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ARTICLE INFO ABSTRACT

A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal
reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal
flow through the rock matrix and fractures are defined and coupled to a mechanical deformation model. A ro-
bust contact model is utilised to resolve the contact tractions between opposing fracture surfaces under THM
loadings. A numerical model has been developed using the standard Galerkin method. Quadratic tetrahedral and
triangular elements are used for spatial discretisation. The model has been validated against several analytical
solutions, and applied to study the effects of the deformable fractures on the injection of cold water in fractured
geothermal systems.

Results show that the creation of flow channelling due to the thermal volumetric contraction of the rock ma-
trix is very likely. The fluid exchanges heat with the rock matrix, which results in cooling down of the matrix, and
subsequent volumetric deformation. The cooling down of the rock matrix around a fracture reduces the contact
stress on the fracture surfaces, and increases the fracture aperture. Stress redistribution reduces the aperture, as
the area with lower contact stress on the fracture expands. Stress redistribution reduces the likelihood of fracture
propagation under pure opening mode, while the expansion of the area with lower contact stress may increase
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the likelihood of shear fracturing.

1. Introduction

Energy extraction from geothermal reservoirs involves multiple
physical processes including thermal (T), hydro (H), and mechanical
(M) processes that together influence the heat extraction from frac-
tured geothermal systems (Tsang, 1991; MIT, 2006). Due to the com-
plexity of this problem, and the number of parameters involved, mod-
elling of these systems is viable primarily through numerical methods
(McDermott et al., 2006). In a geothermal system, cold fluid is injected
into an injection well, and hot fluid is extracted from the production
well (e.g., Crooijmans et al., 2016). In order to understand the coupled
processes and their effects, a robust numerical model that simultane-
ously solves all the governing equations in a coupled manner is essential
for the successful investigation of a fractured geothermal system.

Fractures, natural or man-made, enhance flow within geothermal
reservoirs. For instance, fractures dominate the flow in low permeabil-
ity hot dry rocks (HDR) in the subsurface. Fractures may also con-

tribute to the creation of short-circuits between injector and producer
wells, hence reducing the efficiency of a geothermal system
(Emmermann and Lauterjung, 1997). In enhanced geothermal systems
(EGS), due to the low permeability of the host rock, artificial frac-
tures are induced, prior to injection of cold fluid, in order to enhance
the effective permeability of the hot rock. In EGS, the stimulation can
occur through induced slip on pre-existing fractures (shear stimula-
tion), by creating new fractures using hydraulic fracturing technique
(opening mode), or by a combination of the two (McClure and Horne,
2014). Thermally-induced fracturing has also been frequently observed
in many subsurface applications, where a relatively cold fluid has been
injected into a reservoir: for instance, in water injection wells in the pe-
troleum industry (Bellarby, 2009), in geothermal wells (Benson et al.,
1987; Tulinius et al., 2000), and even in relatively soft, unconsolidated
formations (Santarelli et al., 2008). The volumetric flow rate in a frac-
ture is proportional to the pressure gradient and the cube of the frac-
ture aperture, i.e., the cubic law, which is derived from the general
Navier-Stokes equation for flow of a fluid between two parallel plates
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(Zimmerman and Bodvarsson, 1996). Thus, variation in fracture aper-
ture due to the changes in the normal and/or shear stresses acting on
the fracture surfaces as a result of the THM processes strongly affects
the fluid flow and heat transport in the fracture (Rutqvist et al., 2005).

Heat conduction between the fluid inside the fracture and the sur-
rounding rock matrix has been of particular interest in many situa-
tions, including magma-driven fractures (Spence and Turcotte, 1985),
hydraulic fracturing of wells (Wang and Papamichos, 1999), and hy-
draulic fracturing of shale gas reservoirs (Tran et al., 2013; Enayatpour
and Patzek, 2013; Salimzadeh et al., 2016). Rock temperature at the sur-
faces of the hydraulic fracture is often considered constant, and equal to
the temperature of the injected fluid (for example in Tran et al., 2013;
Abousleiman et al., 2014). However, such an assumption does not sat-
isfy conservation of energy, and does not account for the fact that heat
exchange between the fracturing fluid and the rock gradually causes the
fracturing fluid to thermally equilibrate with the matrix rock. Conse-
quently, an unrealistically large effect due to thermal non-equilibrium
is predicted by such approaches (Salimzadeh et al., 2016). Considerable
efforts have been expended in developing THM models for geothermal
reservoirs over the past several decades; however, very few studies have
taken into account the evolution of fracture permeability under thermo-
poroelastic effects. McDermott et al. (2006) investigated the influence of
THM coupling on the heat extraction from reservoir in crystalline rocks
using an experimentally validated geomechanical model. Ghassemi et
al. (2008), using a partially coupled formulation, derived analytic solu-
tions for calculating fracture aperture changes induced by thermoelas-
tic and poroelastic stresses during cold-water injection in an enhanced
geothermal system (EGS). Ghassemi and Zhou (2011) proposed an ap-
proach to couple fracture flow and heat transport to thermoporoelas-
tic deformation of the rock matrix using the displacement discontinu-
ity (DD) method in which coupling is realised sequentially. Sequential
coupling, in a non-linear system, suffers convergence problems, and re-
quires more iteration and manual interference to converge. Abu Aisha
et al. (2016) investigated the effects of the new fractures created during
a geothermal lifetime on the overall permeability tensor of the fractured
medium. Pandeya et al. (2017) proposed a coupled THM model for the
variation of fracture aperture during heat extraction from a geothermal
reservoir. They treated a fracture as a thin permeable layer in the ma-
trix, with a stress-dependant fracture stiffness and elastic modulus. Guo
et al. (2016) investigated the effect of the heterogeneity in the initial
aperture distribution on the flow path within a single fracture in an EGS.
The equivalent permeability in fractured reservoirs can be significantly
affected by the choice of the aperture distribution model (Bisdom et al.,
2016).

