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Abstract—This paper improves a semi-automatic robotic
catheterization platform based on previous works [9] by propos-
ing a method to address subject variability. It incorporates
anatomical information in the process of catheter trajectories
optimization, hence can adapt to the scale and orientation
differences among subjects. Statistical modeling is implemented
to encode the catheter motions of both proximal and distal
sites from demonstrations of one vascular model. Non-rigid
registration is applied to find a warping function to map
catheter tip trajectories onto other anatomically-similar but
shape/scale/orientation different models. Such function can
finally generate a robot trajectory to conduct a collabora-
tive catheratization task. Experiments investigate the proposed
method in different vascular phantoms. The success rate for
semi-automatic cannulation is high, which suggest the method
can be potentially applied to different endovascular tasks
and vasculature. The proposed robotic approach also show
significant improvements in the quality of catheterization over
manual approach by achieving smoother and safer catheter
paths and reducing contact forces. This work provides insights
into catheter task planning and an improved design of hands-
on, ergonomic catheter navigation robots.

I. INTRODUCTION

Endovascular intervention has become a promising treat-
ment to vascular diseases, for that catheters and guidewires
are navigated by the clinician to reach the target vasculature.
In recent years, there has been a growing interest in robot-
assisted catheter navigation systems. Compared to manual
catheterization, these platforms could provide advantages
such as added stability and precision of motion, increased
comfort for the operator, and reduced radiation from the
ionizing sources [1]. However, most existing platforms have
been designed without consideration of natural bedside ma-
nipulation skills and many master controllers fail to uti-
lize the operator’s experience obtained from conventional
catheterization. Recent advances in both imaging and robotic
technologies could provide the possibility for an enhanced
robot-assisted catheterization. Learning the essential inter-
active behavior patterns between the catheter and blood
vessels as well as between the operator and the catheter
from demonstrations, incorporating anatomical information
from pre-operative images, and applying them to a semi-
autonomous and collaborative robotic catheterization within
different anatomical geometries, can reduce the cognitive

'Wenqiang Chi, Jindong Liu, Hedyeh Rafii-Tari and Guang-Zhong Yang
are with the Hamlyn Centre for Robotic Surgery, Imperial College London,
SW7 2AZ, London, UK (email:wenqgiang.chil0@imperial.ac.uk)

2Celia Riga and Colin Bicknell are with Department of Surgery and
Cancer, Imperial College London, St Marys Hospital, W2 INY, London,
UK

Target Anatomy

|

Demonstration Anatomy

\
) Yige
e

Target Anatomy

M
9.4

Fig. 1. Examples of catheter tip motion (blue line) transformation from a
demonstration anatomy (center) to target anatomies (left and right)

workload of the operator while improving the quality of the
catheter insertion.

One of the main commercially available steerable plat-
forms for endovascular intervention is the Magellan Sys-
tem (Hansen Medical, Mountain View, CA, USA), while
many master/slave platforms have also been developed for
standard catheters in the research domain [2]. However, in
most existing solutions, instrument manipulation is achieved
through multi-DOF haptic interfaces or joysticks which alter
the natural patterns of catheter manipulation. Therefore, there
has been a growing interest in developing ergonomic master
interfaces that can potentially utilize the experience-related
skills of the endovascular interventionalist [3].

Recent research explores the application of the “learning
from demonstration” framework, commonly used in robotics,
towards automating whole or part of the procedure in min-
imally invasive surgery applications. These studies include
complete automation of time-consuming and repetitive tasks
[5], as well as collaborative surgery in which the control is
shared back and forth between the operator and the robot
[6]. Recent studies have looked into generalizing learned
demonstrations to previously unseen initial conditions [7], as
well as an adaptive trajectory planning to deal with dynamic
changes in the environment [8]. In the field of endovascular
intervention these learning-based techniques have been used
for automation of motion trajectories from expert demon-
strations for the same catheterization task, by a robotic
driver, demonstrating potential improvements over manual
catheterization [9]. The pre-operative images for surgical
navigation also offer the possibility for robotic path planning
based on anatomical information. Commercial robotic system
such as the Sensei X system (Hansen Medical, Mountain
View, CA, USA) integrated 3D electroanatomic mapping
(EAM) technology for improved navigation of the robotic



catheter [10]. Other research has studied skeletonization tech-
niques, extracted from CT angiography (CTA), for extracting
blood vessel centerlines towards efficient path planning for
endovascular surgical tools [11]. More recently, a cooperative
robotic catheterization platform was developed for adapting
learned trajectories to different vascular anatomies using
shared-control navigation [12]. However, these frameworks
did not consider image-based anatomical information, and
as such did not incorporate difference in task scale and
orientation. The use of anatomical landmarks to aid semi-
autonomous robotic catheterization within different anatom-
ical settings has not been explored as yet.

