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ABSTRACT 45 
This paper presents a multi-dimensional case study of the Beijing metro system. In particular, we 46 
examine two non-transfer stations, Zaoying and Jiangtai, which are on the same metro line in 47 
central Beijing. Multi-source and heterogeneous data are integrated to analyze and diagnose the 48 
drastically different metro ridership at the two stations. These include transit smart card data, taxi 49 
GPS data, network data, Point of Interest data, demographic data, online second-hand property 50 
price data, cell phone signalling data, and bike sharing data. The different utilization of metro 51 
system at these two locations is attributed to a number of factors pertaining to transportation 52 
infrastructure, built environment, demographic composition, commuting patterns, and 53 
connectivity of multi-modal transit networks. The findings suggest the importance of local 54 
accessibility of the metro stations as well as its connectivity with the rest of the transit system, in 55 
order to maximize the transport capability of the metro system. Our analysis also highlights the 56 
benefit of collecting and analyzing fine-granularity data in order to identify key bottlenecks and 57 
inefficiencies in the transportation system, as conventional macroscopic transportation planning 58 
data do not sufficiently capture the local accessibility and mobility in an urban environment.  59 
 60 
 61 
 62 
 63 
Keywords: Urban rail transit, Big data, Urban planning, Mobility and accessibility, Shared bike  64 
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1. INTRODUCTION 65 
The rapid development of Information and Communication Technologies (ICT) in recent years 66 
has enabled the acquisition, storage, and processing of large amount of data in extremely high 67 
granularities. ICT-based data analytics, such as data mining and visualization, has been widely 68 
applied in energy, medicine, and social science. Data-driven research and development bring 69 
paradigm-shifting innovation to the conventional way of scientific exploration, and underpin the 70 
technological aspect of urban studies. 71 

The city-scale deployment of ICT infrastructure and widespread utilization of internet-72 
based services have led to the accumulation of data on urban dynamics and individual behavior, 73 
with large quantity, high frequency, and significant diversity. Data frequently seen in recent 74 
urban studies include: map data, point of interest (POI) data, floating car data, passenger flow 75 
data, cell phone (signalling) data, location based service data, camera/video image data, 76 
environment monitoring data, meteorological data, and social activity data (1). These urban data 77 
are widely sourced and contain rich and diverse information that supports multi-scale, multi-78 
dimensional, and fine-granularity analyses. 79 

According to the technical approach employed, the application of urban data can be 80 
categorized as: (1) analysis of fine-granularity characteristics from a multi-disciplinary 81 
perspective; (2) development of domain-specific models/methodologies based on cross-82 
disciplinary studies; and (3) pattern recognition, characterization, and prediction based on 83 
machine learning methods.  84 

The first category is mostly seen in the fields such as geography, economics, sociology, 85 
and transportation. This type of application tends to extract relevant information from vast data 86 
sets, refine the spatio-temporal granularities of existing studies, extend the humanistic scale in 87 
conventional urban analysis, and enrich the context in which traditional urban studies are 88 
conducted. Examples of this type include city-wide network analysis (2-3), urban infrastructure 89 
dynamics (4-5), regional characteristics analysis (6), and individual behaviour analysis (7-9). 90 
Additionally, urban data typically contain rich spatial and temporal information to conduct 91 
general spatial analysis such as buffer analysis, spatial overlay analysis, network analysis, spatial 92 
statistics analysis, and spatial econometric analysis (10). Zhen et al. (11) use social network data 93 
from Sina Micro-blog to interpret the hierarchical structure of the Chinese city network. Gao 94 
(12) considers cell phone signalling data and employs spatio-temporal visualization, space-time 95 
kernel density estimation, and spatio-temporal autocorrelation analysis to explore and visualize 96 
intra-urban and inter-urban mobility patterns.  97 

