CONTACT STRUCTURES AND REDUCIBLE SURGERIES

TYE LIDMAN AND STEVEN SIVEK

ABSTRACT. We apply results from both contact topology and exceptional surgery theory
to study when Legendrian surgery on a knot yields a reducible manifold. As an application,
we show that a reducible surgery on a non-cabled positive knot of genus g must have slope
2g — 1, leading to a proof of the cabling conjecture for positive knots of genus 2. Our
techniques also produce bounds on the maximum Thurston-Bennequin numbers of cables.

1. INTRODUCTION

1.1. Background. Given a knot in 52, an important problem in three-manifold topology is
to classify the Dehn surgeries on K. One of the biggest open problems in Dehn surgery is to
determine the knots which admit reducible surgeries. Gabai’s proof of Property R [Gab87]
shows that if 0-surgery on K is reducible, meaning that some embedded 2-sphere does not
bound a ball, then K is in fact the unknot. Since an oriented 3-manifold is prime (i.e. not
a nontrivial connected sum) if and only if it is either irreducible or S x S2 it follows that
O-surgery on a knot is always prime. However, many nontrivial knots do have reducible
surgeries. If K is the (p, ¢)-cable of a knot K’ (where p is the longitudinal winding) and U
is the unknot, then SI?,’q(K) = S;’/q(U)#Sg’/p(K’)H Conjecturally, these are the only such
examples.

Conjecture 1.1 (Cabling Conjecture, Gonzalez-Acuna—Short [GAS86]). Suppose Dehn
surgery on a non-trivial knot K is reducible. Then K = Cp,((K') for some K' and the
surgery coefficient is pq.

The cabling conjecture is known for torus knots [Mos71] and satellite knots [Sch90], but
is still open for hyperbolic knots. Two key observations for the reducible surgeries on cables
are that the surgery always produces a lens space summand and the surgery coefficients are
integral. In fact, Gordon and Luecke showed that both of these conditions must hold for a
reducible surgery on any non-trivial knot.

Theorem 1.2 (Gordon—Luecke [GL87, [GL89]). If some Dehn surgery S3(K) on a non-
trivial knot K is reducible, then r € Z and the surgery contains a lens space summand.

One consequence of this is that if n-surgery on K is reducible, then |n| > 2. Another
consequence is that a reducible surgery on a cable knot will have exactly two summands.
It is not known that a reducible surgery on a non-cable knot cannot have more than two
summands; however, it is known that if there are not two summands, the reducible manifold
is a connected sum of two lens spaces and an irreducible homology sphere [How02]. A

The first author was supported by NSF RTG grant DMS-0636643. The second author was supported by
NSF postdoctoral fellowship DMS-1204387.
1The manifold S;’ / 4(U) is of course a lens space, but we write it this way for now to avoid confusion: it
is often called L(p,q) by 3-manifold topologists but —L(p, ¢) by contact geometers. We will use the latter
convention throughout this paper.
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weaker version of the cabling conjecture is the three summands conjecture, which says that
reducible surgery never has more than two summands.

In this paper, it is our goal to study when Legendrian surgery on a knot can be reducible.
Recall that for a Legendrian representative of K, performing Legendrian surgery on K is
topologically Dehn surgery with coefficient tb(K) — 1. Let tb(K) denote the maximum
Thurston-Bennequin number of any Legendrian representative of K. Since stabilizations
reduce tb by one, any integral surgery coefficient strictly less than tb(K) will correspond to
a Legendrian surgery.

Our results will all stem from the following theorem of Eliashberg.

Theorem 1.3 (Eliashberg [El90, [CE12]). Suppose that (X, J) is a Stein filling of a non-
prime contact 3-manifold (Y1,&1)#(Yz,&2). Then (X,J) decomposes as a boundary sum
(X1, J1)8(Xa, J2), where (X5, J;) is a Stein filling of (Yi,&).

We will first use Theorem to prove the following in Section

Proposition 1.4. Let K be a knot in S and suppose that S3(K) = L(p,q)#Y where
n < tb(K). Then:
(1) p=|n|, and n < —1;
(2) L(p,q) admits a simply-connected Stein filling with intersection form (n) = (—p);
(3) Y is an irreducible integer homology sphere which admits a contractible Stein filling.

The three summands conjecture follows immediately for S3(K) when n < @K ). If
S3(K) has at least three summands then so does —S3(K) = S2,(K), where K is the
mirror of K, so we conclude:

Corollary 1.5. Let K be a knot in S3. If S3(K) has more than two summands, then
th(K) <n < —tb(K).

From Proposition we are able to apply the existence of the Stein fillings to study the
cabling conjecture via known results in contact topology, such as the classification of tight
contact structures on lens spaces. Our results fall into two classes, corresponding to the
cases th(K) > 0 and tb(K) < 0, which we describe in the following subsections.

1.2. Reducible surgeries for knots with tb(K) > 0. We use Proposition to prove
the following theorem in Section

Theorem 1.6. Let K be a knot in S3 and suppose that tb(K) > 0. Then any surgery on
K with coefficient less than tb(K) is irreducible.

It is a theorem of Matignon and Sayari [MS03] that if S3(K) is reducible for a non-cable
K, then |n| < 2g(K) — 1, where g(K) is the Seifert genus of K. Therefore, if th(K) is large,
this result can be used together with Theorem to strongly restrict the range of possible
reducible surgeries on K. We illustrate this in Section with positive knots.

Theorem 1.7. Suppose that K is a non-trivial positive knot which is not a cable. If S3(K)
is reducible, then n = 2g(K) — 1. Consequently, there are no essential, punctured projective
planes in the complement of K.

Without additional information, one cannot apply Theorem to rule out the case of
(29(K) — 1)-surgery, since Bennequin’s inequality [Ben83] implies that tb(K) < 2g(K) — 1.
However, in some cases, one can in fact rule out this final surgery coefficient. In particular,
we will use additional techniques from Heegaard Floer homology to conclude the following.
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Theorem 1.8. Positive knots of genus at most 2 satisfy the cabling conjecture.

Remark 1.9. In practice, for most knots tb(K) is negative and thus Theorem does not
apply. However, large classes of knots do have tb(K) > 0, such as strongly quasipositive
knots [Rud95], and so this shows that strongly quasipositive knots (among others) do not
have negative reducible surgeries.

Observe that in Theorem [1.6] we do not require that K be a non-cable. Further, since the
maximum Thurston-Bennequin number of the unknot is —1, we do not need a non-triviality
assumption either. In light of Theorem we make the following conjecture.

Conjecture 1.10. Legendrian surgery on a knot in the tight contact structure on S° is
never reducible.

1.3. Knots with tb(K) < 0. While we are not able to prove Conjecture for knots
with tb(K) < 0, we are able to establish some partial results such as the following, which is
the subject of Section

Theorem 1.11. Let K be a knot in S® with tb(K) < 0. If S3(K) is reducible for some
n < %(K), and W is the trace of this surgery, then at least one of the following must hold:
(1) S3(K) = S3(U)#Y . If this is the case then W is necessarily diffeomorphic to DptZ,
where D, is the disk bundle over S? with Euler number n.
(2) th(K) = =6, n = —7, and S3(K) = S3,(To,—3)#Y where Ts _3 is the left-handed
trefoil. Moreover, W is diffeomorphic to XtZ where X is the trace of —T-surgery
on T27_3.

(3) n >4 16,
In each of the first two cases, Y is an irreducible homology sphere bounding the contractible
Stein manifold Z.

Remark 1.12. In case (2) above, we recall that Moser [Mos71] showed that S3.(Ty _3) is in
fact the lens space 557/4(U).

Remark 1.13. If the trace W of a reducible n-surgery on K has the form D,}Z, then the
generator of Hyo(W) = 7Z is represented by a smoothly embedded sphere even if K is not
smoothly slice.

Corollary 1.14. If -8 < tbh(K) < —1, then any reducible surgery on K with coeffi-
cient n < th(K) has the form Si(K) = S3(U)#Y, except possibly when th(K) = —6 and
S3(K) = S3.(Ty,—3)#Y . In both cases Y is an irreducible homology sphere which bounds
a contractible Stein manifold.

Proof. Suppose that the lens space summand of the reducible surgery is not S2(U). The-
orem says that either th(K) = —6 and n = —7, or since tb(K) > —8 we have
n > —10. We will see (Remark that this forces the lens space summand L(|n|,q)
to be S3-(Ty _3) = 537/4(U). If this lens space arises from case (3|) of Theorem then

we have n = =7 > 4L%j + 6, hence th(K) < —7, contradicting the assumption that
n < tb(K). Thus it can only arise from case (2)), in which case tb(K) = —6. O
We cannot guarantee that there do not exist negative reducible surgeries of slope at

least tb(K) which satisfy one of the conclusions of Theorem for example, if K is the
(2, —1)-cable of the right handed trefoil T, 3 then tb(K) = —2 by [ELT12), Theorem 1.7], and
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S3,(K) = SiQ(U)#Sil/Q(TZg) = 93, (U)#X(2,3,13). Note that the Brieskorn homology
sphere 3(2,3,13) even bounds a smoothly contractible 4-manifold, as shown by Akbulut
and Kirby [AKT9].

Corollary 1.15. Suppose that % is odd and tb(K) < 0. If S3(K) is reducible for some

n < tb(K), then either (tb(K),n) = (=6, —7) or n > 4LTI’(TK)j + 6.

Proof. Suppose S2(K) is a reducible Legendrian surgery and n < 4 LE(TK)J +6 but (tb(K),n) #
(—=6,—T7). Theorem says that S3(K) = S3(U)#Y, where Y is a homology sphere which
bounds a contractible Stein manifold. The surgery formula for the Casson-Walker invariant
A, as stated by Boyer-Lines [BLI0] (see also Walker [Wal92|), implies that

_ 1A%

n 2

The Casson-Walker invariant is additive under connected sums with homology spheres, so
the left side is equal to A\(Y"), which is an even integer since Y bounds a smoothly contractible
manifold and thus has vanishing Rokhlin invariant [AM90]. We conclude that 2 ¢ 2nZ,

2
AKT(D is odd by assumption. ]

A(Sp(K)) = (S (U)

which is impossible since

Remark 1.16. The requirement that n < tb(K) is necessary in order to rule out S3(U)
summands: if K is the (3, —1)-cable of the right handed trefoil 75 3, then tb(K) = —3 by
[ELT12, Theorem 1.7], and §%,(K) = $%,(U)#5? 4(Tz3) is reducible but Z5% = 9 is

2
odd. (In this case we would have Y = ¥(2, 3,19), and so A(Y)) is odd.)

1.4. Maximum Thurston-Bennequin numbers for cables. Combining Theorem [I.6]
with the fact that cables have reducible surgeries, we are also able to say something about the
maximum Thurston-Bennequin numbers of cables, cf. [EH05, [ELT12| [Tos13]; this technique
was originally used by Etnyre-Honda [EHOI, Lemma 4.9] to compute tb for negative torus
knots. Let Cp 4(K) denote the (p, g)-cable of K, and note that for nontrivial cables we can
assume that p > 2 since C) 4(K) = C_p, _4(K) up to orientation.