Based on our previous work [9], this paper improves
the semi-automatic robotic catheterization by addressing
the subject-specific variability, through incorporating the
anatomical information obtained from pre-operative image
data. In the proposed approach, catheter tip positions at the
distal end as well as axial/rotational motions exerted by
the operator at the proximal end were obtained from the
demonstration on vascular models. They are jointly used
to train statistical models that encodes the essential motion
patterns of the operator and the catheter motions, together
with the model’s anatomical information, a trajectory gen-
erator is proposed to generated patient-specific trajectories
that can potentially tolerate catheterization task scale and
orientation difference. Such trajectory generator can generate
a robotic catheter control sequence for different vascular
models by integrating the latter’s anatomical information
through non-rigid registration techniques. The approach is
verified by testing the generated robotic trajectories onto
different vascular models, achieving a high success rate
for cannulation tasks. The quality of the catheterization is
further assessed by comparing the proposed robotic approach
against manual techniques. The robotic approach achieved
smoother and safer catheter paths that potentially associated
with reduced risks in perforation, dissection and stroke. The
proposed platform provides insights into endovascular task
planning based on pre-operative image data, and a hands-on
catheter navigation system that utilized the natural skills of
the operator. Fig. 1 demonstrates the idea of our approach
for mapping catheter tip motions in different anatomies.

II. MATERIALS AND METHODS

An overview of the proposed methods for adapting robotic
trajectories into anatomical variability is shown in Fig. 2.
The details is explained in this section including the method-
ologies for catheter motion modeling, transformation of the
catheter tip motion and trajectory optimization. The valida-
tion method for each module is introduced as well.

A. Catheterization Motion Modeling

Our method for catheterization motion modeling is based
on the previous work of the authors in [9]. The Gaussian
Mixture Models (GMM) was used to train models of catheter
proximal motions and catheter tip motions jointly from
demonstrations. The objectives are 1) capture the underlying
motion patterns of the catheter for a specific catheterization

task in a specific type of aortic arch (Type I); 2) encode
the correlation between catheter proximal motions and tip
motions; and 3) produce smoothed robotic trajectories that
were executed on the robotic catheterization platform [9].

Task Demonstration: Catheter proximal motion data and
tip motion data were collected from an expert vascular
surgeon (having performed over 300 endovascular proce-
dures). The specific catheterization task was cannulation
of the innominate artery of a silicone-based, transparent,
anthropomorphic phantoms, of a standard type I aortic arch.
Three Type I arch models were used in this study, includ-
ing a healthy arch (Phantom A) (Fig. 3(b)), one with an
aneurysm (Phantom B) (Fig. 3(c)) and one with a re-created
stenosis (Phantom C) (Fig. 3(d)) (Elastrat Sarl, Switzerland).
Six demonstrations were collected from each phantom. The
demonstrations from one phantom were used to train the tra-
jectory generator while those from other two phantoms were
taken to verify the performance of the robot trajectory. The
starting/ending positions of the catheter tip were specified as
the level in parallel to the origin of the left coronary artery,
and the bifurcation site of the right common carotid artery
and the right subclavian artery, respectively. A SF shaped
catheter and a 0.035” guidewire were used in this study.
A camera was mounted above the vascular phantom, 2D
projected images of the phantom was then displayed on a
monitor for navigation. Catheter tip positions (x,y,z) were
collected from a six DoF electromagnetic (EM) position
sensor (Aurora, NDI) which was attached to the catheter
tip. Catheter proximal motion data, which consists of 2 DoF
axial (d) and rotational (0) motions of the catheter were
measured from the custom-designed sensors, as presented in
previous works [9], through LabVIEW (National Instruments
Corp., TX, USA) Recording of catheter tip positions and the
proximal motion were synchronized and sampled at a rate of
33Hz. The experimental setups for data collection are shown
in Fig. 3(a).

Catheter Motion Modeling: A training dataset from a
demonstration is (A = {¢,x,y,z,d,0}), which consists of the
time component, catheter tip position and axial/rotational
motion signals. The datasets in each demonstration were
manually segmented into three procedural phases: traversing
the descending aorta, travel through the aortic arch and the
cannulation of the innominate artery. Segmented datasets
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Fig. 3.
with artificial stenosis, (¢) CAD rendering of the robotic catheter driver.

from each phase were temporally aligned using Dynamic
Time Warping (DTW). GMM was used to generate the
probabilistic representation of the dataset. A GMM of K
components can be defined as:

K
p(A) =Y p(k)p(Alk) M
k=1

The continuous observation probability distribution is
p(Alk) = A (M|, Xk) where Ly and X; are mean and
covariance matrix of the Gaussian state k respectively. The
GMMs were then trained by the Expectation Maximization
(EM) algorithm for estimating the maximum log-likelihood
of the GMM parameters. The optimal number of Gaussian
components (K) were selected based on the Bayesian infor-
mation criterion [13].

