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Abstract

Identifying recombinant sequences in an era of large genomic databases is challenging as it requires an efficient algorithm
to identify candidate recombinants and parents, as well as appropriate statistical methods to correct for the large
number of comparisons performed. In 2007, a computation was introduced for an exact nonparametric mosaicism
statistic that gave high-precision P values for putative recombinants. This exact computation meant that multiple-
comparisons corrected P values also had high precision, which is crucial when performing millions or billions of tests in
large databases. Here, we introduce an improvement to the algorithmic complexity of this computation from O(mn3) to
O(mn2), where m and n are the numbers of recombination-informative sites in the candidate recombinant. This new
computation allows for recombination analysis to be performed in alignments with thousands of polymorphic sites.
Benchmark runs are presented on viral genome sequence alignments, new features are introduced, and applications
outside recombination analysis are discussed.
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Determining whether genomic regions are undergoing ho-
mologous recombination is important in all parts of biology
and genetics. Indeed, recombination has profound conse-
quences for a population’s evolutionary trajectory, and it
changes our understanding of the evolutionary history of a
population as described through phylogenetics (Schierup and
Hein 2000; Posada and Crandall 2002). Identifying recombi-
nation is especially important in large genomic analyses, as
the larger the region being analyzed the higher the chance
that recombination will be detected even in a small sample.
Over the past three decades, methods of identifying recom-
bination from sequence data have focused on detection of
clustered polymorphism, excessive homoplasy, low linkage
disequilibrium, mosaicism, and incongruent phylogenies
(Posada et al. 2002). Some of these statistical signals have
advantages over others in terms of false positive rate, statis-
tical power, speed, and the size of the data set that can be
analyzed. An analysis of sensitivity and specificity can be
found in Posada and Crandall (Posada and Crandall 2001)
and a guide to choosing an appropriate method for a given
data set can be found in Martin et al. (2011).

In modern sequence analysis, a major challenge in recom-
bination detection is the size of the data sets themselves.
Beyond the computational burden, critical but often under-
appreciated statistical issues arise through the extremely large
number of compared nucleotide sequence patterns. With
this many comparisons being performed, truly

nonrecombinant sequences can exhibit nucleotide patterns
that appear recombinant by chance. For this reason, statistical
corrections for multiple comparisons are essential to guard
against calling spurious recombinants. In an algorithm called
3SEQ, Boni et al. (2007) presented an exact mosaicism statistic
for calling recombinants. Critically, the exactness of the com-
putation (e.g., calculating P values to a precision of 10�20 or
10�30) allows these mosaic signals to remain statistically sig-
nificant, even when billions of comparisons are being per-
formed and adjusted for multiple comparison. This means
that the exact mosaicism statistic implemented in the 3SEQ
software maintains good power properties even on large data
sets when statistical correction factors for multiple compar-
isons are on the order of 1010 or more.

Recombination detection methods that detect mosaic sig-
nals always take a triplet approach or a quartet approach,
positing one sequence as the candidate recombinant, two
sequences as the parents, and possibly a fourth sequence as
an outgroup. With the parental sequences labeled P and Q
and the candidate recombinant labeled C, these methods
normally use “recombination informative” sites, or simply
informative sites, to determine if C is a mosaic of P and Q.
In 3SEQ, nucleotide positions on C are labeled informative if
the nucleotide in C is identical to one parental sequence but
different from the other. If the sequence of m informative
sites identical to P and n informative sites identical to Q
appears nonrandom or clustered, this is an indication that
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recombination may have occurred. When read from left to
right along the sequence, the informative sites can be used to
draw a random walk on a set of axes with m up-steps and n
down-steps; this is called a hypergeometric random walk
(HGRW). A strong descent or ascent in the middle of a
HGRW indicates that one type of informative site exhibits
clustering, and the properties of the random walk can be used
to compute exact probabilities of this occurring. See figure 1
for an example. In this letter, we present a new and faster
method of computing these probabilities.

