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ABSTRACT

For multiuser MISO systems with bounded uncertainties i@ th

Channel State Information (CSI), we consider two classichust
design problems: maximizing the minimum rate subject taasmit
power constraint, and power minimization under a rate cairgt
Contrary to conventional strategies, we propose a RattiSgl
(RS) strategy where each message is divided into two pacsna

mon part and a private part. All common parts are packed in® o
super common message encoded using a shared codebook and

coded by all users, while private parts are independentipeed and
retrieved by their corresponding users. We prove that Redbde-

signs achieve higher max-min Degrees of Freedom (DoF) caedpa

to conventional designs (NoRS) for uncertainty regiong #uale
with SNR. For the special case of non-scaling uncertaingyores,
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packing the common parts such tHé&t = {Wc1,...,Wek} €
We, whereW, = We1 X ... x We k. Wo is encoded using a
common codebook shared by all users, whiilg, . .., Wk are en-
coded using private codebooks known by their corresponatiegs.
The resultingK” + 1 encoded symbol streams are linearly precoded
and simultaneously transmitted. At each receiver, the commes-
sage is decoded first by treating all private signals as ndibés is
followed by decoding the private message after removingctime-

Jaon message via Successive Interference Cancellation).($he

original messages are delivered given that each receiceessfully
decodes the common message and its private message.

A special case of the described RS schemel[7, 8], where only
one user message is split, was shown to boost the sum Dedrees o
Freedom (DoF) under CSIT errors that decay with increaseR SN

RS contrasts with NoRS and achieves a non-saturating max-miet @ rate ofO(SNR™%) for some constant € [0, 1]. This strategy
rate. In the power minimization problem, RS is shown to cambaWas leveraged to enhance the sum-rate performance undeus/ar

the feasibility problem arising from multiuser interfecenin NoRS.
A robust design of precoders for RS is proposed, and perimcema
gains over NoRS are demonstrated through simulations.

Index Terms— MISO-BC, degrees of freedom, linear precod-

ing, max-min fairness, quality-of-service, robust tragiger design.

1. INTRODUCTION

Consider a Multi-User (MU) Multiple Input Single Output (BD)
system where a Base Station (BS) equipped wiftantennas serves
a set of single-antenna usdés= {1,..., K}, with K < N;. Un-
der the assumption of erroneous Channel State Informatiohea
Transmitter (CSIT) with bounded uncertainty regions, wdrads
two typical design problems: maximizing the minimum woecase
rate subject to a total transmit power constraint (rate lerap, and
minimizing the transmit power subject to a worst-case ratstraint

(power problem). Such problems, which are non-convex in gen

eral and semi-infinite, were addressed in literature usargus ap-
proaches and approximatioris [1-5]. However, all existirarks
consider a conventional transmission scheme, i.e. eachagess
encoded into an independent data stream, then all streanspar
tially multiplexed. For the rate problem, such designs arewn to
yield a saturating performance at high SNRs where MU interfee
becomes dominant[4+-6]. Conversely, this creates a fdi@gissue
for the power problem, since rates beyond the saturaticel =an-
not be achieved [114]. In this work, we propose a Rate-$mitRS)
strategy to combat these shortcomings.

Let Wt,l, .
Wy 1, ..., W, k, and intended for receivers . . ., K respectively.
In the proposed scheme, each user message is split intcaseppiart
Wi € Wy and a common patl. . € We i, whereWy, x W, i, =

CSIT assumptiond [9, 10]. RS was also shown to provide signifi
cant sum-rate gains in the large-scale array regime [11pl&ying

RS in a more general manner to achieve max-min fairness veas fir
reported in our previous work [12], where the average peréorce
over the error distribution was considered. This papersggavenore
complete treatment of the max-min problem by deriving theras
totic rate performance (in a DoF sense) of the optimally giessi
RS scheme. In addition, the approach is extended to tackleth
verse power optimization problem. We should also highltpht the
worst-case optimization considered in this work poses &raekal-
lenge in comparison to [12] due to the minimization embedited
each worst-case rate expression. The rest of the paperéaninegl

as follows. The system model is described in Sedfilon 2. In Sec
tion[3, the problem is formulated and the asymptotic perforoe

is derived. An optimized design of precoders for the RS atpais
proposed in Sectidd 4. Simulation results and analysis resepted

in Sectiorl®, and Sectidn 6 concludes the paper.

