911 Clinical
Chemistry Analyzer and commercial reagents (Boehringer, Mannheim,
Germany) in the accredited laboratory of Oulu University Hospital. LDL was
obtained using a previously described method.’® DNA was extracted and
genome-wide genotyping was performed with the Illumina HumanCNV370-
DUO Analysis BeadChip platform at the Broad Institute, USA. The Beadstudio
algorithm was used for calling the genotypes. Detailed genotyping and sample
quality control (QC) of the first set of data have been reported previously.>”
More samples were genotyped afterwards, and after the genotyping data QC,
there were 5402 subjects and 324 896 SNPs available for analysis. SNPs were
imputed to the 1000 Genomes all ancestries reference panel (March 2012) with
IMPUTE2,® resulting in ~ 38M SNPs for analysis. Of these, 7 396 876 markers
were non-monomorphic with MAF<5% and good imputation quality
(info>0.4).

For the phenotypes, we excluded non-fasting individuals and those known to
be on lipid-lowering medication. Residuals of TG, LDL and HDL were
calculated by adjusting for sex, body mass index and the first three principal
components (PCs) derived from the genetic data to control for potential
population structure. The residuals were further inverse-normal transformed;
however, it is worth noticing that a transformation to reduce skewness is not a
prerequisite for the software as the phenotypes are not the outcomes of interest
here. GWAS and the phenotype data were available for 4876 individuals.

The multi-phenotype genome-wide RV analysis using the transformed
residuals was performed with MARV using the method “expected”, that is,
we used the genotype dosages coming from imputation. To define gene regions
across the genome, we used the gene list from the University of California Santa
Cruz (UCSC, NCBI genome sequence build 37, hgl9).>® We applied a
Bonferroni correction for 30 000 genes resulting in a level of significance of
1.67x107°. We analysed all variants irrespective of their annotation across
autosomal chromosomes using the following thresholds: MAF<5% and
imputation quality>0.4.


https://github.com/ImperialStatGen/MARV

RESULTS
Type I error rate and power
The simulation studies on 5000 individuals showed a good control of
type I error rate under various correlation structures between the two
continuous phenotypes (Figure 2). Supplementary Figure S1 demon-
strates that the control is maintained with a substantially smaller
sample size (N=1000). Numerical results for both sample sizes are
provided in Supplementary Table S1.

In all the tested scenarios, when all genetic effects are trait-
increasing, power is almost always higher than that of univariate

analyses or the kernel-based multi-phenotype test GAMuT
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(Figures 3a—d and Supplementary Table S2). When the genetic effects
are in the same direction and of the same magnitude for the two
phenotypes (Figure 3a), power is highest when the correlation between
the phenotypes is highly negative. The opposite is observed, that is,
power is highest with high positive correlation between the phenotypes
when the genetic effects are in the opposite directions but of the same
magnitude (Figure 3b). When there are genetic effects in the same
direction, but with different magnitude (half of the effect size of
phenotype 1 in phenotype 2), the pattern of power follows that of the
scenario in Figure 3a, that is, power is higher with negative correlation
between the phenotypes (Figure 3c). However, the power decreases at
a faster rate compared to 3a) and increases again when the correlation
is equal to or higher than 0.5. Finally, when the genetic variants affect
only one of the correlated phenotypes, power is increased both when
the phenotypes are highly positively or highly negatively correlated
(Figure 3d). Even with no correlation between the phenotypes, there is
an improvement in power over univariate analyses, which is due to the
avoidance of correction for multiple testing with our multivariate
model, despite the requirement of an additional degree of freedom.
Results from simulations using a sample size of 1000 individuals are
shown in Supplementary Figure S2. Even with a smaller sample size,
joint analysis of correlated phenotypes offers an improvement in
power over the univariate analysis of 5000 individuals when the
correlation between the phenotypes is high enough (over 0.5 or less
than —0.5).

