
  

 

Abstract— Advances in optical imaging, and probe-based 

Confocal Laser Endomicroscopy (pCLE) in particular, offer 

real-time cellular level information for in-vivo tissue 

characterization. However for large area coverage, the limited 

field-of-view necessitates the use of a technique known as 

mosaicking to generate usable information from the incoming 

image stream. Mosaicking also needs a continuous stream of 

good quality images, but this is challenging as the probe needs to 

be maintained within an optimal working range and the contact 

force controlled to minimize tissue deformation. Robotic 

manipulation presents a potential solution to these challenges, 

but the lack of haptic feedback in current surgical robot systems 

hinders the technology’s clinical adoption. This paper proposes 

a sensorless alternative based on processing the incoming image 

stream and deriving a quantitative measure representative of the 

image quality. This measure is then used by a controller, 

designed using model-free reinforcement learning techniques, to 

maintain optimal contact autonomously. The developed 

controller has shown near real-time performance in overcoming 

typical loss-of-contact and excess-deformation scenarios 

experienced during endomicroscopy scanning procedures.  

I. INTRODUCTION 

Early disease detection and timely treatment are key to 
tackling cancer, with early detection being the prerequisite to 
a good prognosis and timely treatment [1]. Histopathology 
analysis of biopsied tissue is still the gold-standard in tissue 
characterization, but it is time-consuming, operator-
dependent, requires ex-vivo analysis of excised tissue, and 
cannot achieve results in real-time [2]. These limitations 
highlight the demand for alternative diagnostic modalities with 
real-time, in-situ tissue characterization capabilities. 
Endomicroscopy, an “optical-biopsy” based approach for 
visualization and diagnosis, has shown to be capable of 
continuous acquisition of cellular-level high-resolution 
histology-like images for in-vivo and in-situ tissue 
characterization [3].  

But the technology has certain limitations that hinder 
translation into mainstream clinical practice. The most 
significant drawback is the limited Field-of-View (FOV), 
commonly only 0.24𝑚𝑚 as a trade-off of the high-resolution 
cellular-level images generated by the system. Mosaicking 
algorithms have been used to compensate for the limited FOV 
[4]. These algorithms use a stream of good-quality 
microscopic images obtained by scanning over an area in a 
specific pattern, and stitching them together to obtain 
histology-like mosaics of larger areas. However, an important 
caveat to achieving the above is continuous good quality image 

acquisition. Acquiring a continuous stream of good quality 
images is challenging requiring the probe to be maintained 
within an optimal working distance, the range for which lies 
between 0 − 80𝜇𝑚, based on the lens assembly at the tip of 
the fiber bundle [4]. Additionally, the tissue-contact force 
applied also needs to be regulated (in the order of ~100𝑚𝑁) 
to minimize tissue deformation which impacts image quality 
negatively. 

Achieving these levels of accuracy consistently is 
challenging with manual scanning. Robotic platforms like the 
Da Vinci® system (Intuitive Surgical Inc., CA) with features 
including motion-scaling and tremor-compensation provide 
the necessary precision, accuracy and stability required for 
robot-assisted endomicroscopy scanning, but the lack of haptic 
feedback results in poor probe-tissue contact management [5]. 
Attempts at automation have been attempted with both active 
and passive force-control approaches. Probe-tissue contact 
force management has been attempted using active force-
sensing instruments using load cells [6, 7], passive force-
adaptive instruments with spring-based or pneumatic 
mechanisms [8, 9], distance-sensing [10] and stabilizing 
mechanisms [11]. But these solutions have certain drawbacks 
associated with them. The sensing modalities estimate image 
quality based on correlation with the sensor information and 
not by analyzing the image. This results in false-positives, i.e. 
a scenario where the sensing modality classifies the image to 
be acceptable, but the case is not, establishing the need for 
additional in-vivo calibration and baseline measurements 
leading to an increase in procedural time. Secondly, no 
information is available as soon as contact is lost with the 
tissue.  Finally, additional sensing modalities to the tip 
increases probe footprint limiting applicability in small 
workspaces, negatively impacts probe dexterity/stiffness, and 
also leads to increased cost and reliability issues. 