Improved Complexity
The central feature of 3SEQ was a reduction of an O(2 mþn)
space-complexity problem into an O(mn3) problem, for com-
puting the probability xm, n, k that a HGRW with m up-steps
and n down-steps achieves a maximum descent of size k
exactly. The descent does not need to be k consecutive
down steps. The computations were done via auxiliary vari-
ables ym, n, k, j: the probability that a HGRW with m up-steps
and n down-steps achieves a maximum descent of size k
exactly and the minimum value achieved by the random
walk is exactly j units below the origin. The y-variables can
be computed recursively (Boni et al. 2007) by building a table
of size mn3. The x-variables are then computed as follows:

xm;n;k ¼
Xk

j¼0

ym;n;k;j: (1)

By separating out the first and last term in the sum above,
and using the y-variable recursions, a nearly direct recursion
can be written for the x-variables:

xm;n;k ¼
m

mþ n
xm�1;n;k þ

n

mþ n
xm;n�1;k

þ n

mþ n
ym;n�1;k�1;k�1 �

n

mþ n
ym;n�1;k;k: (2)

The P value for observing a maximum descent of size at
least k is defined by

pm;n;k ¼
Xn

l¼k

xm;n;l; (3)

and recursions for the p-variables reduce to:

pm;n;k ¼
m

mþ n
pm�1;n;k þ

n

mþ n
pm;n�1;k

þ n

mþ n
ym;n�1;k�1;k�1: (4)

The y-variables in equation (2) above—since the last two
indices are equal—can be computed recursively by building
one table of size mn2. The p-variables can be recursively com-
puted by building a second table of size mn2. This means that
the entire computational procedure of P values can be done
with space complexity O(mn2) instead of the original O(mn3)
presented in Boni et al. (2007). All computations were verified
against the original approach.

This new approach allows larger probability tables to be
built more quickly. Using the 2007 recursions, a table of size

700� 700� 700 was built in 9 h and used 5.1-GB RAM
(2.6 GHz processor; 16-GB RAM). Using the recursions above,
a table of 1,600� 1,600� 1,600 was built in 1 h and 42 min in
a 10.4-GB memory footprint. Two other noteworthy
improvements were made to the algorithm: 1) faster break-
point calculations by using polymorphic sites only in

max descent = 8
p-value = 0.54

A

max descent = 30

p-value = 2.7 × 10-16

B

max descent = 18

p-value = 1.8 × 10-4

C

FIG. 1. Relationship between ordering of informative sites along a
genome and a hypergeometric random walk. Below each set of
axes, the 30 red bars and 30 blue bars show positions on a genome
(informative sites) where a putative recombinant sequence is iden-
tical to parent P but different from parent Q (blue bars), or identical
to parent Q but different from parent P (red bars). Each blue site can
be mapped to an up-step in a random walk and each red site can be
mapped to a down-step in a random walk, and there is a one-to-one
correspondence between the space of informative-site arrangements
and the space of hypergeometric random walks. (A) A random ar-
rangement of informative sites, which does not visually suggest that
the sequence is a mosaic of putative parents P and Q. The arrange-
ment of sites maps to a random walk which stays fairly close to the
horizontal axis. This walk’s maximum descent is eight steps, and
�54% of HGRWs with 30 up-steps and 30 down-steps have a max-
imum descent of eight steps or greater. (B) A nonrandom arrange-
ment of informative sites that clearly suggests that the candidate
sequence is a mosaic of the two parental sequences P and Q. The
probability of all the red sites appearing consecutively is 31!� 30!/60!
which is 2.62� 10�16. (C) An arrangement of red sites and blue sites
that suggests the red sites may be clustered in the middle. When
mapping the site arrangement to a hypergeometric random walk,
the random walk has a maximum descent of 18 steps. The P value
for a maximum descent of 18 steps cannot be written down in closed
form but can be calculated from recursion (4). The P value for this
maximum descent and for this arrangement of informative sites is
1.8� 10�4.
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breakpoint searches, and 2) a repeated subsampling feature
that allows for comparison of data sets of different sizes; with
this feature one can randomly subsample M sequences from
multiple databases or sequence collections, and repeat the
process to see how often these subsets exhibit recombination.
The new source code and manual can be downloaded from
http://mol.ax/3seq. When a P value falls outside the bounds
of the table being used, the software substitutes in Hogan–
Siegmund approximations (Hogan and Siegmund 1986) for
the queried P value.

