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Abstract— A distributed multi-agent system consisting
of homogeneous agents is considered in this paper. Dis-
tributed differential games and their solutions in terms of
Nash equilibria are defined for such systems, both in a
linear-quadratic setting and in a general, nonlinear setting.
As with standard differential games, obtaining exact solu-
tions for nonlinear distributed differential games requires
solving coupled partial differential equations, closed-form
solutions for which are not readily available in general. A
systematic method for constructing approximate solutions
for a nonlinear distributed differential game with two
players is provided. The method requires solving algebraic
equations only and is illustrated on a numerical example.

I. INTRODUCTION

A system consisting of several individual ‘’subsys-
tems”, such as a team of autonomous robots or a
elements of a smart grid, form what is known as a
multi-agent system. Such systems have gained much
interest in various fields of engineering over the last
decade (see, for instance, [1] and references therein)
and have a variety of applications, with examples
including mobile sensor networks, monitoring, power
systems and space exploration [1]–[5]. From a control
theoretic perspective, designing control laws for multi-
agent systems may be challenging - in particular when
the communication between agents is limited [6], [7].
In many practical situations inter-agent communication
is limited and call for distributed control laws.

Different approaches for designing distributed con-
trol laws are available in the literature, often in the
context of multi-agent systems and interconnected sys-
tems (see, for example, [8], [9]). For a general overview
on distributed control see [10] and references therein.
Several methods available in the literature make use
of the framework provided by game theory to design
distributed control laws. See, for instance, [11]–[13] . In
[14]–[16] distributed differential games are considered
in the context of multi-agent system coordination. In
[17], [18] the multi-agent collision avoidance problem
is considered (in a centralised setting) and solved by
posing the problem as a nonlinear differential game.
Formation flying is considered in [19]. Therein it is
shown that under certain circumstances the proposed
control laws are distributed.

In this paper the problem of designing distributed
controllers for a multi-agent system consisting of sev-

T. Mylvaganam is with the Department of Aeronau-
tics, Imperial College London, London SW7 2AZ, UK
(Email:thulasi.mylvaganam06@imperial.ac.uk).

eral homogeneous1 agents is considered in a game
teoretic framework. The contributions of this paper are
twofold: considering homogeneous multi-agent sys-
tems N -player distributed differential games and their
solutions are defined and constructive approximate
solutions for a distributed two-player nonlinear differ-
ential game are provided.

The remainder of the paper is organised as follows.
In Section II some preliminaries, mainly related to
graph theory which is used to represent the informa-
tion available to each agent, are provided. Distributed
differential games for multi-agent systems and their
solutions are then considered in Section III. A system-
atic method for constructing approximate solutions for
the two-player, nonlinear distributed differential game
is then provided in Section IV. The method presented
therein draws its inspiration from [20] wherein approx-
imate solutions for (centralised) nonlinear differential
games are provided. Similar ideas have been developed
for constructing approximate solutions for optimal con-
trol problems [21]–[23]. The results presented in this
paper are then illustrated on a numerical example be-
fore some concluding remarks and directions for future
research are given in Sections V and VI, respectively.

Notation: R denotes the set of real numbers. The
norm of a vector v weighted by a matrix M = M> >
0 is denoted by ‖v‖M . The n × n identity matrix is
denoted by In and the zero matrix is denoted by 0.
The kronecker product between a matrix M1 and a
matrix M2 is denoted by M1 ⊗ M2. Given a set S,
its cardinality is denoted by |S| and

∑
j∈S

yj is used to

denote the summation of all yj such that j ∈ S.

II. PRELIMINARIES

A system consisting of N homogenous agents is
considered herein. Each agent is associated with a state
xi(t) ∈ Rn, where the subscript i, i = 1, . . . , N , indicates
a particular agent. The communication between the
agents is described by a directed graph G(V, E). The
set of N nodes V = {1, . . . , N} is such that a given
node corresponds to the agent with the same index
i, i = 1, . . . , N . The so-called edge set E ⊂ V × V is
such that an edge (i, j) indicates that there is (directed)
communication from agent i to agent j and agent i is
said to be a neighbour of agent j. The set Ni denotes

1Agents are said to be homogeneous if they can be described by
the same dynamic model.



all neighbours of agent i and |Ni| is the number of
neighbours of agent i has. Note that since we consider
directed graphs (i, j) ∈ E does not imply (j, i) ∈ E .
Moreover, although we assume that each agent has
knowledge about its own state, to simplify the notation,
we require that (i, i) /∈ E .