As stated earlier, the probe needs to be maintained within 
the optimal working range to ensure image acquisition of the 
highest quality. A drop in image sharpness is observed as the 
probe strays from the optimal working range. It has also been 
observed that this drop in sharpness occurs in both directions 
– i.e. if contact is lost or if excess deformation is induced. The 
drop in sharpness in the case of lost contact is more 
pronounced as compared to the drop when excess deformation 
is applied. This paper proposes a framework for probe-tissue 
contact control that does not use any external sensing 
modalities but leverages this observed phenomenon for 
contact-force management. A quantitative measure of image 
quality is extracted and is shown to be a good representation 
of the inherent image quality. This quantitative measure is then 
used to design a controller using model-free reinforcement 
learning (RL) techniques. Section II first discusses the 
methodology for extracting the quantitative measure from the 
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incoming image stream. The RL-based controller design 
methodology for the application is then presented. This is 
followed by a description of the controller implementation 
algorithm for maintaining optimal probe contact. Section III 
presents an overview of the experimental setup used and the 
experiments performed to derive, test and improve the 
controller. Section IV presents the outcome of the experiments 
and discusses the results. Section V concludes the paper 
highlighting the features and advantages of the proposed work, 
limitations of the system and also presents avenues for future 
work.    

II. METHODOLOGY 

A. Quantifying Image Quality 

In order to manipulate the probe to maintain optimal 
contact, it is imperative to have a measurement signal. The loss 
of sharpness observed on straying from the optimal working 
range is quantified by processing the images using multiple 
blur-based imaging criteria which quantify the inherent 
sharpness/blur of an image. Well-known blur-based imaging 
criteria were analyzed on the basis of computational expense, 
the range of observed values, monotonicity, sensitivity to noise 
and ability to handle outliers. The analyzed metrics included 
Cumulative Probability for Blur Detection (CPBD) [12], 
Visual Blur Quality Evaluation Software (VBQUEST) - an 
implementation of the Marziliano Blurring Metric [13], an 
implementation of a blur metric by Crété-Roffet et al. in [14] 
by Do Quoc Bao, LPC-SI - an implementation of a Local 
Phase Coherence based Sharpness Index algorithm presented 
in [15], and image/information entropy. These metrics were 
studied based on a video of endomicroscopy images with 4133 
frames, and the results revealing the best candidates for our 
application are summarized in Table 1. A graphical 
representation of the performance of each metric for 10 
endomicroscopy images is also summarized in Fig. 5. 

TABLE I 
PERFORMANCE SUMMARY OF DIFFERENT IMAGING CRITERIA 

 CPBD VBQUEST 
CRÉTÉ-

ROFFET BM 
LPC-SI ENTROPY 

RANGE OF VALUES 5 4 3 2 1 

COMPUTATIONAL 

EXPENSE 
1 3 4 2 5 

MONOTONICITY YES YES YES NO NO 

NOISE SENSITIVITY GOOD GOOD GOOD GOOD BAD 

HANDLING 

OUTLIERS 
3 5 4 1 1 

Properties ranked between 1-5 with 1 being least acceptable and 5 most acceptable. 

While CPBD, VBQUEST and Crété-Roffet blurring 
metric showed acceptable characteristics, no single metric 
satisfied all requirements. These three metrics were therefore 
blended together into a single classifier to compensate for the 
shortcomings of the individual metrics. This was done by 
using binary classification with supervised learning [16]. The 
images from a video dataset of previously performed scanning 
procedures were classified as acceptable and undesired by a 
human operator. A classifier with the normalized values of the 
chosen metrics was extracted using linear regression. The 
means associated with the good, bad and all data for the three 

metrics are: 𝜇𝑔: (𝜇1𝑔, 𝜇2𝑔, 𝜇3𝑔),  𝜇𝑏: (𝜇1𝑏 , 𝜇2𝑏 , 𝜇3𝑏) and 

𝜇𝑎: (𝜇1𝑎, 𝜇2𝑎, 𝜇3𝑎) respectively, where 𝜇𝑖𝑔 and 𝜇𝑖𝑏 are the 

means of metric 𝑖 for the good and bad quality images 

respectively. The slope of the normal (𝑚𝑁) to the classifier 
with the three metrics as axes can then be written as:  

