Accepted Article

Programmed death 1 is highly expressed on CD8+CD57+ T cells in patients with stable multiple sclerosis and inhibits their cytotoxic response to EBV

Maria T. Cencioni¹, Roberta Magliozzi¹, ³, Richard Nicholas¹, ², Rehiana Ali¹, ², Omar Malik¹, ², Richard Reynolds¹, Giovanna Borsellino⁴, Luca Battistini⁴, ⁵# and Paolo Muraro¹, ², ⁵#

Affiliations:

¹ Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK
² Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK.
³ Department of Neurosciences, Biomedicine and Movement, University of Verona, Italy.
⁴ Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy.

* These authors contributed equally to this work.

⁵ Corresponding author:

Paolo Muraro, Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, Du Cane Road, W12 0NN, London, UK. Email address: p.muraro@imperial.ac.uk.

Keywords: CD8+CD57+T cells, Epstein-Barr virus, cytotoxic T cell response, PD-1, Multiple Sclerosis.
Short title: PD-1 inhibits CD8+CD57+T response to EBV and is highly expressed in patients with stable MS.

ABSTRACT
Growing evidence points to a deregulated response to Epstein-Barr virus (EBV) in the CNS of patients with Multiple Sclerosis (pwMS) as a possible cause of disease. In this study, we have investigated the response of a subpopulation of effector CD8+ T cells to EBV in 36 healthy donors and in 35 pwMS in active and inactive disease. We have measured the expression of markers of degranulation, the release of cytokines, cytotoxicity and the regulation of effector functions by inhibitory receptors, such as programmed death-1 (PD-1) and human inhibitor receptor Ig-like transcript 2 (ILT2).

We demonstrate that polyfunctional cytotoxic CD8+CD57+ T cells are able to kill EBV-infected cells in healthy donors. In contrast, an anergic exhaustion-like phenotype of CD8+CD57+ T cells with high expression of PD-1 was observed in inactive pwMS compared with active pwMS or healthy donors. Detection of CD8+CD57+ T cells in meningeal inflammatory infiltrates from post-mortem MS tissue confirmed the association of this cell phenotype with the disease pathological process.

The overall results suggest that ineffective immune control of EBV in pwMS during remission may be one factor preceding and enabling the reactivation of the virus in the CNS and may cause exacerbation of the disease.
INTRODUCTION

Multiple Sclerosis (MS) is an inflammatory and possibly autoimmune disease of the Central Nervous System (CNS) defined by areas of chronic inflammation with demyelination, axonal damage and loss of neurons. The cause for the auto-reactivity of the immune system against the CNS in patients with MS (pwMS) has been the subject of intensive research. Evidence that individuals have contracted mononucleosis during adolescence show more susceptibility to develop the disease suggests that infection by Epstein-Barr Virus (EBV) could be a trigger for an autoimmune response in MS. In support of this notion, peripheral blood from pwMS shows an increased T cell response to EBV antigens, especially to EBNA1. EBV was detected in meningeal tertiary lymphoid structures and in white matter lesions in post-mortem CNS tissue from pwMS. In addition, in inflamed cerebral meninges of MS-post mortem brain tissue, infiltrates of effector and cytotoxic CD8+T cells and innate immune responses characterized by interferon-α production have been detected in proximity to EBV-infected plasma cells. Therefore, the observed increase of CD8+T cells specific for EBV lytic antigens in the peripheral blood and cerebrospinal fluid (CSF) of pwMS during relapses suggests a close association between replication of EBV in the CNS and inflammatory disease activity. Also, the evidence for active replication of EBV in pwMS indicates that the virus has the capacity to escape immune control by cytotoxic lymphocytes. However, the results from other studies examining the involvement of EBV infection in the MS pathological process diverged. EBV was undetectable in a heterogeneous B cell infiltrate in white matter lesions (both adult and pediatric MS) and in B cell infiltration within the meninges and parenchymal B cell aggregates in MS brain tissue. Another study reported absence of EBV-specific transcripts in active and chronic active MS plaques dense of perivascular B-lymphocytes cuffs and in single B-lymphocytes and plasma cells isolated from the MS CSF. The negative results raised questions about the prevalence of active EBV infection in MS brain.

CD8+CD28-CD57+T cells seem to have a central role in the response to EBV and in MS. Defined as an effector/cytotoxic population even more potent than NK cells in releasing cytotoxic granules, CD8+CD28-CD57+T cells increase in EBV infection and arrest the switch to cell memory of EBV-infected B cells through the release of interferon-γ (IFN-γ). In vitro studies have shown that EBV infection induces the release of inflammatory cytokines like IL-12 and type I IFNs by the activation of innate immune cells and dendritic cells activated by EBV products prime naïve T cells to recognize EBV-infected B cells. Interestingly, a high frequency of myelin-specific CD8+CD28-CD57+ T cells was discovered.
in MS patients suggesting that myelin-reactive CD8+T cells are chronically stimulated in MS patients21. Effector polyfunctional CD8+CD28-CD57+T cells increased and persisted in peripheral blood of pwMS during glatiramer acetate treatment 22, 23 and after bone marrow transplantation for treatment of aggressive forms of the disease 24. Although CD8+CD57+T cells were observed increasing in the blood of patients with Multiple Sclerosis after disease-modified drugs and therapy that leads to the reconstitution of the immune system, their role in the disease remains still unknown.

An anergic exhaustion-like phenotype regulated through the Programmed death 1/programmed death ligand 1-2 (PD-1/PDL-1-PDL-2) pathway has been described recently in virus-specific CD8+T cells in chronic HIV 25, 26, HCV 27, 28, HBV 28, 29 and HTLV infections 30: effector CD8+T cells can become unresponsive to viral antigens and consequently fail to eliminate the viral load 31, 32. PD-1 and human inhibitor receptor Ig-like transcript 2 (ILT2/CD85j) regulate activation, proliferation and cytokine release from CD8+ T cells and NK cells respectively 33-36.