The second category mainly focuses on improving the calibration and validation of 98 
existing models and refining their temporal and spatial granularities. Liu et al. (13) mine cell 99 
phone signalling data to infer activity-based trip chain of individuals based on their residence and 100 
employment locations. The extracted trips are then compared with those from activity-based 101 
transportation models, thereby validating the real-world relevance and accuracy of the latter. 102 
Hamilton and Sankaranarayanan (14) rely on RFID technology to dynamically simulate the 103 
location and occupancy of buses as well as passenger demands at bus stops, which leads to a 104 
technological framework for dynamic bus operation system. Hood et al. (15) define utilities of 105 
using different routes in a network based on GPS data and static route information, then establish 106 
logit route choice model to understand the decision-making of travellers. Hou et al. (16) perform 107 
detailed calibration of weather effects with loop detector data and automated surface observing 108 
system data. The calibrated models are then fed into the weather-integrated dynamic traffic 109 
assignment simulation system to estimate and predict traffic state under inclement weather 110 
conditions.  111 
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The third category generally concerns with mining data for pattern analysis, identification 112 
of cluster characteristics, and prediction based on supervised or unsupervised machine learning. 113 
A typical application is the estimation and prediction of road congestion level using GPS data. 114 
Thianniwet et al. (17-18) employ sliding window technique and J48 decision tree method to 115 
characterize and identify road congestion levels based on taxi GPS data and opinion survey. 116 
Diker and Nasibov (19) estimate the road congestion level with GPS data based on Fuzzy 117 
Neighborhood Density-Based Spatial Clustering of Applications with Noise (FN-DBSCAN). Ma 118 
et al. (20) predict large-scale traffic congestion with a Restricted Boltzmann Machine and 119 
Recurrent Neural Network framework. Other applications of this category could include dynamic 120 
detection of traffic accidents, characterization of transport infrastructure utilization, traffic flow 121 
prediction, and identification of urban mobility patterns, with a wide range of data sources 122 
including social media (21), transit card data (22), traffic sensor data (23), and cell phone 123 
(signalling) data (24).  124 

Most of the aforementioned studies rely on a single source of data or fixed spatio-125 
temporal granularity for the analysis. There is a lack of multi-dimensional analysis of urban 126 
mobility, particularly in microscopic scale, based on multi-source and heterogeneous data, which 127 
is accomplished in this paper. This paper illustrates the relationship between public transit, urban 128 
planning, demographic characteristics, and emerging transportation modes using a multi-129 
dimensional analysis with big data sources. In particular, we select two metro stations on Line 14 130 
in Beijing for our case study, and utilize the following sources of data: 131 

 132 
x Transit smart card data including metro card data (6 million records) and bus card data 133 

(4.3 million records); 134 
x Taxi GPS data (1.5 million records), which contain the origin and destination of loaded 135 

trips of over 60,000 taxis in Beijing; 136 
x Network data (geographic information, transportation infrastructure); 137 
x Point of Interest (POI) data, including 422,000 records in 15 categories; 138 
x Population and demographic data; 139 
x Online second-hand property price data of 1,2316 communities in Beijing;   140 
x Cell phone signaling data, mainly covering 17 million cell phone users with 141 

approximately 70G data per day; and 142 
x Bike sharing data, which contain origin-destination information of 1.3 million bike trips. 143 

 144 
Using such a ‘big-data’ approach, we analyze the drastically different metro ridership at 145 

the two stations along the same metro line, from the perspectives of transportation planning, built 146 
environment, and demographic composition. The results not only reveals the key reasons for the 147 
aforementioned different metro ridership, but also highlights some key elements in improving 148 
urban mobility. Such a comprehensive and multi-dimensional analysis of urban transportation is 149 
rarely seen in the literature, and this paper has demonstrated the necessity of integrating multi-150 
source and heterogeneous data when analyzing complex urban problems. This paper also 151 
highlights the importance of collecting and analyzing fine-granularity data. Conventional 152 
macroscopic transportation planning data with aggregate information and relatively low update 153 
frequency do not sufficiently capture the characteristics and inherent interdependencies of sub-154 
systems in an urban environment. Instead, data on individual activities and behaviours provide 155 
much detailed spatio-temporal dynamics of individual commuters, and help to identify key 156 
bottlenecks and inefficiencies in the transportation system.   157 
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The rest of the paper is organized as follows. Section 2 presents some basic information 158 
about the two metro stations of interest, including their passenger flow, geographic information, 159 
and built environment. Multiple data sources are utilized in Section 3 for an in-depth and 160 
comprehensive analysis of the two locations in terms of transportation planning, accessibility, 161 
and mobility. Section 4 summarizes the findings of this paper and extracts further insights for 162 
city planning and policy appraisal.  163 