𝑚𝑁 =  ((𝜇1𝑔 − 𝜇1𝑏), (𝜇2𝑔 − 𝜇2𝑏), (𝜇3𝑔 − 𝜇3𝑏)) (1) 

The slope of the classifier can then be written as:  

𝑚𝐶 =  − 1 𝑚𝑁⁄ (2) 

The slope of the classifier derived from (1) & (2) is equivalent 
to the weights associated with each metric in the classifier. A 
2-D visualization of the above is shown in Fig. 1. The intercept 
of the classifier was further improved to maximize accuracy 
(using (3)) of the classification. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)⁄ (3) 

where TN, TP, FN & FP are true-negative, true-positive, false-
negative and false-positive occurrences. 

 Positive classifier values are associated with images of 
desirable quality and vice-versa. This obtained classifier is the 
required quantitative measure representative of the inherent 
quality of the images. The workflow for the entire method is 
summarized as follows:  
1) Extract frames from training video of scanning. 
2) Compute imaging criteria metrics for extracted frames. 
3) Acquire user feedback on image quality of frames. 
4) Extract classifier of imaging criteria based on feedback. 
5) Test and improve classifier with feedback from test set. 
6) Optimize/threshold classifier intercept for imaging setup. 

 

Fig. 1. Classifier derivation by image quality quantification. The black line is 
the classifier obtained from binary classification. The dashed blue line is 
obtained after optimizing the intercept for accuracy. 

B. Controller Design 

The classifier derived in Section II.A provides the 
measurement signal based on which the controller for 
maintaining optimal probe contact can be designed. Model-
based controller design for autonomous control in medical 
robotics is extremely challenging. The non-linearities 
introduced by conventional surgical robotic systems in the 
form of tendon elasticity, backlash, friction, etc. along with the 
interaction of the robot with different tissues encountered in-
vivo makes the extraction of accurate system dynamics very 
tedious, prone to error and a solution that is not generalizable. 
In this section, controller design is therefore attempted using 
model-free controller design methods. Reinforcement learning 



  

(RL), which has been used extensively in literature to derive 
optimal control solutions to adaptive control problems has 
been used for developing the controller [17]. The system and 
environment dynamics are unknowns, and the best actions are 
learned by a reward-based feedback process. 

A framework that is commonly used for formalizing 
sequential decision processes is the Markov Decision Process 
(MDP). The MDP is defined as: 𝑀𝐷𝑃(𝑋, 𝑈, 𝑃, 𝑅), where 𝑋 is 
a set of states and 𝑈 is a set of actions/commands. P is the set 
of transition probabilities 𝑃: 𝑋 × 𝑈 × 𝑋 → [0,1], which 
describes for each state 𝑥 ϵ 𝑋 and action u ϵ U, the conditional 
probability 𝑃𝑥,𝑥′

𝑢 = Pr {𝑥′|𝑥, 𝑢}, to transition to state 𝑥′ϵ 𝑋 

given the agent is in state 𝑥 and takes action 𝑢. The reward 
function 𝑅: 𝑋 × 𝑈 × 𝑋 → 𝑅, is the expected immediate 

reward 𝑅𝑥,𝑥′
𝑢 , received after transition to state 𝑥′ϵ 𝑋, given the 

agent starts in state 𝑥 ϵ 𝑋 and takes action u ϵ U  [17, 18]. The 
main goal with MDPs is to find the policy 𝜋: 𝑋 × 𝑈 → [0,1] 
that gives for each state 𝑥 and action 𝑢 the conditional 
probability 𝜋(𝑥, 𝑢) = Pr {𝑢|𝑥} of taking action 𝑢 given the 
current state 𝑥, such that a particular objective is achieved [18].  

