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Global Navigation Satellite Systems (GNSS) are used widely in the provision of Intelligent 
Transportation System (ITS) services. Today, there is an increasing demand on GNSS to support 
applications at lane level. These applications required at lane level include lane control, collision 
avoidance and intelligent speed assistance. In lane control, detecting irregu-lar driving behaviour within 
the lane is a basic requirement for safety related lane level appli-cations. There are two major issues 
involved in lane level irregular driving identification: access to high accuracy positioning and 
vehicle dynamic parameters, and extraction of erratic driving behaviour from this and other related 
information. This paper proposes an inte-grated algorithm for lane level irregular driving identification. 
Access to high accuracy posi-tioning is enabled by GNSS and its integration with an Inertial Navigation 
System (INS) using filtering with precise vehicle motion models and lane information. The identification of 
irregu-lar driving behaviour is achieved by algorithms developed for different types of events based on 
the application of a Fuzzy Inference System (FIS). The results show that decimetre level accuracy can 
be achieved and that different types of lane level irregular driving behaviour can be identified.

A B S T R A C T

1. Trajectory. 2. Algorithm. 3. High accuracy. 4. GNSS.

1. INTRODUCTION.                The increase in traffic in urban areas has been linked to a
growing number of accidents and fatalities globally. In 2012, the total number of cas-ualties in 
road accidents in the United Kingdom was 195,723, of which 1,754 were fatal and 23,039 were 
serious injuries (Kilbey, 2013). Driving behaviour (including sudden lane change and erratic 
driving due to drowsiness) contributes to more than 90% of these accidents (Aljaafresh, 2012). 
These driving styles, which might be characterised as weaving, swerving and jerky driving 
constitute irregular driving. Early detection of irregular driving within the lane has the potential 
to prevent the occurrence of acci-dents. Intelligent Transport Systems (ITS) technologies, with 
the function of providing the evaluation of driving performance and improvement of driving 
behaviours, can be
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used for irregular driving identification. Based on the lane level irregular driving iden-
tification technologies, more applications can be developed, such as lane control, col-
lision avoidance and automatic driving. These applications could be used by vehicle 
manufacturers, logistic companies, police stations and other related departments. 
Previous research focusing on irregular driving identification in the early stages has 
mainly been based on two approaches, namely, the vehicle’s real-time driving pattern 
detection and driver’s physical behaviour monitoring.

For real-time driving pattern detection, various sensors, such as positioning, orien-
tation, velocity and vision, are used to detect vehicle motion information, and the col-
lected data are subsequently analysed to find cues of irregular driving. Lecce and 
Calabrese (2008) proposed a system based on position and acceleration collection from 
the Global Positioning System (GPS) and accelerator, and used pattern matching to 
identify and classify driving styles. Chang et al. (2008) developed a vision-based system 
with the function of learning the trajectories and longitudinal and lateral vel-ocities of the 
vehicle and then used fuzzy neural network-based image processing infor-mation to 
identify the danger level of the vehicle. Krajewski et al. (2009) designed an orientation 
sensor-based system to collect driver fatigue information and used signal processing to 
capture fatigue impaired driving patterns. Dai et al. (2010) proposed a system to detect 
dangerous driving based on the mobile phone with an accelerometer and orientation 
sensor. The warning will be issued if collected accelerations are matched with typical 
drunk driving patterns. Sultani and Choi (2010) proposed a vision sensor-based approach 
for detecting and localising irregular traffic using an in-telligent driver model. The image 
information was then learned using a neuron network to detect the abnormal driving. 
Mohamad et al. (2011) used GPS to collect the position and velocity of the vehicle for the 
detection of abnormal driving. Imkamon et al. (2008) proposed a vision and orientation 
sensor-based method to collect driving information and then use fuzzy logic systems to 
classify different levels of hazardous driving. Although the real-time driving pattern 
detection approach has shown its great potential for irregular driving detections, a 
technical barrier that needs to be surmounted is the performance of vision sensor-based 
research that can be affected under various weather conditions. In addition, some 
research employing this approach significantly relies on the readings of high grade GPS or 
other motion sensors, the cost of which may hinder their wider practical use. Moreover, 
most of the above-discussed irregular driving detection systems are still in an early stage 
of de-velopment with neither field tests nor a robust algorithm to distinguish different 
types of irregular driving styles; therefore, their efficiency and reliability need to be further 
examined.