In the present study, a finite element model is presented in which
fractures are treated more accurately in terms of their representation in
the mesh, as well as in their physical behaviour under THM loading.
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Fractures are modelled as 2D surface discontinuities in the 3D rock ma-
trix. Separate but coupled flow/heat models are defined for the frac-
ture and the rock matrix. The flow through the fractures is governed
by the cubic law, and is coupled to the Darcy flow in rock matrix us-
ing leakoff mass exchange that is computed as a function of the frac-
ture and matrix fluid pressures, and the matrix permeability. Local ther-
mal non-equilibrium is considered between fluid in the fracture and
fluid in the rock matrix. Advective-diffusive heat transfer is assumed in
both the fractures and rock matrix. Heat transfer between fracture and
matrix is allowed by conduction through the fracture walls, as well as
by advection through the leakoff flow. Contact stresses on the fracture
surfaces are computed using a robust contact model. Thermal and hy-
draulic loadings are considered in computing the contact stresses. The
contact model is iteratively coupled to the THM model. The governing
equations are solved numerically using the finite element approach. The
coupled model has been validated against several available solutions,
and applied to investigate the effects of fracture aperture alteration due
to THM processes on the flow of the cold fluid in geothermal reservoirs.

2. Computational model

The fully coupled computational model is constructed from five sep-
arate yet interacting sub-models: a thermoelastic deformation model,
two flow models (one for the fractures and one for the rock matrix),
and two heat transfer models, for fracture and rock matrix, respectively.
Single-phase flow is assumed within both the fractures and the rock ma-
trix. In the thermoelastic mechanical model, the flow and the heat trans-
fer through the rock matrix are constructed for three-dimensional ma-
trix body, while flow and heat transfer models through the fractures are
defined for two-dimensional discrete fractures, as schematically shown
in Fig. 1. Fracture flow and solid deformation are two-way coupled
through hydraulic loading exerted on the fracture surfaces, as well as by
ensuring the compatibility of fracture volumetric strains. Heat transfer
in the rock matrix and fractures is also coupled through a heat exchange
term included in the fracture and matrix energy balance equations. A
displacement vector (three components), fluid pressures (two compo-
nents), fracture fluid and matrix temperatures (two components) are de-
fined as primary variables. Tension is reckoned positive for stresses in
the governing equations.

2.1. Thermoporoelastic mechanical model

The thermoporoelastic mechanical model is based on the condition
of stress equilibrium for a representative elementary volume of the
porous medium. The assumption of elastic behaviour for matrix de-
formation is reasonable for most thermally-induced rock deformations

Fig. 1. Schematic representation of a fractured geothermal doublet.
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(Rutqvist et al., 2005). For quasi-static conditions, the linear momentum
balance equation for this elementary volume may be written as

dive+F=0 @®

where F is the body force per unit volume, and o is the total stress. Ef-
fective stress is defined as the function of total stress and matrix pres-
sure that controls the mechanical effects of a change in stress. It is de-
fined exclusively within the rock matrix, linking a change in stress to
the change in strain. The effective stress for the rock matrix saturated
with a single-phase fluid is defined as (Biot, 1941)

o =c+ap,l (2)

where ¢’ is the effective stress, « is the Biot coefficient, p,, is the fluid
pressure in the rock matrix i.e. matrix pressure, and I is the second-or-
der identity tensor. The Biot coefficient is defined as

K

a=1-- @)

S

where K and K; are the bulk moduli of a rock matrix and rock ma-
trix material (e.g., mineral grains), respectively (Zimmerman, 2000).
Assuming that the rock matrix shown in Fig. 1 undergoes a tempera-
ture change from initial temperature T, to a new value T,,, the thermal
strain in the solid rock, under the assumption of linearity, are given by
(Zimmerman, 2000)

€r = —0U; (Tm - TO) ()]

where a is a symmetric second-order tensor known as the thermal ex-
pansivity tensor of the rock matrix. If the rock is isotropic, then

_bh

o 3

()

where the scalar coefficient g is known as the coefficient of volumetric
thermal expansion of rock matrix. Note that due to the relatively slow
movement of the fluid inside the rock matrix, local thermal equilibrium
between the rock solid and the fluid in the matrix pores is assumed. The
stress-strain relationship for thermoelasticity can be written as (Khalili
and Selvadurai, 2003)

¢’ =De - BK (T, —Ty)1 ®)

in which D is the drained stiffness matrix. Assuming infinitesimal defor-
mations, strain is related to displacement by

e= % (Vu+vu') @)

where u denotes the displacement vector of the rock solid. Fracture sur-
faces are not traction-free in the present model, and hydraulic loading,
as well as the tractions due to the contact between fracture surfaces, are
applied on the fracture walls, as shown in Fig. 1. Assuming negligible
shear tractions exerted from the fluid on the fracture walls, the fluid
pressure is applied only in the normal direction on the fracture wall. The
tractions on the fracture boundary I, are

Fc =6, —pMm, 8)

where o, is the contact tractions on the fracture surfaces, py is the frac-
ture pressure, and n, is the outward unit normal to the fracture sur-
face (on both sides of the fracture). Integrating Eq. (1) over the do-
main, and after some manipulation, the differential equation describing
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the deformation field for a saturated rock matrix is given by

/ [div(De — ap,,I - K (T, — Ty) I)+F] dQ
Q

+/r (6. —pm,) dl' =0

c

©)

2.2. Fracture flow model

A separate flow model is considered for fractures. This model al-
lows direct computation of the fluid pressures inside the fracture, and
explicit application of hydraulic pressures on sub-dimensional fracture
walls (see Fig. 1). The objective is to obtain a more realistic representa-
tion of fracture flow. Assuming a high aspect ratio fracture 7', that has a
lateral extent that is much larger than its aperture, the average velocity
of a fluid along the fracture surface can be approximated using the cu-
bic law as (Zimmerman and Bodvarsson, 1996)