The action-space in this application is the 1-D space 
defined by the axis normal to the scanning plane. A limit on 
the maximum action value is pre-set to address safety concerns 
during exploration. To reduce computational expense incurred 
during learning, the action-space is initialized with a vector of 
action values based on user experience.  The definition of the 
state-space is critical for determining computational expense 
and global applicability of the learned controller. The three 
choices for the state-space were the 3-D Cartesian space, the 
3-D imaging criteria space and 1-D classifier space. The 3-D 
imaging criteria space is made up of the three imaging criteria 
that were used in deriving the classifier and has the advantage 
of making the whole learning invariant in Cartesian space (a 
2-D representation of this imaging criteria space is shown in 
Fig. 2(a)). The 1-D classifier space is a reduction of the 3-D 
imaging criteria space which exploits the strong correlation 
observed between the different metrics (leaving a significant 
part of the state-space unused as can be seen in Fig. 2(a)). The 
advantages of choosing the 1-D classifier space over the other 
two definitions are two-fold: 1). the state-space is Cartesian 
space invariant, allowing for the learned controller to be 
globally applicable irrespective of where the learning was 
done in Cartesian space, and 2). the state-space is extremely 
small as compared to both the Cartesian space and imaging 
criteria space. 

The definition of the 1-D classifier space as the state-space 
is inspired by the approximate Q-learning method which uses 
feature-based representations [19]. Training can now be 
performed on a subset of the actual Cartesian state-space and 
then generalized to the entire state-space. The 1-D classifier 
state-space is discretized into a finite number of states as the 
Bellman equation in RL is defined for discrete state-spaces 
[17, 18]. The number of states the state-space is discretized 
into is based on balancing a trade-off between the robot’s 
capabilities and the computational time needed for learning the 
controller. The transition probabilities are a representation of 
the system dynamics and are unknown. The immediate reward 
𝑅𝑥,𝑥′

𝑢  is defined as follows: 

𝑅𝑥,𝑥′
𝑢 = 𝑘. 𝑑𝑥′

𝑐 + 𝑃 (4) 

The first component 𝑘 × 𝑑𝑥′
𝑐 , is based on the new state reached 

and the reward is proportional to the mean classifier value of 
this new state (refer Fig. 2(b)). The second component 𝑃, is 
based on how the state was reached. This is a fixed 
reward/penalty applied to downgrade actions that cause excess 
deformation and is identified by monitoring the classifier /state 
values attained while the robot is executing the action. 

 

 

Fig. 2. State-space configuration choices: a) 2-D imaging criteria state-space, 
and b) 1-D classifier state-space 

The Q-learning RL algorithm by Watkins [20], was used to 

learn the best actions associated with the MDP defined above. 

The update of Q-values can be written as: 

𝑄𝑘+1(𝑥, 𝑢) ← ∑ 𝑃𝑥𝑥′
𝑢

𝑥′

[𝑅𝑥𝑥′
𝑢  +  𝛾 max

𝑢′
𝑄𝑘(𝑥′, 𝑢′)] (5) 

As the transition probabilities 𝑃𝑥𝑥′
𝑢  are unknown, an alternative 

approach of using running averages was implemented. The 

likelihood of occurrence of the state 𝑥′ is a reflection of the 

unknown transition probabilities and gets accounted for over 

the course of the learning trials.  

The Q-learning algorithm that was implemented in this 

work is as follows: 

1. Perform a sample transition (𝑥, 𝑢, 𝑥′, 𝑟) and compute 

sample Q-value: 
𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟 + 𝛾 max

𝑢′
𝑄(𝑥′, 𝑢′) (6) 



  

2. Update the corresponding Q-value 𝑄(𝑥, 𝑢) associated 

with source state 𝑥 and action 𝑢: 

𝑄(𝑥, 𝑢) ← (1 − 𝛼)𝑄(𝑥, 𝑢) + 𝛼(𝑠𝑎𝑚𝑝𝑙𝑒) (7) 

The optimal values and policy in terms of the Q-values can be 

written using the Bellman optimality equation [21]: 
𝑉𝑘

∗(𝑥) =  max
𝑢

𝑄𝑘
∗(𝑥, 𝑢) (8) 

𝑢𝑘
∗ =  argmax

𝑢
𝑄𝑘

∗(𝑥, 𝑢) (9) 

𝛾 is the discount rate for discounting future values. 𝛼 ∈ [0,1] 
is the learning rate which blends in the latest sample value 

into the existing value of 𝑄(𝑥, 𝑢) and gives the recently 

obtained samples more importance over the past values. 𝛼 is 

reduced over time for convergence.  

RL requires exploration of new actions so as to be able to 

learn the optimal policy and improve convergence. This was 

done by implementing the 𝜀-greedy method [18]. 