On the other hand, for driver physical behaviour monitoring, visual or auxiliary 
systems are always used. Visual observation is an option for detecting driver fatigue. 
Eriksson and Papanikolopoulos (2001) developed a vision-based system to monitor 
driver eyelid movement, where a warning would be triggered when irregular eye closure 
was observed. Zhu and Ji (2004) developed a dual camera-based system on the 
dashboard to capture the visual cues of drivers, such as eyelid movement, gaze 
movement, head movement and facial expression. A probabilistic model was also 
developed to analyse the obtained fatigue information. Lee et al. (2006) designed a 
camera-based system to capture the driver’s sight line and driving path, and calculated 
their correlations to monitor the driving status and patterns. Albu et al. (2008) used a 
vision sensor in conjunction with a force sensor on the accelerator pedal to monitor eye
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conditions and to collect the exerted force respectively, for driver fatigue monitoring. 
Omidyeganeh et al. (2011) presented a vision sensor-based system to collect driver’s eye 
closure and yawning information for drowsiness monitoring. Apart from the above re-
search, auxiliary systems integrated with the vehicle for vehicle-driver interactions de-
tection is also an option for monitoring the driver. Heitmann et al. (2001) proposed 
various technologies, including a head position sensor, an eye-gaze system, a two 
pupil-based system and an in-seat vibration system for driver fatigue monitoring. 
Desai et al. (2006) proposed a system to define the level of drivers’ alertness based on 
the time derivative of force exerted at the vehicle-human interface, such as pressure on the 
accelerator pedal. Sandberg et al. (2011) presented a method for abnormal driving 
detection by using physiological signals, such as signs of sleepiness detected by 
analysing brain activity through electroencephalography. Other auxiliary systems such 
as electrocardiogram, electromyogram, and skin conductance have also been 
investigated for the detection of driver fatigue and drowsiness (Mohamad et al., 
2011). While driver physical behaviour monitoring has emerged as a promising ap-
proach, the vision sensor installed inside the vehicle can lead to a safety hazard due to 
driver distractions. Moreover, ambiguous road marks and bad weather can seriously affect 
the performance of the vision sensor. For the auxiliary system, compatibility issues can 
be raised as a coupled system is strictly required for system operation. Furthermore, 
the complexity and high cost of the auxiliary systems can make it diffi-cult to integrate in 
practice. Thus, driver physical monitoring based on an irregular driving detection 
approach is difficult for wider application.
From the issues discussed above, this paper proposes a new lane level irregular 

driving identification algorithm based on a real-time driving pattern detection ap-
proach. The algorithm includes two parts. The first part is a GPS/INS integration al-
gorithm to provide lane level positioning and high accuracy dynamic parameter 
estimation and the second part is a Fuzzy Inference System (FIS)-based irregular 
driving identification algorithm to distinguish different types of irregular driving. 
The proposed method takes advantage of merging high accuracy vehicle positioning 
and dynamic parameter estimations with different types of irregular driving identifica-tion 
technology, which has not been considered by previous investigations. Moreover, in this 
paper, for the initial field test, the outputs from the fusion algorithm for a Real Time 
Kinematic (RTK) GPS receiver and commercial INS are used for lane level irregular 
driving identifications without the need of vision or other high grade sensors. 
Using this method, the cost can be decreased and the results can be more en-
vironmentally insensitive. In the following discussions, Section 2 describes the GPS/
INS integrated model with precise positioning and dynamic parameter estimation as 
well as the detection of driving events that characterise different types of driving 
styles based on FIS using estimated integrated results. Section 3 presents the test 
results and Section 4 concludes the paper.

2. IRREGULAR DRIVING DETECTION. The system is designed to link high
precision positioning estimation with irregular driving detection. The improvement 
of vehicle positioning and dynamic parameters estimation accuracy is achieved by in-
tegrating precise vehicle models with GPS/INS-based positioning measurement and 
then using this in tandem with an irregular driving detection algorithm to recognise 
different types of irregular driving patterns.
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2.1. System Overview. The specific irregular driving scenarios are generated on 
both straight and curved lanes. On the straight lane, the most common irregular 
driving styles for highways are weaving, swerving and jerky driving. On the 
curved lane, weaving and jerky driving can also occur, but swerving takes the form 
of over-turning or under-turning. Figure 1 presents the different types of driving 
styles, as elaborated in this paper.
Based on the defined scenarios, omega and d, which are the vehicle’s yaw rate and 

lateral displacement respectively, represent the vehicle’s manoeuvres. In order 
to smooth the noises of the filter estimated values and extract the trend of 
their changes, Moving Average Deviation (MAD) of omega and d, noted as O-
indicator and D-indicator respectively are developed to represent the different 
vehicle driving types. The system to detect irregular driving has to recognise a driving 
event that char-acterises the different driving styles based on the O-indicator and D-
indicator derived from the filter estimated omega and d at every time epoch.
The framework of the system in Figure 2 shows the designed lane level irregular 

driving detection system, which contains two main parts. The first part is lane level

Figure 1. Driving Styles: (a) Scenario 1 Weaving on Straight. (b) Scenario 2 Swerving on 
Straight.(c) Scenario 3 Jerky Driving on Straight. (d) Scenario 4 Normal Driving on Straight. (e) 
Scenario 5 Weaving on Curve. (f) Scenario 6a Over-turning on Curve. (g) Scenario 6b Under-
turning on Curve.(h) Scenario 7 Jerky Driving on Curve. (i) Scenario 8 Normal Driving on 
Curve. (NHTSA, 2012)
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precise positioning and parameter estimation algorithm. In order to collect the vehi-cle’s 
driving data, one INS with one gyro and one accelerometer mounted along the vehicle 
body axis is used to output the yaw rate, acceleration and heading angle for the vehicle 
heading direction. One GPS is used to collect the vehicle’s local coordinates and heading 
velocity. The collected initial position is used to feed the Particle Filter (PF) or Extended 
Kalman Filter (EKF) models with the precise vehicle motion models to provide the 
estimated positioning and attitude parameters for the next time epoch for iteration. The 
second part is the irregular driving detection algorithm. This started from the calculation 
of O-indicator and D-indicator based on the first part’s estimated omega and d. These 
two indicators are then used as the input of the FIS for driving pattern identification. The 
FIS outputs the risk type indicator, which is defined with four fuzzy values A, B, C, D. 
The risk type level increases from A to D. Fuzzy value A means lowest risk type and D 
means highest risk type. In order to amplify the features of each driving style, driving 
classification indicators are then developed based on the risk type indicators. Finally, by 
comparison of the sorting of calculated driving classification indicator with predefined 
sorting rules of driving clas-sification indicators extracted from the reference data, the 
system will output the

Figure 2. Framework of the Designed Irregular Driving Detection System.
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identified driving style types, including weaving, swerving, jerky driving and normal 
driving on straight and curved lanes.

