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ABSTRACT

Wang, Y., 2000. A robust seismic phase unwrapping method. Journal of Seismic Exploration, 9:
93-104.

Ore of the difficulties in seismic phase unwrapping occurs at the frequency components with
energy close to zero, where the final unwrapped phase function should have + discontinuities, At
those frequency components, principal values of the wrapped phase spectrum and in turn the values
of the final unwrapped phase function are contaminated severely by numerical errors. These errors
also propagate along the frequency axis as the unwrapped phase function is calculated recursively.
This paper presents a robust phase unwrapping method. Unwrapped phase function is defined as the
sum of phase increments, where the phase increment of adjacent frequency components is evaluated
in terms of the difference of principal values of the wrapped phase spectrum. In the vicinity of +
discontinuities, appropriate treatment of phase increments is required, preventing the numerical
errors from propagating along the frequency axis.
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INTRODUCTION

Seismic phase unwrapping is a practically unsolved problem, although it
is a conceptually simple processing (Oppenheim and Schafer, 1989; Shatilo,
1992). One of the difficulties in seismic phase unwrapping occurs at frequency
components with energy close to zero, where the amplitude spectrum appears
as notches. Because of the low signal-to-noise ratio, the principal values of the
modulo-27 phase spectrum at those frequency components are contaminated
severely by numerical errors, which are then retained in the final unwrapped
phase function produced from the principal values. These numerical errors in
the local phase values also propagate along the frequency axis as the unwrapped
phase spectrum is calculated recursively.
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At those frequency components with energy close to zero, the final
unwrapped phase function should have +w discontinuities. To identify the phase
discontinuities, McGowan and Kuc (1982) used the sign change of the product
of the real and imaginary parts of the Fourier spectrum. But a rapid phase
change can mask the true sign change of the product. Poggiagliolmi et al.
(1982) suggested to distinguish the physical + 7 phase discontinuities from the
27-jumps of the phase wrapping by computing the finite difference of the phase
principal values taken over progressively smaller frequency intervals. In the area
where the unwrapped phase exhibits an intrinsic high variation, however, it is
pointless to decrease the frequency interval because the phase function can
change rapidly at a point (Stoffa et al., 1974).

This paper presents a robust seismic phase unwrapping method, in which
the final unwrapped phase function is given by the sum of its phase increments.
The phase increments of the unwrapped phase function (yet to be determined)
are derived from the differences of principal values of the wrapped, modulo-2«
phase spectrum. The identification of the + 7 phase discontinuities is then based
on the phase increments, in which any 27-jump of the phase spectrum has been
removed unambiguitily. Once the intrinsic +# discontinuity is identified,
appropriate treatment to the phase increments in the area around the +m
discontinuity is required to mitigate numerical errors. The phase unwrapping
method and its implementation are presented in the next two sections, followed
by verification examples of seismic traces.

PHASE UNWRAPPING METHOD

Considering a real-valued seismic trace {x,, 0 < n < 2N}, and its
frequency domain counterpart {X,, 0 < k < N},

{xa} & X, (1)
one has a wrapped phase spectrum,
¥ = arctan[¥(Xy), RX] , 2)

where & and R refer to the imaginary and real parts of the complex signal X,,
and arctan is the four-quadrant arctangent function and referred to as the
wrapping operator, which produces the principal value of the phase,

<Yy <7 . ‘ 3)
Only one-half of the Fourier spectrum is considered here, as a real time-domain

signal produces a symmetric amplitude spectrum and an anti-symmetric phase
spectrum.
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The modulo-27 phase spectrum produced by equation (2) is unsuitable for
further interpretation and processing in many cases, and needs to be unwrapped.
The conventional unwrapping process involves detecting the 27-jumps in the
wrapped phase and adding an appropriate multiple of 27 (Oppenheim and
Schafer, 1989),

¢ =Y +2mr, , O0<ks<N, | 4)
where {¢,} are the unwrapped phase values, and {r,} are integers. We will see
in the next section that it is difficult to distinguish between the 27-jumps and the

physical +7 phase discontinuities.