The global state x(t) = (x>1 , . . . , x
>
N )> describes the

multi-agent system as a whole and, based on the com-
munication topology each agent builds its own local
state which contains its own state and the states of
all neighbouring agents. The local state is denoted by
x̂i = (xi, xNi

), where xNi
denotes the vector containing

the states of all agents j ∈ Ni, such that the k-th
element of xNi

corresponds to the k-the element of
Ni, for k = 1, . . . , |Ni|. Each of the local states can be
written in terms of the global state as

x̂i = Nix , (1)

where the matrix Ni ∈ R|Ni|n×Nn reflects the com-
munication topology dictated by the graph G. In the
remainder of the paper it is assumed that each agent
has knowledge of its own state and if (i, j) ∈ E agent
j has acess to the local state and the control input of
agent i.

III. DISTRIBUTED DIFFERENTIAL GAMES AND THEIR
EXACT SOLUTIONS

Consider a multi-agent system consisting of N ho-
mogeneous agents with communication topology de-
scribed by a directed graph G. It is assumed that each
agent i, for i = 1, . . . , N , has access to the states xj and
the control strategies uj for all j ∈ N i. We consider
the problem in which each agent seeks to minimise
its own individual cost functional based solely on the
information availabe from its neighbours. This leads to
a distributed differential game.

Consider the case in which each agent is described
by the dynamics

ẋi = f(xi) + g(xi)ui , (2)

where ui ∈ Rm is a control input and f(xi) and g(xi)
are smooth mappings, for i = 1, . . . , N .

Assumption 1: The origin of the system (2) is an
equilibrium, i.e. f(0) = 0.
It follows from Assumption 1 that there exists a matrix-
valued mapping F (xi) such that f(xi) = F (xi)xi.

The global system is then described by the dynamics

ẋ = fgl(x) +

N∑
i=1

gi(xi)ui , (3)

where fgl(x) =
[
f(x1)>, . . . , fN (xN )>

]> and g1(x) =[
g(x1)>, 0 . . . , 0

]>
, . . . , gN (x) =

[
0, . . . , 0, g(xN )>

]>
.

Let uNi
denote the set of feedback strategies cor-

responding to each neighbour of agent i and let uN̄i

denote the set of feedback strategies of each agent

which is not a neighbour of agent i. Each agent seeks
to minimise individual cost functionals of the form

Ji(x̂i, ui, uNi
) =

1

2

∫ ∞
0

qi(x̂i) + u>i ui dt , (4)

where qi(x̂i) ≥ 0, for all x̂i 6= 0, and qi(0) = 0 is a
running cost, which is a function of the local state of
agent i, and the second term is a penalty on the control
effort, for i = 1, . . . , N .

The local dynamics observed by an agent i can be
written in the form

˙̂xi = fi(x̂i) + gii(x̂i)ui +
∑
j∈Ni

gij(x̂i)uj , (5)

where fi(x̂i) = Nifgl(x), which by Assumption 1 can
be written as fi(x̂i) = Fi(x̂i)x̂i,

gii =
[

0 0 g(xi) 0 . . . 0
]> ∈ Rn(|Ni|+1)×m ,

and the functions gij(x̂i) ∈ Rn(|Ni|+1)×m, for i =
1, . . . , N and for all j ∈ Ni, are of the form gij(x) =[
0, γ>i1, . . . , γ

>
i|Ni|

]>
, where γik = g(xj) when j corre-

sponds to the k-th element of Ni and γik = 0 otherwise.
We define the distributed differential game as follows.

Problem 1: Consider the multi-agent system with N
agents, each satisfying the dynamics (2), and consider
the case in which each agent seeks to minimise its
cost functional (4), i = 1, . . . N . The inter-agent com-
munication is described by the graph G. Determine a
set of admissible2 strategies (u∗1, . . . , u

∗
N ) satisfying the

inequalities

Ji(x̂i, u
∗
i , u
∗
Ni

) ≤ Ji(x̂i, ui, u∗Ni
) , (6)

for all admissible sets of strategies (ui, u
∗
Ni
, u∗N̄i

), for
i = 1, . . . , N .
Solutions for Problem 1 are considered separately for
the linear quadratic case and the general, nonlinear case
in the remainder of this section.