When we considered the above mentioned four scenarios
(Figures 3a—d) under the assumption that half of the genetic variants
are trait-increasing and half trait-decreasing, we see similar patterns of
power as for the situation of all variants being trait-increasing, but in
general, the power is lower (Figures 3e-h and Supplementary
Table S2). In all cases, MARV performed better than univariate
analyses. The power of GAMuT was only very modestly increased over
that of MARV with both, trait-increasing and -decreasing directions of
genetic effects on highly correlated phenotypes.
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Figure 3 Statistical power of the MARV method with N=5000 and varying correlation between two continuous phenotypes. (a-d) All genetic effects are
trait-increasing. (e—h) Half of the genetic effects are trait-increasing, half trait-decreasing. (a,e) Effects on both phenotypes, same direction, same magnitude.
(b,f) Effects on both phenotypes, opposite direction, same magnitude. (c,g) Effects on both phenotypes, same direction, different magnitude (effect on
phenotype 2 is half of that on phenotype 1). (d,h) Effects on one phenotype only. Solid, black line: MARV; dotted, magenta line: GAMuT; dashed, grey line:
univariate analysis (GRANVIL). The following correlations were evaluated: —0.9, -0.5, -0.3, -0.1, 0, 0.1, 0.3, 0.5, 0.9.
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Figure 4 Genome-wide association analysis results from MARV for triglycerides, high-density lipoprotein and low-density lipoprotein cholesterols in the
NFBC1966. (a) Manhattan plot for the full model statistical significance. Genes reaching statistical significance (P<1.67 x 10~6) are annotated. (b) QQ-plot
of the full model association P-values against the expected P-values. Note that at some of the loci, different gene transcripts resulted in exactly the same
association result. Such results show as a horizontal line of dots in the figure. (c) Effect sizes with their 95% confidence intervals of triglycerides, high-
density lipoprotein and low-density lipoprotein cholesterols plotted against their statistical significance for the loci reaching genome-wide significance. In each
figure, the panel on the left shows the results from the full model, the middle panel shows them from the best model based on Bayesian Information
Criterion and the right panel illustrates results from univariate models. For APOA5, statistically significant associations were detected for three different

transcripts.

Real data example

The three selected phenotypes, TG, HDL and LDL, were modestly
correlated with each other (Rpg pypL=-0.32, Rpg 1pL=0.31,
Rypr, tpr =—0.19). The MPA of RVs for the three phenotypes
revealed genome-wide significant associations (P<1.67 x 106, Meth-
ods) covering five gene regions: SARS, CELSR2, APOA5, FAM63B and
APOE (Figures 4a and b; Supplementary Tables S3 and S4). Besides
the full model, MARV also provides parameter estimates and tests of
associations for each phenotype combination, including the single-
phenotype models. Therefore, we were able to compare the results
from the joint analysis against traditional single-phenotype analysis.
Additionally, the BIC provided by MARV for each sub model served
for selection of the phenotype combination providing the best fit. At
SARS, APOA5 and APOE, the univariate models provided the best fit
(Figure 4c; Supplementary Table S3). At CELSR2 and FAMG63B, the
best fit was coming from the combination of LDL+HDL and TG
+HDL, respectively, and only the full and best models reached
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genome-wide significance, indicating that the associations would have
been missed in univariate analyses. Both of these loci are also highly
enriched for RVs, with 87 variants with MAF < 5% being included for
CELSR?2 analysis and 284 for FAM63B, while for the other associated
genes the rare-variant count ranged between 3 and 19 (Supplementary
Tables S3 and S4).

DISCUSSION

We propose a novel flexible method, MARV, for MPA of RVs across
the genome applicable to the sequencing, imputed and genotyping
data in unrelated individuals. This method using the powerful reverse
regression approach should enable novel discoveries based on the
large-scale genomic data with high DNA-variant density. We show
with simulations that our method has a good control of type I error
rate under various scenarios, even with a sample size as small as 1000
individuals. The power of our method always exceeds that of a
univariate RV burden test under the tested scenarios, and the patterns



mirror those presented for a common-variant multi-phenotype
method.”” Compared to a kernel-based multi-phenotype RV test,
the power of MARYV is notably increased when all the genetic effects
are in the same direction, and is similar when half of the effects are
protective and half are deleterious. The gain in power is observed due
to the inclusion of correlated phenotypes in one model and thus,
correction for multiple testing is avoided, given joint phenotype
modelling. This feature is important for the efficient analysis of the
large-scale high-dimensional omics data. For the univariate analyses,
we applied the commonly used Bonferroni correction to account for
two tests (one for each phenotype) performed. This notably decreased
the power of the univariate method. We note that the Bonferroni
correction applied may have been too stringent, especially when the
phenotypes are highly correlated, but this approach is standard in
GWAS* and is widely applied to such traits.*!