If the unwrapped phase is assumed to be continuous, phase unwrapping
may also be implemented by the integration (Stoffa et al., 1974; Wang, 1998),

b =4+ [, STXOME, Osk<N, ®)

where w, 1s the angular frequency of the k-th sample, ¢'[X(w)] is the derivative
of (unwrapped) phase function with respect to w and given analytically by

¢'[X(w)] = F[X'()/X(w)] , (6)

and X'(w) is the derivative of X(w). Note that the evaluation of phase derivatives
1s unstable, as it has a maximum when the spectrum magnitude is low.

The notion that the unwrapped phase is obtained by the integral of phase
derivatives may lead to the implementation of the sum of phase increments,

Gri1 = O+ AP, (7N
where {A¢,} are the phase increments of unwrapped phase function between w,
and w,,. If the unwrapped phase function is not aliasing sampled, the phase
increment should have the following two properties:

- Property I -7 < Apy = 7 ; 8
- Property II:

If the unwrapped phase spectrum is a continuous
function, then

|Ag | =0 for Aw—=0 ; 9
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and if the unwrapped phase spectrum has a +«
discontinuity, then

|Agy| = 7, for Aw—=0 . (10)

The condition of unaliased frequency sampling is easily to be satisfied.
Otherwise, one may always up-sample it in the frequency domain by
zero-padding to the original time-domain seismic trace, prior to the Fourier
transform. Property I, given originally by Itoh (1982), is exploited for
estimating phase increments of the unwrapped phase function, while property
II will be used in the next section to detect the phase discontinuities.

Suppose that the phase spectrum is unwrapped by equation (4), the phase
increment, Ap, = ¢,,; — ¢, of the unwrapped phase function is given by

Ady = (Y + 2714) — (Y + 271 .
That is,
A¢, = Ay + 27(ry . — 1) , 1D

where Ay, = ¥, ., — ¥, is the difference of the phase principal values. We may
now apply the wrapping operator, denoted as W, to equation (11). On the
left-hand side we have

WAg, ] = Ag, 12)
following property I {expression (8)]. On the right-hand side we have
WIAY, + 27(r., — 1)) = WIAY,] (13)

since the difference (r.,, — 1) is an integer of —1, 0 or +1. Finally, we have
the phase increment of the unwrapped phase function,

A¢, = arctan[sin(Ay,), cos(Ayy)] . (14)
Therefore, using equation (14) and equation (7), we obtain the unwrapped phase
function {¢,} as the sum of the wrapped phase-differences of the principal phase
values {{,}.

ROBUST IMPLEMENTATION

The conclusion drawn above is the kernel of the seismic phase
unwrapping method presented in this paper. Full implementation also includes



PHASE UNWRAPPING 97

the following three pre-processing steps, prior to the final summation of the
phase increments:

1. Removal of linear phase component by time shifting;
2. Removal of 27-jumps by wrapping phase differences;

3. Mitigation of numerical errors in the vicinity of the + = discontinuities.

Removal of linear phase component

In practice, one frequently presents the unwrapped phase spectrum with
a linear phase shift, which intuitively rotates the phase curve towards the
frequency axis, and physically shifts the origin of the seismic series in the time
domain to the centre of the seismic signal. The centre of signal is the point of
equilibrium of the linearly weighted signal energy, and has a delay

T T
r =1 § vewda/[ | xodd | (15)
0 0
where T is the duration of the signal x(t).

This time delay in the seismic series is equivalent to adding a linear phase
component into corresponding phase spectrum in the frequency domain.
According to the phase-shift theorem (Karl, 1989), I express the linear phase
component in a discrete form,

2N-1 2N-1

q = (TN Y /() %) (16)
n=0 n=0

for 0 £ k < N. Any processing based on the unwrapped phase spectrum
generated from a time-delayed trace should take this linear component into
account.

Why do we shift the time origin of a seismic trace prior to the Fourier
transform, instead of removing the linear component from the final unwrapped
phase spectrum of the unshifted trace? Let us see an example shown in Fig. 1,
where (a) is a seismic trace, (b) is its amplitude spectrum, (c) is the phase
spectrum obtained from the original time series, and (d) is the phase spectrum
obtained from the seismic trace with delay time 7 = 144 ms. From Fig. 1(d) we
see that the number of 27 discontinuities i1s reduced to the minimum, and hence
the phase curve is simplified significantly. The simplification of the wrapped
phase will lead to a relatively easy unwrapping process. For example, I will in
a later stage rely on the phase increment of adjacent samples to detect the +7
discontinuity.
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Fig. 1. (a) A time series; (b) The amplitude spectrum; (c) Wrapped phase spectrum; (d) Wrapped
phase spectrum of the trace with time delay = 144 ms; (e) Wrapped phase differences; (f) Phase
increments; (g) Resultant unwrapped phase function. Arrows indicate frequency components with
+ 7 phase discontinuity.
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Removal of 27-jumps