 164 
2. COMPARISON OF TWO METRO STATIONS IN BEIJING 165 
This paper focuses on two metro stations in Beijing, namely Zaoying and Jiangtai, which are 166 
located in the Chaoyang District, and are both intermediate, non-transfer stations on Metro Line 167 
14. Both stations were opened for public access at the end of 2014. In this section, we perform a 168 
preliminary comparison of the two stations in terms of their time-varying passenger flow and 169 
nearby public transit ridership based on transit (metro, bus) smart card data and taxi GPS data.  170 
 171 
2.1. Time-varying metro ridership 172 
To quantify the difference between the metro ridership at the two stations on typical working 173 
days, we consider the metro card data collected on 24 Sep (Thursday) and 29 Sep (Tuesday) 174 
2015. These days are chosen as they well represent the commute patterns on working days, and 175 
are free of interference from inter-city commuting and recreational activities concentrated in the 176 
afternoon peak of Friday and morning peak of Monday. The dataset records the inflow and 177 
outflow of every metro station in Beijing at a time resolution of 30 min. The time-varying 178 
passenger flows at Zaoying and Jiangtai are shown in Figure 1.  179 
 180 

 181 
 182 
FIGURE 1  Passenger inflows and outflows at the two metro stations. 183 
 184 

It can be seen from Figure 1 that the passenger flow at the Jiangtai Station far exceeds 185 
that of Zaoying, especially during morning and afternoon peaks. The average daily passenger 186 
volume at Zaoying is 6,373 (ranking 72/76 in Chaoyang District and 255/268 in Beijing) while 187 
that of Jiangtai is 44,590 (ranking 30/76 in Chaoyang District and 84/268 in Beijing). Overall, 188 
the metro ridership in the two stations differs by a factor of 7 (44,590/6,373). Moreover, the 189 
passenger flow of Jiangtai during morning peak (7:00-9:00) is 9.76 times the flow of Zaoying; 190 
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even during night operation (20:00-22:00) the Jiangtai flow is 5.3 times the Zaoying flow. Such a 191 
stark contrast of metro ridership is disproportional to the population in the vicinity of these two 192 
stations, which differs only by a factor of 2 (see Section 2.3). This entails further investigation 193 
with additional transport, infrastructure, and land use data. 194 

 195 
2.2. Utilization of public transportation 196 
Additional to the contrast of metro ridership, a quantitative depiction of the public transit 197 
capacity and utilization is considered for an in-depth understanding of the travel pattern in these 198 
two areas. Additional bus smart card data and taxi GPS data are used to calculate the modal share 199 
between metro, bus and taxi in the 1-km buffer of the two stations. We calculate the average 200 
modal share for taxi, bus, and metro as follows.  201 

For every metro station in Beijing, we focus on trips that start or end within the station 202 
buffer.1 The outbound modal share 𝑂𝑖

mode and inbound modal share 𝐼𝑖
mode of a given station 203 

𝑖 are defined as follows. 204 
 205 
 206 

𝑂𝑖
mode =

∑ 𝑇𝑖𝑗
mode

𝑗≠𝑖

∑ 𝑇𝑖𝑗𝑗≠𝑖
 , 𝐼𝑖

mode =
∑ 𝑇𝑗𝑖

mode
𝑗≠𝑖

∑ 𝑇𝑗𝑖𝑗≠𝑖
        mode = taxi, bus, metro (1) 

 207 
 208 
where 𝑇𝑖𝑗

mode denotes the number of person trips from station 𝑖’s buffer to station 𝑗’s buffer by 209 
a certain mode (taxi, bus, or metro), 𝑇𝑖𝑗 = 𝑇𝑖𝑗

taxi + 𝑇𝑖𝑗
bus + 𝑇𝑖𝑗

metro. Regarding 𝑇𝑖𝑗
taxi, the number 210 

of taxi trips is converted to the number of person trips with a conversion factory of 1.3 211 
person/taxi (25). The outbound and inbound modal shares of Zaoying and Jiangtai are shown in 212 
Table 1. 213 
 214 
TABLE 1 Outbound and Inbound Modal Shares of the Two Stations 215 
 216 