In this study, we have investigated the role of PD-1 and ILT2/CD85j in regulating EBV-specific CD8+CD57+ T cells and the association of PD-1 and ILT2 expression with disease activity in MS. To address these issues, we have investigated the expression of the degranulation marker CD107a, the release of pro-inflammatory cytokines and cytotoxic granules by CD8+CD57+T cells, and their ability to kill EBV-infected cells. We then correlated the activity of CD8+CD57+T cells to the expression of the inhibitory receptors PD-1 and ILT2 in healthy donors and in pwMS in stable vs active phases of the disease.

We demonstrate that CD8+CD57+T cells are polyfunctional effector cells with a strong ability to recognize and to kill EBV-infected B cells. Moreover, we find that the expression of the PD-1 receptor modulates the activation and cytokine release by CD8+CD57+T cells. We observe significant upregulation of the expression of PD-1 indicating an exhausted phenotype in CD8+CD57+T cells in pwMS in the remitting phase of the disease compared to healthy donors, supporting the hypothesis of impaired responses to EBV in pwMS. Interestingly, we have detected infiltrates of CD8+CD57+T cells in the meninges of post mortem brain tissue of pwMS with rapidly progressive disease suggesting the likely involvement of these cells in the disease process.
MATERIALS AND METHODS

Patients

Blood samples were collected from 36 healthy donors and 35 patients with a diagnosis of relapsing-remitting Multiple Sclerosis (RR-MS). The project received ethics committee approval from the National Research Ethics Service (reference number 05/MRE12/8) and patients gave their written informed consent prior to taking part in the study. MS patients were categorised as stable if they were in clinical remission for at least three months and didn’t present Gadolinium-enhancing lesions on brain MRI, or active if they had presented clinical relapses in the previous three months before the enrolment and the blood samples were obtained before any corticosteroid therapy. At the time of blood sampling, all recruited patients were either untreated or during a 2-month washout between therapies. The patients’ demographic, basic clinical characteristics and prior treatments are shown in Table 1.

Cells and Flow cytometry

Peripheral blood mononuclear cells (PBMC) were isolated from blood samples as described \(^3\). The cells were counted by using trypan blue solution (Sigma-Aldrich) and suspended at \(1 \times 10^6\) cells/ml in RPMI-1640 complete medium.

Fresh PBMCs were stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin (Iono) (Sigma-Aldrich), 500nM and 50nM respectively, for 5 hours at \(37^\circ\)C with 5% CO\(_2\). Brefeldin A (Sigma-Aldrich) was added for the last 4 hours at a concentration of 5µM. Cells were then collected and prepared for surface and intracellular staining as described below.

Surface staining: PBMCs were stained with the following surface antibodies: anti-CD3 PE (BD Biosciences), anti-CD3 APC (BD Biosciences), anti-CD8 PE-Cy7 (eBioscience), anti-CD57 FITC (BD Biosciences), anti-PD-1 APC and anti-ILT2 APC (eBioscience) on ice for 15 minutes; cells were then washed in PBS and sample acquisition and analysis was performed on a FACSscalibur flow cytometer (Becton Dickinson).

Intracellular staining: after surface staining, the cells were washed in PBS and the pellet was suspended in fixation buffer (BD Biosciences) for 20 minutes at room temperature in the dark. Then, the cells were washed in permeabilization buffer 1X (BD Biosciences) and stained with the following intracellular antibodies: anti-Granzyme B APC, anti-Perforin APC, Anti-IFN-\(\gamma\) APC, anti-MIP1\(\beta\) Pe-Cy7 (eBioscience) and anti-IL2 PE (BD Biosciences).
EBV-containing supernatant: marmoset cell line B95-8 cells were suspended in complete medium at the concentration of 1×10^6 and left for three days in a humidified 37°C, 5%CO$_2$ incubator. Then, the supernatant was centrifuged at 1200 rpm, 4 °C to separate the EBV-containing culture supernatant from the cells and filtered through a 0.45 µm filter.

Autologous Epstein-Barr virus (EBV) infected B-Lymphoblastoid cell lines (B-LCL): 2×10^6 PBMC were centrifuged and the pellet was infected for two hours with 2.5 ml of EBV-containing culture supernatant obtained as described above and left in the incubator. Then, 5 ml of RPMI complete medium containing 1µg/ml cyclosporine A was added and the cells were left in the incubator until microscopic clumps were evident and the culture medium became acidic. The cells were split weekly with the addition of RPMI complete medium.

Degranulation Assay

PBMCs were seeded at 1×10^6 cells/well in 96 V-plates coated with purified anti-CD3 10µg/ml (OKT3, eBioscience) 38. The assay was performed as described 39. In blocking experiments, PBMCs were stained with purified anti-PD1 antibody (eBioscience) on ice for 15 minutes. Then, the cells were washed with PBS and stained with purified anti-IgG antibody (eBioscience) on ice for 15 min, washed again and stimulated in 96-V-plates as described above. After 4 hours, the cells were collected, washed with PBS and stained for surface and intracellular markers and acquired as described above.

Evaluation of cytotoxicity

P815 murine cell lines and autologous B-LCL were stained with 5 µM Carboxyfluorescein succinimidyl ester (CFSE) as described 40. B-LCL were also stained with anti-CD19 APC to separate the lymphoblastoid cell line from lymphocytes. Sorted CD8+CD57+/−T cells (CD8+CD57+ T kit Miltenyi Biotec) were seeded with constant number of target cells (50.000) at different effector to target (E:T) ratios in anti-CD3 (10 µg/ml, Bioscience) pre-coated 96 V-bottom plates in total volume of 200 µl and left in the incubator for 4 hours as described $^{38, 41, 42}$. In parallel, target cells were incubated alone to measure spontaneous apoptosis and used for comparative analysis. Then, 1 µM of 7-AAD (Sigma-Aldrich) was added for 15 minutes on ice in the dark and the sample was then acquired on the flow cytometer42. For each E: T ratio, 20,000 target cells were acquired. Dead target cells were detected as double positive CFSE-7-AAD cells. The percentage of cytotoxic activity (delta cells) were calculated by using the following equation:

This article is protected by copyright. All rights reserved.
%specific cell death (delta cells) =
% CFSE+7AAD+ (dead) targets - % spontaneous CFSE+7AAD+ (dead) targets

Co-culture of PBMCs and autologous B-LCL

PBMCs were seeded at 1×10^6 cells/ml per well or in transwells with or without autologous B-LCL for 5 days. Then, the cells were collected and seeded on anti-CD3 coated V-bottom plates for four hours in the presence of anti-CD107a PE as described 39. Then the cells were collected and stained for surface markers and intracellular cytokines as reported above.