Additionally, random restarts were implemented through 

random reset actions which allowed further exploration to be 

introduced to improve convergence rates. The RL 

implementation generates a look-up table associating each 

state (based on the degree of image sharpness/blur) with the 

optimal action to take from that state to reach the state with 

optimal image quality.   

It is to be noted that the learning was done to learn actions 

only for the loss-of-contact scenario, as the range of classifier 

values encountered in the case of excess-deformation were 

very small and did not warrant learning with RL. Excess 

deformations result due to small movements made past 

optimal contact. To remove this excess deformation, a fixed 

step (0.1𝑚𝑚) away from the tissue is taken repeatedly until 

the induced deformation is removed. Deformations 

experienced in typical scanning procedures were resolved in 

at most two steps.  

C. Controller Implementation 

Fig. 3 is a schematic of the controller implementation. The 
controller implementation uses two threads, one running the 
state/classifier acquisition and monitoring of these values, and 
the second thread for generating the control action (the two 
sections are partitioned by the dotted line in Fig. 3). To 
compute the states/classifier values, the incoming stream of 
image data is cropped to obtain a smaller region of interest 
(ROI). This was done to reduce the computational expense of 
the image processing without discarding useful information. 
The different imaging criteria perform computations on the 
incoming image stream by exploiting the parallel computing 
capabilities in MATLAB. Once the image processing is done, 
the classifier value and the MDP framework parameters 
presented earlier are computed. The aforementioned set of 
computations were successfully performed up to rates of 20 
frames per second (fps) without frames being dropped. The 
framework is currently running at 10 fps. The above 
mentioned set of operations is represented by the left hand side 
off the dotted line in Fig. 3. 

The previously computed state value is the control input 
for the controller and is transmitted via TCP/IP. When the 
computed state of the latest image falls below the minimum 
accepted state (T1) for a good quality image but is above a 
second threshold (T2), a check is performed (see Fig. 3). This 
check is to discern whether the drop in image quality was due 
to excess-deformation or loss-of-contact. This decides whether 

the probe needs to move towards or away from the tissue. The 
check is performed by moving towards the tissue by a small 
magnitude (0.1𝑚𝑚). Post-movement, the image quality 
worsens in the case of excess-deformation and improves in the 
case of loss-of-contact. If the cause is loss-of-contact, the best 
action is taken. If the state value is less than T2, it definitely is 
a lost-contact scenario and in this case the best action is taken. 
In addition, while the robot is moving the interim 
state/classifier values during the movement is recorded in a 
vector. This is done to ascertain if a better quality image 
(optimal contact) was surpassed while the robot was moving, 
and if corrective action is needed. In the schematic in Fig. 3 
the best action module is the look-up table obtained as a result 
of the RL performed in Section II.B. 

 

Fig. 3. Schematic of the implemented controller algorithm. Data is pulled on 
demand from the real-time data stream (left hand side) whenever the state 
value falls below T1. T1 is the minimum accepted state and T2 is the 
minimum state (T1>T2) at which a check is performed to see if the drop in 
image quality is due to loss-of-contact or excess-deformation. 

III. EXPERIMENTAL SETUP 

The presented framework currently consists of the 
following hardware (shown in Fig. 4(a) and (b)): 

 An endomicroscopy imaging system  

 A surgical robot system 

 A mechanical stage for manually regulating tissue-probe 
contact distance for learning, testing and validation. 

 Load-cell with microcontroller (for force-measurements 
during validation experiments) 



  

A. Endomicroscopy Imaging Systems 

In this work, two in-house probe-based endomicroscopy 

systems were used for image acquisition and validation of the 

framework. Both systems are fluorescence-based, as topical 

fluorescence contrast agent acriflavine is used to provide high-

resolution microscopic images. The first system is a high-

speed laser-scanning confocal endomicroscopy system 

developed by Hughes et al. [22] that is used for the training of 

the framework and provides optically-sectioned microscopic 

images at 120fps. The second in-house system, which is used 

for the validation of the framework, is a widefield optical 

microscopy system, similar to an established design by Pierce 

et al. [23], that provides non-optically-sectioned images at 

30fps. With both systems, a commercial fibre bundle 

(Cellvizio™ UHD probe, Mauna Kea Technologies®, Paris, 

France) is used with approximately 30,000 fibre cores coupled 

to a distal micro-objective and outer maximum diameter of 

2.6𝑚𝑚 at the distal tip. The resulting field-of-view is 

approximately 240𝜇𝑚 and the resolution 2.4𝜇𝑚. 