 𝑂𝑖
taxi 𝑂𝑖

bus 𝑂𝑖
metro 𝐼𝑖

taxi 𝐼𝑖
bus 𝐼𝑖

metro 
Zaoying 18% 38% 44% 17% 34% 49% 
Jiangtai 5% 54% 41% 4% 54% 42% 

 217 
Table 1 shows much lower share of taxi trips in Jiangtai, indicating more vigorous public 218 

transportation (metro, bus) activities than Zaoying. In addition, the city-wide modal share of taxi 219 
is 3%, which, compared to the overall 17% taxi share of Zaoying, further highlights the low 220 
efficacy of public transportation near Zaoying. 221 
 222 
2.3. Geographic, built environment, and population characteristics 223 
Before investigating the significantly different metro ridership and public transportation usage of 224 
Zaoying and Jiangtai areas, we first study their location, built environment, and population.  225 

We begin with the geographic location. Over the past several decades, Beijing has 226 
developed in a monocentric spatial pattern, which means that land price, population density, and 227 
development intensity are negatively correlated to the distance from the city center (26). Both 228 
stations of interest are located to the north of the Chang’an Avenue where civil infrastructure, 229 
economy, and financial income are superior to the southern part of Beijing (27). Moreover, 230 

                                                 
1 Here, we ignore those trips whose origin or destination is not within the buffer of any metro station, as we recon 
these trips to be irrelevant to the metro.  
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Zaoying station is closer to the city center than Jiangtai station.  231 
In terms of land use, both stations are primarily surrounded by industrial, residential, and 232 

business areas (Figure 2). Notably, Zaoying is immediately adjacent to a green space, while 233 
Jiangtai is 1 km away from the nearest park. The presence of a major green space near Zaoying 234 
might have some negative impact on the mobility around the station due to limited access to 235 
transportation infrastructure.  236 

 237 

 238 
 239 
FIGURE 2  Built environment surrounding Zaoying and Jiangtai stations. 240 
 241 

Moreover, based on the POI data, both stations are close to regional business centers, 242 
with 1,101 POIs and 1,281 POIs within the corresponding buffers. Overall, the numbers of POIs 243 
in these two locations are comparable. 244 

Finally, in terms of population size, we consider Traffic Analysis Zones (TAZs) to be 245 
basic space units. TAZs are a typical geographic units used in conventional transportation 246 
planning models. The TAZ data from Beijing Transport Institute (25) are used to infer the 247 
residence and employment population within 1-km buffer of stations. The resident and 248 
employment population for each TAZ is assumed to be uniformly distributed in the TAZ. Based 249 
on this, we use the area of the intersection of the 1-km buffer and each TAZ to calculate the 250 
contribution of that TAZ to the population of the buffer. This process is straightforward and 251 
further details are omitted in this paper. The estimated population within the 1-km buffer is 252 
28,093 (17,411 residence, 10682 employment) for Zaoying and 58,301 (38,328 residence, 19,973 253 
employment) for Jiangtai. The total population of Jiangtai is 2.08 times that of Zaoying. 254 

As a summary of this section, we observe that 255 
 256 

1. The metro ridership at Jiangtai is far greater than that of Zaoying (by a factor of 7); 257 
2. The modal share of public transportation (bus & metro) indicates a stronger public transit 258 

activity in the vicinity of Jiangtai station than Zaoying; 259 
3. Both stations are located in the more developed, northern part of the city, and Zaoying is 260 

closer to the city center than Jiangtai; 261 
4. The numbers of POIs within 1-km radius from the stations are similar (1,101 for Zaoying 262 

and 1,281 for Jiangtai), which means that the two locations have comparable intensity of 263 
commercial, recreational, and industrial activities; 264 
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5. The population (residence & employment) of the Jiangtai buffer is approximately twice 265 
that of the Zaoying buffer.  266 

 267 
Several interesting and important questions arise from these observations. The 268 

geographical locations of the two stations, composition of population in their neighbouring areas, 269 
and the number of POIs nearby, are not at all reflected in the stations’ ridership. They also fail to 270 
explain the different take up of public transportation in these areas. These issues will be analyzed 271 
in greater detail in the next section, using a rich set of transportation, demographic, and land use 272 
data. 273 