A. Linear Quadratic Problem
Consider the case in which each agent is described

the linear dynamics, i.e.

ẋi = Axi +Bui , (7)

A ∈ Rn×n, B ∈ Rn×m, for i = 1, . . . , N . Moreover,
suppose the running costs qi(x̂i) in (4) are quadratic,
i.e.

qi(x̂i) = x̂>i Qix̂i , (8)

with Qi ≥ 0, for i = 1, . . . , N . In this setting the global
system is characterised by the linear dynamics

ẋ = A⊗ InNx+

N∑
i=1

Biui , (9)

2A set of strategies (u1, . . . , uN ) is said to be admissible if it
renders the closed loop system (3) (locally) asymptotically stable.



where B1 =
[
B>, . . . , 0, . . . , 0

]>
, . . . , BN =[

0, . . . , 0, . . . , B>
]>

. The local state observed by
an agent i is the linear equivalent of (5), namely
˙̂xi = Aix̂i+Biiui+

∑
j∈Ni

Bijuj . where Ai = A⊗In(|Ni|+1),

Bii =
[
B> 0 . . . 0

]> and, similarly to in the

nonlinear setting, Bij(x) =
[
0, γ>i1, . . . , γ

>
i|Ni|

]>
, where

γik = B when j corresponds to the k-th element of Ni
and γik = 0 otherwise.

Assumption 2: The graph G and the running costs (8)
are such that

∑N
i=1N

>
i QiNi > 0 .

In the following statemet, as is commonly done in
the context of linear quadratic differential games (see,
for example [20], [24]), we consider linear feedback
strategies as solutions for Problem 1 when the agent
dynamics are linear and the running costs are quadratic
in the local states.

Proposition 1: Consider the (homogeneous) multi-
agent system described by the directed graph G with
the agent dynamics given by (7), for i = 1, . . . , N .
Consider Problem 1 with the running costs (8), for
i = 1, . . . , N , and suppose Assumption 2 is satisfied.
Suppose we can find matrices Pi = P>i ≥ 0, for
i = 1, . . . , N , such that

∑N
i=1NiPiNi > 0 satisfying

x̂>i Qix̂i − x̂iPiBiiB>iiPix̂i + x̂>i PiAix̂i

+ x̂>i A
>
i Pix̂i −

∑
j∈Ni

x̂>i PiBijB
>
jjPj x̂j

−
∑
j∈Ni

x̂>j PjBjjB
>
ijPix̂i = 0 ,

(10)

for i = 1, . . . , N , and for all x̂i and x̂j . Then the set of
feedback strategies

u∗i = −B>iiPix̂i , (11)

for i = 1, . . . , N , is a solution of Problem 1.
Remark 1: If the agents have knowledge of the graph

topology, i.e. the matrices Ni, i = 1, . . . , N , are known
to each agent, the equations (10), i = 1, . . . , N , in
Proposition 1 can be replaced by the coupled algebraic
Riccati-like equations

N>i QiNi −N>i PiBiiB>iiPiNi +N>i PiAiNi

+N>i A
>
i PiNi −

∑
j∈Ni

N>i PiBijBjj
>PjNj

−
∑
j∈Ni

N>j PjBjjB
>
ijPiNi = 0 .

(12)

B. Nonlinear Problem
Consider now the general nonlinear case in which

the dynamics of each agent is given by (2) and the
running cost in (4) is a general, nonlinear function.
As in the case of standard differential games [25]–[27],
obtaining a solution to Problem 1 requires solving a
system of PDEs.

Assumption 3: The running costs qi(x̂i) are such that
qx(x) =

∑N
i=1 qi(x̂i) > 0 for all x 6= 0.

Proposition 2: Consider the multi-agent system de-
scribed by the directed graph G with the agent dynam-
ics given by (2), for i = 1, . . . , N . Consider Problem 1
and suppose Assumption 3 is satisfied. Suppose we can
find a solution to the coupled Hamilton-Jacobi-Isaacs
(HJI) partial differential equations (PDE)s

∂Vi
∂x̂i

fi(x̂i)−
1

2

∂Vi
∂x̂i

gii(x̂i)gii(x̂i)
> +

1

2
qi(x̂i)

−
∑
j∈Ni

∂Vi
∂x̂i

gij(x̂i)gjj(x̂j)
> ∂Vj
∂x̂j

= 0 ,
(13)

such that Vi(x̂i) ≥ 0 and Vi(0) = 0, for i = 1, . . . , N , and∑N
i=1 Vi(x̂i) > 0 for all x 6= 0. Then the set of feedback

strategies

u∗i = −gii(x̂i)>
∂Vi
∂x̂i

>
, (14)

for i = 1, . . . , N , is a solution of Problem 1.