B. Catheter Tip Motion Transformation

The method of catheter tip motion transformation is based
on the trajectory transfer algorithm previously reported in
[7].The aim is to map the catheter tip trajectories from
the demonstration anatomy into target anatomies. New tip
trajectories were used to estimate new proximal motions
of the catheter for the target anatomy. First, centerlines
were extracted from 3D CT scans obtained from all three
vascular phantoms by The Vascular Modeling Toolkit (vmtk),
which represent the landmarks of the corresponding anatomy.
The starting/ending positions of the centerlines extracted
are the same as that of the demonstration task, hence the
centerlines of all phantoms are anatomically equivalent. The
non-rigid registration was performed between centerlines of
the demonstration aorta and target anatomies, transformation
function f was then used to warp the demonstrated tip
trajectories into new anatomical situations. We used the
Matlab libraires of Coherent Point Drift (CPD) algorithm
[14] for non-rigd registration. For the centreline X in the
demonstration anatomy that consists a of M x D matrix,
where D is the dimension of the points. And centreline Y in
the target anatomy with a N x D matrix. The result from the

(a) The experimental setup of data collection, (b) Vascular Phantom with a healthy arch, (c) Vascular phantom with aneurysm,(d) Vascular phantom

registration is to compute the warping function f that maps
each point in X into the corresponding target point set Y,
which is equivalent to an optimization problem:
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where the regularizer is a function that allow the transfor-
mation to be smooth. Then the transformation f was applied
to warp the demonstrated trajectories.

In order to validate the accuracy of the transferred catheter
tip trajectories after the registration. A cross validation was
performed. The distance values calculated by DTW were
used as a measure of similarity cost between the simulated
tip motion trajectories with the demonstrated trajectories in
the same vascular model. Firstly, the distance values were
calculated between each two demonstrated trajectories in the
same phantom, the largest distance value was set as the limit
to assess on the transferred trajectories. Then each transferred
trajectory was compare to all demonstrated trajectories, the
transferred trajectory will be counted as accurate if the
average distance value is smaller than the limit.

C. Trajectory Optimization and Robot Trajectory Generation

The learned GMMs were used to estimate the ax-
ial/rotational motions from the simulated catheter tip motions
after the Non-rigid registration. The simulated tip positions
& were used as query points to estimate the expected
corresponding spatial distribution of axial/rotational motions
&, through the Gaussian Mixture Regression (GMR) [13].
The conditional probability of &, regarding to & can be

defined by:
p(&lk)

P I @ @
The obtained proximal motions were then smoothed by a
further step of GMR to encode the essential features of the
data into longer time steps. A new sequence of time-steps
is used to estimate the corresponding spatial components of



the GMM. As a result, the smoothed axial/rotational motion
trajectories were constructed from the training datasets in the
demonstration phantom, to the other two target phantoms for
the expert operator at each segmented phase of the task.

The optimized proximal motion trajectories were vali-
dated by a customized robotic catheter driver to perform
cannulation to the innominate artery. The robotic driver is
previously reported by the authors in [9](Fig. 3(e)) This
driver consists of two servomotors which can push/pull and
twist the catheter following the input trajectories. Catheter is
driven by a pair of friction wheels that are directly coupled
to one of the servomotors. The steering of the catheter
is achieved by rotating the frame that holds the catheter.
The robot is controlled by a PID controller. During the
cannulation task, the robotic driver automates the catheter
motion while an operator manipulates the guidewire for
assistance. The maneuvers of the guidewire are 1) stationary
in procedural phase one 2) insert through the aortic arch
after phase one completes 3) retract after the phase two
completes 4) insert when catheter tip is pointing to the
innominate artery. The guidewire is carefully manipulated
to avoid unwanted displacements of the catheter tip.

Catheter motions models from different experience levels
were used to test the proposed framework. Demonstrations
were collected from two novice operators (male, age of 24
and 27, engineering students) who have no prior knowledge
or experience in endovascular tasks. The novice operators
learned the procedures through watching the videos of ex-
pert’s demonstrations, as well as practicing the tasks among
the phantoms until repeatable skills were developed. Four
demonstrations over each phantom were collected from each
novice operator.