Corollary 1.17. Suppose that p > 2 and ged(p, q) = 1, and assume that ¢ # —1.
o Ifqg<p-th(K), then tb(Cpq(K)) =pg.
o If qg>p-th(K), then pg — (q — p - tb(K)) < tb(Cp,q(K)) < pg.

Proof. Letting K’ = C,, ,(K), we first prove that tb(K’) < pg. We suppose for contradiction
that tb(K') > pg. Recalling that pg-surgery on K’ yields Sg/q(U)#Sg’/p(K), we note that if

q > 0 then tb(K') > pg > 0 and so this is ruled out by Theorem (unless S;’/p(K) =53,

in which case K is the unknot and ¢ = 1 [GL89], hence tb(K’) = —1 < pq anyway); and
if ¢ < —1 then this contradicts Proposition since Sg’ /p(K ) is not a homology sphere.
Thus th(K') < pq as long as q # —1.

Given a tb-maximizing front diagram for K, we can construct a front for K’ as illustrated
in Figure 1L We first take p parallel copies of this front, each copy pushed off the preceding
one by a small distance in the z-direction, to produce the (p, p - tb(K))-cable of K. If the
front for K has writhe w and ¢ cusps, and hence th(K) = w— %c, then this p-copy has writhe

pPw — p(pT_l)c and pc cusps, hence tb(Cp p%(K)(K)) =p? - th(K). If ¢ < p - tb(K), then we
insert p-tb(K) — q negative %—twists, each of which adds —(p—1) to the writhe and 2 to the
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X
/X A
&

Ficure 1. Using a front diagram for the Legendrian figure eight knot K
with tb(K) = —3, we take three parallel copies of K and insert two positive
1-twists (left) or four negative 3-twists (right) to build front diagrams for
the (3, —7)-cable and (3, —13)-cable of K, respectively.

?

N\
N\

7

number of cusps and hence adds —p to tb, to get tb(K') = pq. If instead ¢ > p-tb(K), then

we insert ¢ — p - th(K) positive %—twists, each of which adds p — 1 to the writhe and 0 to the

number of cusps and hence adds p — 1 to tb, to get tb(K') =pg—q+p- tb(K). Thus the
front we have constructed provides the desired lower bounds on tb(K') for arbitrary ¢. O

Corollary shows that for ¢ # —1, the reducible surgery on C), ,(K') cannot be realized
as a Legendrian surgery, since it has slope pq and tb(Cp (K)) < pq. This provides further
evidence for Conjecture [1.10

Remark 1.18. The claim that tb(C, 4(K)) < pq is actually false for ¢ = —1, because if U is
the unknot then so is Cp _1(U) for any p > 2 and so tb(Cp —1(U)) = —1 > —p. One can
also see that extending the results of Corollary to ¢ = —1 more generally would require
removing the possibility of the first conclusion in Theorem since 5% (Cp,—1(K)) =
53 (U)#Y where Y = Sil/p(K).

It turns out that in the case that ¢ > p - tb(K) in Corollary we are still sometimes
able to determine the maximum Thurston-Bennequin numbers for cables. We illustrate this
for a family of iterated torus knots, namely the ones which are L-space knots, below.

Recall that a knot is an L-space knot if it admiti\a positive L—S/pgce surgery, i.e. a
rational homology sphere Y with |H(Y;Z)| = rank HF(Y'), where HF' denotes the hat-
flavor of Heegaard Floer homology. L-space knots are fibered and strongly quasipositive
[Ni07, [Hed10] and thus satisfy si(K) = 2g(K) — 1 [EVHMII] and tb(K) > 0 [Rud95]. We
make the following conjecture, which together with Theorem would immediately imply
the main result of [HLZ13].

Conjecture 1.19. If K is an L-space knot, then th(K) = 2g(K) — 1.
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In Section [3.2] we give evidence for this conjecture, including the fact that it holds for
Berge knots (Proposition , which are the only knots known to have lens space surgeries;
and that if it holds for the L-space knot K then it also holds for any cable of K which is
also an L-space knot (Proposition . This implies, for example, that th(K) = 2g(K) — 1
whenever K is an iterated torus knot — meaning there is a sequence of cables

Ky = Tpl,qlaKQ = sz,qz(Kl)a oo Ky = pn,qn(anl)

with K = K, — such that K7 is a positive torus knot and 1% > 2¢g(K;—1) — 1 for all
1 > 2. These conditions on an iterated torus knot are equivalent to it being an L-space knot
[Hed09, Hom11].

Organization. In Section [2| we review the relevant background on contact topology and
Stein fillings and prove Proposition [I.4] In Section [3] we give a short proof of Theorem
we then discuss knots which satisfy tb = 2g — 1, show that this holds for positive knots
(establishing Theorem and complete the proof of Theorem In Section 4| we develop
some of the background needed to study the case tb < 0 and use this to give another proof of
Theorem Finally, in Section [5] we use this background material to prove Theorem [1.11

Acknowledgments. We would like to thank Mohan Bhupal, John Etnyre, Bob Gompf,
Cameron Gordon, and Jeremy Van Horn-Morris for helpful discussions. We would also
like to acknowledge that John Etnyre was independently aware some years ago that The-
orem could be applied to study the cabling conjecture. Theorem was completed
at the “Combinatorial Link Homology Theories, Braids, and Contact Geometry” workshop
at ICERM, so we would like to thank the organizers for a productive workshop and the
institute for its hospitality. Finally, we thank the referee for many useful comments which
helped to improve the exposition.

2. BACKGROUND

2.1. Reducible surgeries. To simplify future references, we collect the list of theorems
about reducible surgeries mentioned in the introduction.

Theorem 2.1. Let K be a non-trivial knot in S® and n,m relatively prime integers such
that m > 1. If Si/m(K) is reducible, then

(1) |[GL87, Theorem 1] m = 1;

(2) [GL89, Theorem 3] S2(K) = L(p, q)#Y for some non-trivial lens space L(p,q), and
thus |n| > 2;

(3) [MS03l, Theorem 1.1] either |n| < 2g(K) — 1 or K is not hyperbolic;

(4) [MosT71l,ISch90] if K is not hyperbolic, then it is an (r,s)-cable and n = rs.

Note that since Hy(S3(K)) = Z/|n|Z, we must have that |n| = p-|H;(Y)|. Also, in item
above we consider torus knots to be cable knots, since they are cables of the unknot.

2.2. Legendrian knots. For background on Legendrian knots we refer to the survey
[Etn05] by Etnyre. In this paper we will only be concerned with Legendrian knots K in
the standard tight contact structure &xq on S2, i.e. knots K C 83 which satisfy TK C &gq.
If the front projection of an oriented Legendrian knot K has writhe w and cy (resp. c_)
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upwardly (resp. downwardly) oriented cusps, then its two classical invariants, the Thurston-
Bennequin number and rotation number, are defined by

1h(K) :w—%(c++c_), r(K) = %(c_—c_,_).

The operations of positive and negative stabilization, which produce a new Legendrian
knot K. which is topologically isotopic to K but not Legendrian isotopic to it, change
these invariants according to

th(K1) = th(K) — 1, r(Ky) =r(K)£1.

Reversing the orientation of K preserves tb(K) while replacing r(K) with —r(K).

The classical invariants of a Legendrian knot are constrained in general by the Bennequin
inequality [Ben&3]

th(K) + |r(K)| <2g9(K) -1,

where g(K) is the Seifert genus of K. This inequality has been strengthened several times,
so that the right side can be replaced by 2¢s(K) — 1, where g5(K) < g(K) is the smooth
slice genus [Rud93]; by 27(K) — 1, where 7(K) < gs(K) is the Ozsvath-Szabé tau invariant
[Pla04]; or by s(K) — 1, where s(K) < 2¢5(K) is Rasmussen’s s invariant [Pla06, [Shu07].

2.3. Stein fillings. A contact manifold (Y, ¢) is said to be Stein fillable if there is a Stein
manifold (X,.J) with a strictly plurisubharmonic exhausting function ¢ : X — R such
that Y = ¢~ !(c) for some regular value ¢ of ¢ and ¢ = TY N J(TY). The subdomain
(07 Y((—o0,]),J) is a Stein filling of (Y, €).

Eliashberg [EIi90] and Gromov [Gro85] proved that if (Y3, ¢) admits a Stein filling, then
¢ is tight. Moreover, Eliashberg characterized the manifolds which admit Stein structures
in terms of handlebody decompositions as follows.

Theorem 2.2 ((Eliashberg, cf. [Gom98])). Let X be a compact, oriented 4-manifold. Then
X admits a Stein structure if and only if it can be presented as a handlebody consisting of
only 0-, 1-, and 2-handles, where the 2-handles are attached along Legendrian knots with
framing tb — 1 in the unique tight contact structure on #*(S* x S2).

In particular, we see that given a knot K in S3, the manifold obtained by attaching a
2-handle to B* with framing at most tb(K) — 1 admits a Stein structure, since by stablizing,
we can obtain a Legendrian representative with tb(K) = n for any n < tb(K).

Since lens spaces have metrics of positive scalar curvature, the topology of their Stein
fillings is heavily constrained.

Theorem 2.3 ((Lisca [Lis98])). Let (X, J) be a Stein filling of a lens space. Then b3 (X) =
0.

We also recall the definition of the ds invariant, due to Gompf [Gom98], of oriented plane
fields ¢ with torsion Chern class on a closed, oriented 3-manifold.

Theorem 2.4. Let (X,J) be an almost complex manifold with 0X =Y and & = TY N
J(TY). If c1(§) is torsion, then

_a(X,J)? = 30(X) - 2x(X)
(21) ds(€) = = .

s an invariant of the homotopy class of €& as an oriented plane field.
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All of the three-manifolds we will be concerned with in this paper will be rational homol-
ogy spheres, so for any oriented plane field ¢ that we will consider, ¢;(§) will be torsion.

Ezample 2.5. If (Y, §) is the boundary of a contractible Stein manifold X, then d3(§) = —
Examples include the tight contact structure on S2, which is filled by B*.

1
3

Now, if (Y;,&;) bounds an almost complex manifold (X, J;) for i = 1,2, then we can glue
a Weinstein 1-handle to X1 LI X2 to exhibit the boundary sum X;4X5 as an almost complex
manifold with boundary (Y1#Y5, &1#E&2), and so

(22 dy(€1#62) = da() + (&) + 5.

Combining this fact with Example we see that if (Y2, &2) is the boundary of a contractible
Stein manifold then

(2.3) d3(&#&2) = ds(&1).

2.4. Reducible contact manifolds. As mentioned in the introduction, our main input
into the proof of Proposition will be Theorem [1.3| proved by Eliashberg [Eli90, [CE12].
It states that any Stein filling of a non-prime contact 3-manifold decomposes as a boundary
sum of Stein fillings of the connected summands.

Proof of Proposition[1.J} By Theorem a reducible surgery on a non-trivial knot is nec-
essarily integral and has a non-trivial lens space summand. Let X be the 2-handlebody
obtained by attaching an n-framed 2-handle to the four-ball along K. Observe that X is
simply-connected and has intersection form (n). By Theorem if n < th(K) — 1, then
X admits a Stein structure J. Now, Theorem implies that if (X, J) is a Stein filling
of (S3(K),&) = (L(p,q),&1)#(Y, &), for Y # S°, then X decomposes as a boundary sum,
say X = (Wy, J1)§(Wa, J2), where (W7, J1) is a Stein filling of (L(p, q),&1) and (Wa, J3) is
a Stein filling of (Y, &2).