The next step is to wrap the differences of wrapped phase values,

WA ] = WYy, — vl o, an

following the condition (8). In this way, we effectively remove the 27-jumps in
the wrapped phase curve. [Note here I did not consider the case of multiple
poles or zeros between the k-th and (k+ 1)-th frequency samples, which can give
rise to multiple 27 shifts].

Let us now compare this approach with the conventional 2z-jump
detection method (equation 4), which may be presented as

if (AY, > 21 — ¢) then {there is +2x jump};
elseif (AY, < —27 +¢) then {thereis —2x jump}; (18)
else {no +27 jump}.

The parameter € above is a tolerance, recognising that the magnitude of the
difference of the principal values between adjacent samples should always be
less than 27. The choice of the ¢ parameter however may cause problems. If e
is too large, a 27-jump would be indicated where there is none or there is an
intrinsic +7 discontinuity. If € is too small, the algorithm would miss a
27-jump falling between two adjacent samples and treat it as a + discontinuity
of the unwrapped phase function. Solution of the conventional method depends
on the choice of the e value.

This problem does not exist in the new approach of equation (17). For
example, Fig. 1(e) shows the wrapped differences, W[Ay,], of wrapped phase
values in Fig. 1(d). We see clearly from Fig. 1(e) that +27-jumps in Fig. 1(d)
have been removed. Since this approach now gives an unique solution for
removing the +27-jumps, any large value appearing in W[Ay,] must relate to
the physical +« discontinuity of the unwrapped phase function and must have
numerical errors in it.

Mitigation of numerical errors

To get rid of the numerical errors from the final unwrapped phase
function, I first detect the frequency components with + 7 phase discontinuities
by using property II of the phase increment. If the phase increment between
adjacent samples is greater than a given threshold, say
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Wiav,] > 7/2 (19)

there is an intrinsic + discontinuity in the phase function allocated between
those adjacent frequency components, given that the k-th sample is not such a
component. In the example of Fig. 1, detected components are indicated by
arrows (Fig. 1(e)). Any single component between two detected components is
also considered as a component within the notch. The identification here is
based on the information in the phase spectrum and not based on the amplitude
spectrum, but the notches appearing on the amplitude spectrum may verify the
identification.

In the vicinity of the + discontinuity, phase values inevitably have
numerical errors. In other words, any large value W[Ay, ] may suspiciously have
errors. To prevent the numerical errors effecting subsequent frequency
components, I calculate the unwrapped phase value at the first point immediately
after the discontinuity by

or = ¢ + Wiyg — ¥l , (20)

where subscripts R and L refer to the first samples on the right-hand and
left-hand sides of the discontinuity range. Both ¥, and ¥y values used above are
reliable and then ¢y is not affected by the phase errors between L and R.

The asymptotical + discontinuity exists somewhere between samples ¢,
and ¢y. In practice, I set the unwrapped phase value of any component between
samples L and R equal to ¢. This procedure calculates the phase increments of
the unwrapped phase curve in the vicinity of a discontinuity by

( Wi, —¥], k<L,

W[’#R_‘LL], k=L,
Ay = ¢ @1
0, L<k<R,

\ Wive, — %l, k= R.

Note that we are allowed to do so only because the linear phase shift has been
removed in the first step. Otherwise, the quantity g, given by equation (16) must
be considered.

Once {A¢,} are obtained, the final unwrapped phase function is produced
simply by summing phase increments. In the example of Fig. 1, phase
increments {A¢,} and the resultant unwrapped phase are shown in parts (f) and
(g). The unwrapping result has been checked by an inverse Fourier transform
to reconstruct the original trace.
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VERIFICATION EXAMPLES

In all tests we have conducted, there is no visible discrepancy between the
original seismic trace and the reconstructed trace from the resultant unwrapped
phase spectrum. In the following two examples however, I verify the unwrapped
phase spectrum by comparison with its analytical solution.