2.2. Lane Level Positioning Design. The filter model design algorithm is critical 
for the estimated positioning performance, which is the key part of the lane level ir-
regular driving detection system. PF and EKF are the most relevant and applicable 
filters for sensor integration; the design of the filter models based on PF and EKF 
are discussed in the following sub-sections.

2.2.1. Particle Filter Model-Based Design. The PF is a non-parametric imple-
mentation of a recursive Bayes filter. The probability density is approximated by 
a number N of weighted samples. Gustafsson et al. (2002) presented the steps for the 
par-ticle filtering process.
In the lane level precise positioning algorithm developed in this paper, the steps are 

described as follows:
2.2.1.1. Initialisation. The defined state vector is given by:

X t ð Þ ¼  xyvθωaβd½ � T ð1Þ
Where x is the X-axis coordinate (in metres) of the vehicle’s geometric centre in the 
local UK National Grid coordinate system, y is the Y-axis coordinate (in metres) of 
the vehicle’s geometric centre in the local UK National Grid coordinate system, v is 
the velocity at the heading direction, θ is the heading angle of the vehicle, ω is the 
vehicle yaw rate, a is the vehicle acceleration along the heading, β is the angle of inclin-
ation between the central line of lane segment and the X-axis of local British National 
Grid coordinates and d is the vehicle lateral displacement.
The state vector from Equation (1) can be divided into two sub state vectors. The 

stated vector Equation (2) is defined as the vehicle motion vector, which is for the par-
ticle filter cycle, and state vector Equation (3) is defined as the lane related vector, 
which is the dependent vector of state vector Equation (2) in the calculation.

p t ð Þ ¼ ½ xyvθωa�T ð2Þ
q t ð Þ ¼ ½ βd�T ð3Þ

In the particle filter operation, the parameters change with time epochs and particles 
with each parameter within the state vector Equation (1) expressed as

Xt
ið t ¼ 0 . . .  n; i ¼ 1 . . .  nÞ 4Þð

iWhere Xt is the parameters within the state vector Equation (1) at the time epoch t with 
the particle number i.

i

i

The filter begins with the initialisation of the particles x0 of the vehicle motion 
vector p(t). To realise this, first the local coordinate sub-state variables x and y are 
randomly generated following a Gaussian distribution with the first accepted GNSS 
point as the mean value and a standard deviation value according to the GNSS a 
posteriori solu-tion statistics. The initial heading velocity vi0 is set as 0, for the initial 
position of the vehicle is assumed as static. Since it is assumed that no information on 
the initial heading is available, the values of θ are uniformly spread through the whole 
range of 2π space and the initial ω0 is 0.
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ii
For the initialisation of q(t), in the straight road section, β is a constant, while in the 

curved road section βi0 depends on [x0,y0]. βi0 is the corresponding angle within the

ii
local coordinates frame of the lane centre line. di0 is the minimum distance between 
[x0,y0] and the lane central line. The coordinates of the points on the lane central line 
are stored as the database for calculation of β and d. In this paper, during the simu-
lation, the coordinates of the points on the lane central line are defined based on the 
PTV Vissim software. PTV Vissim software allows the user to generate the lane infor-
mation and simulate the traffic pattern exactly. More details of Vissim can be found 
on the PTV website (PTV, 2014). During the field test, the coordinates of the points on 
the lane central line are surveyed by high grade INS. β is calculated by the arctangent 
of the X-axis dividing by Y-axis of the points on the central line. d is calculated based 
on the following two steps. First, searching for the nearest two points on the central 
line from the vehicle’s location. Second, calculating the length of the perpendicular 
line to the straight line containing these two points.

2.2.1.2. Filter Prediction. The prediction of p(t) is calculated as follows:

ðX Þ ¼

xiðtþ1Þ
yiðtþ1Þ
viðtþ1Þ
θiðtþ1Þ
ωi
ðtþ1Þ

aiðtþ1Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

xit
yit
vit
θit
ωi
t

ait

0
BBBBBB@

1
CCCCCCA

þ

Δi
x

Δi
y

Δi
v

Δi
θ

Δi
ω

Δi
a

0
BBBBBB@

1
CCCCCCA

ð5Þ

Δi
x; Δ

i
y; Δ

i
v; Δ

i
θ; Δ

i
ωΔ

i
a are different for the different vehicle motion models. In this 

paper, Constant Velocity (CV) and Constant Acceleration (CA) models are applied on 
the straight highway motion. The CV and CA are linear motion models with the 
assump-tion of a constant velocity or a constant acceleration in the timescale of the 
vehicle motion. Constant Turn Rate and Acceleration (CTRA) and Constant Turn 
Rate and Velocity (CTRV) models are applied in the curved scenarios. CTRV model 
assumes that the movement of the objects is tracked by the system at a constant turn 
rate and constant velocity and CTRA model assumes that the speed is changing at a 
constant rate, which is the tangential acceleration, while the object’s turn rate also 
remains constant over time. These motion models have performed reasonable 
approxi-mation of motions by vehicles on highways treating straights and curves 
separately (Tsogas et al., 2005).
From the geometry relationship of the lane segment in Figure 3, the prediction of 

q(t) can be expressed as:

βitþ1 ≈ βit ð6Þ
di
tþ1 ¼ di

t þ sin βit
� �

Δi
x � cos βit

� �
Δi
y ð7Þ

2.2.1.3. Filter update. The prediction cycle is applied at every input sample. First,
the judgment of di is made. The valid di should comply with the equation |di| < 3HL
where 3HL is three times half of the lane width (i.e. 1·5 times of the lane width).
The reason for specifically considering 3HL as an indicative limit is that in reality, it
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is impossible for a vehicle to move from the current lane to a non-adjacent lane within 
0·1s. Assuming a lane width of 3·5 m, if |di| is larger than 3HL = 5·25 m, which indi-
cates the predicted position of the particle is in the non-adjacent lane, which is non real-
istic. So this particle is considered to be a measurement error (Toledo-Moreo, 2010).
If di is within this interval, the prediction parameters of t + 1 are calculated. 

However, these predictions are only considered as valid when the position predicted 
for a particle i is still within the bounds of the lane width. Therefore, after every pre-
diction phase, the condition given by the following equation must be verified as below.
If |dit+1| < 3HL is satisfied and the predicted dit+1 is accepted, then the other 

predicted parameters are accepted. If |dit+1| < 3HL is not satisfied, the other 
predicted para-meters are considered as invalid and the weighting of the 
particle is thus set as wi

0 ¼ 0. GNSS validity is tested after every prediction 
cycle and used to adjust the predicted particles to output the particle filter 
estimates.2.2.1.4. Normalisation and resampling. After every update phase, the weights of 
the particles are modified, and the normalisation and resample test phases of a PF is 
relaunched.

2.2.2. Extended Kalman Filter Model-Based Design. The Extended Kalman 
Filter (EKF) is similar to the Kalman Filter (KF), but can be used in non-linear 
systems because it linearizes the transformations via the Taylor Expansion. In the 
EKF, a linear function is not required for the state transition and observation

Figure 3. Geometry Relationship Between Vehicle and Lane on a Straight Lane (i) and Curved 
Lane (ii).
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models of the state as it is instead comprised of differentiable functions (Mohinder and 
Angus, 2008). There are two steps in the EKF process: correction and prediction. In the 
correction step, the error covariance is computed as it is minimised by the Kalman 
gain factor. The measurement data are applied to correct state estimation by adding the 
product of the Kalman gain and the prediction error to the prediction. In the prediction 
step, the next state is predicted by the current state variables using the system model (Barrios 
et al., 2006).

For the system developed in this paper, the state vector, consisting of six parameters,
is:

x t ð Þ ¼  xyvβ θ  ω ð Þ T ð8Þ The 

measurement space only includes parameters of location, velocity and angle rate.
The measurement vector is:

ð9Þz t ð Þ ¼ 

xyvωð Þ T The relationship between z and x is:

ð 10
Þ

z t ð Þ ¼ Hx tð Þ 
H is the Jacobian of the measurement model:

H ¼
1
0

00

0
1

00

0
0

10

0
0

00

0
0

01

0
0

00

0

B
@

1

C
A

ð11Þ

After correcting the previously predicted values, the system is ready to predict the next 
position by using the state vector equations. For the four vehicle motion models (CV, CA, 
CTRV, CTRA), each one has its own EKF model. For every prediction, d is cal-culated to 
be the minimum distance between [x, y] and the lane central line.

2.3. Irregular Driving Identification. The Fuzzy Inference System (FIS) is a 
widely used pattern matching method for detecting driver behaviour. The FIS is an in-
ference system that maps input to output using fuzzy logic through combination rules 
(Aljaafresh et al., 2012). Compared to traditional logic theory, where binary sets have two 
values: true or false, fuzzy logic variables define a truth value that ranges in degree between 
0 and 1. Fuzzy logic extended to deal with the concept of partial truth, where the truth 
value is ranging between completely true and completely false. Fuzzy logic inference is a 
simple approach to solving problems instead of attempting to model it mathematically, 
which results in the FIS depending on human experience more than the technical 
understanding of the problem (Lecce and Calabrese, 2008). The fuzzy in-ference system 
consists of three stages: fuzzification, fuzzy inference and defuzzifica-tion to classify the 
different risk levels of each manoeuvre. For each designed irregular driving style, 
the different sorting of the driving classification indicator values can represent different 
driving styles. In order to pick up the features, the FIS is applied to the O-indicator and 
D-indicator data to get values for the risk type indicators.

Based on the output of the risk type indicator values for every time epoch, the total risk 
type indicator numbers in defined risk types are calculated followed by the driving 
classification indicator. The sorting rules extracted from driving classification
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indicators from the reference data is applied to the integrated model estimated driving
classification indicator data to judge the driving types.

3. SIMULATION AND INITIAL FIELD TEST. The estimated positioning ac-
curacy using both PF/EKF with motion models on straight and curved lanes are com-
pared. The estimated outputs from different fusion models for irregular driving
detection are compared and analysed. The tests presented in this paper are carried
out with Matlab and Simulink and the lane data for scenarios are created by the
PTV Vissim software.