2. SYSTEM MODEL

For the system introduced in the previous section, consideans-
mission taking place over a block of channel uses where taere
remains fixed (quasi-static). The signal received atktiheuser in a
given channel use writes gs = h’ x+mn,, whereh, € CMt isthe
channel vector from the BS to thgh userx € Ct is the transmit
signal, anchy, ~ CN(0, aﬁ’k) is the Additive White Gaussian Noise
(AWGN) at the receiver. The transmit signal is subject to aera

.., Wi,k be messages uniformly drawn from the setsage power constraifi{xx} < P.. Without loss of generality,

we assume equal noise variances across userszﬁ.,g.: o2, and
channel entries with normalized average gains. Therefbeelong
term SNR is defined aSNR £ P;/s2. Moreover,o? is non-zero

Wy k. A super message (the common message) is composed bgnd remains fixed. Henc®, — oo impliesSNR — oo.
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We, Wi, ..
Sc, S1, -

grouped as 2 [sc,s1,...,sx]7 € CKT whereE{ss”} = 1.

., Wik are encoded into the independent data streameorresponds to perfect CSIT resulting from an infinitelyrhigum-
.., Sk respectively. For a given channel use, symbols areber of feedback bits. In the following, the exponents aredated

such thata € [0, 1] which is customary in DoF analysis as= 1

The symbols are mapped to the BS antennas through the pmgcodicorresponds to perfect CSIT in the DoF sensgl[6, 7].

matrixP £ [pc, p1, ..., Px], yielding the transmit signat = Ps,

Due to the CSIT uncertainty, the actual rates cannot be donsi

where the common stream is superimposed on top of the privatered as design metrics at the BS. From the BS’s point of view,

streams. The power constraint is rewritterta@P*’) < P.. The
kth average receive power is expressed as

Sc,k Sk Ik

H_ 2 H_ 2 H_ |2 2
Te.r. = |hy pe|” + |y Pl +§ [y pi|” + o5 -
itk

@)

Io, =Tk

The common message is first decoded by treating interfefemce
all private signals as noise. Thth user’s estimate of. is obtained
asS.k = ge,kYk, Whereg.  is a scalar equalizer. Given that the

achievable rates also lie in bounded uncertainty regionse W
consider a robust design where precoders are optimizetther.
worst-case achievable rates defined for ke user asR., 2
minhkerRc,k(hk) and Rk S minhkerRk (hk), where the de-
pendencies of the rates dm. are highlighted. The worst-case
achievable common rate is defineds= min; {R. ; }1=,. Trans-
mitting We, W1, ..., Wxk at ratesR., R1,..., Rk respectively,
guarantees successful decoding at the receivers for alisaiiie
channels within the uncertainty regions. Following the R8ciure

in Sectior 1, thekth user’s portion of the common rate is denoted
by Cy, Wherer:1 Cr = Re.. Therefore, théth user's worst-case
total achievable rate is given @& , = Ri + C}, corresponding to

common message is successfully decoded, SIC is used to €MOM,e rate at which the original messaié ; is transmitted.

the common signal frony, before decoding the private message.
The estimate o, writes ass, = gi(yx — hfpcsc,k), wheregy,

is the corresponding equalizer. At the output of ke receiver, the
common and private MSEs, definedaas. £ E{|5. — sc|?} and

er 2 E{|5x — sx|*} respectively, write as:

Ec,k = |gc,k|2Tc,k - 2%{gc,kh£{pc} + 1
ex = |gk|*Th — 2R{gxhi’pr} + 1

(2a)
(2b)

whereT}, is defined in[(1). We assume perfect CSI at the Receivers

(CSIR) obtained through common and dedicated downlinkntrai
ing. This assumption is justified by noting that the effedt€8IR
estimation errors are at the same power level of additiveejoi
which is overwhelmed by the influence of CSIT uncertainty][13
Users employ optimunige «, gx), i-e. the well-known Minimum
MSE (MMSE) equalizers given asyty™*® = p'h:T_, and
gyMSE — pHh, T, from which the MMSEs are obtained as:
ed¥SF = T ., andel™S® = T, 1. Thekth SINRs write
asiYer = Sc,kIcTzi (1- E?f?iSE) EIC\fI;i\/ISE and~g = Skf,zl =
(1 — eMMSE) /o MMSE - ynder Gaussian signalling, tHeh max-
imum achievable rates are given aBcrx = logy(1 + ve,x) =
—logy(e2h™*") and Ry, = log, (1 + 1) = —log, (e}
ensure that all users decodl&., it is transmitted in a multicast
fashion at the common rafé. £ min;{Rc ;}<,.

3. PROBLEM STATEMENT AND ASYMPTOTIC
PERFORMANCE

For each channel vectdr;, the BS obtains an erroneous estimate
hy,, from which the error unknown to the BS is definedasz hy, —

h;. As far as the BS is awardy, is bounded by an origin-centered
sphere with radiug,. Hence h; is confined within the uncertainty
regionH, £ {hk | hy = ﬁk + hy, [|hy|| < 5k}. This is relevant

in limited feedback systems as quantization errors are dedinin
scenarios where the number of feedback bits is made to sialew
creased SNR to provide improved CSIT quality [6,9], the utatety
region shrinks such thag = O(P;*), wherea € [0, oo) is a con-
stant exponent that quantifies the CSIT quality as SNR gravgel

log(é%)

(assumed to be the same across users)yi®limp, oo — Toe (P -

a = 0 represents a constant (or slowly scaling) number of feddbac

bits, yielding non-decaying CSIT errors. On the other hane; co

3.1. Rate Optimization Problem

Using the RS strategy, the robust rate optimization probidrith
achieves max-min fairness is posed as

_max R
R¢,Rc,c,P B B B
s.t. Ry +Cr >Ry, VEEK

Rer > Re, Vk€ K

Rrs(Py) : Jte W ®)
Zszl Cr = Rc
Cp>0,Vkek
tr(PPY) < P.
whereR; is an auxiliary variable, and £ [C1,...,Cx]%. Point-

wise minimizations inR; and R. are replaced with inequality con-
straints in[(B), where equality holds at least for one us@p&mal-
ity. The constraints”;, > 0 guarantee non-negative splitting. In
contrast, the NoRS version of the problem is formulated as

max R
R,P,
R(P):qst. Ry > R, Vke K ©
tr(P,P;) < P.
where R is the rate auxiliary variable, an®, £ [p1,...,px].

Solving [4) is equivalent to solvin§}(3) over a restricteddin char-
acterized by setting = 0, which in turn forcesR. and||p||® to
zeros at optimality. As a result, we ha®rs(P;) > R(P:). Next,
we look at the optimum asymptotic performance of the two see

To analyse the performance as SNR increases, we define a pre-
coding scheme fol{3) as a family of feasible precoders wita o
precoder for each SNR level, i.éP(Pt)}Pt. The associated pow-
ers allocated to the precoding vectors are assumed to sahldw
as||pc||* = O(P7<) and||px||* = O(P*), whereac, ax, € [0, 1]
are some scaling exponents. Under a given precoding schibme,
kth worst-case common and private DoF are defined as