Remark 2: The existence of solutions of (10) and (12),
i = 1, . . . , N , arising in linear quadratic distributed
differential games, and of (13), i = 1, . . . , N , arising
in nonlinear distributed differential games, depends on
the communication topology described by the graph G.

IV. APPROXIMATE SOLUTION OF THE 2-PLAYER
NONLINEAR DISTRIBUTED DIFFERENTIAL GAME

The solution of general nonlinear differential games
without communication constraints, i.e. when all play-
ers share the same knowledge of the global system,
is characterised by HJI PDEs (see, for instance [25]).
Similarly, the solution of Problem 1 requires solving the
system of the N coupled HJI PDEs (13), i = 1, . . . , N , as
established in Proposition 2. Closed-form solutions to
the PDEs (13), i = 1, . . . , N , are not readily available
in general. Thus, it may be of interest to determine
approximate solutions for Problem 1.

In [20] constructive methods for obtaining approxi-
mate solutions for nonlinear differential games with-
out communication constraints are provided, i.e. the
methods proposed therein are inherently centralised. In
this section the results therein are further developed to
solve a distributed differential game with two players.

A two-player distributed differential game charac-
terised by the dynamics (2), the cost functionals (4),
for i = 1, 2, and the graph G, with nodes V =
{1, 2} and edge set E = {(1, 2)} is considered. In
this scenario agent 1 has knowledge of its own state
x1, whereas agent 2 has knowledge the global state
x = (x>1 , x

>
2 )>. In particular, x̂1 = x1 =

[
In 0

]
x,

x̂2 =

[
0 In
In 0

]
x, g11 = g(x1), g21 =

[
g(x2) 0

]>
and g12 =

[
0 g(x1)

]>. The HJI PDEs (13) associated



with this problem are

∂V1

∂x̂1
f1(x̂1)− 1

2

∂V1

∂x̂1
g11(x̂1)g11(x̂1)>

+
1

2
q1(x̂1) = 0 ,

∂V2

∂x̂2
f2(x̂2)− 1

2

∂V2

∂x̂2
g22(x̂2)g22(x̂2)>

+
1

2
q2(x̂2)− ∂V2

∂x̂2
g21(x̂2)g11(x̂1)>

∂V1

∂x̂1
= 0 ,

(15)

and provided a solution V1(x̂1) and V2(x̂2) can be
found, the solution to Problem 1 are the feedback
strategies (14), i = 1, 2.

Notions similar to those introduced in [20] are used
to systematically construct distributed control strategies
which solve the distributed differential game defined
in Problem 1 approximately for the case in which there
are two players with the communication topology de-
scribed by G. Similarly to what is seen in [20], [21]
the method utilises the notion of a so-called algebraic
P̄ solution. The systematic method for constructing
approximate solutions to Problem 1 merely requires
solving a system of algebraic matrix equations (in
place of the PDEs (15)) and requires that the following
conditions are satisfied.

Assumption 4: The multi-agent system satisfies the
following conditions. Each agent i, for i = 1, 2, has
access to

i) its own local state x̂i;
ii) the control strategies uj∈Ni ;

iii) the graph G.
Assumption 5: The running costs in (4) are of the

form qi(x̂i) = x̂iQi(x̂i)x̂i, for i = 1, 2.
Let Q̄i = Qi(0), for i = 1, . . . , N . For forward refer-
ence the following notation, which is related to the
linearisation of the local state dynamics, is introduced

at this stage Ai =
∂fi(x̂i)

∂x̂i

∣∣
x̂i=0

= Fi(0), Bii = gii(0)

and Bij = gij(0), for i = 1, 2 and for all j ∈ Ni.
Remark 3: Assumption 5 is such that the running

costs qi(x̂i), for i = 1, . . . , N , are at least lo-
cally quadratic. Assumptions 3 and 5 imply that∑N
i=1N

>
i Q̄iNi > 0 .