New Applications
The 3SEQ maximum descent statistic describes clustering
patterns in sequences of binary outcomes, and is therefore
not confined to recombination analysis. The statistic can be
viewed as a generalization of the Mann–Whitney U statistic,
in the sense that outcomes of one type (of a binary outcome
variable) do not necessarily have to cluster or rank at the
beginning or end of a sequence of data points. The maximum
descent of a HGRW can be used to describe the clustering of
one particular binary outcome in the middle of a sequence of
binary outcomes; in other words, it is a 1D nonparametric
clustering statistic. In recombination analysis, this is the clus-
tering of one kind of informative site among all the informa-
tive sites (Han et al. 2010). To make use of this statistic easier
for those working outside the field of recombination, we de-
veloped a web calculator (fig. 2) that computes exact P values
for clustering in a sequence of binary outcomes, available at
http://mol.ax/delta. For example, the sequence “AAAAABB
BBABBBABBBAAAA” can be typed in and the calculator
reports that the clustering of Bs in the middle of the sequence
is significant at P¼ 0.0055.

We list two practical example uses of our nonparametric
clustering statistic. First, seasonality can be assessed nonpara-
metrically. If a particular population behavior or climatic char-
acteristic (e.g., rain or no rain) can be noted to occur or not
occur every day, then an ordered sequence of the days in the
year will show if the occurrence of one of the behaviors is
clustered and thus if this feature was seasonal in that one year.
As a second example, when a process is expected to behave at
an intermediate range or when an observation is expected to
be made at intermediate values only, this pattern can be
tested for nonparametrically. Dengue virus does not cause
severity for all ages equally. One’s first dengue infection, oc-
curring during childhood, is typically nonsevere; secondary
infections, seen in older children and teenagers, have a higher
chance of severity, whereas tertiary and subsequent infec-
tions, those that would occur in older age groups, are thought
to be rare and/or subclinical (Gubler 1998; Wikramaratna
et al. 2010). Thus, disease severity in a surveillance system
should be seen in the intermediate age ranges, and this can
be tested for nonparametrically by noting if each age band is
overrepresented or underrepresented in the pool of patients
experiencing dengue-like severe disease in a hospital. In fact,
since all that is required here is a symptoms description, the
identification of a vulnerable age range can be done for any
set of symptoms.

Results and Discussion
To illustrate improved runtimes and memory usage of the
new 3SEQ algorithm, we searched for recombinants among
large sequence data sets of dengue virus serotype 2, Ebola
virus, the coronavirus responsible for Middle-East Respiratory
Syndrome (MERS) and Zika virus; see table 1. Full-length Zika
virus sequences were downloaded from the NCBI Viral
Variation Resource (Brister et al. 2014) and aligned with
Muscle v3.8 (Edgar 2004). Full-length sequences of Ebola virus,
dengue virus serotype 2, and the coronavirus responsible for
Middle-East Respiratory Syndrome (MERS) were downloaded
from NCBI and aligned with the online NCBI alignment tools.
Ebola virus sequences were restricted to human viruses sam-
pled in Africa after December 1, 2013. Dengue virus serotype 2
was chosen to include a particularly large and polymorphic
alignment. As negative controls, we considered segments PB2
and NS from avian influenza A virus, subtype H5N1, originally
analyzed in Boni et al. (2010); only sequences from the
Influenza Genome Sequencing Project were included

FIG. 2. Screenshot of new online tool that can be used to calculate P
values testing the hypothesis of whether one binary outcome clusters
in the middle of a (1D) sequence of binary outcomes. One input
method is simply typing two characters in a text box (above, “U”
for up and “D” for down) and letting the calculator return a P value
showing whether one type of character is clustered in the middle. To
test whether the other type of character is clustered, the “SWAP”
button can be used. The hypergeometric walk is shown graphically.
The exact P value, computed with the methods in this article, is
shown. The two Hogan–Siegmund approximations for this P value
are also shown.
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(Ghedin et al. 2005) and identical sequences were removed
(when identical sequences were not removed, results using
the new version of 3SEQ were identical to the results in table 1
of Boni et al. 2010).