With application of MARV to TG, HDL and LDL phenotypes, we
were able to detect genome-wide significant associations with RVs
even with a sample size as modest as 4876 individuals. We found
evidence for novel RV associations at CELSR2, SARS and FAMG63B, of
which common variation at CELSR2 has been previously associated
with blood lipids,*? and at SARS/CELSR2 with type 2 diabetes,*> while
FAMG63B has no reported links with blood lipid levels. We identified
two additional well-established lipid genes, APOA5 and APOE.*?
A recent study reported RV associations at APOE with lipid levels,**
and another study associated RVs at APOA5 with myocardial
infarction.*> Our findings are in line with previous reports of variation
at APOA5 and APOE mainly affecting TG and LDL levels, respec-
tively;42 however, we observed RV association at CELSR2 with both
HDL and LDL cholesterol levels, thus extending previous reports on
common variation at this locus about primary effects on LDL.#? The
novel FAM63B has previously been associated with schizophrenia
through methylation patterns,*® making this locus an interesting
biological candidate for lipid metabolism and worth further investiga-
tion, as metabolic disturbances often co-occur with psychotic
illnesses.*” Importantly, our analyses showed that the associations at
this locus and at CELSR2 would not have been observed in univariate
analyses, whereas RV MPA had sufficient power to detect these signals.
We also observed that MARV was able to detect effects from genes
with widely varying sizes and number of RVs (APOAS5 with 2.5 Mbp
and 3 RVs vs FAM63B with 86 Mbp and 284 RVs). It remains of
future work, however, to formally assess the power of MARV under
properties such as varying sets of causal variants, different gene size,
mutation rate, haplotype length or degree of linkage disequilibrium
between causal variants.

The simulated scenarios presented here are for two continuous
phenotypes, but the method is easily applicable to a large number of
phenotypes, as the real data example showed, and to a mixture of
binary and continuous phenotypes. This is due to the methodological
framework used, for example, reverse regression, in which the
phenotypes are treated as predictors instead of outcomes, allowing
for an easy incorporation of variables with varying properties into the
model, as in any other linear regression analysis. Further, we have
presented an example using a gene region-based association analyses,
but the method and software are flexible and allow for analyses of any
regions defined by the user based on start and end positions, for
example, region sets, including those encoding active enhancers from
analyses of human regulome.*® MARV could also be adapted to focus
on only the most deleterious variants, rather than all of those mapping
to a gene region via extracting or excluding specific markers.

There are limitations to our method and the current version of the
software that warrant discussion. MARV is based on a burden test,
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which has been shown to be a powerful method for RV association
testing when a large proportion of variants are causal and their effects
are in the same direction.!” However, in the presence of both trait-
increasing and trait-decreasing effects, or of only a small proportion of
causal variants amongst those tested, there is a loss in power.19 As
MARYV is a burden test, it also suffers from some loss of power when
both trait-increasing and trait-decreasing effects impact phenotypes,
as shown in Figure 3. However, the power is still always higher
compared to the univariate burden test. Similarly, we expect
that power could be reduced in the presence of only a small
number of causal variants.* Combined burden and variance-
component tests, such as SKAT-O, are claimed to be more robust
than burden tests in the above mentioned scenarios.!® However, when
we compared the power of MARV to a kernel-based multi-phenotype
RV test GAMuT in the presence of both trait-increasing and trait-
decreasing effects, the power of MARV is similar to that of GAMuT in
all tested scenarios.

In summary, we have developed a powerful method to facilitate the
discovery of RV genetic effects within the multi-phenotype framework.
The method has been implemented into a freely available, easy to use
software tool MARYV, and should allow wide and rapid implementa-
tion in the analytical pipelines for large-scale high-dimensional
datasets, therefore paving the way for novel genomic discoveries.
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