It is clear that W3 and W5 are simply-connected. Since 71 (W7) = 0 and Hy(0W7) # 0, we
must have Hy(W7) # 0. Then Hy(W7) is a summand of Ho(W1)@® Hao(Wa) = Ho(X) = Z, so
Hy(W1) carries Ho(X). Thus Wi has intersection form (n) and Hy(W2) = 0. Consequently,
we have Hy(0W1) = Z/|n|Z, and so |n| = |p|. Since m(W3) = Ha(Ws) = 0, and W,
has no 3- or 4-handles by Theorem we see that W is contractible and thus H;(Y) =
Hy(0W5) = 0.

In summary, we have S3(K) = L(|n|,q)#Y, where Y is an integer homology sphere,
(W1, J1) provides a simply-connected Stein filling of L(|n|,q) with intersection form (n),
and (Wa, J2) provides a contractible Stein filling of Y. If S3(K) has at least three nontrivial
connected summands then all but one of them are lens spaces by Theorem [2.I] and since
Y is a homology sphere we conclude that it must be irreducible. Finally, if n > 0 then
by (W1) > 0, contradicting Theorem so it follows that n < 0. O

2.5. Tight contact structures on lens spaces. We recall the classification of tight con-
tact structures on the lens space L(p, q), due to Giroux and Honda. We use the convention
here and from now on that L(p, q) denotes —%—surgery on the unknot, and that 1 < ¢ < p.

Theorem 2.6 ([Gir00, Hon00]). If —2 has continued fraction

[a1,a2,...,ay] == a1 — —
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where a; < —2 for all i, then Legendrian surgery on a chain of topological unknots of length
n in which the ith unknot has Thurston-Bennequin number a; + 1 and rotation number

ri € {a; +2,a; +4,a; + 6,...,|a;| — 2}

produces a tight contact structure on L(p,q). This construction gives a bijection between the
set of such tuples (r1,...,ry), which has [[;(Ja;| — 1) elements, and the set of tight contact
structures on L(p,q) up to isotopy.

The Legendrian surgery construction of Theorem also produces a Stein filling (X, Jz)
of each (L(p,q),&7), where & is the contact structure determined by the ordered set of
rotation numbers

¥ = <7“1,7’2,.. . ,Tn>
once we orient each unknot in the chain so that every pair of adjacent unknots has linking
number 1; we make this choice of orientation to simplify the linking matrix, and consequently
the matrix presentation of the intersection form for X. Then o(X) = —n since X is
necessarily negative definite, and x(X) =n+1, so

2
(2.4 dy(g) = AT A2
According to Gompf [Gom98], the Chern class in this formula is Poincaré dual to -, 7;[D;] €
Hy(X,0X), where each disk D; is the cocore of the 2-handle attached to 9B* = S along
the ith unknot. We will use this description later to compute ¢; (X, Jr)?: first we will con-
sider the case where there is a single 2-handle in the proof of Proposition [3.1], and then we
will discuss the general case in Section [4.1

Remark 2.7. The tight contact structures on L(p,q) come in conjugate pairs £ = & and
€ = £_5, which are isomorphic as plane fields but with opposite orientations. The discus-
sion above implies that the corresponding almost complex structures satisfy ¢ (X, J7) =
—c1(X, J_z), and hence that d3(&) = d3(€). Conjugation acts as an involution on the set of
tight contact structures on L(p, q), with at most one fixed point (¥ = (0,0,...,0)), which

satisfies d3(§) = ”T_2 and which only exists if all of the a; are even.

Remark 2.8. There is a canonical contact structure &can on L(p, q), defined as follows: the
standard contact structure &gq on S® is Z/pZ-equivariant under the action used to define
L(p, q), and &cap is defined as the quotient of &q under this action. We know that &y is
the contact structure &(|q,|-2,|az|—2,....Jan|—~2)> i Which each r; is as large as possible [0zb08|
Proposition 3.2] (see also [BO1I, Section 7]).

We can use Theorem to bound the number of tight contact structures on L(p,q) as
follows.
Proposition 2.9. Take relatively prime integers p and q, p > q > 1, and write —% =
[a1,...,ay] with each a; < —2. If m = min, |a;|, then L(p,q) has at most
m—1
——(p—-(n—1)(m -1t
S (p— (= )m— 1))
tight contact structures up to isotopy, with equality if and only if either n < 2 orp = q+ 1.
Proof. We remark that if n > 2 and —2 = [ag, ..., a,], then

P lai|s —r
2. _ £ _ _
(25) p_ _lubor
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hence ¢ = s (so in fact —4 = [ag, ..., a,]) and p = |a1|g — r. We then note that
p=q=(laf=1)g—r=(af=1(g—7r) = (m—-1)(g-7),

with equality only if |a1| = m = 2. Applying this repeatedly gives p — ¢ > (m — 1)" with
equality if and only if either |a;| = m = 2 for all 4, in which case p=¢+ 1, or n = 1.

We now prove the proposition by induction on n: certainly when n = 1 we must have
—’ql = [-p] = =%, som = p, and L(p,1) has exactly p — 1 = mﬁfl - p contact structures by
Theorem 2.6 Suppose that n > 2 and that a; = —m for some 7 > 1. Then

| Tight(L(p, )| = (la1| — 1) - [ Tight(L(g, 7))|
(laa| = 1) - (m = 1)(g = (n — 2)(m — 1)"?)

m
m—1 .
= = ((larlg = @) = (Jas| = (n = 2)(m — 1))
m—1 .-
ST(p—(q—r)—(n—Q)(m—l) o)
m—1
<——(p-(n-1)m-1""
<——(p—m-1m-1""),

where we use the facts that p = |ailg — 7, |a1] > m, n > 2, and ¢ —r > (m — 1)}

as shown above. If we have equality at each step then ¢ —r = (m — 1)"~!, hence either
n =2 or g =r + 1; in the latter case we have m = 2, and assuming n > 2 we must have
la1]| —1 =m—1 as well, so a; = —2 for all i, and thus p = ¢+ 1. Conversely, if n = 2 then it
is easy to see that equality is preserved, and likewise if p = ¢ + 1 since this implies a; = —2
for all 4.

If on the other hand n > 2 but only a; is equal to —m, then we apply the same argument
to L(p, q') where —5 = [ap, ..., a1] and observe that this is homeomorphic to L(p, q), since
they are presented by surgery on the same chain of unknots viewed from two different
perspectives. This completes the induction. ]

3. REDUCIBLE LEGENDRIAN SURGERIES FOR tb(K) > 0

3.1. A proof of Theorem Proposition [1.4] guarantees that associated to a reducible
Legendrian surgery is a certain Stein filling of a lens space, and consequently a tight con-
tact structure on this lens space. We will prove Theorem [I.6] by showing that reducible
Legendrian surgeries on knots with tb > 0 produce too many tight contact structures in
this fashion, appealing to Giroux and Honda’s classification of tight contact structures on
L(p, q) (Theorem . We recall our conventions that L(p, q) is —g—surgery on the unknot
and that 1 < g¢q <p.

Proposition 3.1. Let K be a knot, and suppose that S2(K) is reducible for some n <
th(K) — 1; write n = —p for some p > 2. If S3(K) = L(p, q)#Y, then Legendrian surgery
on any representative of K with tb = 1 — p and rotation number v induces a tight contact
structure & on L(p, q) with d3(§) = —4—117(7’2 +p).

Proof. By Theorem the reducible Legendrian surgery gives us a Stein filling (X, J) of
a reducible contact manifold

(Sp(K),€x) = (L(p,a), O# (Y, E),
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where (Y, ¢’) bounds a contractible Stein manifold by Proposition . Then equation
says that ds(§) = d3(£x), so it remains to compute d3(). By Proposition[L.4] o(X) = —1
(since n < 0) and x(X) = 2. Thus d3(éx) = 2(c1(X, J)? —1).

In order to compute ¢;(X,.J)?, we observe that ¢ = PD(cy(X,J)) is the class r[D] €
Hy(X,0X) [Gom98], where D is the cocore of the 2-handle attached along K. Then
Hy(X) = Z is generated by a surface ¥ of self-intersection n, obtained by capping off a
Seifert surface for K with the core of the 2-handle, and the map Hy(X) — Ha(X,0X)
sends [X] — n[D]. In particular, it sends —r[X] to —rn[D] = pc, and so

p*c® = (—r[%])? = r*n = —r?p,

or ¢? = —%. We conclude that ds(&) = d3(€k) = % (-% - 1)> as desired. _

At this point we can give a simple proof of Theorem m which says that if tb(K) > 0
then n-surgery on K is irreducible for all n < tb(K).

Proof of Theorem[1.6. Suppose that S3(K) is reducible for some n < th(K). We know by
Proposition that n < —2 and the reducible manifold has a summand of the form L(p, q)
with p = —n. Since K has a Legendrian representative with tb = tb(K) > 0, and tb + r is
odd, after possibly reversing the orientation of K, it has a representative with tb = 0 and
r =19 > 1. We can stabilize this representative p — 1 times with different choices of signs
to get representatives with tb =1 — p and

Te{To_p+17T0_P+37T0_p+5a-‘~77”0+]7_1}7

and by reversing orientation we also get one with tb =1—p and r = —rg —p+ 1. Thus the

Legendrian representatives of K with tb = 1 — p collectively admit at least p 4+ 1 different

t |l
2

rotation numbers, hence at leas —‘ values of 72.

For each value of r as above, Proposition says that L(p,q) admits a tight contact

structure £ with dz(§) = _ 74P Thig value of d3(€) is uniquely determined by r2, so the
4p

set of rational numbers
(3.1) {ds(&) | € € Tight(L(p,q))}

has at least {%W elements.

Now we know from Proposition that L(p, q) has at most p—1 tight contact structures.
Moreover, by Remark all but at most one of them come in conjugate pairs. Observe
that conjugate contact structures have the same d3 invariant, and so the set (3.1)) has at

most {%—‘ elements. We conclude that

ptl < p—1 ’
2 - 2
which is absurd. O

3.2. Knots with tb = 2g—1. In this subsection we discuss the question of which nontrivial
knots K can have th(K) = 2g(K) — 1, where g(K) is the Seifert genus. We have already
shown that reducible surgeries on such knots must have slope at least 2g(K) — 1. Recall
from Theorem [2.1] that if K is also hyperbolic, then Matignon-Sayari showed that reducible
surgeries on K have slope at most 2g(K) — 1, so then n-surgery on K cannot be reducible
unless n = 2¢g(K) — 1.
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Proposition 3.2. If K is a positive knot, then tb(K) = 2g(K) — 1.