R.(P,) Ri(Py)

li £ WA E)
Pero log, (Pr) Pesbo log, (Pr)

d. 2 and dy

Q)

where the dependencies on the power level are highlightd@)in

The kth user's split ofd, is defined ass;, £ limp, oo lfg’“;—(}j;g),

where 3" &, = d.. All definitions extend to the NoRS case



where the common part is discarded, and a precoding scher@® fo change with the transmit power variation during the desigpte-
is denoted b){Pp(Pt)}Pt. dure, as channel estimation and feedback is carried out farithe
precoder design. The rate and the power problems are monoton

Theorem 1. The NoRS problem yields an optimum max-min DoF cally non-decreasing in their arguments, and are relatetl that
R(P(R)) = RandRrs(Prs(R:)) = R:, which can be demon-

d* 2 lim R(P) =« (6) strated using the same stepslini[15, 16]. Combining this Wité-

Py—oo log(P) orem[1, it follows that under non-scaling CSIT errol%(Pt) con-

verges to a finite maximum value & — oo, which is the maxi-
mum feasible rate foP(R). On the other handRrs(P;) does not

Rrs(P) 14 (K —1)a @ converge. Hence, any finite rate is feasibleRers (Ry).

while the optimum max-min DoF for the RS problem is given by

TR A .
drs = P}li’»noo log(P,) K
4. ROBUST OPTIMIZATION
Proof. Let {a}}i, be the power exponents df](4)'s optimum
precoding scheme. We initially assume that the optimum powProblems[(B) and{8) are semi-infinite and appear to be iatobe
ers satisfyas,...,ayx = a*. We haved; < min{a,a*}. in their current forms. Even finite instances of the problesasm
This is shown through upper-bounding the worst-case SINKR, i to be intractable due to the non-convex coupled sum-rateesxp
e 2 minn, ex, Y& (hx), by selectingh,, € Hy such that théth sions embedded in each user’s total rate. Therefore, weogmpl
(I € K\ k) interference is maximized, and discarding some interferthe Rate-Weighted MSE (WMSE) relationship which is pattdy
ence terms[[14]. Since the point-wise minimum is upper-bean suitable for problems featuring sum-rate expressions12y—The
by any element in the set, anti < dj for all k € K, we have  kth user's augmented WMSEs (referred to as WMSES for brevity)
d* < a. Next, assume thafl(3)’s optimum precoding scheme hagre defined as¢., 2 ucrcer — 108 (Uek) aNdEx 2 urer —
power exponents; anda™ for the common and private precoders log, (ux), With u. , anduy as the corresponding weights. Optimiz-
respectively. Usingi. + Rx < Re x + Ry, and the previous bound- ing over the equalizers and weights, the Rate-WMSE relatign
ing techniques, we obtaiff + dj; < min{1+a —a*,1}. Sincethe  writes as:&M® £ min,_, 4. &ex = 1 — Rep and&™5F £

max-min DoF is upper-bounded by the average user DoF, we writmin., ¢, = 1 — Rk, where the optimum equalizers and weights

dis < d:'*z}g:l i < LHE-Da where the right-most inequality are given by:g , = gVMSE | gr = gMMSE x| = (MMSEY T

is obtained fromi? + d} < 1 anddj < o andu} = (EIIQM\ASE)*1 [10[12]. From this relationship, the worst-
The upper-bounds are achieved through feasible precoders aase rates are equivalently written as

follows. Best-effort _Zero-Forcing (Z_F) obtaine_d using mfailgble Rer=1— max min ok (hy, gok te,r) (10a)

channel estimate with powers scaling@6&P¢) is used for private hy €H te iy e,k

precoders, achieving; , . .., dx = a. For RS, this is superimposed Ry =1— max min & (hy, gk, up). (10b)

by a random common precoder with power that scale©@s;), hy; €My wg gk

achievingd. = 1 — o which is split equally among users. Relax- Equivalent WMSE problems are obtained by substituting {h)

ing the assumption that;, .. ., a% are equal yields the same result @) and [8), where the domains are extended to include thalizgu

using slightly more involved upper-bounding steps. O ers and weights as optimization variables. Such problers ha