B. Surgical Robot System 

The Raven-II surgical robot system (Applied Dexterity, 

Seattle, WA) was used for manipulating the probe. The 

robotic platform has two 3-DOF (degrees-of-freedom) 

spherical positioning mechanisms capable of attaching 

interchangeable 4-DOF instruments [24]. The platform has 

been augmented with a custom controller previously 

developed in [25] and runs in parallel with the controller 

presented in this paper. 

C. Force-Sensing for Validation Experiments 

The load-cell and accompanying micro-controller (Cypress 

Semiconductor, CA) were used solely for validation of the 

proposed controller. It was used to ascertain: 1) no excess 

deformation was induced after the control action was taken, 

and 2) confirm that in case excess deformation was induced 

during scanning, the controller was able to recover. The load 

cell used had a range of 0 − 500𝑔. A linear fitting was 

derived to convert generated values to force in millinewtons 

(𝑚𝑁). A 4th order low-pass digital Butterworth filter was 

applied to the signal to remove noise while maintaining 

adequate real-time performance. 

All experiments were performed using lens paper tissue 

topically stained with fluorescent contrast agent acriflavine. 

The principle for the robot axis to move towards/away from 

the scanning plane is based on either loss-of-contact or 

excess-deformation. This cannot be achieved by lining a 

curved surface with lens paper, as deformation is not 

developed in this scenario. As a workaround, experiments for 

learning, improving and validating the controller were carried 

out by using a mechanical stage. Very small increments of 

positive or negative movements could be executed and this 

proved extremely useful for optimizing the controller.  

The software components of the framework include: 

 A LabView program which processes the images from the 
endomicroscopy systems and sends them via TCP/IP.  

 A MATLAB script that runs image processing, and 
classifier/state value computation and transmission to the 
controller via TCP/IP during controller implementation. 
During learning, the image processing and RL are both 
implemented in MATLAB and control actions are directly 
transmitted to the Raven II robot. 

 The developed controller programmed in C++ runs on a 
separate thread along with the custom controller. The 
custom controller receives commands and transmits it to 
the Raven-II robot. 

The information flow between the different software 
components of the framework is shown in Fig. 4(c). For the 
learning experiments, the stage is mechanically moved a 
specific amount to achieve a certain state value. The RL 
framework then takes an action based on the 𝜀-greedy method. 
The learning algorithm then updates the Q-values based on RL 
algorithm presented earlier. As mentioned earlier, providing 
initial values based on user-experience reduces the time for 
learning the best actions. The action-space for individual states 
was set as: [𝑏𝑒𝑠𝑡𝐴𝑐𝑡𝑖𝑜𝑛 − 0.1𝑚𝑚, 𝑏𝑒𝑠𝑡𝐴𝑐𝑡𝑖𝑜𝑛 + 0.1𝑚𝑚], 
in steps of 0.01𝑚𝑚, during learning. This learning is done 
autonomously, assuming the initial set of best actions provided 
are validated as acceptable. When no user-experience was 
available, the learning of best actions was done hierarchically 
in two steps (broad-step and fine-step learning) to reduce 
learning times. For the validation experiments, a dashboard 
was created to monitor the performance of the controller.  

 

Fig. 4. Hardware & software setup: a) endomicroscopy probe scanning lens paper tissue (on a mechanical stage), b) hardware setup with Raven-II surgical 

robot, and c) information flow in software implementation. 



  

IV. RESULTS & DISCUSSION 

The two main objectives of this work were: 

 To establish that the inherent information in the image 
stream from pCLE can be exploited to make it a self-
sufficient sensing modality for closed-loop control. 

 To use the generated measurement signal to design a 
controller that could successfully identify and overcome 
the two probe-tissue interaction scenarios: loss-of-contact 
and excess-deformation. 