Proof. Hayden—Sabloff [HS15] proved that if K is positive then it admits a Lagrangian
filling, hence by a theorem of Chantraine [Chal(] it satisfies th(K) = 2gs(K) — 1, where
gs(K) is the slice genus of K, and Rasmussen [Ras10] proved that gs(K) = ¢g(K) for positive
knots. O

Proof of Theorem [1.7. Tt follows from Proposition and item (4) of Theorem [2.]1] - that if
n-surgery on a posmve knot K is reducible, then elther Kisa cable and n is the cabling
slope, or K is hyperbolic and n = 2g(K) — 1. If K is also hyperbolic, the claim that there
are no essential punctured projective planes in its complement follows exactly as in [HLZ13|,
Corollary 1.5]. O

In the case g(K) = 2, we can use Heegaard Floer homology to eliminate the remaining
possibility n = 2¢g(K) — 1 as well: this establishes Theorem which asserts that positive
knots of genus at most 2 satisfy the cabling conjecture.

Proof of Theorem [I.8, The cabling conjecture is true for genus 1 knots by [BZ96] (see also
IMS03l, [HLZ13]). If n-surgery on the genus 2 positive knot K is a counterexample then K
must be hyperbolic by Theorem (in particular, K is prime) and n = 2g(K) — 1 =3 by
Theorem As a positive knot of genus 2, K is quasi-alternating [JK13], hence it has thin
knot Floer homology [MOOS8]. The signature of K is at most —4, since positive knots satisfy
0(K) < —4 unless they are pretzel knots [PT10, Corollary 1.3] and the cabling conjecture

is known for pretzel knots [LZ94] (in fact, for all Montesinos knots). Since |J( I
bound for the slice genus of K, and hence for g(K) = 2, we have o(K) = —4.

We claim that K cannot be fibered. Indeed, Cromwell [Cro89, Corollary 5.1] showed that
fibered homogeneous knots have crossing number at most 4g(K), and since positive knots
are homogeneous we need only check the knots with at most 8 crossings in KnotInfo [CL]
to verify that the (2,5)-torus knot is the only prime, fibered, positive knot of genus 2, and
it is not hyperbolic. Since L-space knots are fibered [Ni07], the reducible 3-surgery on K
cannot be an L-space. Its lens space summand has order dividing 3, so it must be L(3,q)
for some ¢, and if we write S5(K) = L(3, q)#Y for some homology sphere Y, then it follows
from the Kiinneth formula for HF [OS04c] that Y is not an L-space.

Since K is HFK-thin, the computation of HFT(S3(K)), the plus-flavor of Heegaard
Floer homology, was carried out in the proof of [OS03a, Theorem 1.4]; for the claim that
the surgery coefficient n = 2¢(K) — 1 is “sufficiently large,” see [OS04bl Section 4], in
particular Corollary 4.2 and Remark 4.3. The result (up to a grading shift in each Spin®
structure) depends only on the signature o(K) = —4 and some integers b; determined by
the Alexander polynomial of K as follows:

HF*(S3(K),0) =T , @ (7/2)
HF(S3(K),1) = TH o,
HF*(S3(K),2) = HF*(S5(K),1),

is a lower

where the numbers 0, 1,2 denote the different Spin® structures on S3(K) and the subscripts
on the right denote the grading of either the lowest element of the tower 7+ = Z[U, U] /U -
Z|U] or the Zb summand. The Kiinneth formula for Heegaard Floer homology implies that
each HF*(S3(K),4) should be isomorphic to HFT(Y) as a relatively graded Z[U]-module
(with an absolute shift determined by the correction terms of L(3,q)), and in particular
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we must have b; # 0 since Y is not an L-space. Thus the Z% summands are nontrivial.
However, we see that HF T (S3(K),0) and HF*(S3(K),1) are not isomorphic as relatively-
graded groups, by comparing the gradings of the Z% summand to the gradings of the tower.
Thus, the corresponding HFT(S3(K),i) cannot both be isomorphic to HFT(Y) and we
conclude that S3(K) is not reducible after all. O

In general the condition tb = 2g — 1 can be fairly restrictive, as shown by the following.
Proposition 3.3. If K is fibered and tb(K) = 2g(K) — 1, then K is strongly quasipositive.

Proof. Livingston [Liv04] and Hedden [Hed10] showed that for fibered knots we have 7(K) =
g(K) if and only if K is strongly quasipositive, where 7 is the Ozsvath—Szab6 concordance
invariant, which always satisfies |7(K)| < g(K) [OS03b]. On the other hand, Plamenevskaya
[Pla04] proved that tb(K) + |r(K)| < 27(K) — 1 for any Legendrian representative of K.
In particular, if K is fibered and not strongly quasipositive then th(K) < 27(K) — 1 <
29(K) — 1. O

It is not true that all fibered, strongly quasipositive knots satisfy tb(K) = 2g(K) — 1.
One example is the (3,2)-cable of the right-handed trefoil T": letting K = C52(T'), Etnyre
and Honda [EHO05] showed that tb(K) = 6 (which also follows from Corollary but
sl(K) =7 =2g(K)—1, and since K is fibered the latter implies by [Hed10] that it is strongly
quasipositive. Etnyre, LaFountain, and Tosun [ELT12] provided many other examples as
cables C;. 5(T},4) of positive torus knots, but in all such cases we have th(K) < 2g(K) — 1
only if 2 <2g(Tp4) — 1, in which case K is not an L-space knot [Hom11].

For a hyperbolic example, let K be the closure of the strongly quasipositive 3-braid

(3.2) B = olos(o1 - 010907 " - 09)3,

cf. [Sto06, Remark 5.1]. Since K is the closure of a 3-braid and its Alexander polynomial
Agt) =t —2074 4+ 3t73 —2t72 41 — 262 + 3t3 — 2t* 4+ 45

is monic, we know that K is fibered [Sto06l Corollary 4.4] with Seifert genus g(K) = 6.

Lemma 3.4. The knot K defined as the closure of 1s hyperbolic.

Proof. 1t suffices to check that K is not a satellite, since A (t) is not the Alexander poly-
nomial of a torus knot. If K is a satellite with companion C' and pattern P, and P has
winding number w in the solid torus, then Ag () = Ac(t")Ap(t). Since K is fibered, both
C and P are fibered and w # 0 [HMS08, Theorem 1], and in particular Ac (") is not
constant since it has degree w - g(C). Since Ag(t) is irreducible, it follows that Ap(t) =1
and Ak (t) = Ac(t"), which by inspection implies w = 1. Since P is fibered with trivial
Alexander polynomial, it is unknotted in S3; but since it also has winding number 1 it must
then be isotopic to the core of the solid torus [HMS08|, Corollary 1], and so K cannot be a
nontrivial satellite. O

We have the bound tb(K) < —max-deg, Fx(a,z) — 1 = 10 where Fi is the Kauffman
polynomial of K [Rud90], and so th(K) < 2g(K)—1. We note that K is not an L-space knot
since the coefficients of Ag () are not all 1 [OS05], so Conjecture remains intact.

As evidence for Conjecture we show that it is satisfied by all knots which are known
to admit positive lens space surgeries, i.e. the twelve families of Berge knots [Ber]|. (Berge
knots have tunnel number one and hence are strongly invertible, so they are already known
to satisfy the cabling conjecture [EM92].)
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Proposition 3.5. If K is a Berge knot, reflected if necessary so that it has a positive lens
space surgery, then tb(K) = 2g(K) — 1.

Proof. Families I-VI are the Berge-Gabai knots [Ber91], [Gab89], which are knots in S x D?
with nontrivial S*x D? surgeries, and these are known (after possibly reflecting as mentioned
above) to be braid positive since they are either torus knots or 1-bridge braids. Families VII
and VIII are knots on the fiber surface of a trefoil or figure eight, respectively, and Baker
[Bak04, Appendix B] showed that they are braid positive as well. Thus in each of these
cases the result follows from Proposition [3.2l The remaining “sporadic” knots, families
IX-XII, have tb = 2g — 1 because they are all divide knots [Yam12], hence they satisfy
th(K) = 2gs(K) — 1 [[sh05], and as L-space knots they have gs(K) = g(K) [0S05], and the
result follows. 0

We compile further evidence for Conjecture by reducing it to the case of non-cabled
knots as follows. We recall that torus knots are L-space knots if and only if they are
positive, in which case they satisfy tb(K) = 2¢g(K) — 1 by Proposition Moreover, the
cable Cp ,(K) of some nontrivial K is an L-space knot if and only if K is an L-space knot
and % > 2¢g(K) — 1 [Hed09, Hom11], in which case we can apply the following.

Proposition 3.6. If K is nontrivial and tb(K) = 2g(K)—1, then tb(Cp 4(K)) = 29(Cp4(K))—
1 whenever 1 > 2¢(K) — 1.

Proof. Because Cp, 4(K) = C_p _4(K), we assume without loss of generality that p,q > 0;
then the inequality g > 2g(K) — 1 = tb(K) implies ¢ > p - th(K), since ged(p,q) = 1.
Corollary then says that tb(K') > pq — (¢ — p- tb(K)), where K’ = C,, 4(K).

Now a theorem of Shibuya [Shi89] says that the Seifert genera of K and K’ are related
by g(K') =p-g(K) + %, which is equivalent to

29(K') =1 =pg — (¢ —p(29(K) — 1)) = pg — (¢ — p - tb(K)) < tb(K").
But Bennequin’s inequality implies that tb(K’) < 2g(K’) — 1, so the two must be equal. [

4. MINIMAL d3 INVARIANTS OF TIGHT CONTACT STRUCTURES

Although the proof of Theorem in Section [3.1] is short and simple, it does not seem
easily adaptable to the case tb(K) < 0. In this section we will undertake a more careful
study of the values of d3 invariants of tight contact structures on L(p, ¢), which will be used
in Section [5| to prove Theorem The main results of this section are Proposition
which asserts that out of all tight contact structures on L(p, q), the ones which minimize
ds(§) are precisely can and its conjugate; and Proposition which presents a recurrence
relation for ds(&can). As a quick application, we conclude this section with a second proof
of Theorem

4.1. Tight contact structures on L(p, q) with minimal ds invariants. Following Sec-
tion each tight contact structure & on L(p, q) is equipped with a Stein filling (X, J7).
We will determine d3(&7) by using (2.4)), which means that we must compute ¢;(X, Jz)%.
This requires a slight generalization of the argument of Proposition as follows (see e.g.
Ozbager-Stipsicz [0S04a]).

We note that Hyo(X) = Z" is generated by classes [21],...,[X,], where each ¥; is gener-
ated by taking a Seifert surface for the ith unknot in the chain and capping it off with the
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core of the corresponding 2-handle. In this basis the intersection form on X is given by the
linking matrix

aqg 1 0 --- 0 0
1 a 1 --- 0 0
0O 1 ag --- 0 0
Myq = - : :
o 0 0 - ap-1 1
o o o --- 1 an,

Since M,,/, is negative definite and also presents H1(0X) = H1(L(p,q)) = Z/pZ, we know
that det(M,,/,) = (=1)"p. In general, if M is a k x k tridiagonal matrix of this form with
entries by, ..., b; along the diagonal, we will write

d(by,. .. by) = | det(M)].

For example, d(ay,...,a,) = p.
The group Ha(X,0X) is generated by homology classes [D1],...,[Dy] of disks, where
each Dj is the cocore of the ith handle, and according to Gompf [Gom98| we have

c1(X, Jr) = PD (Z [DA) .