3.1. Simulation Data Generation. The scenarios are generated based on the 
extracted true driving styles on straight roads and curved roads. The designed lane 
width is set as 3·5 m since it is the regularised lane width of both highways and city 
roads. Two types of trajectories are generated. The first is the simulated 
reference trajectory, which is recognised as ‘true’ trajectory. It is generated based on 
a velocity 85–120 km/h with lateral displacements ranging from 0–1·25 m. A simple 
vehicle kine-matic model is used to generate the trajectory of the vehicle and the 
related data for the simulation, see Figure 4 and Equations (12) – (14). The model 
takes into account the vehicle’s velocity, heading and yaw rate. Using the yaw rate 
and lateral displacement as input, the vehicle’s easting and northing coordinates can be 
determined (Clanton et al.,
2009).
The simple equations are

_E ¼ vsin θð Þ ð12Þ
_N ¼ vsin θð Þ ð13Þ
θ ¼ v

l
tan ωð Þ ð14Þ

Where E is the easting coordinates of the vehicle in UK National Grid coordinates, N
is the northing coordinates of the vehicle in UK National Grid coordinates, Ė is the
easting velocity of the vehicle, Ṅ is the northing velocity of the vehicle, v is the
heading velocity of the vehicle, θ is the heading angle of the vehicle, ω is the yaw
rate and l is the vehicle wheelbase.

Figure 4. Geometry of the simple vehicle kinematic model.
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For the straight scenarios, the simulated reference trajectories are designed to drive 
along the X-axis to make the calculation simpler. As X-axis is assumed to be the 
Easting direction and Y-axis is assumed to be the Northing direction, only Northing 
coordinates are considered, and therefore only lateral position is considered. For the 
generation of the trajectory of Scenario 1, the kinematic motion model in Equations 
(12) – (14) is used. In addition, an amplitude sinusoidal yaw rate is used to generate 
a slow oscillation within the lane. Scenario 2 involves adding a sudden large yaw 
rate and then decreasing the lateral displacement gradually and back sharply. 
Scenario 3 is generated by very quick change of the yaw rate and lateral displacement 
input of the kinematic motion model. Scenario 4 is generated with the yaw rate and 
lateral displacement with very small amount of noise added. The reference data for 
the curved scenarios are generated based on the curved lane generated by PTV 
Vissim software. Scenario 5 is generated with the sinusoidal amplitude added following 
the curved lane. Over-turning and under-turning in Scenario 6 has been generated by 
sudden large or small yaw rates and then keeping similar heading angle to the lane 
curvature. Scenario 7 for jerky driving on a curve has been generated based on a 
quick change of yaw rate and lateral displacement input of the kinematic motion 
model and with a constant yaw rate to follow the curved lane. Scenario 8 for 
normal driving on the curve is generated on a constant small yaw rate and very 
small lateral displacement with a small amount of noise added.
The second type of data is simulated GPS and INS for the predefined scenarios. 

High accuracy positioning-related results are a basic requirement for the systems to 
identify irregular driving. The data for the vehicle positioning and dynamics are 10 
Hz frequency data with the mean accuracy of 0·8 m, generated by the Spirent GPS 
simulator and simulated INS sensor data from Matlab for the predefined scenario 
routes.

3.2. Scenarios Positioning Results. There are two filters (EKF and PF) and four 
motion models (CV, CA, CTRV and CTRA). Therefore, for the straight lane, the 
com-bination of fusion model can be EKFCV, EKFCA, PFCV and PFCA. For the 
curved lane, the combination of fusion model can be EKFCTRV, EKFCTRA, 
PFCTRV and PFCTRA. The accuracy 2dRMS between the generated reference 
position and fusion model estimated position for the straight and curved scenarios 
are shown in Table 1 and Table 2.
From the simulation results in Table 1 and Table 2, all of the fusion models 

provide decimetre positioning accuracy in both straight and curved scenarios 
based on the current filter settings. The initial measurement noise for EKF is set as 
0·8 m and the initialisation setting for PF is with a 0·8 m standard deviation value for 
1000 generated initial particles, according to the GPS a posteriori solution statistics. 
By comparing the positioning results from EKFCV, EKFCA, PFCV and PFCA 
model estimations, in

 Table 1. Accuracy Comparison of Model Estimated Results for Straight Scenarios.

Straight scenarios accuracy 2dRMS comparison (m) EKFCV EKFCA PFCV PFCA

0·3925 0·3956 0·2621 0·2142
0·5624 0·5820 0·3453 0·3410
0·5426 0·5002 0·3801 0·3713

S1 Weaving
S2 Swerving
S3 Jerky Driving 
S4 Normal Driving 0·5125 0·4826 0·3920 0·3815
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general, the EKF filters produce more noise, while the PF filter estimations are com-
paratively smooth, see Figure 5 as an example for the integrated estimation positioning 
results for Scenario 1.

3.3. Judgment Rules Extraction. The O-indicator and D-indicator estimated from 
the fusion model are the input of the FIS system to calculate the risk type indicator for 
each fusion model. Figure 6 shows the structure of the fuzzy inference system.
The designed membership function for the O-indicator and D-indicator values and 

risk type indicator in straight and curved scenarios are shown in Figure 7 and 
Figure 8, respectively. The fuzzy values defined in the membership functions are 
based on the experience data. In Figure 7 and 8, the first input is O-indicator data 
and corresponding fuzzy values in FIS are defined as Small O-indicator (SO), 
Medium O-indicator (MO), Large O-indicator (LO), and Very Large O-indicator 
(VLO). The membership functions for the SO and VLO fuzzy sets are a trapezoidal 
function, the triangular function is used for MO and BO. The second input is the 
D-indicator and the corresponding fuzzy values are defined as Small D-indicator 
(SD), Medium D-indicator (MD), Large D-indicator (LD), and Very Large D-indica-
tor (VLD). Finally, the output of the system is the driving risk type indicator, which is