A. Algebraic P̄ Solution
Consider the (homogeneous) system with 2 agents

described by the agent dynamics (2) and the graph G.
Consider the cost functionals (4) and the distributed
differential game in Problem 1. The algebraic P̄ solution
for (15) is defined as follows.

Definition 1: Let Σ1 : Rn → Rn×n and Σ2 : R2n →
R2n×2n, with Σ1(0) ≥ 0 and Σ2(0) ≥ 0, denote two
matrix-valued functions. Let Σ1(x̂1) and Σ2(x̂2) be such
that Σ1(x̂1) = Σ1(x̂1)> > 0 for all x̂1 ∈ Rn \ {0}
and Σ2(x̂2) = Σ2(x̂2)> > 0, for all x̂2 ∈ R2n \ {0}.

The C1 matrix-valued functions P1 : Rn → Rn×n and
P2 : R2n → R2n×2n, such that Pi(x) = Pi(x)>, i = 1, 2,
are said to be X -algebraic P̄ solutions3 of (15), provided
the following conditions hold.

(i) For all4 x ∈ X ⊆ RNn, and for i = 1, . . . , N

N>1 P1(x̂1)F1(x̂1)N1 +N>1 F1(x̂1)>P1(x̂1)N1

−N>1 P1(x̂1)g11(x̂1)g11(x̂1)>P1(x̂1)N1

+N>1 Σ11(x̂1)N1 +N>1 Q1(x̂1)N1 = 0 ,

(16)

N>2 P2(x̂2)F2(x̂2)N2 +N>2 F2(x̂2)>P2(x̂2)N2

−N>2 P2(x̂2)g22(x̂2)g22(x̂2)>P2(x̂2)N2

−N>2 P2(x̂2)g21(x̂2)g11(x̂1)>P1(x̂1)N1

−N>1 P1(x̂1)g11(x̂1)g21(x̂2)>P2(x̂2)N2

+N>2 Q2(x̂2)N2 +N>2 Σ2(x̂2)N2 = 0 .

(17)

(ii) Pi(0) = P̄i, such that
(
N>1 P̄iN1 + P2

)
> 0, with P̄1

and P̄2 solutions of the coupled Riccati-like equations

N>1 Q̄1N1 −N>1 P̄1B11B
>
11P̄1N1 +N>1 Σ̄1N1

+N>1 P̄1A1N1 +N>1 A
>
1 P̄1N1 = 0 ,

N>2 Q̄2N2 −N>2 P̄2B22B
>
22P̄2N2

+N>2 A
>
2 P̄2N

>
2 +N>2 P̄2A2N2

+N>2 Σ̄22N
>
2 −N>2 P̄2B21B

>
11P̄1N1

−N>1 P̄1B11B
>
21P̄2N

>
2 = 0 .

(18)

If x ∈ R2n, i.e. X = R2n, then Pi, i = 1, 2, are said to
be an algebraic P̄ solution.
In what follows we assume the existence5 of algebraic
P̄ matrix solutions, i.e. we assume X = Rn.

B. Approximate Solution to Distributed, Nonlinear Differ-
ential Games

In this section the notion of algebraic P̄ solutions is
used to systematically construct approximate solutions
for Problem 1.

In what follows, we introduce a dynamic extension
with state ξ(t) = (ξ>1 , ξ2)> ∈ RnN , with ξi(t) ∈ Rn, for
i = 1, 2. The dynamic extension is utilised to design
dynamic feedback strategies of the form

u1 = β1(x̂1, ξ1, ξN∞) ,
u2 = β2(x̂2, ξ2, , ξN∈) ,

ξ̇ = τ(x, ξ) ,

(19)

where τ(0, 0) = 0, βi(0, 0) = 0, τ , βi are smooth
mappings, for i = 1, 2, and ξNi denotes the vector
containing the components ξj such that j ∈ Ni. In
the above it is apparent that agent 1 has access to ξ1

3Provided the set X contains the origin.
4Since x̂i ⊆ R2n, for i = 1, 2, the algebraic P̄ solution is defined

on the space in which the global state x evolves.
5The existence of such as solution depends partly on the graph G.



only and agent 2 has access to ξ1 and ξ2, i.e. ξN1
= ∅

and ξN2
= ξ1. Let ξ̂1 = ξ1 and ξ̂2 = (ξ>2 , ξ

>
1 )>. Note

that the dynamic extension ξ ‘’mimics” the structure of
the global state x in terms of which components are
avaialble to each of the individual agents.