The new version of the software—run with a P value table
of size 1,200� 1,200� 1,200—had faster computation times
than the previous version and was able to comfortably ac-
commodate alignments with thousands of polymorphic sites.
Table 1 shows the results of all runs. Note that because 3SEQ
evaluates all triplets in a data set, the run time of the algo-
rithm scales as the cube of the number of sequences and
linearly with the alignment length. As informative sites can
sometimes be clustered in short regions of the genome, 3SEQ
will report these short segments as recombinant. For this
reason, an additional column is included in table 1 showing
the number of sequences that were identified as recombinant
with both inherited regions being longer than 500 nt; if one of
the recombinant regions is very short, it is difficult to confirm
the recombination results with a phylogenetic analysis of the
two identified parental segments.

Starting with the analysis on the two negative control data
sets, no recombinant segments longer than 500 nt were
detected in either avian influenza alignment. Both of these
runs took <30 s. The genomic alignments of MERS and Zika
virus contained 1,150 and 2,792 polymorphic sites, respec-
tively, and>99.9% triplets were able to be tested for mosai-
cism with exact P values. These runs took <2 min. As
expected from a recent analysis by Dudas and Rambaut
(Dudas and Rambaut 2015), the MERS sequence data set
was highly recombinant, with 100 out of 164 sequences being
identified as such. For Zika, 6 out of 157 virus sequences were
identified as recombinant, consistent with earlier analyses
supporting the presence of recombination in the evolutionary
history of Zika (Faye et al. 2014; Zhu et al. 2016); details of the
recombinants, parents, and breakpoints are included in the
Supplementary Material online. The Ebola virus and dengue
virus alignments each contained around 1,000 sequences. The
Ebola virus data showed no evidence of recombination. The
dengue alignment was the most diverse of all the tested data
sets with 6,151 polymorphic sites; 99.4% of the triplets in this
data set were able to be evaluated with exact P values. A total

of 36 out of 1,108 dengue sequences were identified as re-
combinant (see Supplementary Material online). Several pre-
vious analyses of dengue virus have shown evidence for
intraserotype recombination in dengue (Holmes et al. 1999;
Worobey et al. 1999; Uzcategui et al. 2001; Aaskov et al. 2007;
Waman et al. 2016, 2017). The results presented here, as well
as those of Waman et al. (2017), suggest that recombination
in dengue is infrequent.

In general, when recombinants are identified by a mosai-
cism statistic like the one used by 3SEQ, a phylogenetic anal-
ysis should be performed to ensure that the recombination
signal is preserved when the entire evolutionary history of the
sample is taken into account. The size of modern data sets
presents two challenges here. First, as the number of available
sequences increases, the choice for phylogenetic inference
tools drifts to more approximate methods, as thorough
explorations of tree space become computationally expensive
for large numbers of sequences. This reduces our confidence
in phylogenetic incongruence signals that we observe in these
data. Second, genome-level analyses in highly recombining
organisms are likely to result in a subdivision of the genome
into many nonrecombinant blocks. Inferring phylogenies for
all blocks individually will be computationally expensive, as
will the subsequent analysis of identifying specific phyloge-
netic incongruences among the trees. The next generation of
recombination detection methods should focus on these
computational challenges.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Table 1. Computation Times for Large Alignments of Viral Genomes.

Gene/Genome Number of
Distinct

Sequences

Sequence
Length (nt)

Number of
Polymorphic

Sites

% of Triplets with
Exact P Values

Dunn–Sidak
Corrected P Value

Number of Identified
Recombinant

Sequences Longer
Than 500 nt

Run Time

Avian influenza A/H5N1.
PB2 segment

112 2,409 844 100 0.0016 0 11 s

Avian influenza A/H5N1,
NS segment

160 906 298 100 1 0 24 s

MERS-CoV, whole genome 164 30,130 1,150 100 1.72�10�11 100 1.5 min
Zika virus, whole genome 157 11,192 2,792 >99.9 1.44�10�37 6 2 min
Ebola virus, 2013–2015

epidemic, whole genome
982 18,980 2,535 100 6.49�10�12 0 8.5 h

Dengue virus, serotype 2,
whole genome

1,108 11,349 6,151 99.4 0 36 15.5 h

NOTE.—Computations were done on a 2.6-GHz linux laptop with 16-GB RAM. The P value table used was 1,200� 1,200� 1,200, which has a memory footprint of 2.2 GB.
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