Detection of apoptotic cells

PBMCs were seeded and stimulated with anti-CD3 at the concentration 1 and 5 μg/ml for 4 and 24 hours. Then the cells were collected, stained for surface receptors, AnnexinV (1 μg/ml, eBioscience) and 7-AAD (1 μg/ml) and acquired on the flow cytometer.

Detection of CD8+CD57+T cells in post-mortem MS tissue

Brains were obtained at autopsy from the UK MS Society Tissue Bank at Imperial College, under ethical approval by the National Research Ethics Committee (08/MRE09/31). Post-mortem tissue material from RRMS cases was not available for our study. To make our brain tissue analysis of the expression of CD57 more closely representative of the inflammatory pathology expected in RRMS, we selected from the available SPMS cases those who presented on-going active demyelination characterized by the presence of high levels of meningeal and perivenular inflammatory infiltrates. The presence of CD3+ and CD8+CD57+T cells, both in the perivascular spaces and in the meninges, was evaluated by immunofluorescence and immunohistochemistry on 4% PFA fixed frozen section or formaldehyde-fixed paraffin sections, respectively, from 10 post-mortem Secondary Progressive Multiple Sclerosis (SPMS) cases with rapidly progressive disease (Supplementary table 1). For each of the examined SPMS case 5 perivascular infiltrates and 5 meningeal infiltrates, randomly selected among different brain regions, were examined and the percentage of CD3+CD57+ cells out of the total CD3+ T cell number was evaluated for each infiltrate. De-waxed 5-μm-thick paraffin sections were microwave-processed in citrate buffer (pH 6) and immunostained by using mouse anti-CD3 antibody (Clone PS1, Immunotech, Marseille, France), mouse anti-CD8 (clone 4B11, Invitrogen, Rockford, IL, USA) or mouse anti-PD-1 (eBioscience), followed by signal detection using the avidin-biotin-peroxidase method, haematoxylin counterstain and mounting with Canadian Balsam, as

This article is protected by copyright. All rights reserved.
previously described8, 43. Images were acquired and analysed with Axiophot microscope (Carl Zeiss, Jena) equipped with a digital camera (Axiocam HRC). For double immunofluorescence, rabbit anti-CD57 antibody (Abcam, Cambridge, MA) was used with mouse anti-CD3 or anti-CD8 or PD1 antibodies followed by combination of Alexa-fluor 488-conjugated donkey anti-mouse IgG (Invitrogen, Eugene, OR) with Cy3-conjugated donkey anti-rabbit IgG (Jackson Immunoresearch Laboratories). Sections were sealed in ProLong Gold antifade reagent with 4',6'-diamidino-2-phenylindole (DAPI) (Invitrogen) and images were acquired and analysed with epi-fluorescence microscope Axiophot (Carl Zeiss, Jena) equipped with a digital camera (Axiocam HRM).

Statistical analysis

The statistical analyses were performed by GraphPad Prism software (version6, GraphPad Software, La Jolla, CA USA) using the appropriate following tests as specified in the figure legends: Mann-Whitney non-parametric t-test, Wilcoxon t-test, 2 way ANOVA Sidak’s multiple comparison, Welch’s non-parametric t-test, one-way ANOVA Turkey’s multiple comparisons test and Pearson correlation coefficient. Statistical significance was retained for p values <0.05.

RESULTS

Proinflammatory and cytotoxic profile of CD8+CD57+ T cells.

CD57+/- CD8+T cells were investigated for the release of a panel of pro-inflammatory cytokines and cytotoxic granules as shown in figure 1A. CD8+CD57+T cells release mainly Th1 cytokines such as IFN$_\gamma$ and MIP1β. CD57+ T cells are effector cytotoxic cells rich in cytotoxic granules such as perforin and granzyme B. Moreover, upon TCR stimulation CD8+CD57+T cells also were able to degranulate more efficiently compared to the CD8+CD57- counterpart as shown by the expression of CD107a16 (fig.1B-C), confirming their higher cytotoxic potential.

Donor variance of PD-1 and ILT2/CD85j expression on CD8+CD57+T cells.

Considering the cytotoxic function of CD8+CD57+T cells and their established role in the response to viruses, and given the regulatory role of the receptors PD-1 and ILT2 in virus specific effector cells, we have investigated their expression on the CD8+CD57+T population.
in a group of 30 healthy donors (supplementary fig.1A). We detected a considerable variance in the individual donors' expression of ILT2 and PD-1 on CD8+CD57+ T cells (fig. 2A) and demonstrate a linear weak correlation between PD-1 and ILT2 expression on CD8+CD57+ T cells (fig.2B, *p<0.05). This result supposes an independent function of the two receptors.

PD-1 expression inversely correlates with cytokine release and lytic degranulation on effector cytotoxic CD8+CD57+ T cells.

Considering that PD-1 and ILT2/CD85j inhibit T cell activation, cytokine production and NK IFNγ release, we have investigated the role of these two inhibitory receptors in the regulation of effector CD8+CD57+ T cell function. As shown in figure 3A, the content of the granules released by CD8+CD57+ T cells upon TCR triggering was identified by the co-expression of the lysosomal marker CD107a with granzyme B, perforin, and IFNγ. We also examined the correlation between granule content with PD-1 (fig.3B) and ILT2 expression (supplementary data fig.1B) on CD8+CD57+ T cells. CD8lowCD57+ cells also were excluded in the analysis since they are NK cells as shown in supplementary data figure 2. There was an inverse correlation between CD107a and PD1 expression on CD8+CD57+ T cells (**p<0.01, *p<0.05 respectively). Thus, the increased expression of PD1 on CD8+CD57+ T cells correlates with the progressive loss of the ability to release IFNγ, perforin, and granzyme B (*p<0.05, **p<0.01). No significant correlation with ILT2 was observed.