2
!

where a; is the fracture aperture, defined as the differential normal dis-
placement between two walls of the fracture, ar = (u t—uT)n. + af
, #¢ is the fluid viscosity. u* and u~ represent displacements on two
sides of the fracture, and af is the fracture aperture at contact. When
two surfaces of a fracture are in contact, the displacement field on two
surfaces of the fracture would be identical i.e. u* = u~, and the frac-
ture aperture at contact (afc) is a function of the contact tractions as
explained in section 2.7. The mass balance equation for a slightly com-
pressible fluid may hence be written as (Salimzadeh and Khalili, 2015,
2016)

. d
div (appvs) + o0 (agpy) =L =0 an
in which py is the fluid density, and Ly is the leakoff flow from the frac-
ture to the matrix. This leakoff leads to mass transfer coupling between
the fracture flow and rock matrix flow. Assuming that the fracture fluid
is Newtonian, the leakoff flow per unit area of the fracture wall can be
written, using Darcy’s law, as (Salimzadeh et al., 2017a)

Li=p & 9 (12)
f— Fr Hy on,

where k, is the intrinsic permeability of the rock matrix in the direction
normal to the fracture (in the direction of n.), and % represents the
pressure gradient along n.. In case of a fault zone, some average of the
fault zone permeability and the matrix rock permeability can be used
(Norbeck et al., 2016). Considering a barotropic fluid in which the fluid
density is a function of fluid pressure and temperature, the change in
density may be written as

—_— = —_ = —_ 13
a P T PPy 12

where ¢, and f; are the compressibility and volumetric thermal expan-
sion of fluid, respectively. Combining Egs. (10)-(13), and after some
manipulation, one obtains the governing equation for laminar flow
through the fracture under non-isothermal conditions as

|«
d Vp | = —L +ae—L —ap—L - 2P
M\ 2w ) T e T b5 pupon, U9




S. Salimzadeh et al.

a . L. . .
The term ()itf provides explicit coupling between the displacement

field and the fracture flow field, which is symmetric to the fracture pres-
sure loading term, pa,.

2.3. Matrix flow model

The flow through the porous matrix, i.e., matrix flow, is constructed
by combining Darcy’s law with mass conservation for the fluid. Neglect-
ing inertial effects, Darcy’s law describing matrix hydraulic diffusion un-
der hydraulic gradient may be written as

k
V=== (VP + pp8) as)
Hr

where v, is the relative velocity vector of the matrix fluid, k,, is the
intrinsic permeability tensor of the rock matrix, and g is the vector of
gravitational acceleration. The mass balance equation for the fluid in
the rock matrix may be written as

div (ppv,,) + % (p) +8(x—x.)L;=0 (16)

where ¢ is the rock matrix porosity, and v,, is the fluid velocity in the
matrix. 8(x — x.) is the Dirac delta function, where x, represents the
position of the fracture (I'.). Note that the leakoff only occurs on the
boundary of the volume element that is connected to a fracture (I').
Considering a barotropic fluid, the change in density may be written as

dpy dp,, dT,,
e 17
a5 Piby dt an

where c; and f; are coefficients of the fluid compressibility and volumet-
ric thermal expansion, respectively. Integrating over the element and af-
ter some manipulation, the governing equation for the flow model may
be expressed as

k
div ( 2V dQ =
/Qw(ﬂf( pm+pfg)> /Q

d(div u)
a—
ot

a-— d’ apm
+ | pcr+ > —_— 18)
< Ik, ) or
dT k,
- ¢ﬂf—’"] dQ+ —a—de
di I, #y On

The Biot coefficient « appears in Egs. (9) and (18), whereas it does
not appear in the fracture flow model (Eq. (14)), as the fracture itself
is not a “porous medium”. The Biot coefficient couples the flow in ma-
trix with the mechanical deformation, and setting « = 0 will decouple
the mechanical deformation model and the matrix flow model, in which
case mechanical loading will have no direct effect on the matrix pres-
sure, and vice versa. In contrast, fracture pressure will always be cou-
pled to the mechanical deformation model, irrespective of the value of
the Biot coefficient.

2.4. Matrix heat transfer model

The governing equation for heat transfer through the rock matrix
can be obtained by combining Fourier’s law with an energy balance for
saturated rock. It is assumed that the fluid velocity in the rock matrix
is slow enough such that the solid grains and the fluid in the rock ma-
trix are always in local thermal equilibrium. Convective, i.e., conduction
and advection, heat transfer in rock matrix can be written as
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me = _}‘mVTm + prmeVm (19)

where g, is the heat flux through the rock matrix, A, is the average
thermal conductivity tensor of the matrix, T,, is the matrix temperature,
Cyis the fluid specific heat capacity, and v,, is the fluid velocity. The av-
erage thermal conductivity tensor of the matrix is approximated as fol-
lows, from the thermal conductivity tensors of rock solid (A,) and fluid
(kf) as (see Zimmerman (1989) for more accurate models of the effec-
tive thermal conductivity)

The heat energy change due to thermal power in the course of the
bulk deformation of matrix and fluid can be expressed, respectively, as

d (divu)
u = ﬂsKTmT (21)

= (22)
d)ﬂ ftm a t
Heat is also exchanged between matrix and fracture fluid by conduc-

tion through the fracture surfaces, and by advection through the leakoff
mass exchange term, as

=+ L (T,

where ), is the average thermal conductivity of the rock matrix along

Gp = My a - Ty) 23)

A . . L or
the direction normal to the fracture (in the direction of n,), and 5~ rep-

resents the temperature gradient along n.. The heat storage in the ma-
trix saturated with a fluid is given by

oT,

= ppCp—— 24
where p,,C,, can be computed (exactly) from the density and specific

heat capacity values of rock solid (p,, Cy) and fluid (p; Cp) as
n=0=$)p,Ci+dpCy 25)