_interesting block-wise convex structure which can be asgdious-

It should be noted that although the ZF precoders proposié@in i the Alternating Optimization (AO) principle. Howevéhe new

proof are optimum in a DoF sense, they may be far from optimunhohjems have infinitely many optimization variables andstaaints
from & worst-case rate perspective at finite SNRs. This mt@sthe e 10 the dependencies of the optimum equalizers and veeight

need for robustly designed precoders. Itis evidentdtigt > d*  perfect CSI. We resort to the conservative approximatiofii by

holds for alla € [0,1], and strictly holds foix € [0,1). drsiS  gwapping the minimization and maximization [1110). Eceels

lower-bounded byl /K. Hence, an optimally designed RS scheme g \yeights loose their dependencies on perfect CSI and ta&ob
is expected to achieve an ever-growing max-min rate. Py

Rcﬁk =1— min max fc,k (hk,ﬁo,k, /u\cﬁk) (11&)
N Ue,ksJec,k hi€Hp
3.2. Power Optimization Problem ) Ry =1— min max & (b, Gk, Uk) (11b)
The power problem with a rate constraiit writes as Uk, Gk By €Hy,
min_ tr(PPH) whereR. » < R andRy < Ry are lower-bounds on the worst-
foeP - _ case rates (see footnote 1 [n[14, Section IV.B.2]), &gk, qx)
B s.t. }Efk + Cku Ry, Vk € K and (u.,,, ux) are the abstracted equalizers and weights which are
Prs(Rs) : Rer > Re, Vk € K 8 applied to all channels in the uncertainty sets. Plugdidl ifito the
S K, Cv=Re rate problem yields the conservative WMSE counterpart
CrL>0,Vkek. _ max R
Ry Re,e,P.g,d
On the other hand, the NoRS counterpart is formulated as s.t R R
_ min  tr(P,P}) . 1—&k (hi, Gk, Uk) +Cr > Ry, Vhy, € Hy, k€ K
P(R):q Fe @  Res(P):91 =&y (by, Gor, Ge) > Re,Vhy € Hy k € K
st. Ry >R, VkeK. K A 5
k=1 Cr = Re
As (9) is a restricted version dfI(8), we hafs(R:) < P(R:). Cr 20, VkeK
We consider non-scaling CSIT witlf, ..., 6% = O(1), i.e. a = tr(PPH) <P

0. This is relevant to[{8) and[{9) where the CSIT quality does no (12)



whereg £ {Gex,0x | k € K}y andd & {Uex,ur | k € K}
Extending this approach to the power problem yields

_ min tr(PPH)
R.,c,P.,g,u
s.t.
1—§k(hk,§k7ﬂk)+6k > §¢7th € Hg, k € K
1 _gck(hlmgckyuc k) > Re,Vhy, € Hy, k € K
Z? 1C’€ = R
Ck >0, Vk e K.

PRS (Rt) :

(13)
The semi-infiniteness is eliminated by reformulating tHaite sets
of rate constraints into equivalent Linear Matrix Ineqtie$i (LMIs)
using the result i [20], based on t8eprocedure. Théth total rate
constraint in[(IR) and{13) is rewritten as

Uk (T + [Gx|°02) —logy (k) <1+ Cr — R (14a)
Th — Ak e o”
Py, I -6k PGl | =0, Ax >0 (14b)
0 —0kgxPp Arl
while thekth common rate constraint is expressed as
Gk (e + [Gex|*0n) — logy(Tier) <1— Re  (15a)
Te,k — )\c,k wgk OT
Yok I —0,PHGH | =0, Ac x>0 (15b)
0 —0kGe,k P Ackl
wherey!! £ GhP, — el andy!, £ G hi’P —el. Fora

detailed description of the procedure, please refer to fig] [d4].
Next, we develop an unified AO algorithm that solVes (12) &d).(