CD8+CD57+ T cells increase CD107a expression and cytotoxicity in response to autologous EBV-infected Lymphoblastoid B Cell Lines (B-LCL).

We performed co-culture experiments with autologous EBV B-LCL and investigated the reactivity of CD8+CD57+ T cells to EBV compared to the CD8+CD57- counterpart by evaluating degranulation and release of cytokines. CD8+CD57+ T cells showed a significant increase in the expression of CD107a (*p<0.05), in granzyme B degranulation and in IFNγ release (*p<0.05) when PBMCs were incubated with autologous EBV B-LCL or in transwells compared to PBMCs alone (fig.4). No significant activation was observed on CD8+CD57- T cells. These results demonstrate that CD57 is a marker expressed by EBV-specific effector and cytotoxic CD8+ T cells.
PD-1 expression on CD8+CD57+T cells is associated with reduced cytotoxicity to p815 murine cell line and autologous EBV B-LCL.

CD8+CD57+T cells from different donors showed varying degrees of cytotoxicity to p815 and autologous B-LCL. We observed an inverse correlation between cell death and PD-1 expression at effector-target cell ratios of 0.5 to 1 and 1 to 1 in p815 cell line experiments and at a ratio of 30 to 1 in EBV-infected B-LCL experiments, respectively (*p<0.05) (Fig.5C and 5D). The results suggest that PD-1 expression is negatively associated with cytotoxicity of CD57+CD8+T cells. Furthermore, the expression by autologous EBV-BLCL of a known ligand for PD-1, Programmed death-ligand 1 (PDL-1), was investigated. PDL-1 was indeed expressed by EBV-infected B-LCL (supplementary data fig.1C). Also, the p815 murine cell line showed expression of PDL-1 and 2 as reported45.

Blockade of PD-1 receptor restores cytotoxicity to target cells and cytokine release in CD8+CD57+T cells.

Having detected a correlation between PD-1 expression and the reduced cytotoxicity against autologous B-LCL, in subsequent experiments we hypothesized that the degranulation of cytotoxic granules, the cytokine release by CD8+CD57+T cells and cytotoxicity to autologous EBV-infected B-LCL could be enhanced following blocking of PD-1. Indeed, blocking PD-1 significantly increased the degranulation of granzyme B and perforin and IFNγ release compared to untreated controls (fig.6A-B, *p<0.05).

To confirm the functional effect of PD-1 blocking sorted CD8+CD57+T cells were treated with anti-PD1 and cytotoxicity was measured as the percentage of cell death at increasing effector-target cell ratios (fig. 6C). Blocking of PD-1 significantly increased the cytotoxicity to EBV B-LCL at the higher effector-target cell ratios (10:1 *p<0.05; 30:1 **p<0.01) compared to cytotoxicity without PD-1 blocking.

PD-1 is differentially expressed in healthy donors and pwMS.

We investigated the expression of PD-1 by CD8+CD57+T cells in pwMS in both the active and stable phase of the disease, not undergoing treatment. Significantly increased expression of PD-1 was observed on CD8+CD57+T cells in patients with stable MS compared to healthy controls (**p<0.01 fig.7A). The expression of PD-1 in pwMS with active disease was not significantly different from that of healthy controls.
We then examined the cytokine release and cytotoxic degranulation by CD8+CD57+ T cells upon TCR activation in the same set of pwMS. Interestingly, CD8+CD57+ T cells showed lower release of IFNγ and granzyme B in patients with stable MS compared to healthy donors and to patients with relapsing disease (fig.7B, **p<0.01). The difference in cytokine release and in degranulation between patients with relapsing MS and active disease was not statistically significant. No significant differences in perforin release were observed amongst the healthy donors, and in stable and pwMS active groups.

The fraction of apoptotic cells undergoing activation-induced cell death (AICD) was also investigated at different time points, namely 4 and 24 hours (fig.7C and D, respectively) from TCR activation (1 and 5 µg of anti-CD3). We observed significant induction of apoptosis in CD8+CD57+ T cells from healthy controls at 4 hours. No significant apoptosis was observed in pwMS patients at either 4 or 24 hours. Our results confirm that CD8+CD57+ T cells from pwMS show more resistance to AICD than those from healthy donors (*p<0.05, **p<0.01, ***p<0.001).

CD3+CD57+ T cells are present in inflammatory perivascular and meningeal infiltrates of post-mortem SPMS brain tissue.

In order to verify the presence of CD3+CD57+ and CD8+CD57+ cells in MS brains, double immunofluorescence was used on post-mortem SPMS cases with rapidly progressive disease characterized by on-going inflammatory activity at the time of death. The number of CD3+CD57+ cells found in each infiltrate (Fig 8. A-C), both perivascular and meningeal, corresponded approximately to the number of CD8+CD57+ cells in the same infiltrates (Fig 8. D-F; supplementary Table 1). However, occasional CD8-CD57+ cells were also observed in examined infiltrates (green arrow in Fig. 8F). The percentage of CD57+ cells within the CD3+ T cell population in the infiltrates was 10.8% (range= 6.6% – 14%) in the perivascular infiltrates, and 11.8% (range= 8% - 15.4%) in the meninges. PD1 expression was also assessed using immunohistochemistry on serial sections from the same post-mortem MS cases: several scattered PD1+ cells were detected in particular in meningeal infiltrates (Fig 8. G and H). Double immunofluorescence demonstrated that a substantial proportion (20-40%) of the PD1+ cells infiltrating the meninges were CD57+ PD1+ cells (Fig 8. insert I in H). Considering the higher frequency of PD1+ cells detected in the meningeal infiltrates compared to the lower number of CD57+ cells, numerous PD1+ CD57- cells have been
detected in all the examined post-mortem SPMS cases. However, most of the detected CD57+ cells express PD1 on their surface.