Combining the above-mentioned equations, and after integrating
them over the matrix and fracture domains, the governing equation for
heat transfer through the matrix can be written as

. oT, op
JLos vy an= [ Lo, e~ a7,
d (divu)

~ P KT =5

+ prfvmVTm] dQ 26)
oT
I
f e
+ prf——(T Tf)] dr

2.5. Fracture heat transfer model

Using a similar approach, the governing equation for heat transfer
through the fluid in the fracture can be obtained by combining Fourier’s
law with an energy balance for the fluid. The advective heat transfer
through the fluid in the fracture can be written as
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dpe = ~aghV T + agppCyTyv @n

and the final form of the heat transfer equation in the fracture can be
written as

div (aAVTy) = appyCra = arby Ty +apyCpy .V Ty
oT ky Op (28)
— o + pC— (T, T,
"on, pfcf'ufanC ( f m)

2.6. Finite element approximation

Governing equations are solved numerically using the finite element
method. The Galerkin method and finite difference techniques are used
for spatial and temporal discretisation, respectively. The displacement
vector u, fluid pressures p,, and p;, and matrix and fracture fluid temper-
atures T, and Ty are taken as the primary variables. Using the standard
Galerkin method, the primary variable X = {W.p,. P, T,y T¢} within an
element is approximated from its nodal values as

X = NX 29)

where N is the vector of shape functions and X is the vector of nodal
values. Using the finite difference technique, the time derivative of X is
defined as

90X X t4dt _ N
R o

where X'+ and X! are the values of X at time t + dt and t, respectively.
The set of discretised equations can be written in matrix form of SX = F,
in which S is the element’s general stiffness matrix as

-Suu §up §uT
S=Su Sy Spr (31
_STu STp STT

and F is the vector of right-hand-side loadings
F+Cp T,
T & +M, , B = Cp 1, Tl +Q, dt
F=| CHa'+M,,p/ - Cpr T/ +Q,di 32)
Tmcgmﬁ’ +My 7 T, = Cr , B, +Qp dr
My B/ = Crp By + Qe

where

Suu =K (33)
Sup = |~Cp,, _Cpf] (G4
Sur=[-Cr, 0 (35)

el
Spu = l—Cp 1] (36)
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pp
— Hpmdt+Mpmapm +meapfdt _mevpfdt (37
- pm,pfdt prdt +M[7f’pf+Lf7m’pfdt
[—C 0
=[O ] ,
pT i 0 —Cpf,Tf (38)
[T, CT
S=|", Tm] 39
[-1,Cc, ;T 0
Sp=1| " T (40)
P i 0 ~TiCp. 1,
STT
B Hdef"'MTm,T,,, +LT,,1,def —er,rfdf “:
B —Ly, 7di Hydi+ My g + Ly, 7di
K= /BITIDBldQ (42)
Q
C, = /Q B, aNdQ (43)
- T
Cpf—/NcncNdF (44)
CTm = /BzTﬂSKNdQ (45)
Q
H,, = / Bsz—mBsdQ (46)
" Q Hy
a 3
H = | VN VN.ar “7)
Py r c 12Mf c
a—¢
M, 50 = / N' <¢Cf+ X )ng “48)
Q s
_ T
M, = /F N, ageN.dl (49)
k. ON
L, = [ NT2Z <4
Piwpf /FC c /’lf anc (50)
H; = / B, B;dQ + / Np,Cyv,, VNAQ (51)
Q Q
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HTf = /r VNCTaf)»fVNCdF +/F NzafijfoVchr (52)
Q
My = /1“ NZagpyCN.dT 54
T
Copry = /r N afN.dl (56)
L =/NT }»a_T+pCEa—p N .dI'
T,,.Ty N c nanc 'f fﬂf on, c (57)

where K is the mechanical stiffness matrix, the C matrices are the cou-
pling matrices, and the H matrices represent the conductance and ad-
vection matrices. Matrices M are the flow-heat capacitance matrices.
Matrices L are the leakoff flow and heat matrices. Vector F is the ap-
plied load vector, vectors Q represent the fluid and heat flux vectors,
1, p and T are the vectors of nodal values of displacement, fluid pres-
sure, and temperatures, respectively. [B1]6x3n = VN, [By]ix3n = 8By,
and, [B3l3x, = ?N are derivatives of the shape function. V is the gra-
dient matrix,5={1 1 1 0 0 0 }T, and V is the gradient vector.
Superscript t represents the time at the current time step; superscript
t + dt represents time at the next time step, and dt is the timestep. The
non-diagonal components of the stiffness matrix S are populated with
the coupling matrices C, and L. Note that the leakoff term (flow and
heat) only exists for matrix elements (volume elements) connected to a
fracture; and the integration is performed over each side of the fracture
separately. The gradient matrix V for three-dimensional displacement
field is defined as

-, _
p 3 0
o < o
dy
_lo o ai
V=log 2 7 (58)
0z 0
9 9 9
0az N 0x
5 o O

The components of the stiffness matrix are dependent upon the pri-
mary unknown variables, i.e., conductance, capacitance and coupling
coefficients of the fracture are all dependent on the fracture aperture;
therefore, a Picard iteration procedure is adopted to reach the correct
solution within acceptable tolerance. For the current iteration, s + 1 in
the current step, n + 1, the solution-dependent coefficient matrices in
the stiffness matrix S are updated using weighted average solution vec-

tor X2 defined as

0 -1
X =1 =0XG3 +6X0 (59
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where X,:{ and X, are the solution vectors of the two most recent it-

erations in the current timestep n + 1, and @ = 2/3 is the weighing co-

efficient. For the first iteration s = 1, the previous timestep solution is

used as

X0 =x! =X 60
n+1 n+1 n (60)

where X, is the solution vector from previous timestep n. The iterations

. . . s . .
are repeated until consecutive normalised values of X, agree to within
a specified tolerance ¢

s+l _ s
| Xn+l Xn+1 “

”XS+1 ’

n+l1

(61)