A cross validation was performed to find the success
rate of cannulation to the innominate artery by the pro-
posed framework. GMMs were generated from each phantom
across each experience level. The demonstrated tip motions
in each phantom were transferred into the other two phan-
toms. Robotic trajectories were estimated from each GMMs
and optimized for target anatomies. The robotic driver was
then used to execute the input trajectories and perform cannu-
lation in the corresponding phantom. Successful cannulation
will be counted if the final catheter tip position is within
4+ 2mm to the level of the destination position (bifurcation
site in the innominate artery). 18 robotic cannulations were
perform in the expert group and 36 cannulations in the novice
group. (n = 3 for each phantom)

Catheterization Quality Evaluation: The quality of the
proposed robotic approach is assessed. The catheter tip
motions from the robotic approach were compared with
demonstrated catheter tip motions by the expert operator.
In this study, the demonstration anatomy is the healthy
arch (Phantom A) whereas the target anatomies are diseased
phantoms (Phantom B and C), which highlights the clinical
importance of assessing on catheterization performance. Six
robotic cannulations were performed in each phantom. The
catheter tip positions were recorded by the EM position
sensors. Tip kinematic metrics were calculated from the

catheter tip trajectories. The metrics are: mean/maximum tip
speed and acceleration, standard deviations of the speed, and
total catheter path length (corresponding to the back and forth
movements). All metrics over all phases were assessed using
the non-parametric Wilcoxon rank-sum significance test (a
value of P<0.05 was considered statistically significant). All
data analysis were performed in Matlab. Based on those
metrics, the performance of the robotic catheterization was
compared with the actual demonstrated trajectories by the
expert operator in the same vascular model.

The contact force sensing platform developed by the
authors [15] was used in this paper to measure the contact
forces exerted on the vasculature. Phantom A was mounted
onto a plate that was fixed to a six-DoF force/torque (F/T)
sensor (Mini40, ATI Industrial Automation, Inc., USA).
Average root-mean-square (RMS) force modulus was cal-
culated from the 3D forces measured from the F/T sensor,
representing the interaction forces between the catheter and
the vascular model. Two groups of proximal motion trajec-
tories for Phantom A were estimated from demonstrations
in Phantom B and C respectively. Those trajectories were
then executed by the robot and the contact forces were
recorded (n=6 for each group). The contact force data was
then compared with that of manual catheterization from four
expert operators performing the same cannulation tasks in
the same vascular model (3 cannulations from each expert)
. The expert contact force data was originally collected in
previous works [15]. Metrics such as mean forces, maximum
forces, standard deviations of the force and force impact over
time were calculated from the force data in each cannulation.
All metrics over all phases were assessed using the non-
parametric Wilcoxon rank-sum significance test.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. Catheter Motion Modeling

Fig. 4 shows the GMMs of both axial/rotational motion
trajectories and catheter tip motion trajectories in the phase of
descending aorta. The colored ellipsoids represent the GMM
components, where the same color represents the same GMM
component.

B. Catheter Motion Transformation

For the validation the catheter motion transformation, 36
simulated tip trajectories were generated from the expert
group (12 from each phantom). 48 simulated tip trajectories
were generated from the novice group (8 from each phan-
tom). 86.1%(31/36) of the trajectories in the expert group
were classified as accurate. 91.6%(44/48) trajectories from
the novice dataset were classified as accurate. Results show
that the majority of the demonstrated trajectories can be
mapped to different anatomical settings.

C. Experiments with the Robotic Platform

The cross validations for the proposed robotic platform
were performed to test the simulated robotic trajectories on
different vascular phantoms. For the expert dataset, 100%
(18/18) of the cannulation tasks succeed. 94.4% (34/36) of
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Fig. 4. Training data from the demonstrations (red lines) and learned

GMMs (colored ellipsoids) of catheter proximal motion (left) and tip motion
(right)

TABLE I
MEDIAN VALUES FOR STATISTICALLY SIGNIFICANT DIFFERENCES (P
<0.05) BETWEEN ROBOT-ASSISTED LEARNED PROCEDURES VS.
CORRESPONDING EXPERT MANUAL DEMONSTRATING DATA WITHIN
DIFFERENT ANATOMIES.