Problem 2: Consider a multi-agent system with 2
agents, each satisfying the dynamics (2), and consider
the case in which each agent seeks to minimise its cost
functional (4), i = 1, 2. The inter-agent communication
is described by the graph G with V = {1, 2}, E =
{(1, 2)}. Determine a set of admissible dynamic feedback
strategies (S1, S2), where the strategy Si, i = 1, 2, is a
dynamical system described by (19) and non-negative
functions c1(x̂1, ξ̂1) and c2(x̂2, ξ̂2) such that for any
admissible set of strategies (u1, u2, τ), with ui 6= βi,
i = 1, 2,

Ĵ1((x̂1(0), ξ̂1(0)), β1) ≤ Ĵ1((x̂1(0), ξ̂1(0)), u1) ,

Ĵ2((x̂2(0), ξ̂2(0)), β2, β1) ≤ Ĵ2((x̂2(0), ξ̂2(0)), u2, β1) ,

where the extended cost functionals Ĵi, i = 1, 2, are
defined as

Ĵi((x̂i(0), ξ̂i(0), ui, uNi ,
1

2

∫ ∞
0

(
qi(x̂i(t))

+ ‖ui(t)‖2 + ci(x̂i(t), ξ̂i(t))
)

dt .

(20)

Remark 4: The solution of Problem 2 constitutes an
approximate solution, in terms of an εα-Nash equilib-
rium solution, of Problem 1 (see [20] for details).

Let Pi(x̂i), i = 1, 2, denote an algebraic P̄ solution
for (15) and consider the extended value functions

V1(x̂1, ξ1) = 1
2 x̂
>
1 P1(ξ1)x̂1 + 1

2‖x̂1 − ξ̂1‖R1 ,

V2(x̂2, ξ) = 1
2 x̂
>
2 P2(ξ2)x̂2 + 1

2‖x̂2 − ξ̂2‖R2
,

(21)

where Ri = R>i > 0, for i = 1, 2. Let Φi(x̂i, ξ̂i) denote a
matrix-valued mapping such that Pi(x̂i)x̂i−Pi(ξ̂i)x̂i =
Φi(x̂i, ξ̂i)(x̂i− ξ̂i) and let Ψi(x̂i, ξ̂i) denote that Jacobian
matrix of 1

2Pi(ξ̂i)x̂i with respect to ξ̂i, for i = 1, 2.
Moreover, note that Ψ2 can be written as the block

matrix Ψ2 =

[
Ψ22 Ψ21

Ψ12 Ψ11

]
.

Theorem 1: Consider Problem 2 and suppose As-
sumptions 1, 3, 4 and 5 are satisfied. Let Pi, i = 1, 2,
be an algebraic P̄ solution of (15), with Σ̄i > 0, for
i = 1, 2. Suppose Ψ2 is such that Ψ12 = 0 and let
R2 = blockdiag{R22, R12} = R>2 and R1 = R>1 be such
that

R1(R1 +R12) + (R1 +R12)R1 > 0 ,
R2(R2 +N>1 R1N1N2 + (N2N

>
1 R1N1)R2 > 0 .

(22)

Then there exists constants k̄ ≥ 0 and a set Ω ⊆ R2n ×
R2n such that the functions (21), solve the system of
inequalities

HJ 1 ,
∂V1

∂x̂1
f1(x̂1)− 1

2

∂V1

∂x̂1
g11(x̂1)g11(x̂1)>

+
1

2
q1(x̂1) +

∂V1

∂ξ̂1

˙̂
ξ1 ≤ 0 ,

(23)

HJ 2 ,
∂V2

∂x̂2
f2(x̂2)− 1

2

∂V2

∂x̂2
g22(x̂2)g22(x̂2)> +

1

2
q2(x̂2)

− ∂V2

∂x̂2
g21(x̂2)g11(x̂1)>

∂V1

∂x̂1
+
∂V2

∂̂ξ2

˙̂
ξ2 ≤ 0 ,

(24)
with

ξ̇ = −k
(
∂V2

∂ξ̂2
N2 +

∂V1

∂ξ̂1
N1

)>
,

for all k > k̄ and for all (x, ξ) ∈ Ω. It follows that

ξ̇ =− kN>2
((

Ψ2(x̂2, ξ̂2)>x̂2 −R2(x̂2 − ξ̂2)
)