 

Fig. 5. Classifier performance for image classification with endomicroscopy 
images obtained from colon tissue samples. The classifier (bold blue line) 
accurately classifies the first 3 images as being good and the rest of 
undesirable quality. The other metrics (names in legend) are also plotted for 
comparing performance. 

Fig. 5 presents the performance of the derived classifier in 
classifying the 10 reference images obtained from 
endomicroscopy of colon tissue. The classifier correctly 
classifies the first three images as acceptable and the rest seven 
of undesirable quality. A demonstration of the classifier’s 
performance during real-time scanning operations can be 
found in the accompanying videos. The framework was able 
to process at 20𝑓𝑝𝑠 which ensures high overlap (at 
recommended scanning velocities of 0.5𝑚𝑚/𝑠𝑒𝑐 [26]) 
between consecutive images for good quality mosaicking. 
Fig. 5 also gives a comparison of the performance of the 
derived classifier against different blur metrics, and exhibits 
better performance than each metric. In the following sections, 
the controller performance is evaluated assuming the classifier 
to be an accurate representation of the image quality. The 
results of the controller performance in the loss-of-contact case 
and excess-deformation case are presented below. Fig. 6 and 
Fig. 7 are snapshots of the rolling window for load cell and 
classifier measurements from the framework dashboard. The 
first graph monitors load cell measurements measured in 

millinewtons (𝑚𝑁), and the second graph the classifier value. 
The experiments were performed using widefield microscopy 
instead of the pCLE system, while using the classifier derived 
from images obtained from pCLE to demonstrate the 
framework’s ability to handle different imaging systems with 
minimal intervention. The threshold for the classifier was 
lowered from 0.0 to −0.13 as the inherent quality of images 
from the widefield microscopy system is lower compared to 
the pCLE system. It should be noted that the widefield 
microscopy system is less forgiving to the controller 
performance when compared to the pCLE system as there is 
no optical sectioning. 

A. Controller Performance in Loss-of-Contact Case 

 Fig. 6 was obtained while testing the performance of the 

controller in the loss-of-contact scenario. The performance of 

the controller was analyzed in two scenarios: small and large 

loss-of-contact cases. The small loss-of-contact case would be 

the most predominantly encountered scenario during 

scanning operations. This scenario would be incurred when a 

negative gradient between the probe and tissue scanning plane 

would be experienced. This is an appropriate assumption as 

scanning velocities are recommended to not exceed 0.5𝑚𝑚/
𝑠𝑒𝑐 for good quality mosaicking based on the system’s frame 

rate [26]. Also, the slopes encountered in-vivo while scanning 

tissue are not extremely high so as to cause a sudden large 

loss-of-contact. In Fig. 6, the small loss-of-contact scenario is 

tested at instance (C) and (G), and the controller successfully 

recovers from the lost contact and regains an acceptable 

image quality. These loss-of-contact scenarios were not 

induced intentionally by mechanical manipulation of the stage 

but are encountered occasionally during scanning operations. 

This is mostly due to the probe encountering a micro-fold in 

the tissue paper or a sudden reduction in contrast agent 

concentration on the lens paper. The image classifier value 

recovers above the preset threshold at instances (D) and (H) 

respectively. The actions taken by the robot in this case is 

extremely small (in the range of ~0.1𝑚𝑚) and is usually not 

discernible to the human eye. From the load cell 

measurements, it can be seen that there is no significant 

increase in measured contact force from the baseline 

measurements after contact has recovered. This indicates that 

no excess deformation was induced after the controller had 

taken the action. 

From Fig. 6, it can be seen that in the case of the large loss-

of-contact, the response time and frequency of the controller 

is not fast enough to compensate for physiological motion. 