Aneurysm Model Stenosis Model

Expert Manual Robot Manual Robot
mean speed (mm/s) 6.75 2.78 4.16 2.17

max speed (mm/s) 356.3 124.7 255.0 177.5
STDEV speed (mm/s)  20.7 4.56 23.4 7.01
mean acceleration  226.1 104.8 139.2 77.4
(mm/s?)

max acceleration  1.15x10° 2.80x10*|| 8.02x10* 5.27x10*
(mm/s?)

path length (mm) 360.5 281.2 - -

the tasks were completed for the novice dataset. All exper-
iments successfully finish the cannulation to the innominate
artery. For the failed case in the novice group, the robot
failed to reach the destination position in the last phase. This
was due to buckling of the catheter in the descending aorta.
The high success rates suggest that the proposed framework
is able to adapt to anatomical variability across structurally
similar vessels. This method is also applicable to operators
within different experience levels.

Table. I shows the result of the non-parametric test,
with median values for statistically significant differences
(P <0.05) between the manual approach and the proposed

TABLE II
MEDIAN VALUES FOR STATISTICALLY SIGNIFICANT DIFFERENCES (P
<0.05) BETWEEN CONTACT FORCES EXERTED ON THE VASCULATURE
FROM ROBOT-ASSISTED PROCEDURES VS. EXPERT MANUAL PROCEDURE
IN PHANTOM A

Manual Robotic
mean force (N) 0.225 0.150
maximum force (N) 1.29 0.555
STDEV force (N) 0.309 0.0907
force impact area (N.s) 8.09 16.0

robotic approach. Compare to manual catheterization. It is
evident that for robotic driver performed a slower catheter-
ization in the two target phantoms at lower speed and
acceleration. In both case, the standard deviations of the
speed are significantly lower, which suggest more continuous
and controlled catheter motions. The robotic approaches in
Phantom B, can achieve a shorter path length compare to
the manual approach , suggests reduced overall back and
forth movements of the catheter tip, potentially leads to less
vessel wall contacts and hence reduces risks associate with
dissection, perforation, thrombosis and stroke in the clinical
situation. which is particularly important in the presence of
diseased vessels (such as Phantom B and C).

Fig. 5 depicts examples of the catheter paths and tip
displacements of the robotic approaches and manual ap-
proaches across different phantoms. Robotic Trajectories
were estimated from the demonstrations in Phantom A and
were executed in Phantom B and C. Comparing tip displace-
ments obtained by the robotic driver to that of the manual
catheterization, in both case, the catheter driven by the robot
achieved more continuous and smoother tip displacements.
The manual approaches in contrast, achieved steeper dis-
placements in the first procedural phase and overall faster
than the robot.

Fig. 6 shows an example of the differences between
manual and robotic approaches using the forces measured
over time, this graph highlights the lower force values seen
during robotic manipulation. Compare to the expert operator,
the robotic approach takes longer than the manual approach;
however, there is less perturbation of forces over time and
significantly lower forces were observed in some parts of
the procedure. The metrics shown in Table II provide more
insights into the forces applied to the vasculature. Both mean
forces and maximum forces are significantly lower during the
robotic catheterization than that of the manual techniques.
The standard deviations of the forces is significantly lower
in the robotic approach, which suggests more continuous,
stable and repeatable catheter motions. However, the force
impact over time is significantly higher in the case of robotic
manipulation since the procedure takes longer.

IV. CONCLUSION AND FUTURE WORK

This paper proposes an improved robotic platform for
semi-automatic endovascular catheterization, through using
non-rigid registration to find warping function between
anatomical landmarks that allows to map demonstrated
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catheter tip trajectories into different anatomical settings. Un-
derlying motion patterns from catheter proximal motions and
tip motions were extracted and encoded by statistical model-
ing. Transferred tip trajectories and the learned models were
used as a trajectory generator to optimize trajectories for
subject-specific anatomies. Experiments shows high success
rate of a cannulation task by using the proposed trajectory
generator and the robotic catheter driver onto different aortic
arch models. The quality of the robotic catheterization was
assessed through comparing tip kinematics to that of the
manual approach. Smoother, more continuous and shorter
path length were observed from the results, which indicate
safer and more controlled catheter motions. Moreover, the
proposed robotic approach is compared to the manual tech-
niques by measuring contact forces exerted by the catheter
to the vasculature, the robot achieved significantly reduced

60

Time (s)

80 100 120 140 0 10 0 6 70

Time (s)

8 9 100

Catheter path and tip displacement obtained by robotic approach vs. the manual approach within different models. Different colors represent

mean and maximum forces than the manual approaches over
time, and significantly smoother force patterns. Future im-
provements of the robotic platform include adding dynamic
flow simulation into the vascular phantoms and improved re-
alism, incorporating dynamic shape modeling with real-time
trajectories optimization. The learning of catheter tip motion
and proximal motion also provide insights into modeling
control policies of standard catheters. The methods proposed
in this paper can be used for modeling skills associated with
other endovascular instruments, more complex endovascular
procedures and navigation for more angulated vasculatures.
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