 274 
3. IN-DEPTH ANALYSIS USING BIG-DATA SOURCES 275 
In this section, in order to address the issues raised from Section 2, we investigate in detail and 276 
comprehensively the characteristics of the Zaoying and Jiangtai areas pertaining to demographic 277 
composition (Section 3.1), connectivity and accessibility of public transit system (Section 3.2), 278 
spatial commute patterns (Section 3.3), and emerging transport modes (Section 3.4). 279 
 280 
3.1. Demographic information 281 
The demographic characteristics of an area, including age, social status, and employment rate, 282 
tend to have a strong effect on the commute pattern of that area.  283 

The Sixth China Population Census data reveal the proportion of senior citizen (defined 284 
to be 65 or above) at various regions in the city (Figure 3). It shows that the Maizidian sub-285 
district, where Zaoying is located, has a relatively high senior citizen proportion (32.5%), 286 
ranking second among all sub-districts between the 2nd and 5th Ring Roads. In contrast, the 287 
neighboring sub-districts of Jiangtai Station, namely Jiuxianqiao and Jiangtai, have senior citizen 288 
proportions of only 9.8% and 4.7%, respectively. In addition, the senior population size, 289 
indicated by the size of the bubbles in Figure 3, also suggests a much larger senior population in 290 
Zaoying area. Such a significantly different senior population may have a direct influence on the 291 
travel patterns as senior citizens make less frequent commute trips, and have lower propensity 292 
towards the metro compared to the younger, working class. This fact partly contributes to the 293 
observation made earlier regarding the usage of the metro stations (see Section 2.1). 294 

 295 
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 296 
 297 
FIGURE 3  Population size and proportion of senior citizens in Beijing sub-districts 298 
(bubble size indicates the size of senior population). 299 
 300 

The income structure and the car ownership also influence the preference of transport 301 
modes. The residents in communities with higher price tend to have higher average income (28) 302 
and higher car ownership (29). Therefore, the online second-hand property pricing data in 303 
September 2015 are selected to reflect these two factors. The average price of communities in 304 
Maizidian sub-district, where Zaoying is located, is shown to be 17.8% higher than that of 305 
Jiuxianqiao and Jiangtai sub-districts. As a result, the higher proportion of high-income residents 306 
may be another reason for Zaoying to have lower metro ridership.  307 
 308 
3.2. Connectivity with bus transit system 309 
The preliminary analysis on the modal share in the two metro station buffers (see Section 2.2) 310 
suggests insufficient public transport activity near Zaoying. In this section, we investigate their 311 
connectivity with the bus transit system. This provides further insights on the utilization of the 312 
metro, which is an integral part of the metro-bus multi-modal transportation system.  313 

We begin by examining the number of bus stops in the neighborhood of the two metro 314 
stations. Figure 4 shows the bus stops within 500 m and 1 km from the metro stations. There are 315 
respectively 2 and 4 bus stops within 500 m and 1 km from the Zaoying station, which are far 316 
below the average in the Chaoyang District (500 m: 3 bus stops; 1 km: 9 bus stops). The 317 
numbers of bus stops around Jiangtai station (500 m: 5 bus stops; 1 km: 11 bus stops) are 318 
considerably higher than those of Zaoying and above the average of Chaoyang District.  319 
 320 

Proportion of senior citizen 

Population size 

Maizidian (Zaoying) 

Jiuxianqiao 

Jiangtai 
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 321 
 322 
FIGURE 4  Bus stops adjacent to the two metro stations. The pink areas indicate the 323 
buffers, which are obtained based on street network distance instead of Euclidean distance. 324 

 325 
It is clear that the bus transit network and the metro network are relatively isolated at the 326 

Zaoying station. The low accessibility to nearby bus transit network makes it difficult for 327 
Zaoying station to fully realize its potential as a metro-bus transfer hub in a multi-modal 328 
transportation system.  329 