+N>1

(
Ψ1(x̂1, ξ̂1)>x̂1 −R1(x̂1 − ξ̂1)

))
,

u1 =− g11(x̂1)>
(
P1(x̂1)x̂1

+ (R1 − Φ1(x̂1, ξ̂1))(x̂1 − ξ̂1)
)
,

u2 =− g22(x̂2)>
(
P2(x̂2)x̂2

+ (R2 − Φ2(x̂2, ξ̂2))(x̂2 − ξ̂2)
)
,

(25)

are admissible dynamic strategies that solve Problem 2
with ci(x̂i, ξ̂i) = −2HJ i(x̂i, ξ̂i) , for i = 1, 2. Moreover,
there exists a neighbourhood of the origin in which
strategies (25) constitute an approximate solution for
Problem 1.

V. NUMERICAL EXAMPLE

A numerical example is provided in this section
to illustrate the results presented in Section IV. The
example is one of multi-agent collision avoidance. In
particular, we revisit a scenario with two agents seen
in [18] and study it in the distributed setting considered
in this paper.

Consider a system consisting of two agents moving
on a plane, i.e. pi ∈ R2 where pi is the position of
agent i, for i = 1, 2, and the inter-agent communication
described by a graph G with the nodes V = {1, 2} and
the edge set E = {(1, 2)}. We consider the scenario in
which each agent seeks to reach a predefined target
ti ∈ R2, i = 1, 2, and, in addition, agent 2 seeks to
avoid collisions with agent i. To this end we define the
running costs

q1(x̂1) = a1x
>
1 x1 ,

q2(x̂2) = a2
x>2 x2

(‖x1 + t1 − x2 − t2‖2 − r2)2
,

(26)

where ai > 0, for i = 1, 2, xi = pi − ti, for i = 1, 2, and
r > 0 is a minimum distance to be maintained between
the two agents at all times. The agents are assumed to
satisfy single-integrator dynamics, namely ẋi = ui .

In the following we consider the case in which a1 = 1
and a2 = 2. The pair of agents, their dynamics, the run-
ning costs (26) and the graph G constitute a distributed
differential game described in Problem 1. To solve
Problem 2, and thus solve Problem 1 approximately,
note that

P1 = α1I2
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Fig. 1. Trajectories of p1 (dashed line) and p2 (solid line). The circular
markers denote the initial and final positions of the agents and the
arrows indicate the direction of travel.

and

P2 = blockdiag{α22
1

‖x1 + t1 − x2 − t2‖
, α21I2}

with α1 >
√
a1, α22 >

√
a2 and α21 > 0 , consti-

tutes an algebraic P̄ solution (satisfying Ψ12 = 0)
for the PDEs (15) which characterise the solution of
the distributed differential game. Applying the result
of Theorem 1, the dynamic control strategies (25) are
applied with the parameters selected as k = 10, R1 =
0.1I2, R2 = 0.1I4, α1 = 10, α22 = 2, α21 = 2 and
ξ(0) =

[
0 0 0 −340

]>. The initial and target
positions of the two agents are such that the agents
should switch positions with p1(0) = [0, 0]

>
= t2 and

p2(0) = [5, 5]
>

= t1. The trajectories of agent 1 (dashed
line) and agent 2 (solid line) are shown in Figure V.
The simulation demonstrates that collision is avoided
in the distributed setting considered herein by agent 2
maneuvering around agent 1.

VI. CONCLUSION

A system of agents, each seeking to minimise its own
individual cost function subject to limited communi-
cation is considered in this paper. The available com-
munication topology is described by a directed graph
and the problem is defined as a distributed differential
game. Exact solutions for the linear quadratic case and
for the nonlinear case are classified. A method for
constructing approximate solutions of the distributed
differential game with two agents is then proposed
and illustrated on a numerical example. Directions
for further research include extending this method to
distributed games with N > 2 players. It is also of
interest to consider the influence of the communication
topology on the existence of solutions for the game.

REFERENCES

[1] T. Arai, E. Pagello, and L. E. Parker, “Editorial: Advances in
multi-robot systems,” IEEE Transactions on robotics and automa-
tion, vol. 18, no. 5, pp. 655–661, 2002.

[2] R. Olfati-Saber, “Flocking for multi-agent dynamic systems:
algorithms and theory,” IEEE Transactions on Automatic Control,
vol. 51, no. 3, pp. 401–420, 2006.