4.1. Alternating Optimization Algorithm

In each iteration of the algorithng; is first optimized by solving the

problemanin max e, (h;€7 Je, k) andmm max €x (hl€7 gk) for all
Je,k hy €Hy, hy, €Hy,

k € K, formulated with objective functlonsc,k + |gc,k| o2 and

T + |90, and constraint§ (Ibb) arld (14b), respectively (weights

7 :HgRS 7 :%Rb
6 6
=5 25
= =
24 24
S S
23 23
=P =
1 1
05710 15_20 25 30 3 05710 15,20 25 30
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(b)a = 0.5,6 = 0.1/10P,

Fig. 1. Rate performance fd = N; = 3, anddi, 2, 3 = 4.
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Fig. 2. Power minimization under a rate constrain8af219 bps/Hz,
for K = Ny = 3, andd1, 62,03 = 6.

uncertalnty regions, from which channel estimates areiétaas
hk =h; — hk, Vk € K. Fig.[d shows the conservative worst-case
rate performance averaged ov#l0 channels. The scaling uncer-
tainty in Fig.[1b coincides with the non-scaling uncertaintFig.[la
at20 dB SNR. It is evident that RS outperforms NoRS for all SNRs,
with almost30% improvement achieved at high SNR in Fig. 1a, and
25% improvement achieved at intermediate SNR in Elg. 1b. At first
glance, the RS rate saturation in Fig. 1a seems to contrata-
rem[d. However, this can be regarded to the design’s subaafity
and the looseness of the conservative approximdtian [&4}ibg in
mind that Theoreril1 quantifies the optimum performance.

For power optimization, Fig.]2a compares the feasibilityR&

are fixed and ignored in this step). Such problems are posed amd NORS over a range 66, where RS achieves an improvement
Semidefinite Programs (SDPs) and can be solved efficienithgus exceedingl00% compared to NoRS at= 0.15. On the other hand,

interior-point methods/ [21].
é:MMSE and/\MMSE
Uy = 1/AMMSE andi. , = 1/£x%"F. Finally, (P, ) and the aux-

iliary rate variables are updated by solving a SDP formudldtgefix-

The resulting conservativéBEs,

Fig. [2b shows the improved power performance.

Intuitivelg,

are used to update the weights in the next step agxpect the power gap to increase withHowever, since infeasible

channels are omitted in the average power calculationagirey is
restricted to very well conditioned channels for largsr

ing (g, 1) in (A2), or [I3). This procedure is repeated in an iterative

manner until convergence, which is guaranteed since thadsal
objective functions behave monotonically over iteratiodswever,

6. CONCLUSION

appropriate initialization oP is required for the power problem to | thjs contribution, we developed a robust RS transmisstoat-

avoid feasibility issues. This is done by performing ratérofzation
for different power constraints in the first few iterationgtiua fea-
sible solution is found, before switching to power optintiaa. The
conservative approximations guarantee that the AO alguritields
feasible (although possibly sub-optimal) solutions fog tiriginal
problems. However, global optimality cannot be guaranteezh
w.r.t (I2) and[(IB) due to non-convexity. Despite this spliroality,
such algorithms were shown to perform well[14].

5. SIMULATION RESULTS

We consider a system witk’, Ny = 3, and i.i.d channel entries
drawn fromCA/(0,1). We sets? = 1, yielding a long-term SNR
of P;.

egy to address the rate and power design problems in MU-MISO
systems with CSIT uncertainties. This builds upon the sdgsRS
approach used to boost the sum-DoF and sum-rate performance
We analytically proved that properly designed RS schembizae
superior max-min DoF performances compared to their NoRB-co
terparts. Moreover, we showed that RS can be used to tackle th
feasibility problem appearing in NoRS power designs. Wepsed

a sub-optimal unified algorithm that solves the robust RS aad
power problems based on a conservative approximation. djpe-s
rior performance of the RS algorithm compared to its NoRShtem

part was demonstrated through simulations. In the extemeision

of this work, we seek to develop a non-conservative robusigde
that achieves the theoretically anticipated non-sangatite perfor-

CSIT errors are uniformly drawn from the corresponding mance under non-scaling CSIT uncertainties.
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