 330 
3.3. Spatial commute patterns 331 
In this section, we analyze the commute patterns around the two metro stations based on 332 
signalling data. Signalling data refers to location information registered by mobile phone devices 333 
during calls, text messages, and location updates. Such a data enjoys large spatio-temporal 334 
coverage and high penetration rate as well as long-term and continuous tracking of locations. 335 
Signalling data can be used to extract useful information of individuals such as residential and 336 
work locations by mining their daily commute activities (30-31). We group the signalling data by 337 
International Mobile Subscriber Identity (IMSI). The location with the highest frequency of 338 
occurrence at night period (0:00-6:00) is identified as the residential location, and the location 339 
with the highest frequency in the working hours (10:00-16:00) as the work location for a single 340 
subscriber. 341 

Using TAZ as the basic spatial unit, we compute the Commuting Connectivity (CC) 342 
between a TAZ and the metro station buffer. The CC is defined to be the sum of the following 343 
quantities: 344 

x The number of commuters who work in the TAZ and reside in the metro station buffer; 345 
and 346 

x The number of commuters who reside in the TAZ and work in the metro station buffer. 347 
 348 
The signalling data suggest that the population working or residing within the Jiangtai 349 

station buffer is approximately twice that of Zaoying station buffer. This is consistent with the 350 
(static) population result presented in Section 2.3. Figure 5 indicates the CC between each TAZ 351 
and the station buffers. For the Zaoying area, TAZs with high CC are located in nearby regions 352 
such as Sanyuanqiao, Liangmaqiao and Tuanjiehu (indicated by darker colors). For the Jiangtai 353 

500 m station buffers 1000 m station buffers 
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area, TAZs with high CC are distributed more outwards from the station.  354 
 355 

 356 
 357 
FIGURE 5  TAZ-based Commuting Connectivity with the metro station areas. 358 
 359 

Besides the TAZ-based CC, we further investigate the direction-based CC. To do this, we 360 
first categorize all the relevant TAZs into North, South, East, and West according to the line 361 
segment connecting the center of the TAZ and the metro station (Figure 6). Then, the direction-362 
based CC is defined to be the sum of CCs of relevant TAZs in the given direction (Table 2).  363 

 364 

 365 
 366 
FIGURE 6  TAZ-based CC indicated by the width and color of the line segment 367 
connecting the station and the TAZ. 368 
 369 
 370 

Zaoying Jiangtai 
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TABLE 2  Direction-based CC for Zaoying and Jiangtai. 371 
 372 

 Zaoying Jiangtai 

 Number of TAZs Sum of TAZ-based CC Number of TAZs Sum of TAZ-based 
CC 

South 485 12,381 574 39,916 
West 700 27,883 735 36,824 
North 505 16,355 413 32,021 
East 316 16,742 284 34,859 
North + 
South 990 28,736 987 71,937 

East + West 1,016 44,625 1,019 71,683 
 373 

Figure 5, Figure 6 and Table 2 reveal distinct spatial commute patterns around Zaoying 374 
and Jiangtai areas. High-CC TAZs (≥ 1,000) associated with Zaoying are within close proximity 375 
(1 km) to the station, while those associated with Jiangtai are distributed much further away (3 376 
km). Additionally, Table 2 suggests that the primary commuting direction associated with 377 
Zaoying is East-West, while for Jiangtai the commuting directions of East-West and North-South 378 
are comparable. The Metro Line 14, where Zaoying and Jiangtai stations are both located, is 379 
North-South bound; this suggests a misalignment between the metro line and the main 380 
commuting direction of Zaoying. This highlights the low accessibility of Zaoying to/from its 381 
neighbouring areas. In particular, areas like Sanyuanqiao, Liangmaqiao, and Tuanjiehu are close 382 
to Zaoying with approximately 10 min by car or taxi, but they take 30 min to reach by metro. 383 
Such a low metro accessibility to places with high commuting demand makes metro a generally 384 
expensive choice for travelers to/from Zaoying. This also explains the significant dependence on 385 
taxi around Zaoying area (see Table 1). 386 
 387 
3.4. Bike sharing to increase local mobility 388 
The commuting distance between the Zaoying station and nearby TAZs with high CC is typically 389 
below 1 km (see Figure 5). Such short-distance commute may be supplemented by shared bike 390 
scheme, which is booming in most Chinese cities (32). Shared bikes, due to their low economic 391 
and environmental costs as well as easy access for short-distance commute, is widely used as the 392 
first-mile or last-mile travel mode in a multi-modal urban transportation system. The shared bike 393 
companies have started to enter the market since Sep 2016 (notice that the metro ridership data 394 
were collected in Sep 2015). 395 