One of the examples is shown in Fig. 2, designed to test the effect of
numerical errors which are introduced during the discrete Fourier transform.

Given a real seismic trace {x,} with amplitude spectrum {A,} and unwrapped
phase spectrum {¢,} drawn in solid lines, I generate a synthetic trace by

Xi = Alcos(¢y) + isin(é)] (22)

x(t) |.
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Fig. 2. Spectrum comparison of an original seismic trace and the synthetic trace: (a) the seismic
traces; (b) the amplitude spectra; and (c) the phase spectra. The original trace and its spectra are
plotted in solid lines, whereas the synthetic trace and its spectra are drawn in dotted lines.
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followed by the inverse Fourier transform. By doing so, we introduce numerical
errors into the seismic trace, and then see the effect of these errors on the phase
unwrapping process, especially in the vicinity of the + 7 discontinuities. There
is again no visible difference between the original trace and the synthetic trace.
Note that the time shift of 612 ms has been removed from the synthetic trace.

Amplitude and phase spectra of the synthetic trace are drawn in dotted
lines and superimposed on the spectra of the original trace. The amplitude
spectrum shows that the synthetic trace contains numerical errors at notches,
such as the frequency components of less than 1.5 Hz. But the phase spectrum
matches the spectrum of the original trace very well within the range from 0 Hz
to about 87 Hz. At about 87 Hz, the amplitude value is less than —60 db, and
the phase value changes from the —= discontinuity to +7 discontinuity. This
kind of change is also found at a frequency of about 90 Hz. As we well know,
in the complex plane, the position of the signal zeros at the unit circle is very
sensitive to noise. If the zero is just inside the unit circle, this is a —7 phase
change. If the zero is just outside the unit circle, there is a +7 phase change.
Hence, errors of 27 are very likely to occur around notches as zeros might have
been erroneously shifted across the unit circle (Poggiagliolmi et al., 1982).

Another example is shown in Fig. 3, designed to test the effect of
numerical errors introduced in digital, finite convolution. Given two time series
u(t) and v(t) with known spectra, I create a synthetic trace x(t) by convolution

X(t) = u(t) * v(t) . (23)
The synthetic trace x(t) shall have analytical Fourier spectra

Alw) = AY(AY(w) 24)
and

P(w) = ¢(w) + ¢“(w) , (25)

where A" and ¢“ are the frequency spectra of u(t), and A® and ¢ are the
frequency spectra of v(t).

I now compare the analytical spectra with the spectra obtained from
discrete Fourier transform. In Fig. 3, (a) is a time series u(t) and its spectra A“
and ¢, (b) is a wavelet v(t) with spectra A™ and ¢, and (c) is the synthetic
x(t) and its spectra A and ¢, where numerically estimated spectra are plotted in
solid lines, compared to dotted lines of the analytical solution. In phase ¢, a
phase discontinuity occurs at a frequency of about 5.0 Hz, corresponding to a
notch in the amplitude spectrum. To simplify the investigation, ¢ is given as
zero phase of a simple wavelet. As the convolution is implemented on the
discrete finite series, the amplitude spectrum A differs from the analytical one.
As a consequence, the phase spectrum has 27 phase difference at and after the



PHASE UNWRAPPING 103

notch point. Note that the phase spectrum alone does not provide any
information about the sign of the + discontinuities. To determine the sign
requires a further assumption, such as the minimum phase in seismic.
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Fig. 3. (a) Time series u(t) and its spectra; (b) Wavelet v{t) and its spectra; (c) Synthetic trace x(t)
= u(t) = v(t), and its spectra obtained from the Fourier transform (in solid lines) and the analytical
spectra (in dotted lines).
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CONCLUSIONS

The unwrapped phase function is defined as the sum of phase increments.
These phase increments of the unwrapped phase function are obtained by
wrapping the phase-differences of wrapped phase values.

This method is computationally efficient, compared to methods such as
the adaptive integration. It is because this method does not require frequency
re-sampling in an adaptive scheme, which reduces the frequency interval
gradually to improve the accuracy of the estimation of the phase change (Wang,
1998).

This method is robust. It effectively prevents numerical errors in the
vicinity of the +7 discontinuities from propagating along the frequency axis,
although the phase spectrum alone does not provide any information on the sign
of phase discontinuities.
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