The tolerance is set to 0.01 in this work. The discretised coupled
equations are implemented as part of the Imperial College Geomechan-
ics toolkit (Paluszny and Zimmerman, 2011), which interacts with an
octree volumetric mesher and the Complex Systems Modelling Plat-
form (CSMP+ +, also known as CSP), an object-oriented application
programme interface (API), for the simulation of complex geological
processes and their interactions (formerly CSP, Matthii et al., 2001).
Quadratic unstructured elements are used for spatial discretisation of
surfaces (quadratic triangles) and volumes (quadratic tetrahedra). The
triangles on two opposite surfaces of a fracture are matched with each
other, but they don’t share nodes, and duplicate nodes are defined for
two sides of a fracture. Therefore, there are two matrix degrees of free-
dom and one fracture degree of freedom as the governing equations for
the fracture (flow and heat) are solved only on one side of the fracture.
The triangles are matched with faces of the tetrahedra connected to the
fractures. Fracture flow and heat equations are solved only on one side
of the fracture, whereas, the coupling matrices C and L are accumulated
on both sides of the fracture. Matrix deformation, flow and heat equa-
tions are accumulated over the volume elements. The ensuing set of lin-
ear algebraic equations SX = F is solved at each iteration using the al-
gebraic multigrid method for systems, SAMG (Stiiben, 2001).

2.7. Contact model

In the present study, fractures are modelled as surface discontinu-
ities within a three-dimensional matrix; therefore, the contact problem
arises and the contact stresses (normal and shear) are required to be
computed in order to avoid the inter-penetration of the fracture surfaces
under compressive loading. The Augmented Lagrangian (AL) method
has been successful for enforcing the contact constraint accurately when
computing high contact precisions, by combining the Lagrange mul-
tiplier and penalty methods to exploit the merits of both approaches
(Wriggers and Zavarise, 1993; Puso and Laursen, 2004). A sophisti-
cated algorithm is used for the treatment of frictional contact between
the fracture surfaces, based on isoparametric integration-point-to-inte-
gration-point discretisation of the contact contribution. Contact con-
straints are enforced by using a gap-based AL method developed specif-
ically for fractured media (Nejati et al., 2016). In this model, penal-
ties are defined at each timestep as a function of local aperture, so
that they are larger away from the fracture tips, and reduce to zero at
the tips. In the contact model, the equilibrium equation has been sat-
isfied in which the hydraulic and thermal contributions are applied as
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boundary values on the right-hand-side

/ [div (De) + F]dQ
Q
= / [div (ap,I)] dQ
Q
+/ [div (,K (T, — Ty) 1)] dQ
Q
~¢,)dl
+ /F c (P, — o)

Pressures and temperatures are imported from the THM model.
When two sides of a fracture are in contact, the change in the aperture
of the fracture is defined as a linear function of the change in normal
contact traction as

Ao
K

n

(62)

n

Aaf = — (63)
where af is the fracture aperture at contact, K, is the fracture stiffness,
and o, is the contact stress (compressive) normal to the fracture. How-
ever, nonlinear fracture stiffness models (Bandis et al., 1983; Barton et
al., 1986) can also be used. The contact and THM models are coupled
iteratively, such that in each timestep, first the THM model is run with
the contact stresses computed from the previous step. Then the com-
puted pressures and temperatures from the THM model are passed to
the contact model, and the contact stresses are updated. Finally, the
THM model is run again with updated contact stresses. The thermal and
hydraulic loadings are applied as body forces to the right-hand-side of
the contact model while contact stresses are applied as boundary trac-
tions to the right-hand-side of the THM model.

3. Simulation of geothermal systems

Three sets of examples of geothermal systems are selected for simu-
lation in this section. The first example is used for validating the heat
transfer module of the present model, as well as delineating the ex-
tent of the validity of current semi-analytical solutions for the case of a
permeable matrix. Further validation examples for the present numeri-
cal model can be found in Salimzadeh et al. (2016), Salimzadeh et al.
(2017a, 2017b, 2017c), and Usui et al. (2017). The second and third ex-
amples demonstrate the effects of variation of the contact tractions and
fracture aperture due to thermoporoelastic deformation of the matrix
on fluid flow within a fracture in an EGS, and within a fractured geot-
hermal reservoir, respectively. The effect of gravity has been ignored in
these simulations by assuming that the fluid flow dominantly occurs in
the horizontal direction.

Table 1
Thermal properties of the fluid and rock.
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3.1. Rigid fracture in permeable matrix

Bodvarsson (1969) derived an analytical solution for the problem of
advective-diffusive heat transfer through a single one-dimensional frac-
ture, while the heat is transferred through the matrix only by diffusion
in the direction normal to the fracture (1D diffusion). Ghassemi et al.
(2008) also proposed semi-analytical solution for a similar problem with
leakoff of the fluid into the matrix. However, in their solution, it is ar-
bitrarily assumed that the leakoff rate is constant (a fixed ratio of the
injection rate Q; = mQ) and does not vary in time. Such an assumption
may not be realistic, as is shown by the present simulations. By setting a
very small value to m (for example m = 0.01), their solution approaches
that of Bodvarsson (1969).

In this section, a fracture of length 100 m is considered between in-
jection and production wells. Plane-strain conditions are assumed, in
order to validate the model results against the above-mentioned so-
lutions. Injection of cold water at temperature 20°C, at constant rate
Q = 0.0001 m%/s is assumed, while production is simulated through
constant zero pressure in the production well. The initial temperature of
the rock matrix is set to 100°C. Water has a density of p; = 1000 kg/m3,
a heat capacity of C; = 4200 J/kg °C, and the matrix rock has density
ps = 2820 kg/m?, heat capacity of C; = 1170 J/kg °C, and thermal con-
ductivity of A; = 2.88 W/m °C. The material properties are summarised
in Table 1 (example 1). Constant matrix pressure and temperature is as-
sumed at the far boundaries of the simulation region.