We use the origin-destination (OD) information of shared-bike trips to investigate the 396 
effect of bike sharing on the local mobility around Zaoying station, and the subsequent impact on 397 
the metro ridership at the Zaoying station. In particular, we focus on bike trips that start (or end) 398 
within 200 m-buffer of Zaoying, and plot the heat map of their corresponding destinations (or 399 
origins) (Figure 7). In particular, trips to/from Sanyuanqiao and Liangmaqian areas, which carry 400 
high local travel demands (see Figure 6), comprise 22% of the total bike trips. As a result of the 401 
implementation of the bike sharing scheme since Sep 2016, the ridership in Zaoying station has 402 
increased by 80 % based on metro data collected in Nov 2016. 403 

  404 
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 405 
 406 
FIGURE 7  The bike use intensity around Zaoying station. The color indicate the number 407 
of bike trips that start or end within 200 m from the station. 408 
 409 
 410 
4. CONCLUSION AND DISCUSSION 411 
This paper presents a comprehensive and multi-dimensional analysis of the public transit system 412 
at two locations in Beijing. We investigate the public transit capabilities near Zaoying and 413 
Jiangtai metro stations, both located on the Metro Line 14. The former has much lower metro 414 
ridership than the latter (by a multiplicative factor of 7). In addition, a much higher dependency 415 
on taxi as a private transportation mode is also seen in Zaoying area (overall 17% for Zaoying vs. 416 
5% for Jiangtai). These statistics suggest that the public transportation in Jiangtai area is much 417 
more vigorous than Zaoying area; this is disproportional to their local population and in spite of 418 
their comparable geographic location and commercial activities. Through a data-intensive and 419 
multi-dimensional analysis, we analyze factors that influence the local mobility of these areas 420 
and reasons behind the much lower metro ridership in Zaoying. In particular, the following 421 
findings are made. 422 

x The Zaoying area is predominantly resided by senior population, who make less frequent 423 
commute trips, and have lower propensity towards the metro compared to the younger, working 424 
class.  425 

x The higher property price around Zaoying station suggest a potential higher average 426 
income and car ownership of nearby residents, which contribute to lower metro ridership. 427 

x Zaoying station has much lower accessibility from the bus transit network than the 428 
Jiangtai station. It is therefore difficult for Zaoying to be fully utilized as part of the metro-bus 429 
multi-modal transit system. 430 

x Commute patterns to/from the two areas, which are extracted from signalling data, shows 431 
that most commuters to (from) Zaoying travel from (to) areas within close proximity (1 km), 432 
while those associated with Jiangtai are distributed much further away (3 km). Moreover, the 433 
primary commuting direction associated with Zaoying is East-West, which is misaligned with 434 
Metro Line 14 (North-South).  435 
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x The low accessibility of the Zaoying station from nearby areas such as Sanyuanqiao and 436 
Liangmadian is mitigated by the introduction of shared bike services.OD information of shared-437 
bike trip data show that the most frequent bike-sharing trips are to/from nearby locations with 438 
high commuting demands. Furthermore, the emergence of shared bikes has mitigated the low 439 
connectivity between the Zaoying station and other transit systems. As a result, the metro 440 
ridership at Zaoying has significantly increased (by 80%) after introduction of the shared bike 441 
scheme. 442 
 443 

The aforementioned big-data analyses reveal some key insights regarding urban planning. 444 
Conventional transportation planning approaches tend to focus on aggregated characteristics like 445 
travel time, fare, and comfort. However, the drastic difference in the metro ridership at Zaoying 446 
and Jiangtai stations suggests vital roles played by the local accessibility of the metro station as 447 
well as its connectivity with the rest of the transit system.  448 

This paper also highlights the importance of collecting and analyzing fine-granularity 449 
data, beyond conventional aggregate, static transportation planning data. Data on individual 450 
activities and behaviors, such as cell phone signaling data and bike sharing data, provide much 451 
detailed spatio-temporal dynamics of individual commuters, which help transportation planners 452 
to identify key bottlenecks and propose effective solutions.   453 

 454 
 455 
 456 
 457 
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