=1
If c = PD(c1(X, J7)) € Ho(X,0X), then pc is represented by a surface whose boundary is
nullhomologous in Hy(0X) = Z/pZ, so pc lifts to a class C € Ho(X). If C is represented
by a vector § in the given basis of Ha(X) then we have M, ;5 = pr, and so

pc—CQ—sTM/S—(p M/qf‘) (p M/q)

hence ¢ = 7T . (Mp_/}) - T
Let Ap)q=—p- M}t g Using equation (2.4) and the above computation of ¢; (X, J7)?, we

can determine the ds invariant of the contact structure £ on L(p, q) by the formula
—%(FTAp/qF) +n— 2
1 .

is positive definite, since Mp_/llz is negative definite. Moreover, the entries

(4.1) d3(&r) =

We note that A4,/,
of A/, are all integers because det(M,,,) = +p, and so these entries are simply the cofactors
of the integer matrix M, , up to sign. In fact, it is not so hard to explicitly determine the
entries of A which when combined with will be key for our computation of dj
invariants.

p/q

Proposition 4.1. If—g = [a1,...,an], then Ay, has the form

dOd(as, ... an)  dQOd(as,...,an)  dOd(as,...,an) ... d()d()

d0d(as, .- an) d(ar)d(as, - @) dlad(as, . an) .. dlan)dQ)

d()d(a47 e 7an) d( ) ((I4, s a ) d(a’lu a2)d(a47 s 7an) s d((ll, (Ig)d() ,
a0 d() o) dan,a)d) ... d(ar,...an1)d()

where we define d() = 1. In other words, A, , is symmetric, and for all i < j the (i,j)th
entry of A, is the positive integer d(ax, ..., a;—1)d(ajt1,...,an).
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Proof. For i < j, it is straightforward (though extremely tedious) to check that the cofactor
of My, corresponding to position (,7) is

Cij = Cji = (-1 td(ay,...,ai-1) - (—1)"_jd(aj+1, ceyQp).

(In other words, Cj; is the product of the determinants of the tridiagonal matrices with
ai,...,a;—1 and a;i1,...,a, on their diagonals and entries above and below the diagonal
equal to 1.) The corresponding entry of Mp_/}z is therefore

b = (1) (=) Gyl (=)™ Cy - d(ag, .- aimn)d(agias - an)

1] T - - I

J det(Mp/q) (—1)"p p

so the entries of A/, = —pMp_/}] are exactly as claimed. O

In particular, all of the entries c’ij of A,/, are positive integers, and so the corresponding
value of FTAp/qF is

n n n
Y cyriry < Y dglrirl < Y dyllail = 2)(lag| - 2)
ij=1 ij=1 ij=1
with equality if and only if ryr; = (Ja;| — 2)(|a;| — 2) for all i, 5. We conclude that 7 A, /7
is maximized (and hence d3(&7) is minimized, as seen in equation (4.1))) exactly when all
products 7;7; are nonnegative and as large as possible, i.e. when

7= (ri,ra,...,mn) = £(|la1] — 2, |az| — 2,..., |an| — 2).

These correspond to the canonical tight contact structure of Remark and its conjugate,
so we have shown the following.

Proposition 4.2. If £ is a tight contact structure on L(p,q), then d3(§) > d3(&can) with
equality if and only if £ is either Ecan or its conjugate.

Remark 4.3. Proposition says that any tight contact structure £ on L(p, q) arising from a
reducible Legendrian surgery has d3(&) = —% < —i. It thus follows from Proposition
that if d3(&ean) > —3, then L(p, ¢) cannot be a summand of a reducible Legendrian surgery.

4.2. A recurrence relation for the minimal d3 invariant. Let —% = [a1,...,a,] with
a; < =2 for all i, and define f(p/q) = 7T A, 7, where 7= (la1] —2,...,|an| —2) and A, is
the matrix defined in the previous subsection whose entries are described by Proposition
We note that f(p/q) is integer-valued and that

—p () +n-2
4

according to equation (4.1)). In this subsection we will determine a recurrence relation for
f(p/q) (Proposition [4.8]). We begin with two examples.

(4.2) d3(&can) =

Example 4.4. If n = 1 then % is an integer and a; = —p. We compute 4,,; = (1), and so
f(p/1) = (p —2)%. Since p > 2, we note for later that %f(%) < p — 2 with equality if and
only if p = 2.
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Ezxample 4.5. If n = 2 then —% = a1 — é = %22*1, so p = ajag — 1 and ¢ = |ag|. We
compute

_ lag| 1 |a1| —2
f(p/‘I)—( ‘a1]—2 ‘a2‘_2 ) < 12 ‘aﬂ ) ( ‘a;]—Q >
= laz|(la1| = 2)* + 2(Jar| — 2)(Jaz| — 2) + |as|(laz| — 2)?
and so multiplying by |az| produces
jas| f(p/q) = [laz|(la1| = 2) + (|az| = 2)] + (laa[az| — 1)(Jas| - 2)*,
or f(p/a) =L ((p — g —1)° + plq — 2)). Equivalently, Lf(2) = =01 4 151y

Now suppose that n > 3, i.e. that the continued fraction of —g has length at least 3.

Then if we let r; = |a;| — 2 for all i, we have by Proposition that f(p/q) is equal to
(4.3)

o \" [ dOd(as, ... an) d0Od(as,....an) ... d()d() r
T9 d()d(ag,...,an) d(a1)d(as,...,ap) ... d(aq)d() To
. d0d() da)d) ... dlansan)d0) ]\

where we recall that d() = 1 by definition. When we expand this product into n? terms,
we can separate them into two groups: the 2n — 1 terms coming from the top row and left
column of A, /,, whose sum we denote by S1, and the (n — 1)? terms from the bottom right
(n —1) x (n — 1) submatrix, which sum to S. The terms in the first group sum to

(4.4) Si=mr (Tld(ag, e an) +2 Z rid(aﬂ_l, .. ,an)> R
=2

which we can simplify using the following lemma.
Lemma 4.6. For k > 2 and integers by, ..., by < —2 we have
d(by,...,bg) = |b1]d(ba, ..., bx) —d(bs,...,bg).
Proof. Write —% = [bs, ..., by for i = 1,2,3, so that p; = d(b;,...,b;). Then we know from

£3) that

p1_ bilpe — g
a1 P2
so that p; = |b1|p2—q2 and q; = pe, and similarly g2 = p3. We conclude that p; = |b1|p2—ps,
as desired. ]

Let p; = d(aj,...,a,) for 1 < i < n+ 1, with p,y1 = 1 and p, = |ay|, and recall that
n > 3. By Lemma since r; = |a;| —2, we have 7;_1p; = pi—1 —2p;+pi+1 for2 <i <n-—1
and r,d() =, = |an| — 2. Applying this to (4.4]), we obtain a telescoping sum

g n—1
711 = (p1 — 2p2 + p3) +2 (sz — 2pin1 +pi+2> +2(pn —2)(1)
i=2

= (p1 —2p2+p3) +2(p2 —p3s — 1)
=p1 —p3 — 2.
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In particular
(4.5) S1 = (la1] = 2)(p1 — p3 — 2)
for n > 3.

To evaluate the sum Sy of the terms coming from the bottom right (n —1) x (n—1) sub-
matrix of A/, in (4.3)), we use Lemma to replace each factor of the form d(aq,...,a;—1)
with 7 > 3. Each term in the bottom right submatrix of A, /, can be rewritten as

d(al, PN ,ai_l)d(ajﬂ, ceey an) = (|a1\d(a2, ve ,ai_l) — d(a3, ceey ai_l)) d(aj+1, ceey an)

if 4 > 3, and otherwise if ¢ = 2 then

d(al, . ,ai,l)d(ajﬂ, e ,an) = |a1|d()d(aj+1, ceey an).

The contribution to Sz from the (7,7)th or (j,4)th entry of A,, for 2 < i < j < nis
therefore one of

lai| - (rirjd(ag, ..., ai—1)d(ajpi1, . .. an)) — (rirjd(as, - . ., ai—1)d(ajp1, ... an)), >4

lai| - (rirjd(ag, ..., ai—1)d(ajs1, . .. an)) — (rird()d(ajs1, - - - an)), i=3;

lay| - (rirjd()d(ajsa, - .- an)), i=2
Let —Z—; = [ag,...,a,] and —Z—;’ = [as,...,a,]. Summing the above expressions over all

2 <i,j < n, the terms with a factor of |a;| are precisely those appearing in |a1|f(p2/q2)
while those without are precisely the terms in f(p3/q3), so we conclude that

(4.6) S = la1|f(p2/q2) — f(p3/as)-
Lemma 4.7. Let n > 3, and write —% = [a;,...,apn] for 1 < i <mn for some sequence {a;}.
Then

afpi/q) — (p1 —q1 — 1)? = p1f(p2/a2) = @2f (p2/q2) — (P2 — @2 — 1)* — p2f (p3/3)-
Proof. By and , we have
f(p1/q1) = S1+ S2 = (la1| = 2)(p1 — p3 — 2) + |a1|f(p2/q2) — f(p3/q3)-

Now we use the identity p; = |a1|p2 — ps of (2.5)), or equivalently |a;| = plpﬂ, and multiply

2
both sides by p2 to get

p2f(pi/a1) = (p1 — 2p2 + p3)(p1 — p3 — 2) + (p1 + p3) f(p2/a2) — p2f(p3/q3)-

The first term on the right side equals the difference of squares (p; —p2—1)? — (p2 —p3 —1)?,
so after replacing it with this difference and using the identities g1 = p2 and go = p3, we
have

af(pi/a) = (p1— @ —1)* = (p2 — g2 — 1)* + (p1 + ¢2) f (p2/a2) — p2f (p3/43).
Rearranging both sides completes the proof. O

With this, we are ready to establish the desired recurrence relation for f(p/q).

Proposition 4.8. We have f(p/q) = (p—2)? if% is an integer, i.e. if ¢ = 1, and otherwise

1.(p\ _ (—q-1?% 1 q
b’ <Q> e (Hﬂq—p) '
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Proof. In the case g € 7, this is Example so assume that g ¢ Z; then we can write

—2 =a1,...,an), n = 2, and define —2 = [a;,...,a,] for all i. (Note that £ = 1)
Since a1 = [—2] we have |a;| = [£], and then £ = —(a; — _p;/qQ) = |a1|§227q2 implies that

P2 _ q
a2 [§le—p’

By applying Lemma [£.7] a total of n — 2 times, we conclude that the quantity 6 =

— —q —1)? - tisfi
a1f(p1/a1) — (pr — @1 — 1)° — p1f(p2/qe) satisfies
6 = qn-1f(Pn-1/qn-1) = (Pn—1 — qn—1 — 1)2 = Pn—1f(Pn/qn)-

But we can evaluate these terms directly since —Z:—j has a continued fraction of length 2:
we know from Example (4.5 and because —£ = —an=1 that

o _ 1 f (pn—l) _ |:(pn—1 —Qgn—-1— 1)2 + 1 f <Qn—1):| _ O,
Pn—14n—1 Pn—1 dn—1 Pn—19n—1 gn—1 1
hence § = 0. Thus, ¢1f(p1/q1) = (p1 — q1 — 1)®> + p1f(p2/q2), and dividing both sides by
p1q1 produces the desired recurrence. OJ

4.3. A second proof of Theorem We recall from Proposition [T.4] that any reducible
surgery on K of slope less than tb(K) has slope less than —1.