Several cases are simulated, in which the permeability of the rock
matrix is increased from zero to 1 x 10~'2 m2. The results for the fluid
temperature at production, as well as spatial distribution of the fluid
temperature along the fracture are shown in Figs. 2 and 3. Included
in these figures are the solutions proposed by Bodvarsson (1969) and
Ghassemi et al. (2008) for comparison. The temperature of the cold wa-
ter in the fracture increases as it exchanges heat with the hot rock ma-
trix. For the case with impermeable matrix, the temperature of the pro-
duced fluid drops more rapidly than for the cases with a permeable ma-
trix. This is because the fluid has higher velocity in the impermeable
case, and so the cold water reaches the production well more rapidly.
Note that the production is defined by constant pressure at the producer
well; thus, the volume of the produced water is variable in time. Very
good agreement is found between the present model results for the im-
permeable case and the solution proposed by Bodvarsson (1969), and
also with the solution by Ghassemi et al. (2008) for the case of low
leakoff ratio (m = 0.01). In the permeable cases, the permeability of the
matrix is considered only in the direction normal to the fracture (to cre-
ate one-dimensional leakoff), except one case that is described by the
text “[2D]” in Figs. 2 and 3. When the permeability of the matrix in-
creases, the leakoff increases, so the fluid velocity in the fracture de-

Material Property Example 1 Example 2 Example 3 Unit
Young’s Modulus Rigid 37.5 20 GPa
Poisson’s ratio - 0.25 0.20 -
Matrix Permeability 0-1x10713 0 1x107 14 m?
Fluid Density (p) 1000 1000 1000 kg/m3
Fluid specific heat capacity (Cp) 4200 4200 4200 J/kg °C
Fluid thermal conductivity (1) 0.6 0.6 0.6 W/m °C
Fluid thermal expansion coefficient () 0.207 x 1073 0.207 x 1073 0.207 x 1073 1/°C
Rock Density (p) 2820 2650 2650 kg/m?®
Rock specific heat capacity (Cy) 1170 800 800 J/kg °C
Rock thermal conductivity (i) 2.88 2.9 2.9 W/m °C
Rock thermal expansion coefficient (f;) 24 x107° 24 x107° 24 x107° 1/°C
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Fig. 2. Fluid temperature at producer versus time for rigid fracture with different ma-
trix permeability (a), and for different leakoff ratios m (b) from the solution proposed by
Ghassemi et al. (2008). The permeability of the matrix is assumed only in the direction
normal to the fracture surface (1D leakoff) except for the case shown by [2D].

creases. Therefore, the residence time of the fluid, i.e., the time that the
injected fluid spends inside the fracture prior to reaching the produc-
tion well, increases, and hot fluid is produced for an extended period
of time, as shown in Figs. 2 and 3. Leakoff also increases with the di-
mension of the flow in matrix (Salimzadeh et al., 2017a), so for the case
with matrix permeability k,, = 1 x 10713 m?, the case with 2D leakoff
predicts a longer period of hot fluid production compared with the 1D
leakoff simulation. The solution by Ghassemi et al. (2008) for the fluid
temperature at the producer is computed for different values of leakoff
ratio m = 0.01, 0.50, 0.75 and 0.99, and plotted in Figs. 2 and 3. In
their solution, higher values of m represent a higher amount of leakoff,
so the produced water has higher temperature for an extended period of
time. However, as time elapses a sharp reduction in the temperature of
the produced water is observed such that the case with very high leakoff
ratio m = 0.99 produces colder water in the producer at a later time.

In Fig. 3, the spatial distribution of the temperature of the fluid in-
side the fracture is shown at time t = 108 s. Again, very good agree-
ment is found between the results of the present study and the so-
lutions given by Bodvarsson (1969), and also with the solution by
Ghassemi et al. (2008) for an impermeable matrix. As the leakoff in-
creases, either due to an increase in the permeability of the matrix, or
an increase in the dimension of the flow field within the matrix, the
fluid velocity in the fracture reduces. Slower flow in the fracture in-
creases the fluid residence time, and therefore results in higher heat ex-
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Fig. 3. Spatial distribution of fluid temperature in the fracture for rigid fracture with dif-
ferent matrix permeability (a) and for different leakoff ratios m (b) from the solution pro-
posed by Ghassemi et al. (2008). The permeability of the matrix is assumed only in the
direction normal to the fracture surface (1D leakoff) except for the case shown by [2D].

change with the hot matrix, and so a higher fluid temperature is ob-
served in the producer for an extended period of time. Again, the pre-
sent model results differ from the solution by Ghassemi et al. (2008).
This is due to the fact that in the work of Ghassemi et al. (2008), it is
arbitrarily assumed that the leakoff is equal to some fixed fraction of the
injection rate, which does not vary in time, whereas in the present work
the leakoff is computed as part of the coupled simulation, and the ratio
of leakoff to injection is found to vary with time.