This would be an area for improvement in the future. The 

highlight of the controller performance, however, is the one-

step immediate recovery in the classifier value from the sub-

optimal value to go above the threshold, once the action is 

taken. This is attributed to the actions learned during RL. It 

should be noted that this immediate recovery is limited to 

cases where the action-value required is less than the 

maximum limit imposed on the action-space in the MDP 

framework. The classifier value that the loss-of-contact was 

reduced to is different in both instances (A) and (E), i.e. 

different action values were applied. In both small and large 



  

loss-of-contact scenarios, there is no significant increase in 

the measured contact force (and by extension no induced 

deformation) from the load cell measurements even though 

the action values are significantly larger. The contact force 

management is a result of the definition of the reward function 

during RL which rewards/penalizes based not only on what 

state is obtained but also on how that state was obtained. The 

gradual local rise and drop observed in classifier value 

between instances of lost-contact and excess-deformation in 

Fig. 6 and Fig. 7 respectively is due to the acquisition of 

relatively better/worse quality images while scanning. This 

can be attributed to the locally varying contrast agent 

concentrations on the tissue paper, folds in the tissue paper 

etc. causing variations in classifier values. These observed 

fluctuations are not due to probe manipulations. Scanning is 

currently stopped intermittently when the state value falls 

below the minimum accepted state.  

Fig. 6. Real-time controller performance in addressing image quality drop 

due to loss of probe-tissue contact. It can be seen that when image quality is 

regained the applied force on the tissue does not cross acceptable levels. 

B. Controller Performance in Excess-Deformation Case 

Fig. 7 was obtained while testing the performance of the 

controller in the excess-deformation scenario. It should be 

noted from Fig. 7 that the drop in classifier value when excess 

force is applied is extremely small as compared to the sub-

optimal classifier values attained in the loss-of-contact 

scenario (see Fig. 6). As mentioned earlier, this is the reason 

why RL was not used to learn the control actions in the case 

of excess deformation. As a result, it can be seen that recovery 

after the compensatory action is much more gradual and not 

immediate as was demonstrated in the loss-of-contact case. 

In Fig. 7, excess deformations were induced at instances 

(A) & (D) and the controller showed adequate performance in 

recovering from the excess deformation. The time taken for 

the recovery is proportional to the extent of deformation. As 

there are no best action values, it can be seen the action value 

had to be performed twice to remove the larger deformation 

induced in A and is the reason for the significant change in 

slope in the recovery from the first deformation. The 

improvement in classifier values at (C) in Fig. 7 was not due 

to a second corrective action, but due to a better image 

obtained after scanning was switched on post image quality 

recovery. 

 
Fig. 7. Real-time controller performance in resolving excess-deformation 

induced on the tissue by the probe. When excessive force is applied (peak in 

force measurement graph), an image quality drop ensues (in the second 

graph), and the controller then acts to recover image quality and subsequently 

remove excess force applied on tissue 

V. CONCLUSION 

In this paper, a novel framework for autonomous and 

sensorless probe-tissue contact control has been proposed. A 

new method for obtaining a measurement signal based on 

image quality information has been presented, which could 

replace external sensing modalities for probe-tissue contact 

control. The requisite computation is extremely light and 

achieves real-time performance on conventional laptop 

computers. The derived classifier has also demonstrated 

versatility in being able to classify microscopy images from 

different systems with minimal tuning requirements. 

The obtained measurement signal (classifier value) was 



  

used to develop a controller for probe-tissue contact control 

using model-free learning techniques. The absence of any 

apriori knowledge of system dynamics during controller 

design facilitates cross-platform compatibility. The controller 

has demonstrated near real-time ability to resolve small loss-

of-contact and excess-deformation scenarios. The controller 

is currently slow for large deformations to effectively 

compensate physiological motion. As the controller software 

runs as a layer on top of the robot controller software, it 

becomes independent of the inherent kinematics/dynamics of 

the system being controlled. Additionally, the design aspects 

of the framework (choice of state-space and reward functions) 

make the controller learning extremely fast and efficient. 

It is worth noting that the biggest limitation of the current 

framework is the absence of global positioning. The current 

framework only allows relative positioning along the 

scanning plane normal, and the user needs to maintain the 

orientation. An extension of the framework could be to 

combine the work done by Zhang et al. in [10] incorporating 

stereo reconstruction, surface normals identification and 

subsequently achieving global positioning. Future work on 

the classifier could also include making the classifier more 

robust and adaptive to external disturbances. 

Though the presented application is autonomous 

manipulation of a CLE probe for optimal quality data 

acquisition, this does not limit the developed framework’s 

capabilities. Other potential applications could be systems 

requiring the manipulation of actuators to optimize imaging 

quality like autofocusing in imaging/visualization systems 

(e.g. microscopes), autonomous ultrasound scanning etc.  
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