Proposition 4.9. Let K be a knot with tb(K) > 0. Suppose that S® ,(K) is reducible for
some p > 2, and write SEP(K) = L(p,q)#Y . Then there is a tight contact structure £ on
L(p, q) induced by a Legendrian surgery on K which satisfies

(4.7) as(e) < 2T

Proof. We can take a Legendrian representative of K with tb = 0 and ensure r > 1 by
orienting K appropriately. Then if we positively stabilize this knot p — 1 times, we will get
a Legendrian representative with tb = 1 — p and r > p, and according to Proposition 3.1
the contact structure £ on L(p, q) induced by surgery on this representative satisfies

2 2
¥ +p pT+p p+1
4p 4p 4

Theorem 4.10. Let £ be a tight contact structure on L(p,q), p > q > 1. If —% has
continued fraction

0

1
[a17a27"' 7an] =ar s 1
a2 — ——1

an

where a; < —2 for all i, then d3(§) > %anl‘

Proof. We recall from equation (4.1) that d3(&can) = %( — % (%) +n— 2), s0 d3(€can) >

%2"71 if and only if % f (%) < p—n— 1. Moreover, it suffices to prove this last inequality,
since Proposition says that d3(§) > ds(&can) for all tight contact structures £ on L(p, q).
In Example [£.4] we saw that this is true when n = 1, so we will assume n > 2 and proceed
by induction on n.

The recurrence of Proposition [£.8] says that

L.(p\ _(p—q-1)?* 1 q
(48) b’ <Q> e (H‘ﬂq—p) ’
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and we know that p > ¢+ 1 and so 0 < 2=2=1 « 2 < 1. Hence

pq pg —
—q—1)? —q—1
w=g=1" __,_q.pz0=1
pq pbg

9 i i _ i lpe(__q _
Now = has a continued fraction of length n—1, so by assumption qf( [g]qu) <qg—n

<p-—q-1

and it follows from (|4.8]) that %f <§) <(p—-q—-1)4+(qg—n)=p—n—1,as desired. O

Second proof of Theorem[I.6. If th(K) > 0 and S* (K) is reducible for some —p < th(K) —
1, then the induced tight contact structure £ on the L(p,q) summand must satisfy ds(&) >
—% by Theorem since n > 1. Thus we have d3(&) > —%, but this contradicts
Proposition We therefore conclude once again that if tb(K) > 0, then any reducible
surgery on K must have slope th(K) or greater. O

Remark 4.11. The condition tb(K) > 0 in Proposition can be relaxed slightly as follows:
if K has a Legendrian representative with tb(K)+|r(K)| > 1 (or equivalently > 0, since the
left side is always odd), then the conclusion still holds for all slopes —p < tb(K) — 1 even if
th(K) < tb(K) or th(K) < 0. Thus we can actually rule out sufficiently negative reducible
surgeries on any knot K with sl(K) > 1, making this proof of Theorem slightly stronger
than the proof given in Section (3.1

5. REDUCIBLE LEGENDRIAN SURGERIES FOR tb < 0

In this section we will prove Theorem [T.11] which we state here in different but equivalent
terms for convenience. We note that if th(K) < 0 and n-surgery on K is reducible for some
n < th(K), then we can write th(K) = —7 and n = —p and we will have p > 7 > 0. If we
let t = 2[5] — 1, so that ¢ = 7 when 7 is odd and ¢t = 7 — 1 when 7 is even, then we see

that the condition n > 4L%J + 6 of case of Theorem [1.11{is equivalent to

pg—A{wgﬁJ—6:4[;W—6:2t—4

In other words, given a reducible Legendrian surgery as in the statement of the theorem,
it asserts that we can only have p > 2t — 3 if either case or case applies, and the
condition (th(K),n) = (—6,—7) of case is equivalent to (7,p) = (6,7). Thus it suffices
to prove the following.

Theorem 5.1. Suppose that th(K) = —71 for some T > 0, and define t = 7 if T is odd and
t=71—1if 7 is even. Suppose also that —p-surgery on K is reducible for some p > 7.
o Ifp>2t—3, then S (K) = S% (U)#Y.
o Ifp=2t—3 and S®,(K) does not have the form S® (U)#Y, then we must have
(1,p) = (6,7) and SEP(K) >~ §3 . (Ty,—3)#Y , with trace diffeomorphic to a boundary
sum X§Z, where X is the trace of —7-surgery on Ts 3.
o Moreover, whenever the reducible surgery has the form S® (K) = S* (U)#Y, the
trace of the surgery is diffeomorphic to D_p47, where D_j, is the disk bundle over
S? with Euler number —p.

In each case, Y is an irreducible homology sphere bounding the contractible Stein manifold
Z.
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Proof. Since we assume p > 7, we can apply Proposition to the Legendrian reducible
surgery on K. We note that L(p,1) = 53 (U), and so we begin by ruling out all L(p,q)
as possible summands where ¢ > 1, when p > 2t — 3. Note that since we require g < p,
the condition ¢ > 1 is equivalent to the continued fraction -7 = [a1,...,a,] having length
n > 2.

First, suppose there is an ¢ such that a; = —2. If n > 3 then we apply Proposition [5.5
below to see that p < 2t — 4. If instead we have n = 2, then Proposition [5.6] says that the
lens space summand is L(7,2) = L(7,4) and 7 is either 5 or 6, hence p =7 = 2t — 3. We
return to this case shortly.

In the remaining case we have a; < —3 for all ¢, and this will require a closer examination
of the ds invariants of tight contact structures on L(p,q), but we will eventually prove in
Proposition and Corollary (corresponding to n = 2 and n > 3 respectively) that
p < 2t — 3 as desired, with equality only if n = 2 and L(p,q) = L(p,4). If equality occurs,
then we must also have p = 3 (mod 4) since t is odd and p = 2¢t — 3. Thus if ¢ > 1 we
conclude that p < 2t — 3, with equality only if L(p, q) = L(4k + 3,4) for some k > 1.

Now suppose that p = 2t — 3 and L(p,q) = L(p,4). In order to achieve p = 2t — 3, by
Propositions and there must be a Legendrian representative of K with (tb,r) =
(1—p, %) which induces the contact structure &,y or its conjugate on L(p,4) as explained
in Example below; and if 7 # 6 then this representative is stabilized. Performing Legen-
drian surgery on this representative, the trace is a Stein manifold (X, J) = (W, Jw)u(Z, Jz),
where (W, Jy) is a Stein filling of (L(p,4),&can) up to conjugation, by Proposition
Lemma then asserts that W is symplectic deformation equivalent to (and hence also
diffeomorphic to) the trace of Legendrian surgery on the (2, —Z 51 )-torus knot with the same
values of tb and r. Thus the symplectic homology SH(W) is equal to that of the trace of
t}lei's Legendrian surgery, and we will use this fact to get a contradiction for most values of
-

Let (Ap,0,) denote the Legendrian contact homology DGA over Q of the (2, —pgl)—

torus knot 7" with (¢b,7) = (1 — p, 1’%5), which is unique up to Legendrian isotopy [EHOI1].
Figure [2| shows front diagrams for the first few of these, from which it is easy to see that
each one admits an ungraded normal ruling and hence an ungraded augmentation [Fuc03,
Lev14], which is an ungraded DGA morphism f : (A,,d,) — (Q,0). This implies that
1 ¢ im(3,), and so the homology group LHM°(T") of [BEE12, Section 4.5] is nonzero. Then
Bourgeois-Ekholm-Eliashberg [BEE12, Corollary 5.7] proved that SH(W) = LHY(T),
which is nonzero, and we have an isomorphism of rings SH(X) = SH(W) x SH(Z) # 0 as
well by [Cie02, Theorem 1.11] and [McL09, Theorem 2.20]. But if 7 # 6, then as mentioned
above, X is the trace of surgery on a stabilized Legendrian knot, hence SH(X) = 0 by
[BEE12, Section 7.2]. We conclude that if p = 2¢ — 3 then we must have (7,p) = (6,7), and
W is the trace of —7-surgery on the left handed trefoil.

Finally, assuming that Sip(K) = L(p, 1)#Y, we let (W, Jyw) denote the induced Stein
filling of L(p,1). The symplectic fillings of L(p,1) have been completely classified, by
McDuff [McD90] and Hind [Hin03] in the universally tight case and by Plamenevskaya—van
Horn-Morris [PVHMI10] in the virtually overtwisted case: up to blowing up, the fillings are
all deformation equivalent to either the fillings described by Theorem [2.6| (i.e., attaching a

2We make use of several results from [BEET12], which does not claim to provide complete proofs in full
generality. However, since we are not interested in the actual value of SH(X) but only whether it vanishes
or not, the available details will suffice for our purposes.
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<
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FIGURE 2. Front diagrams for the Legendrian (2, —p%l)—torus knots with
(tb,r) = (1 — p, %) for p = 7,11,15. (Since r depends on the orientation,
the topmost strand in each front should be oriented from left to right.) Each
of these fronts has an ungraded normal ruling with switches at every crossing.

Weinstein 2-handle to B* along a topological unknot with tb = 1 — p, the result of which is
diffeomorphic to D_j), or a rational homology ball bounded by L(4,1). Note that W has
intersection form (—p) and so it cannot be diffeomorphic to a blow-up, since an exceptional
sphere would have self-intersection —1, or to a rational homology ball. Thus (W, Jy )
must be deformation equivalent to D_, with a corresponding Stein structure coming from
Theorem and in particular W is diffeomorphic to D_,. ]

The rest of the current section is devoted to establishing the results claimed in the proof
of Theorem We will study Stein fillings of (L(p,4), {can) momentarily, and then in the
following subsections we will show that the various lens spaces L(p,q), ¢ > 1, cannot be
summands of reducible surgeries on K whose slopes are sufficiently negative with respect to
tb(K). We divide this into two cases, each of which requires a different strategy, based on
the continued fraction —% = [as,...,an): in Section [5.1) we study the lens spaces for which
max; a; = —2, and in Section we deal with the lens spaces such that a; < —3 for all 4.

Lemma 5.2. If p = 4k + 3 for some k > 1, then any Stein filling W of (L(p,4), &can) with
ba(W) = 1 and intersection form (—p) is symplectic deformation equivalent to the trace of
Legendrian surgery on the Legendrian ( ,—p%l)—torus knot withtb=1—p and r = %.
Proof. Bhupal and Ono [BO12| proved that diffeomorphic fillings of the canonical contact
structure on a lens space must be deformation equivalent, so it suffices to prove that W is
unique up to diffeomorphism. We use Lisca’s classification of fillings of (L(p,4),&can) up to
diffeomorphism and blow-up [Lis04} [Lis08]; note that once again W cannot be diffeomorphic
to a blow-up. As explained in Example below, the trace of Legendrian surgery on a
representative of T27_% with (¢b,r) = (1 — p, %) gives a Stein filling of (L(p,4), £can) OF
its conjugate, so we need to check that W is diffeomorphic to this trace.