3.2. Deformable fracture in an impermeable matrix

A disk-shaped fracture of 200 m diameter is considered in the hor-
izontal plane, with injection and production wells connected to the
fracture at locations 50 m from the centre of the fracture to the left
and right, respectively, as shown in Fig. 4. The injection rate is set to
Q = 0.001 m3/s of water with temperature of 20° C, while the rock has
an initial temperature of 80° C. Rock deformation is allowed in this ex-
ample, and the elastic properties of the rock are set to Young’s modu-
lus E = 37.5 GPa, and Poisson’s ratio v = 0.25. Material properties of
the fluid and rock are given in Table 1 (example 2). Production is de-
fined by constant pressure at the producer. The in situ stress normal to
the fracture plane is set to 6 = 60 MPa, and initial fluid pressure is set
to p; = 20 MPa. The fracture stiffness is set to 10'! Pa/m, and the frac-
ture aperture at zero contact stress is set to 0.6 mm. The viscosity of
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Fig. 4. The geometry of the model and the mesh of the fracture for the case of deformable
fracture in an impermeable matrix.

the water is defined as a function of the temperature

iy = e(—52.843+3703.6/Tf+5.866 ln(Tf)—S.SSXIO 29Tf10) ©4)
in which, the fluid temperature Ty is in Kelvin. This function will
give fluid viscosity of y; = 0.001 Pa s at Ty = 20° C. In this example,
both the contact model and THM model are run sequentially at each
timestep. The contact model is run using the pressure and temperature
of the medium from the THM model, and the THM model is run us-
ing the contact stresses from the contact model. Two or three itera-
tions are required in order to reach desirable convergence. The results
for spatial distribution of the fluid temperature, fracture aperture, and
contact traction within the fracture at time t = 10° s are shown in Fig.
5. The cold fluid at injection reduces the temperature of the rock ma-
trix, which results in contraction of the matrix. The volumetric con-
traction of the matrix reduces the contact stress on the fracture and
increases the fracture aperture around the injection well, and also to-
wards the production well. The contact traction at the injector is re-
duced to about 30 MPa from an initial value of 40 MPa att = 10° s, and
the aperture at the injector increases to about 0.3 mm. The increased
aperture creates a favourable path for the fluid to flow towards the pro-
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Fig. 5. Spatial distribution of the fluid temperature, fracture aperture and contact traction
within the fracture, at t = 10° s. The contact stress and the fracture aperture at the frac-
ture tips is equal to zero.

ducer, i.e., a channel, which results in low heat extraction from other
parts of the fracture away from this path, as shown in Fig. 5. For in-
stance, the area behind the producer remains relatively untouched as
the injected fluid cannot reach this area. The evolution of the injec-
tion pressure and the fracture aperture at the injection point is shown
in Fig. 6. At early time (t < 10° s), the injection pressure increases due
to the increase in the viscosity of the fluid. The increased pressure re-
duces the contact stress and results in an increase in the aperture. At
later times (¢t > 10° s), the cooling of the matrix starts to affect the sur-
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Fig. 6. Evoloution of the injection pressure and the fracture aperture at the injection point for the case of deformable fracture in an impermeable matrix.

rounding rock, and as a result the aperture increases, and the injection
pressure reduces as shown in Fig. 6.

3.3. Deformable fracture in a permeable matrix

In this case, a circular fracture of diameter 400 m is assumed in
a plane that makes an angle of 30° with the horizontal direction, as
shown in Fig. 7. Vertical injection and production wells are located
at a 300 m distance from each other, and injection and production is
performed through the rock matrix, as the wells are not directly con-
nected to the fracture. Only the lower 20 m of the wells are assumed to
be perforated. Cold water is injected at a rate of Q = 0.005 m®/s at a
temperature of 20°C, and produced at the same rate, Q = 0.005 m®/s,
at the producer. The rock has elastic properties of Young’s modulus
E = 20 GPa, Poisson’s ratio v = 0.20, and Biot coefficient o« = 0.8.
Rock and fluid properties are given in Table 1 (example 3). Three cases
are assumed: case 1 with low initial temperature (T;; = 80°C) and low
initial contact stress (c;,; = 60 MPa), case 2 with high initial tempera-
ture (T,; = 250°C) and low initial contact stress (c;; = 60 MPa), and
case 3 with high initial temperature (T;; = 250°C) and high initial
contact stress (c;; = 75 MPa). In all three cases, the initial fluid pres-
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0 =0.005m¥/s, kn = 10 m2, $=0.2
E=20GPa,v=0.20, a=0.8

£ = 2650 kg/m’, A, =2.9 W/m°C
fe=24x10" 1/°C, C; = 800 J/kg°C

900m

Fig. 7. Model geometry for the case with deformable fracture in a permeable matrix. The
injection and production is to/from the rock matrix, as the wells are not directly connected
to the fracture.
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sure is set to 20 MPa, the permeability of the rock matrix is set to
k., = 10~ '*m?, the fracture stiffness is set to 10! Pa/m, and the frac-
ture aperture at zero contact stress is set to 0.6 mm.

The initial timestep is set to 1 day, and it is increased in each step by
a factor of 1.1 until it reaches to a maximum timestep of 0.2 years. The
results of the simulation for the fluid temperature, aperture and contact
stress distributions at the fracture after 10, 20, and 30 years of injection
for each case are shown in Figs. 8-10, respectively. Injection of the cold
fluid induces contractions on the rock matrix around the injection well;
such volumetric contractions reduce the contact stress on the fracture
in the area most close to the injection well. The reduction in the con-
tact stress results in an increase of the fracture aperture, and that cre-
ates a preferential path for the flow. As time elapses, the region of the
fracture with decreased temperature, increased aperture, and decreased
contact stress expands. The rate and the shape of the expansion depend
on both initial aperture and initial rock temperature. Higher initial aper-
ture makes the fracture a permeable pathway for the flow. Therefore,
the cold front moves towards the fracture and that further increases the
fracture aperture (cases 1 and 2). This results in developing an area with
increased aperture in the fracture, as can be seen in Figs. 8 and 9, for
both cases 1 and 2. That area points towards the nearest “exit” from the
fracture towards the production well. Higher initial temperature leads
to a larger temperature change in the matrix, which creates higher con-
traction followed by higher reduction in the contact stress and higher
increase in the fracture aperture. Therefore, case 2, which has higher
initial aperture and higher temperature variation, creates the most dom-
inant favourable path for the flow of cold fluid, which is visible as early
as 10 years.