By analysing the possible associations between the proportion of CD57+ cells among all CD3+ cells in immune infiltrates of post-mortem SPMS brains and the clinical details, negative correlations were found in the meningeal infiltrates between % of CD3+CD57+ cells and age at disease progression ($r= 0.4648$, $p= 0.0299$); and age at death ($r=0.7185$, $p=0.0020$) indicating an association of the relative frequency of CD57+ T cells with the rapidity of disease progression (Fig. 8 I, L).

DISCUSSION

In this study, we sought to elucidate the mechanism of effector responses by CD8+CD57+ T cells against EBV in patients with RRMS and to correlate the responses to disease activity status. We demonstrate that CD8+CD57+ T cells are a population of effector cytotoxic cells with strong ability to kill EBV-infected cells. A potential role for EBV in MS is supported by strong epidemiological evidence but the presence of EBV infection in MS tissue remains controversial. A characterisation of the cytotoxic CD8+T response against EBV, its regulation and its relationship to MS disease activity may contribute to a better understanding of the immunopathological processes in MS and help develop new therapeutic approaches. Our results show that PD-1 expression by CD8+CD57+ T cells is associated with a reduction of degranulation, cytokine release, and cytotoxicity towards EBV-infected targets. This is confirmed by the inverse correlation between functional cytotoxic capacity and PD-1 expression. We also confirm that blockade of PD-1 restores CD8+CD57+ T effector function, specifically allowing more efficient degranulation, cytokine release, and cytotoxicity. Detection of a higher frequency of PD-1 expressing CD8+CD57+ cells in the blood of patients with RRMS during clinical remission, and concomitantly suppressed degranulation, suggests a regulatory role of the molecule on cytotoxic function.

Notably, CD8+CD57+ T cells were detected in the inflamed meninges and perivascular infiltrates of post mortem brain of patients with rapidly progressive MS. Although the tissues were from SPMS and not RRMS cases since the latter were not available, selection of cases with high levels of meningeal and perivenular inflammatory infiltrates enabled us to examine inflammatory active pathological processes in post-mortem brain tissue that is expected to
share some similarities with RRMS. Previous studies have shown an association between the extent of meningeal infiltration (as well as increased cortical pathology) and a more rapid disease progression50. On the back of this, our finding of a substantial proportion of CD57+ cells expressing PD1 in the meningeal infiltrates of post-mortem MS cases suggests the involvement of these cells and molecule in the inflammatory immune response. It is plausible to suggest that the inability of CD8+CD57+T cells to clear EBV infection in the CNS enables the persistence of chronic inflammation that underlies the observed more rapid progression of MS. However, we cannot rule out that the CD8+CD57+T cells’ involvement in the disease process, documented by their detection in MS brain tissue, could be secondary to other inflammatory events occurring in the MS process and that the cells may play a disease-countering role, potentially through immune regulatory mechanisms, as we suggested in one previous report51.

CD8+CD57+T-cells are defined as senescent because of short telomeres, low telomerase activity, and low cell cycle-associated genes compared with their CD57 negative counterparts 52. Although senescent, CD8+CD57+T cells show a phenotype of terminally differentiated antigen-specific CD8+T cells and exhibit lytic granules containing granzyme B and perforin and a great potential cytotoxicity upon TCR stimulation or in co-culture with autologous EBV-infected cells compared to CD8+CD57-T cells, confirming that they are actively responsive to inflammation and pathogens. Moreover, this population expresses high levels of several adhesion molecules (integrinβ, α\textsubscript{L}, and β\textsubscript{2}; CD11a, ICAM-1) and reduced levels of CD62L (L-selectin), showing an ability to migrate to peripheral tissues 53. In addition, CD8+CD57+T cells express CX3CR1, the receptor for fractalkine that has been detected in the CSF of early pwMS and in inflamed MS brain lesions 54, 55. Interestingly, in our study we show that CD8+CD57+T cells express high levels of PD-1 with an exhaustion-like phenotype in pwMS in the stable phase of the disease, displaying a weak response upon TCR activation with low release of cytokines and granzyme B. Additionally, CD8+CD57+T cells from pwMS in the active phase of the disease display a low expression of PD-1, and high release of IFN\textsubscript{γ} and granzyme B, consistent with a profile of terminally differentiated effector/cytotoxic virus-specific CD8+T cells. Our results suggest that the inability of cytotoxic T cells to control EBV replication during inactive MS could set the stage for viral reactivation in the CNS and for disease progression.
The fact that anti-EBV immunity contributes to MS grey matter pathology is strongly supported by an increasing number of studies that correlate cellular and humoral response to EBV and cortical atrophy or disease activity. CD8+ T cell responses to EBV lytic and latent antigens increase in active and inactive MS respectively, displaying a dysfunctional control of the virus. One longitudinal study described an increase of EBV lytic specific CD8+ T cells, associated to the virus reactivation, during the remission of the disease that anticipates the activity (relapse) of the disease in the central nervous system. Also, a cross-sectional study detected EBV RNA and DNA using quantitative PCR in the peripheral blood of patients with MS and healthy donors. It was observed that EBV DNA increases before and during clinical relapse in paired samples suggestive of reactivation of EBV preceding the activity (relapse) of disease in the CNS. In a longitudinal study of patients with RRMS without treatment, the expansion of CD8+ T cells specific for EBV lytic antigens has been shown to correlate with the occurrence of relapses and disease activity. Impaired CD8 T cell responses to EBV in MS, assessed by the frequency of PBMC producing IFN-γ in response to autologous B-LCL, were also described. Regarding the humoral response to EBV in MS, a significant association between cortical atrophy and anti-EBV-VCA and EBNA-1 antibody status was found in RRMS patients. In addition, in a previous study on 193 patients with clinically isolated syndrome (CIS) the highest quartile antibody status of anti-EBV-VCA was associated with a greater decrease in thalamus volume and with a trend for a decrease in cortical volume. Moreover, a study on serum of pwMS has shown that EBNA-1 IgG positively correlates with gadolinium-enhancing MRI lesions, lesion size and expanded Disability Status Scale (EDSS) in patients with MS and in patients with a clinically isolated syndrome with a definitive diagnosis of MS. All this evidence supports a less efficient immune control of EBV infection in pwMS. An impaired immune response to the virus is evident when the infection becomes chronic. In this case, the virus persists and effector CD8+ T cells become unresponsive and anergic. Contrary to chronic infection, in acute viral infection, the immune system is highly functional and enables clearance of the virus through cytotoxicity against infected cells and secretion of antiviral factors (e.g. interferon). Although those studies support the hypothesis that altered immune reactivity to EBV may favour the reactivation of the virus in intrathecal B cells, which could represent one mechanism causing brain pathology in MS, several studies using similar technologies were unable to detect EBV in the brain tissue and CSF. The discrepant results have been the matter of discussion and it has been suggested that methodological differences, including in the preparation and preservation of the brain tissue, may have affected the sensitivity and specificity of EBV detection.
In our study, we have observed a so-called exhausted phenotype of CD8+CD57+ T cells in inactive disease that leads to an inability of these cells to control EBV replication and consequently favour a reactivation of virus. PD-1 has been described as a marker of activation and differentiation, increasing in early activated EBV-specific cells and decreasing in terminally differentiated effector cells. Low expression of PD-1 on EBV-specific effector cytotoxic CD8+ cells enables the mounting of a response to pathogens and clearance of the infection. In pwMS during remission, the high expression of PD-1 in CD8+CD57+ T cells suggests a dysfunctional, reduced cytotoxic response. It is plausible to speculate that PD-1 related suppression of cytotoxicity allows MS-associated viruses such as EBV to persist in the central nervous system and favours persistent inflammation with tissue damage and consequent relapses. Newly activated CD8+CD57+ T cells might be induced to clear virus-infected targets in active MS but the repeated antigenic stimulation and inflammatory cytokines contribute to upregulation of PD-1 with a decrease of effector function. Also, resistance to apoptosis induced by activation in CD8+CD57+ T cells in pwMS could correlate with dysfunctional expression of inhibitory receptor PD-1 on these cells and could play a role in dictating the occurrence of inflammatory exacerbations in MS (fig.9). One limitation of our study is that we did not examine the potential influence of PD-1 level on the cytotoxicity against other common viruses such as, for example Cytomegalovirus and Influenza. To study EBV responses in the most physiologically relevant way, we generated autologous EBV-LCL to be used as target in the functional assays, focused on the modulation of cytotoxic function by PD-1. Since EBV is unique in its ability to induce stable lymphoblastoid cell lines, such approach could not be utilised for CMV or any non-lymphotropic viruses such as influenza virus. In absence of the comparison we cannot rule out that the dysfunction of cytotoxic activity against EBV that our results demonstrate in pwMS might also be observed against other viruses.