In Lisca’s notation, we have a continued fraction ﬁ = [2,2,...,2,3,2,2] of length

m = %, so the minimal symplectic fillings of L(p,4) have the form Wy 4(n1,...,nm)

where n; < 2 for i # m — 2, ny—o < 3, and the sequence [ny,...,n,,] is obtained from
[0] by a “blow-up” procedure. Each blow-up sending [ni,...,n;] to [1,n1 + 1,...,m] or
[n1,...,m; 4+ 1,1] increases Y n; by 2 while the blow-up [n1,...,n; +1,1,n,01 + 1,..., 1]
increases it by 3; since we must blow up m — 1 times to get a sequence of length m, and
the condition by = 1 is equivalent to > n; = 2m — 1, we must perform the latter operation
exactly once. In addition, we must ensure that at each step at most one entry n; exceeds 2,
in which case it equals 3. Applying the former operation some number of times produces



CONTACT STRUCTURES AND REDUCIBLE SURGERIES 23

[1,1] or [1,2,2,...,2,1]; then the latter can produce either [2,1,2] or [1,...,3,1,2] or its
reverse, in which every omitted entry is a 2; and then repeating the former operation a
nonnegative number of times leaves us with a sequence of the same form. Thus W must be
diffeomorphic to either
W7,4(27 17 2)7 Wl5,4(17 27 37 17 2) = W15,4<27 17 37 27 1)7
or Wya(1,...,3,1,2) for p # 7,15, and so it is uniquely determined by p. O
We will use the following terminology throughout this section.

Definition 5.3. The integer r is a rotation number for L(p,q) if there is a tight contact

structure & on L(p,q) such that d3(§) = —T1;p~

The reason for the terminology is that a reducible Legendrian surgery on a Legendrian
representative of K with L(p,q) as a summand, where (tb(K),r(K)) = (1 — p,r), induces
Ti;p by Proposition hence r is a
rotation number for L(p, q). We will thus study the set of rotation numbers for each L(p, q),

q > 1, in order to produce bounds on p in terms of tb(K).

a tight contact structure £ on L(p, q) with d3(§) = —

Ezample 5.4. If p = 4k + 3 then L(p,4) is the result of —p-surgery on the torus knot

T5 _(2k+1), i-e. the (2, —%) cable of the unknot [Mos71]. This can be realized as a Legen-

drian surgery since %(TZ—(%H)) = —4k — 2 =1 — p, and in fact every odd number from

—(2k—1) to 2k -1 = p;5 is the rotation number of some tb-maximizing representative
of Ty _(a+1y [EHOI]. We conclude that if p = 3 (mod 4), then every odd number r with

Ir| < 252 is a rotation number for L(p,4). Moreover, since —2 = [—(k + 1), —4] we can use
Example and (4.2) to compute d3(&can) = —ﬁ (%)2 +p>, so the rotation number
r= 1%5 comes from &.,,. Further, by Proposition &can and its conjugate are the only

tight contact structures on L(p, 4) which can produce this rotation number.

5.1. Lens spaces with a; = —2 for some i. In this section we prove part of Theorem [5.1]
namely that L(p,q) summands cannot occur under the hypotheses of the theorem if some
entry in the continued fraction for —g is —2. This will follow in most cases by counting the

possible tight contact structures on L(p, ¢) coming from a reducible surgery on the knot K.

Proposition 5.5. Let K be a knot with tb(K) = —7, 7 > 1, and suppose that Sip(K) =
L(p,q)#Y for some p > 7 and ¢ > 1. If—%J = lai,...,ay) withn > 3, and a; = —2 for
some i, then

p<2t—n

where t =7 if 7 is odd and t =T — 1 if T is even, and this inequality is strict for n = 3.

Proof. Choose a Legendrian representative of K with (tb,r) = (—7,r9) and ¢ > 0. By
stabilizing p — 7 — 1 times with different choices of sign, we get Legendrian representatives
with tb = 1 — p and at least p — 7 different values of r. If 7 is even, then we can take rg > 1
since tb + r is always odd, and then we can also negatively stabilize a representative with
(tb,r) = (—7,—rp) a total of p — 7 — 1 times to get a (p — 7 + 1)th value of r. Therefore,
independent of the parity of 7, there are at least p — t different values of » when tb =1 — p.
By Proposition each value of —ﬁ(r2 +p) must be d3(§) for some tight contact structure

on L(p, q), so by counting values of > we see that the set
{ds(&) | € € Tight(L(p, q))}
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has at least [%ﬂ elements. Moreover, none of these is the ds invariant of a self-conjugate

contact structure & (if one even exists), since we would have d3(&) = 232 > 0 by ([2.4),
contradicting Remark

Since each value of d3(£) above is obtained by at least one conjugate pair of tight contact
structures on L(p, q), the number of tight contact structures on L(p, q) is at least

p—1
2| —— | >p—t.

But by the case m = 2 of Propositionﬁ L(p, q) has at most &2“ tight contact structures
with equality if and only if n =2 or p=¢g+1;if p=¢q+ 1 then —f= [—2,-2,...,—2] and
the unique tight contact structure on L(p, q) is self-conjugate, so this does not occur. Thus
the number of tight contact structures on L(p, q) is actually at most 5=, which implies
p—n

2

p—t<

or equivalently p < 2t — n.

If n = 3 and we have the equality p = 2t —n, then the number of tight contact structures
on L(p,q) must have been exactly 5% = %. Writing — = [a1, a2, a3], we can assume,
after possibly replacing [a1, ag, ag] with [as,az,a1] as in the proof of Proposition that
either ap = —2 or a3 = —2, hence if —% = [ay, a3] then Proposition says that L(q,r)
has exactly % tight contact structures. Using Theorem the number of tight contact
structures on L(p, q) is therefore

(1) (152 = falaa—lel =) _pfa=n) (el =

2 2 ’
where the second equality follows from ([2.5). This number equals 1%3 only if (¢ — 7,a1) is
either (1,—3) or (2, —2), hence —g is [-3, -2, —2] or [-2, -2, —3|. Thus if p = 2t — 3 then

L(p,q) = L(7,3) = L(7,5), but then d3(&ean) = % > —i, so by Remark@, L(7,3) cannot
be a summand and we must have p < 2t — 4 as claimed. O

Suppose that instead of being in the setting of Proposition [5.5] we have n = 2, and
a; = —2 for some i. Then — is either [—(k + 1), -2] = —ZEtL or (2, —(k +1)] = —215%11
for some k > 1. Hence we have L(p,q) = L(2k +1,2) = L(2k + 1,k + 1). In particular, p
must be odd when n = 2 and L(p, q) = L(p,2). In this case, we have very strong restrictions

both on p and on K.

Proposition 5.6. If L(p,2) is a summand of a reducible Legendrian surgery on some knot
K, then p = 7, tb(ﬁ() is either —5 or —6, and K has a Legendrian representative with
(thb,r) = (—6,1). If tb(K) = —5 then we can take this representative to be a stabilization.

Proof. Since p must be odd, we write p = 2k +1, k > 1, and -5 = [~k — 1,-2]. By
Theorem the induced tight contact structure £ on L(p,2) is the result of Legendrian
surgery on a Hopf link whose components have tb equal to —k and —1 and rotation numbers
se{-k+1,-k+3,...,k— 1} and 0 respectively. We compute d3(§) = —%, and if r is
the rotation number for L(p, 2) corresponding to £ then ds(&) = —ngp and so 12 4+ p = 2s2.
2

Then 7~ must be odd, so r?> = 1 (mod 8), and since 2s? is either 0 or 2 (mod 8) we have
p =252 —r2 =41 (mod 8). In particular, p > 7.
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Suppose that p # 7. We begin with the case p = 9 and observe that s € {—3,—1,1,3}.
We cannot have s = +1 since 72 + 9 = 2(£1)? has no solutions, so s = +3. Because
la1| = 5, the induced contact structure on L(9,2) is either &, or its conjugate. Lisca
[Lis04, Second Example] showed that &can has two symplectic fillings up to diffeomorphism
and blow-up, and these satisfy ba(Wy2(1,2,2,1)) = 2 and ba(Wy2(2,2,1,3)) = 0 in Lisca’s
notation (using the continued fraction 922 = [2,2,2,3]). Otherwise p > 15, and Kaloti
[Kall13l, Theorem 1.10] showed that for such p, every tight contact structure & on L(p,2)
has a unique Stein filling up to symplectomorphism; since £ is presented as surgery on a
Hopf link, this filling evidently has bo(X) = 2. Thus in any case there is no Stein filling of
(L(p,2),&) with intersection form (—p), which contradicts Proposition

We must therefore have p = 7, and r? + 7 = 2s? with s € {£2,0} has only the solutions
(r,s) = (£1,+£2), so L(7,2) has rotation numbers precisely +1. If K had a Legendrian
representative with (tb,r) = (—4,1¢), i.e., tb(K) > —4, then it would have representatives
with tb = —6 and r € {ro — 2,79,70 + 2}, so L(7,2) would actually have at least three
rotation numbers, since 7o is necessarily odd. We conclude that th(K) < —5 as claimed,
and the rotation numbers of the tb = —6 representatives of K must be +1 since these are
the only rotation numbers for L(7,2); if tb(K) = —5 then it follows that any tb-maximizing
representative has » = 0 and thus positively stabilizes to a representative with (tb,r) =
(6,1). 0

5.2. Lens spaces with a; < —3 for all 7. In this section we will complete the proof of
Theorem by studying lens spaces L(p, ¢) such that every entry in the continued fraction
for —g is at most —3. In this case, we will need to examine the ds invariants of tight contact
structures on L(p,q) more carefully. The proof is divided into several cases depending on
the length n of the continued fraction.

5.2.1. Case 1: n = 2. In this case it is not hard to explicitly determine ds(&) for any tight
contact structure £ on L(p,q), and using this we can restrict the set of rotation numbers

for L(p, q).

Proposition 5.7. Suppose that a knot K with tb(K) = —7, 7 > 0, has a reducible Leg-
endrian surgery with an L(p,q) summand, where &= [—a, —b] for some a,b > 3. Then
p <2t—3, wheret =7 if 7 is odd and t = 7 — 1 if T is even. Moreover, if we have equality
then L(p,q) = L(p,4) and K has a Legendrian representative with (tb,r) = (1 — p, %),
which is obtained by positively stabilizing a representative with tb = tb(K) a positive number
of times.

Proof. We note that p = ab — 1 and ¢ = b, and since L(ab — 1,b) = L(ab — 1,a) we can
assume without loss of generality that b < a, hence ¢ < /p + 1.
Suppose that 7 is a rotation number for L(p, q) corresponding to the tight contact struc-

ture £. Since n = 2, Proposition the computation of Example and (4.8) imply

that
r+p L ((p—q—1)>°+p(g—2)°
— =d >d =—=
4p 3(5) = 3(€can) 4 ( g > s
or upon multiplying by —4p and rearranging,
—ag—1 2 —_9 2
ng(P q )+p<(q ) _1>_

q q
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We denote the right side of the above inequality, viewed as a function of ¢, as ¥(q). We see

that ¢ has derivative (p+1) ( — ﬁ), hence is decreasing on the interval 3 < g < /p + 1.

q2
Thus 1 is largest when ¢ is as small as possible, and 1 (4) = (p ;5)2, so we must have

—% <r< % except possibly when ¢ = 3. Moreover, if ¢ > 4 then this inequality is
strict.