Table 2. Accuracy Comparison of Model Estimated Results for Curved 

Scenarios.Curved scenarios accuracy 2dRMS comparison (m) EKFCTRV EKFCTRA PFCTRV PFCTRA

S5 Weaving on Curve 0·5612 0·4510 0·4103 0·3906
S6a Over-Turning on Curve 0·5446 0·4783 0·3902 0·3735
S6b Under-Turning on Curve 0·4265 0·4109 0·3713 0·3614
S7 Jerky Driving on Curve 0·7423 0·6858 0·5437 0·4315
S8 Normal Driving on Curve 0·4832 0·4410 0·3962 0·3738

Figure 5. Integrated Estimation Positioning Results for S1.
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defined by four fuzzy values A, B, C, D. The membership functions for A and D fuzzy
sets are trapezoidal function and the triangular function for B and C.
Tables 3 and 4 show the rules for the straight and curved scenarios defined based on

the experience data. Figure 9 shows the designed FIS results in surface view, which pre-
sents the one pair ofO-indicator value andD-indicator value as having one correspond-
ing risk type indicator value.
Based on the risk type indicator output of the FIS, the points in each risk type for all

the scenarios during the last 5 s are collected and calculated in Simulink. The reason
for using the back 5 s data as the time interval is that 5 s duration contains a total
of 50 sets of data and is sufficient to provide information for the FIS judgement of
the driving style (Chang et al., 2008). Table 5 shows the statistics of the number of
points in each risk type calculated from the reference data. It can be seen that each
scenario returns one or two dominant risk types in the 5 seconds sample. If there
was only one dominant risk type for a given scenario containing the most points, it
would be straightforward to classify the scenarios. However, this is not always the
case with two or more risk types having a similar number of points for some scenarios.
For example, in S7, there are two dominant risk types with 25 points in risk type D and

Figure 6. Fuzzy Inference System Structure.

Figure 7. Membership Function for the Straight Scenarios.
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22 points in risk type C. In order to amplify the features of each scenario, the points in
relevant risk types are combined as shown in Table 6, effectively resulting in a new
driving classification indicator for the classification of driving styles.
The four parameters in the driving classification indicator are developed based on

the sum number of points in relevant risk types, e.g., AB is the sum number of risk
type A and risk type B; BC is the sum number of risk type B and risk type C; CD is
the sum number of risk type C and risk type D; AD is the sum number of risk type
A and D. Based on the calculation and comparison results of the AB, BC, CD and
AD parameters in Table 6, the sorting rules can be extracted to represent the feature
of each scenario. For example, AB>BC>CD>AD is extracted as the rule for
weaving from S1. Thus, the rules for detecting the features of each scenario are
extracted in Table 7.
The sensitivity test has been carried out to test whether the extracted rules for the

irregular driving detection algorithm can continuously detect different types of irregu-
lar driving. Availability and correct detection rate are two parameters developed to

Figure 8. Membership Function for the Curved Scenarios.

Table 3. Rules of FIS for Straight Scenarios.

O-indicator D-indicator Risk type

SO SD A
MD B
LD C
VLD

MO Any(SD, MD, LD,VLD) C
LO Any(SD, MD, LD,VLD) D
VLO Any(SD, MD, LD,VLD) D
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Table 4. Rules of FIS for Curved Scenarios.

O-indicator D-indicator Risk type

SO SD A
MD B
LD D
VLD

MO SD B
MD
LD D
VLD

LO SD C
MD
LD
VLD D

VLO SD C
MD
LD
VLD D

Figure 9. Designed FIS Results in Surface View.
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evaluate the performance of the irregular driving detection algorithm. Availability is 
the percentage of the available driving style detection output. Correct detection rate 
is the percentage of the correct driving style judgement output. The sensitivity test 
shows that the irregular driving detection algorithm can continuously identify the dif-
ferent driving styles and it also indicates that the availability and correct detection rate 
are related to the system output rate. If the system output rate is higher, the correct de-
tection rate and availability rate will decrease. Thus, choosing a proper output rate for 
a required situation is critical.

3.4. Simulation Results Analysis. The driving classification indicators for straight 
scenarios are calculated based on the EKFCV, EKFCA, PFCV and PFCA models. By 
comparison of the sorting results with the reference, only PFCV and PFCA can cor-
rectly detect the driving styles in straight scenarios. Tables 8 and 9 show the driving 
classification indicators for the PFCV and PFCA estimations, respectively. 
In Table 8, it is indicated that the sorting rule is AB>BC>AD>CD for S1, which is 
iden-tified as weaving. For S2, BC>CD>AB>AD, is identified as swerving. 
For S3, CD>AD>BC>AB, is identified as jerky driving. For S4, 
AB>AD>BC>CD, is iden-tified as normal driving. The results show that the 
PFCV model results lead to the correct identification of the features for all the 
straight lane scenarios. Similar to PFCV, in Table 9, the PFCA-based 
identification is successful in all the straight lane scenarios. AB>BC>AD>CD is 
identified as weaving in S1. BC>CD>AB>AD

Table 5. Statistic of Number of Points in Risk Types for Reference Data.