Lower initial aperture (the initial aperture of 0.05 mm correspond-
ing to the initial contact stress of 75 MPa) makes the fracture hydraulic
conductivity to be on the same order as that of the matrix, so the frac-
ture initially is not a preferential pathway for the fluid (case 3). How-
ever, as the cooling of the matrix occurs, the contraction of the rock re-
duces the contact stress on the fracture, which then increases the frac-
ture aperture, and so the fracture becomes a preferential pathway for
the flow, as shown in Fig. 10. The area with increased aperture, how-
ever, does not reach the same location as for cases 1 and 2. This is due
to lower conductivity of the fracture ahead of the cold front, which pre-
vents the movement of the cold front in the fracture. The distribution
of matrix temperature along a horizontal cut-plane, after 30 years, is
shown for the three cases in Fig. 11. In case 2, the fracture is clearly
acting as short-circuit for the flow, whereas in the first case, the high
initial fracture aperture allows the cold water to access larger areas of
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Fig. 8. Spatial distribution of the temperature, aperture and contact stress on the fracture after 10, 20 and 30 years of simulation for low temperature case (T;; = 80°C) with

6y, = 60 MPa. The contact stress and the fracture aperture at the fracture tips is equal to zero.

the fracture. In the third case, the lower initial aperture limits the dis-
tribution of the cold water on the fracture, but the aperture increase
due to the contraction of the matrix creates a favourable path for the
cold water to move towards the producer. Again, as the initial aperture
in this case is very low, the size of the area with increased aperture is
smaller than the one in case 2. In Fig. 12, the maximum increase in the
fracture aperture, as well as the temperature drop at the producer, are
compared for the three cases. The magnitude of the aperture increase
in case 3 is the highest, while the temperature drop at the producer
for case 2 is the highest. As mentioned earlier, the area with increased
aperture in case 3 is smaller and therefore, less effective than the one
in case 2. The temperature drop in the producer, as well as the max-
imum aperture increase, is the lowest in case 1. This is due to lower
volume contraction of the matrix due to lower initial temperature of
the reservoir, and also due to distribution of the cold water in the frac-
ture due to the high initial aperture. In case 3, although the fracture
has a lower initial permeability than the case 1, but the temperature
break-through occurs earlier. It is interesting to note that the maximum
aperture increase (ie., the maximum contact stress reduction) rapidly
reaches a maximum value at an early time (around seven years), and
then decreases. The reduction in the aperture is due to the stress redis-
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tribution in the fracture, as the region of the fracture with reduced con-
tact stress expands.

4. Conclusions

A fully coupled THM model that rigorously models deformable frac-
tures in a permeable matrix has been presented. The THM model is fur-
ther coupled with a contact model to resolve the contact stresses be-
tween fracture surfaces. The model was validated and applied to sev-
eral examples of geothermal systems, in both impermeable and perme-
able rocks. Conductive fractures create preferential paths for the flow,
and the flow of the cold fluid reduces the temperature of the rock ma-
trix surrounding these paths. The volumetric contraction of the matrix
results in the local increase in the fracture aperture, ie., channelling
of the flow. In cases with a permeable matrix, the initial aperture of
the fractures initially controls the flow of the cold fluid. However, as
the matrix temperature decreases, the volumetric contraction of the ma-
trix increases the aperture in the nearby fractures, which in turn be-
come the preferential pathways for the flow. The contact stress on the
fracture is reduced as the matrix contracts; however, the contact stress
reaches a minimum value and then increases. The increase in the con-



S. Salimzadeh et al.

10 years

Temperature (C)
250,

' 135.
I 775
200

Apeﬂure {rn)

0 0003067

EI 000120

Contact 5"953 (PU]

36@0?
2" Te+7

1 Be+7

1 000e+07

tact is due to the redistribution of the stresses due to the expansion of
the region with reduced contact stress. In other words, as the area of the
fracture affected by the matrix contraction expands, the stresses redis-
tribute, which increases the minimum contact stress. The stress redistri-
bution reduces the ability of the fracture to propagate under pure open-
ing mode, while the expansion of the area with lower contact stress can
increase the possibility of fracture propagation under shear. As future
work, the computational method can be further improved by using par-
allel computing in order to simulate complex heterogenous media con-
taining many discrete fractures.

Acknowledgments

Authors SS, AP and RWZ thank the UK Engineering and Physical
Sciences Research Council (EPSRC) for partially supporting this work,

12

20 years

Geothermics xxx (2017) xxx-xxx

30 years

Fig. 9. Spatial distribution of the temperature, aperture and contact stress on the fracture after 10, 20, and 30 years of simulation for high temperature case (Tj;
6y, = 60 MPa. The contact stress and the fracture aperture at the fracture tips is equal to zero.

= 250°C) with

through the CONTAIN Project EP/K036025/1. Author AP also thanks
the European Commission for partially funding this work through the
TRUST Collaborative Project, 309067. Authors SS and HMN thank the
European Union for partially funding this work through the EU Horizon
2020 research and innovation programme, under grant agreement No.
654662.



S. Salimzadeh et al. Geothermics xxx (2017) xxx-xxx

10 years 20 years 30 years

Temperature (C)
250.
193.
' 135.
775
200
Contact Strass (Pa)
4.100e+07
5,125e+7
l 4,1e+7
3.075e+7
I 2.000e+07

Fig. 10. Spatial distribution of the temperature, aperture and contact stress on the fracture after 10, 20, and 30 years of simulation for high temperature case (T;; = 250°C) with
o = 75 MPa. The contact stress and the fracture aperture at the fracture tips is equal to zero.

Aperture (m)

0.000400
| 0.00035
g 0.0002333

I 0.0001167
5.00e-05

13



S. Salimzadeh et al. Geothermics xxx (2017) xxx-xxx

Fig. 11. Spatial distribution of the temperature on a horizontal cut-plane passing through
the injection well, the fracture and the production well after t = 30 years of simulation,
for different cases: T;,; = 80 and 250°C, o;,; = 60 and 75 MPa.
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cases with deformable fracture in permeable matrix.
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