Taken together, our data demonstrate that CD8+CD57+ T cells are polyfunctional effectors that mount cytotoxic and inflammatory responses against EBV-infected cells and infiltrate MS lesion tissue in substantial numbers correlating with disease severity. Their effector functions are down-regulated by PD1, which is over-expressed in stable MS. Our results provide a basis for further studies to evaluate the implication and consider the therapeutic modulation of PD-1 expression in MS.
Acknowledgements

This study was supported by research fellowship to MTC from Fondazione Italiana Sclerosi Multipla (FISM; ref. 2013/B/2). The study was also supported by grants awarded from FISM ref.2015/R/16 to PM, FISM ref.2013/R/2 and Italian Ministry of Health, Italy RF-2011-02347228 to L.B. We are grateful to all participants who donated blood for this study. We thank Caroline D’Arcy for research nursing support and Dr. Esther Morel for technical support. Brain post-mortem tissue samples and the associated clinical and neuropathological data were supplied by the Multiple Sclerosis Society Tissue Bank, funded by the UK Multiple Sclerosis Society.

Author contributions

MTC designed the study, performed experiments, analysed/interpreted data and wrote the manuscript. RM performed immunostaining experiments on MS brain tissue, discussed/analyzed data and wrote the manuscript. GB, OM and AR critically revised the manuscripts. RR and RN provided tissue and reagents for immunostaining experiments, and critically revised of the manuscript. PAM and LB obtained funding, supervised the study, discussed/interpreted data and critically revised the manuscript.

Competing interests statement

P.M. declares honoraria for speaking and travel support from Bayer, Biogen, Merck Serono and Novartis. R.N. declares compensation and support from Biogen (principal investigator, funds for staff, research, organizing education, honorarium for speaking, advisory boards), Genzyme (honorarium for speaking, advisory boards, organizing education), NICE diagnostics advisory committee, Expert NICE Alemtuzumab committee; Novartis (principal investigator, honorarium for speaking, advisory boards), Roche (advisory boards). None of the other co-authors has a financial or other conflict of interest.
REFERENCES

52. Focosi D, Bestagno M, Burrone O, Petruini M. CD57(+) T lymphocytes and functional immune deficiency (vol 87, pg 111, 2010). Journal of Leukocyte Biology 2010; 87:1167-.

59. Humoral responses to herpesviruses are associated with neurodegeneration after a demyelinating event: Results from the Multi-Center SET study. 2014. Available from <Go to ISI>:://000340316800007.

66. Lassmann H, Niedobitek G, Aloisi F, Middeldorp JM, NeuroproMiSe EBVWG. Epstein-Barr virus in the multiple sclerosis brain: a controversial issue--report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 2011; 134:2772-86.

FIGURE LEGENDS

Figure 1. Polyfunctional phenotypes of CD8+CD57+ T cells.
Pro-inflammatory cytokines and cytotoxic granules were detected by intracellular flow cytometry. The PBMC were stimulated with PMA and Iono in presence of Brefeldin A. A. Release of GZMB, IFNγ, Perf, IL-2 and MIF1β. Dot plots showed the flow cytometry gating strategy that we have used to identify cytokines and cytotoxic profile in CD8+CD57+/− T cells.
B-C. Cytotoxic phenotype was confirmed by the CD107a expression and compared in CD8+CD57+/− T cells. Data from 8 experiments shown as mean ± SEM, Mann-Whitney non parametric t-test * p<0.05, **P<0.01, ***P<0.001.