Suppose that ¢ # 3 and that a Legendrian representative of K with tb = —7 has rotation
number rg > 0. Then by positively stabilizing p — 7 — 1 times we get a representative with
(tb,r) = (1—p,r0+p—7—1), hence this r is a rotation number for L(p, ¢). In particular r
is at least 0 if 7 is odd and 1 if 7 is even, so we have r > p—t—1; and r < % as explained
above,sop—t—1 < % or equivalently p < 2t—3, with equality only if ¢ = 4 and the above
representative has r =p—t —1 = %. In particular, if there is equality, the lens space
summand must be L(p,4), as claimed. Also, in case p = 2t—3 we have p = 4a—1 > 11, since
p = ab—1 and we assume a > 3. Hence t > 7; but then p—7—1> (2t —-3)—(t+1)—1 > 0,
so this representative must actually be a stabilization.

If ¢ = 3 instead, then we only get the bound |r| < % above, but in fact we will see that
p < 742 except possibly when p = 11 and 7 < 7 < 10. Our strategy is as follows: supposing
that p > 742 = 2—tb(K), we can stabilize a tb-maximizing representative as needed to get
a Legendrian representative of K with (tb(K),r(K)) = (3—p, o) for some ry, which we then
stabilize to get representatives with tb = 1 —p and r € {r¢o — 2,79, 70+ 2}, and so these three
consecutive numbers of the same parity are rotation numbers for L(p,q). When p # 11
we will see that this cannot be the case, by determining when two consecutive numbers
of the same parity can be rotation numbers for L(p, 3); it will follow that tb(K) < 2 — p,
or equivalently p < 7 4 2. If instead p = 11 then we have L(11,3) = L(11,4), and the
argument in the ¢ > 3 case above will apply to show that p < 2t — 3 with equality only if
K has a representative with (tb,r) = (—10,3). Thus we may assume p # 11 from now on.
After we establish the bound p < 7+ 2, we will show that this implies p < 2¢ — 4 unless the
lens space is L(8,3) and then complete the proof by analyzing the Stein fillings of L(8, 3).

By Theorem each tight contact structure £ on L(p,3) comes from Legendrian surgery
on a Hopf link whose components have tb equal to 1 — a and —2, and rotation numbers s

and £1 = u respectively. By (4.1)
1 (3s? + 2su + au?
d =—=
3(€) 1 ( »

If r is a rotation number for L(p, q) corresponding to &, then
(B3s+1)2+3a—1
3 )
and since p = 3a— 1 this is equivalent to 312 +2p = (3s41)2. Thus r can only be a rotation
number for L(p,3) if there exists some integer s satisfying this equation.
As mentioned in the strategy above, suppose that both k + 1 and & — 1 are rotation
numbers for L(p, q), and k > 0 without loss of generality; write
2 2
(5.1) 3(k+1)"+2p=s7
(5.2) 3(k—1)*+2p=s
for some integers s+ > 0. Subtracting (5.2) from (5.1)), we get 12k = si — 5%, hence s,
and s_ have the same parity and we can write s+ = ¢+ for some integers ¢ > § > 0. This

32+ 2s+a
4p ’

P 4+p=3s+2s+a=
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FIGURE 3. The minimal symplectic fillings Wg3(1,2,1) (left) and
Ws3(2,1,2) (right) of (L(8,3),{can). In each diagram the dotted curves
give a surgery description of S! x S%; we identify this with 9(S!' x D3) by an
orientation-preserving diffeomorphism and then attach 2-handles to S x D3
along the solid curves in its boundary as indicated.

gives 12k = 4c¢d, or 3k = ¢d, and so multiplying (5.1]) by 3 gives
3c? + 6¢6 + 362 = 9k% + 18k + 9+ 6p = 26 + 6¢6 + 9 + 6p,

or equivalently (¢ — 3)(62 —3) +6p = 0. Since p > 0 and ¢ > 6, this is impossible if § > 2.
Thus (c, §) must be either (1/2p + 3,0) or (v/3p+ 3,1). Since k = %, we conclude that num-

bers which differ by 2 can only both be rotation numbers if they are +1 or £+ ( % + 1),

hence if they are both nonnegative then they equal 4/ % +1.
In particular, suppose that ro — 2,79, r9 + 2 are all rotation numbers, and rg > 0 without

loss of generality. Then by the above ry and rg + 2 must equal \/% + 1. Since ry — 2
and rg are another pair of rotation numbers which differ by 2, they must be either +1 or

— ( % + 1); but the elements in the latter pair are both negative since p > 3, whereas

ro > 0, so rg and ro — 2 must equal 1. Thus we have 1 =rg = \/% —1land p=11. We
conclude as explained above that if p # 11 then p < 7+ 2.

The inequality p < 7 4+ 2 implies that p < 2t — 4 for all 7 > 7, so this leaves only
7 < 6, in which case p < 7+ 2 < 8 and the only such lens space is L(8,3). In this
case we have d3(&can) = — and so the induced contact structure must be &.., or its
conjugate, by Proposition with a Stein filling W having intersection form (—8) by
Proposition Lisca [Lis04] showed that W must be diffeomorphic to a blow-up of one
of two fillings, denoted Ws3(1,2,1) or Ws3(2,1,2) (note that g = [2,3,2]), which are
depicted in Figure [3| The first cannot occur since it has by = 2. The second is constructed
from a diagram in which 2-handles are attached to a pair of parallel —1-framed unknots;
the cocores of these handles, together with the annulus they cobound, produce a sphere of
self-intersection —2, and so the intersection form of this or any blow-up cannot be (—8).
We conclude that L(8,3) cannot occur as a summand, completing the proof. U

Remark 5.8. We have seen in the proofs of Propositionsandthat L(p,2) for p # 7 and
L(8,3) cannot be summands of reducible Legendrian surgeries, in both cases by examining
their symplectic fillings. We can rule out many other lens spaces L(p, q) for p small simply
by computing ds(&can) and appealing to Remark on L(p,p — 1) we have d3(&can) =
% > —1 for p> 2, and on L(7,3), L(8,5), L(9,4), and L(10,3) we compute that d3(can)
is equal to %, %, 1—78, and —% respectively. Up to homeomorphism, this eliminates all lens

spaces with p < 10 as possible summands except for L(p, 1) and L(7,2) = L(7,4).
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5.2.2. Case 2: n > 3. In order to rule out L(p,q) summands in Theorem in this case,
where n > 3 and a; < —3 for all i, we will need to bound d3({can) carefully enough to restrict
the set of possible rotation numbers for L(p,q). We begin with the following lemma.

Lemma 5.9. If—% =lai,...,ay] and ay < =3, then p > 2q + 1.

Proof. This is obviously true when n = 1, since p > 3 and ¢ = 1. If n > 1, then by (2.5)),

—4 = [ag, ..., ay,) for some r < ¢, and p = |a1|¢—r > |ai|lg — (¢ —1) = (Jar| — 1)g+ 1. Since

|a1| > 3, we have p > 2¢ + 1 as desired. d

We recall from Section the notation d(by,...,bx) = |det(M)|, where M is the tridi-
agonal matrix with diagonal entries by, ..., b, and all entries above and below the diagonal
equal to 1; in particular d(ay,...,a,) = p, and d() = 1 by convention.
Lemma 5.10. Write —g = [ay,a2,...,ay], n > 2, and suppose that a; < —3 for all i.
Then for any i,7 with 1 <i < j <n, we have

p
d(ai,...,ai—1)d(ajs1,- .. an) < _—.
r—i(lak| — 1)
Proof. We first prove this in the case ¢ = j. If ¢ = j = 1 then this amounts to proving that
p
5.3 d(asg, ... an) < —L
( ) (a2 CLn) ‘a1’ _ 1
which follows immediately from noting that ¢ = d(az,...,a,) and that if we write —2 =
[ag,...,ay], then by (2.5), p = |a1|g — r > |ai|g — ¢. (Note that this inequality still holds
when n = 1, in which case it says that 1 < I%.) Likewise, for i = j = n we observe that
d(ay,...,ay) =d(ap,...,a1) and hence
p
dlai,...,an—1) =d(ap—1,...,01) < ———
(a1,...,an—1) = d(an-1,...,a1) an =1

by the preceding argument.

If instead we have 1 < i = j < n, then we recall that p is the order of H;(L(p, q)), where
L(p, q) is the result of surgery on a chain of n unknots with framings ai, as, ..., a, in order.
If we perform slam dunk operations repeatedly on either end of the chain, until all that
remains are the ith unknot and one unknot on either side of it, then the framings of the
unknots on either end are now —% = [a;_1,a;—2,...,a1] and —% = [@it1,@it2, - - ., ap]. Since
Dehn surgery on this 3-component chain produces L(p, q), its first homology is presented
by the associated framing matrix, hence

—r s 0

1 1
p=|det| 1 a 1 = |a;rt +ru+st| =rt|a; + — + —|.
0 u -t thu /s
Now % > 2 by Lemma and likewise for %, so we have
1 1
—a; — >lai|—1>0

Ct/u /s

and hence p > rt(|a;| — 1). This gives the desired inequality since r = d(ay,...,a;—1) and

t =d(ajt1,-..,an), completing the proof when i = j.
Finally, suppose that i < j. Repeated application of (5.3) gives
d(aj,...,a d(ajs1,. .. a
d(aj+1,...,an)<M<'--< (ait1 n)

jajl =1 (laipr] = 1) (la] = 1)°
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so multiplying both sides by d(ay,...,a;—1) produces

d(al,...,ai,l)d(aHl,...,an) < P
[Tj—ipi (la] = 1) pei(lak] = 1)
where the last inequality follows from applying the case ¢ = j which was already proved. [

We will apply Lemma to get an upper bound on f (g), as computed in (4.3), which

we recall from Section [4.2[ determines the minimal d3 invariant ds(£can) by the formula

d(al, . ,ai_l)d(ajﬂ, . ,an) <

d3(&can) = § (—%f(g) +n— 2) where —2 has continued fraction [a1, ..., an] of length n.
In what follows we will continue to assume that a; < —3 for all ¢, though we will only
require n > 2.

More explicitly, recall that f(%) =7 A, 7 where 7= (Ja1| — 2,..., |ap| —2) and A, is
the symmetric matrix whose (i, 7)th entry (i < j) is

C;j = d(al, ceey az;l)d(ajﬂ, ce ,an)

according to Proposition We decompose f (g) = 7' A 7 into two sums (differently

P/q
than in Section . The first sum comes from the contributions of the diagonal terms in

Ap/q> Which satisty
n p | Z’ n

(54) S (o — 2%, < z < (zu@i\ _ z>) |
i=1 =1

where we have applied Lemma [5.10] to produce the first inequality. The other sum comes
from the off-diagonal terms, satisfying

(lail = 2)(la;| — 2)p
2 Z |a2| |(L]| Cz] < 22 : ] !

1<i<j<n 1<j |ak| -1

a; -2 ai|l —2

1<j —z—i—l(‘ak‘ - 1) ’CLZ‘ -1 |aj| -1

<2p2m

1<j

again by Lemma and the fact that TR =T | T

can take any value from 0 to n — 2, and each value of k is taken by n — (k + 1) pairs (4, j),
so we have

< % In the last sum, the quantity k = j