Number of points
Risk types

A B C DScenarios

S1 Weaving 19 31 0 0
S2 Swerving 15 11 22 2
S3 Jerky Driving 0 1 11 38
S4 Normal Driving 50 0 0 0
S5 Weaving on curve 8 40 2 0
S6a Over turning on curve 0 25 19 6
S6b Under turning on curve 10 28 12 0
S7 Jerky Driving on curve 0 3 22 25
S8 Normal driving on curve 50 0 0 0

Table 6. Driving Classification Indicators for Reference Data.

Scenarios AB BC CD AD

S1 Weaving 50 31 0 19
S2 Swerving 26 33 24 17
S3 Jerky Driving 1 12 49 38
S4 Normal Driving 50 0 0 50
S5 Weaving on curve 48 42 2 8
S6a Over-turning on curve 25 44 25 6
S6b Under-turning on curve 38 40 12 10
S7 Jerky Driving on curve 3 25 47 25
S8 Normal driving on curve 50 0 0 50
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is identified as swerving in S2. CD>AD>BC>AB is identified as jerky driving in S3.
AB>AD>BC>CD is identified as normal driving in S4.
For the curved scenarios, all of the models have made misdetections except the

PFCTRA model. As it is shown in Table 10, the PFCTRA model can offer good esti-
mations, where the values in driving classification indicators are closest to the driving
classification indicators output from the reference data.
In summary, for the classification of the driving types in simulation, both of the

EKFCV and EKFCTRV models have wrongly detected swerving/under-turning as
jerky driving or weaving. Both of the EKFCA and EKFCTRA models have
wrongly detected weaving/weaving on curve as swerving/swerving on curve.
Furthermore, EKFCTRA also wrongly detects normal driving as weaving on a
curve. The PFCV model can detect the driving styles on straights correctly, while

Table 7. Sorting Rules for Driving Style Judgment.

No. Sorting rules Judgment

1 AB>BC>=CD>=AD weaving/weaving on curve
2 AB>BC>=AD>=CD weaving/weaving on curve
3 AB>CD>=BC>=AD N/A
4 AB>CD>=AD>=BC weaving/weaving on curve
5 AB>AD>=BC>=CD normal driving/normal driving on curve
6 AB>AD>=CD>=BC N/A
7 BC>CD>=AD>=AB swerving/over-turning (under-turning)
8 BC>CD>=AB>=AD swerving/over-turning (under-turning)
9 BC>AD>=AB>=CD N/A
10 BC>AD>=CD>=AB N/A
11 BC>AB>=CD>=AD swerving/over-turning (under-turning)
12 BC>AB>=AD>=CD swerving/over-turning (under-turning)
13 CD>AD>=AB>=BC jerky driving/jerky driving on curve
14 CD>AD>=BC>=AB jerky driving/jerky driving on curve
15 CD>AB>=BC>=AD N/A
16 CD>AB>=AD>=BC N/A
17 CD>BC>=AB>=AD N/A
18 CD>BC>=AD>=AB jerky driving/jerky driving on curve
19 AD>=AB>=BC>=CD normal driving/normal driving on curve
20 AD>AB>=CD>=BC N/A
21 AD>CD>=AB>=BC N/A
22 AD>CD>=BC>=AB N/A
23 AD>BC>=AB>=AD N/A
24 AD>BC>=AD>=AB N/A
25 AB=AD normal driving/normal driving on curve

Table 8. Driving Classification Indicators for Straight Scenarios Based on PFCV.

Scenarios AB BC CD AD

S1 Weaving 49 45 1 5
S2 Swerving 9 43 41 7
S3 Jerky Driving 0 14 50 36
S4 Normal Driving 50 2 0 48
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the PFCTRVmodel incorrectly detects swerving on curve as weaving on curve. Both of
the PFCA and PFCTRA models have correctly detected the different driving features
separately. They have the smallest error in positioning and correctly detected the scen-
arios on straights and curves separately. In the next section, the initial field test is
carried out based on the PFCA/PFCTRA model estimations on highways.

3.5. Initial Field Test. The initial field test is to validate the lane level irregular
driving detection algorithm. The test includes two issues to be validated. The first
issue is to validate the FIS-based irregular driving detection algorithm and the
second issue is to validate lane level precise positioning algorithm in the designed
field session.
The data for the initial field test were collected via a seven minute duration journey

on the M4 motorway near Ravenscourt Park, United Kingdom. During the journey,
one jerky driving manoeuvre carried out from 15:51:41·5 to 15:51:59·2 on the
curved lane is defined as Session 1. The vehicle was driven at speeds ranging from
70 km/h to 120 km/h and the datawere collected at a frequency of 10 Hz. The specifics
of the equipment used in the experiment were as follows.

. Leica Viva GNSS GS15 RTKGPS receiver for GPS data collection, including the
position and speed of the vehicle.

. I-Mar RT-200 INS for real-time attitude data collection, including heading angle
and yaw rate of the vehicle. The sensor also has the function of outputting GPS/
INS combined measurements, which are post-processed by forward and back-
ward processing for a high accuracy reference.

For validation of the FIS-based irregular driving detection algorithm, the post-
processed GPS/INS combined measurements are directly input into the irregular
driving detection algorithm to output the results. The output rate is chosen with
1 Hz, 5 Hz and 10 Hz. The output driving classification indicator for Session 1

Table 9. Driving Classification Indicators for Straight Scenarios Based on PFCA.

Scenarios AB BC CD AD

S1 Weaving 50 36 0 14
S2 Swerving 17 45 33 5
S3 Jerky Driving 0 12 50 38
S4 Normal Driving 50 0 0 50

Table 10. Driving Classification Indicators for Curved Scenarios Based on PFCTRA.