Figure 2. Donor variance of Programmed Death 1 (PD-1) and Ig-like transcript 2 (ILT2) expression on CD8+CD57+T cells.
A. Percentage of cells positive to ILT2 and PD-1 receptor on CD8+CD57+T cells from 30 healthy donors were shown in bar histograms. Data represents Min to Max. B. Linear correlation between ILT2 and PD-1 receptors on CD8+CD57+T cells from 30 healthy donors. Pearson * p<0.05.

Figure 3. PD-1 expression inversely correlates with cytokine release and lytic degranulation on effector cytotoxic CD8+CD57+T cells.
A. Dot plots show the flow cytometry gating strategy that we used to define the percentage of cells CD107a+, CD107a+IFNγ+, CD107a+PERF+ and CD107a+GZMB+ on CD8+CD57+T cells upon TCR stimulation.
B. Linear correlation between degranulation of GZMB, PERF, IFNγ and PD-1 expression on CD8+CD57+T cells from 19 healthy donors, pearson *p<0.05, **p<0.01).

Figure 4. CD8+CD57+ T cells increase CD107a expression and cytotoxicity in response to autologous EBV-infected Lymphoblastoid B Cell Lines (B-LCL).
PBMCS from 6 healthy donors were incubated alone, with autologous EBV B-LCL or in transwells for 5 days. Then, the cells were collected and stimulated with anti-CD3 for 4 hours in presence of anti-CD107a, brefeldin A and monensin. Cytokines release and degranulation were investigated. Mean intensity Florescence (MIF) of CD107a, percentage of cells CD107a+IFNγ+, CD107a+GZMB+ and CD107a+PRF+ on CD8+CD57+− T cells were shown as bar histogram. Data from 6 experiments are shown as mean ± SEM, Mann Whitney non parametric t-test, * p<0.05

Figure 5. PD-1 expression on CD8+CD57+ T cells is associated with reduced cytotoxicity to p815 murine cell line and to autologous EBV-infected B-LCL.
Delta of death of p815 cell lines (A) and autologous EBV-infected B-LCL (B) were correlated to PD-1 expression and to effector-target cell ratio (E-T). Linear correlation between delta of death of p815 cell lines (C) and of autologous EBV B-LCL (D) and PD-1 expression at several effector-target cell ratio. Pearson test *p<0.05, **p<0.01

Figure 6. Blockade of PD-1 receptor restores cytotoxicity to target cells and cytokine release on CD8+CD57+T cells.
Blockade of PD-1 is performed on experiments of cytokines release and degranulation upon TCR stimulation. PBMCs from Healthy Donors were pre-treated with anti-PD-1 for 30 minutes in ice. The cells were washed and treated with anti-IgG for 30 minutes in ice. After, they were seeded in anti-CD3 coated 96 V plates and left in incubator for 4 hours in presence of CD107a, brefeldine A and monensin. Then, the cells were stained for surface receptors and intracellular cytokines and cytotoxic granules and the samples were acquired and analysed. A. Dot plots show gating strategy used to define cytokine release and degranulation of cytotoxic granules. B. Data from 6 experiments are shown, *p<0.05, **p<0.01, Wilcoxon t-test. C. Blockade of PD-1 was also performed in cytotoxicity to
autologous EBV B-LCL. Sorted CD8+CD57+T cells were incubated with autologous B-LCL in anti-CD3 coated 96V plates to the ratio 0-1, 1-1, 10-1, 30-1 for 4 hours. The cell death was detected by positivity to 7-AAD. Data from three experiments are shown. 2 way anova sidak’s multiple comparation *p<0.05. **p<0.001.

Figure 7. PD-1 is differentially expressed in healthy donors and pwMS.

A. Percentage of expression of PD-1 on CD8+CD57+T cells in healthy donors and patients with MS (pwMS) in stable and active disease. Data are from 36 healthy donors, 21 pwMS in stable disease and 14 pwMS in active disease. Data shown as Min to Max. Unpaired t-test with Welch’s t-test, *p<0.05, **p<0.01.

B. Percentage of CD107a+IFNγ+,CD107a+GZMB+ and CD107a+PRF+ are shown on CD8+CD57+T cells upon TCR stimulation in healthy donors and pwMS in stable and active disease. Data are from 22 healthy donors, 21 patients in remitting MS and 14 patients in relapsing MS and shown as mean ± SD. Ordinary one-way ANOVA, Turkey’s multiple comparisons test *P<0.05, **P<0.01.

C-D. Apoptotic cells (AnnexinV+/AnnexinV+7AAD+) were investigated on CD8+CD57+T cells at 4 (C) and 24 (D) hours upon anti-CD3 activation (1ug and 5µg) in healthy donors and pwMS. Data from 4 experiments are shown as mean ± SEM, ratio paired t test, *p<0.05, **p<0.01.

Figure 8. CD3+CD57+ T cells are present in inflamed perivascular and meningeal infiltrates of post-mortem SPMS brain tissue.

Double immunofluorescence staining was performed on post-mortem SPMS brains. CD3+CD57+ cells (white arrows) were detected in meningeal infiltrates containing substantial number of CD3+ cells (A). Also, similar amount of CD8+CD57+ cells were detected in the same infiltrates (F). However, occasional CD8-CD57+ cells were also observed (green arrow). By using immunohistochemistry assessment of PD1 expression on serial sections from the same post-mortem MS cases, several scattered PD1+cells have been detected in particular in meningeal infiltrates (G and H, higher magnification of a selected area *). Double immunofluorescence demonstrated that a substantial proportion of the PD1+cells infiltrating the meninges are CD57+ PD1+ cells (inset I in H).

Negative correlation was found in the meningeal infiltrates between % of CD3+CD57+ cells and age at disease progression (I) (r= 0.4648, p= 0.0299) and age at death (L) (r=0.7185 p=0.0020).

Figure 9. PD-1 on CD8+CD57+ regulates the response to EBV and the reactivation of the virus in the CNS of MS patients.

In pwMS during remission, the high expression of PD-1 in CD8+CD57+T cells suggests a dysfunctional, reduced cytotoxic response that allows MS-associated viruses such as EBV to persist in the central nervous system and favours persistent inflammation with tissue damage and consequent relapses. Newly activated CD8+CD57+T cells might be induced to clear virus-infected targets in active MS but the repeated antigenic stimulation and inflammatory cytokines contribute to upregulation of PD-1 with a decrease of effector function.
SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1.
A. Dot plots show the gating strategy used to define ILT2 and PD-1 expression on CD8+CD57+ T cells.
B. Linear correlation between degranulation of GZMB, PERF and IFNγ and ILT2 expression on CD8+CD57+ T cells from 19 healthy donors, pearson *p<0.05 , **p<0.01).
C. Dot plot shows the PDL-1 expression on autologous EBV-infected B-LCL.

Supplementary Table 1.
Demographic, clinical, autopsy characteristics of the MS cases analyzed. Mean percentage of the CD3+CD57+ cell counted respectively in 5 perivascular WM infiltrates (a) and 5 meningeal infiltrates (b) are reported with the respective values of standard deviation.

Supplementary Figure 2.
CD8^{high/low}CD57+ are investigated for expression of CD3. CD8^{High} CD57+ cells are also CD3+ while CD8^{Low} CD57+ are NK cells as they are negative for CD3.
<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Sex</th>
<th>EDSS</th>
<th>Relapses in the last two years</th>
<th>Treatment</th>
<th>DMT before wash out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS1</td>
<td>43</td>
<td>F</td>
<td>3</td>
<td>3</td>
<td>WO</td>
<td>Avonex</td>
</tr>
<tr>
<td>MS2</td>
<td>46</td>
<td>M</td>
<td>3,5</td>
<td>2</td>
<td>NT</td>
<td>Tysabri</td>
</tr>
<tr>
<td>MS3</td>
<td>50</td>
<td>F</td>
<td>3,5</td>
<td>3</td>
<td>WO</td>
<td>Tysabri</td>
</tr>
<tr>
<td>MS4</td>
<td>34</td>
<td>F</td>
<td>6</td>
<td>3</td>
<td>WO</td>
<td>Tysabri</td>
</tr>
<tr>
<td>MS5</td>
<td>25</td>
<td>F</td>
<td>6</td>
<td>2</td>
<td>WO</td>
<td>Glatiramer Acetate</td>
</tr>
<tr>
<td>MS6</td>
<td>30</td>
<td>F</td>
<td>3</td>
<td>2</td>
<td>WO</td>
<td>NT</td>
</tr>
<tr>
<td>MS7</td>
<td>31</td>
<td>F</td>
<td>4</td>
<td>3</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>MS8</td>
<td>36</td>
<td>F</td>
<td>4</td>
<td>2</td>
<td>WO</td>
<td>Avonex</td>
</tr>
<tr>
<td>MS9</td>
<td>43</td>
<td>M</td>
<td>3</td>
<td>2</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>MS10</td>
<td>43</td>
<td>F</td>
<td>3,5</td>
<td>2</td>
<td>WO</td>
<td>Avonex</td>
</tr>
<tr>
<td>MS11</td>
<td>40</td>
<td>F</td>
<td>4</td>
<td>3</td>
<td>WO</td>
<td>Fingolimod (FTY720)</td>
</tr>
<tr>
<td>MS12</td>
<td>54</td>
<td>M</td>
<td>3</td>
<td>2</td>
<td>WO</td>
<td>Avonex</td>
</tr>
<tr>
<td>MS13</td>
<td>46</td>
<td>F</td>
<td>3</td>
<td>2</td>
<td>WO</td>
<td>Avonex</td>
</tr>
<tr>
<td>MS14</td>
<td>27</td>
<td>M</td>
<td>3,5</td>
<td>3</td>
<td>WO</td>
<td>Tysabri</td>
</tr>
<tr>
<td>Stable Patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS15</td>
<td>32</td>
<td>F</td>
<td>1</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>MS16</td>
<td>27</td>
<td>F</td>
<td>1</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>MS17</td>
<td>30</td>
<td>M</td>
<td>1,5</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>MS18</td>
<td>47</td>
<td>M</td>
<td>1,5</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
<table>
<thead>
<tr>
<th>MS</th>
<th>Age</th>
<th>Gender</th>
<th>EDSS</th>
<th>DMT</th>
<th>Treatment</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>32</td>
<td>F</td>
<td>1</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>20</td>
<td>33</td>
<td>F</td>
<td>1,5</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>21</td>
<td>37</td>
<td>F</td>
<td>1,5</td>
<td>1</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>F</td>
<td>1</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>23</td>
<td>53</td>
<td>F</td>
<td>3</td>
<td>1</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>F</td>
<td>1,5</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>25</td>
<td>29</td>
<td>F</td>
<td>1,5</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>26</td>
<td>55</td>
<td>M</td>
<td>2</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>27</td>
<td>40</td>
<td>F</td>
<td>1,5</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>28</td>
<td>48</td>
<td>F</td>
<td>2</td>
<td>1</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>29</td>
<td>43</td>
<td>F</td>
<td>2</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>30</td>
<td>32</td>
<td>F</td>
<td>1,5</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>31</td>
<td>34</td>
<td>F</td>
<td>1,5</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>32</td>
<td>38</td>
<td>F</td>
<td>2</td>
<td>1</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>33</td>
<td>35</td>
<td>M</td>
<td>2</td>
<td>1</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>34</td>
<td>37</td>
<td>F</td>
<td>1,5</td>
<td>1</td>
<td>NT</td>
<td>N/A</td>
</tr>
<tr>
<td>35</td>
<td>45</td>
<td>F</td>
<td>2</td>
<td>0</td>
<td>NT</td>
<td>N/A</td>
</tr>
</tbody>
</table>

|\(a\) Expanded Disability Status Scale (EDSS) |
|\(b\) Disease Modified Therapy (DMT) |
|\(c\) Not Treated (NT) |
|\(d\) Wash Out (WO) |
|\(e\) Not Applicable (NA) |
Figure 1
Figure 2
Figure 3

This article is protected by copyright. All rights reserved.
Figure 4
This article is protected by copyright. All rights reserved.
Figure 9.