Scenarios AB BC CD AD

S5 Weaving on Curve 45 43 5 7
S6a Over-Turning on Curve 28 44 22 6
S6b Under-Turning on Curve 34 50 16 0
S7 Jerky Driving on Curve 17 28 33 22
S8 Normal Driving on Curve 50 0 0 50
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shows CD>BC>AD>AB, which is in accordance with the jerky driving style. Table 
11 shows the first detection time epoch for Session 1 on various output frequencies 
from the reference results. The reference data-based field test results show the jerky 
driving on a curve can be detected on the routes. It also indicates that the higher the 
output rate, the earlier the detection time epoch, which is identical to the simulation 
results.For the validation of the lane level precise positioning algorithm, the GPS measure-
ments output from the Leica Viva GNSS GS15 RTK GPS receiver are fed to the 
PFCA/PFCTRA model for positioning and dynamic parameter estimation and then 
the estimated results are used for the FIS-based irregular driving detection algorithm. 
A typical RTK fixed ambiguity solution accuracy is a few centimetres, however, 
from the output of the positioning solutions, it is shown that only 84·04 % of total 
collected measurements are determined with the RTK fixed ambiguity solution on 
the route. There are still some types of low quality positioning solutions, such as a 
Differential GPS solution and float ambiguity solution. Thus, only sub-metre mean 
positioning ac-curacy can be achieved from the GPS measurements. From the 
calculation results, the PFCA/PFCTRA model estimated positioning solutions have 
significantly improved the positioning accuracy compared to original collected 
measurements, which indicate that the mean positioning accuracy in the route is 
reduced to 0·6214 m from 0·9664 m, especially the mean accuracy for Session 1 is 
reduced to 0·382 m from 0·569 m. Figure 10 shows a comparison of collected 
measurement positions and PFCA/PFCTRA estimated positioning results with 
respect to reference. It is clear that PFCA/PFCTRA estimated results are closer 
to the reference than the measurements.The sorting of parameters in driving classification indicator based on the PFCA/
PFCTRA model estimated results output CD>BC>AD>AB for Session 1, which is 
detected as jerky driving on a curve. The first detection epoch of Session 1 based on 
the PFCA/PFCTRA estimated results in Table 12 performs similar results with the 
reference data, which means that the PFCA/PFCTRA estimated results are capable 
of identifying the defined session.
The comparison of the availability and correct detection rate of the irregular driving 

detection algorithm for both reference and PFCA/PFCTRA estimated results with 
respect to the output rate for Session 1 is shown in Table 13. Obviously, the 
availability and correct detection rate decrease as the output rate increases, which is 
identical to the simulation. The availability and correct detection rate based on the 
PFCA/PFCTRA estimated results are lower than that from the reference results, as the 
PFCA/PFCTRA estimations have more errors than the reference.

4. CONCLUSIONS. A novel lane level irregular driving identification algorithm is
presented in this paper. This study exploits an integrated sensor fusion algorithm for

Table 11. The First Detection Time Epoch of Session 1 Based on the Reference Results with Respect 
to Different Output Frequencies.

Output frequency First detection time epoch 
Session 1

10 Hz 15:51:45·8
5 H z 15:51:46·0
1 H z 15:51:46·0
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precise position and parameter estimation and then uses a FIS-based irregular driving
identification algorithm to provide precise lane level irregular driving identification.
The performance of the algorithms developed in this paper is tested based on simulated
irregular driving data and an initial field test.
In the simulation, two types of data are generated based on the defined scenarios

(weaving/weaving on curve, swerving/over/under turning, jerky driving/jerky driving
on curve and normal/normal on curve). The first type of data is reference data, for
the definition of scenarios and the extraction of the sorting rules from the driving clas-
sification indicator for further irregular driving detection. From the sensitivity analysis
of the irregular driving detection algorithm based on the reference data, it can be
observed that a higher output frequency of the irregular driving detection could lead
to an earlier initial detection time of the specific driving style. In addition, the availabil-
ity and correct detection rate will decrease with the increase of the output rate of the
system. The second type of data are the simulated GPS and INS measurements data,
which are used to test the designed precise positioning algorithms and the irregular
driving detection results. From the performance of the positioning accuracy of the
designed integration model for the simulated GPS and INS measurements, the PF
model exhibits a less significant error than the EKF model and the CA model exhibits
less significant error than the CV model during the simulation. The PFCA and

Figure 10. Comparison of Measurement and PFCA/PFCTRA Estimated Positioning Results with
Respect to Reference.

Table 12. The First Detection Epoch of Session 1 Based on the PFCA/PFCTRA Estimated Results with
Respect to Different Output Frequencies.

Output frequency First detection time epoch
Session 1

10 Hz 15:51:45·9
5 Hz 15:51:46·0
1 Hz 15:51:46·0
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PFCTRA models show the highest positioning accuracy in their scenarios separately.
In addition, as the PFCV, PFCA and PFCTRA models have the higher estimation ac-
curacy, only these three model-based estimations have correctly distinguished the dif-
ferent irregular driving scenarios.
The initial field test has validated that FIS-based irregular driving detection algo-

rithm is feasible, and PFCA/PFCTRA filter estimated results can improve the accur-
acy of collected GPS measurements and detect the defined irregular driving session.
Future work will involve collecting more field data in different sessions and evaluating
the performance of the developed algorithm in different field situations.
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