[3] T. Mylvaganam and A. Astolfi, “Control of microgrids using a
differential game theoretic framework,” in 54th IEEE Conference
on Decision and Control, 2015, pp. 5839–5844.

[4] T. Mylvaganam and A. Astolfi, “Approximate optimal monitor-
ing,” in 14th European Control Conference, 2014, pp. 1199–1204.

[5] T. Mylvaganam and A. Astolfi, “Approximate optimal monitor-
ing: preliminary results,” in American Control Conference, 2012,
pp. 4745–4750.

[6] M. Ji and M. Egerstedt, “Distributed coordination control
of multiagent systems while preserving connectedness,” IEEE
Transactions on Robotics, vol. 23, no. 4, pp. 693–703, 2007.

[7] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Mul-
tiagent Networks, 1st ed. Princeton University Press, 2010.

[8] R. Olfati-Saber and R. M. Murray, “Distributed cooperative
control of multiple vehicle formations using structural potential
functions,” IFAC Proceedings Volumes, vol. 35, no. 1, pp. 495–500,
2002.

[9] R. D’Andrea and G. E. Dullerud, “Distributed control design
for spatially interconnected systems,” IEEE Transactions on Au-
tomatic Control, vol. 48, no. 9, pp. 1478–1495, 2003.

[10] L. Bakule, “Decentralized control: An overview,” Annual Reviews
in Control, vol. 32, no. 1, pp. 87 – 98, 2008.

[11] A. Rantzer, “Using game theory for distributed control engi-
neering,” Department of Automatic Control, Lund Institute of
Technology, Lund University, Tech. Rep., 2008.

[12] J. R. Marden, J. S. Shamma et al., “Game theory and distributed
control,” Handbook of game theory, vol. 4, pp. 861–900, 2012.

[13] T. Mylvaganam and A. Astolfi, “Towards a systematic solution
for differential games with limited communication,” in American
Control Conference (ACC), 2016, pp. 3814–3819.

[14] W. Lin, Z. Qu, and M. A. Simaan, “A design of distributed
nonzero-sum Nash strategies,” in 49th IEEE Conference on De-
cision and Control (CDC), 2010, pp. 6305–6310.

[15] W. Lin, “Distributed UAV formation control using differential
game approach,” Aerospace Science and Technology, vol. 35, pp.
54 – 62, 2014.

[16] W. Lin, Z. Qu, and M. A. Simaan, “Distributed game strategy
design with application to multi-agent formation control,” in
53rd IEEE Conference on Decision and Control, 2014, pp. 433–438.

[17] T. Mylvaganam, M. Sassano, and A. Astolfi, “A constructive
differential game approach to collision avoidance in multi-agent
systems,” in American Control Conference, 2014, pp. 311–316.

[18] T. Mylvaganam, M. Sassano, and A. Astolfi, “A differential
game approach to multi-agent collision avoidance,” IEEE Trans-
actions on Automatic Control (In Press), 2017.

[19] T. Mylvaganam and A. Astolfi, “A differential game approach
to formation control for a team of agents with one leader,” in
American Control Conference (ACC), 2015, pp. 1469–1474.

[20] T. Mylvaganam, M. Sassano, and A. Astolfi, “Constructive
ε-Nash equilibria for nonzero-sum differential games,” IEEE
Transactions on Automatic Control, vol. 60, no. 4, pp. 950–965,
2015.

[21] M. Sassano and A. Astolfi, “Dynamic approximate solutions of
the HJ inequality and of the HJB equation for input-affine non-
linear systems,” IEEE Transactions on Automatic Control, vol. 57,
pp. 2490–2503, 2012.

[22] G. Scarciotti and A. Astolfi, “Approximate finite-horizon op-
timal control for input-affine nonlinear systems with input
constraints,” Journal of Control and Decision, vol. 1, no. 2, pp.
149–165, 2014.

[23] M. Sassano and A. Astolfi, “Approximate finite-horizon optimal
control without PDEs,” Systems and Control Letters, vol. 62, no. 2,
pp. 97–103, 2013.

[24] J. Engwerda, LQ dynamic optimization and differential games.
Chichester: John Wiley & Sons, 2005.

[25] T. Basar and G. Olsder, Dynamic Noncooperative Game Theory.
Academic Press, 1982.

[26] A. W. Starr and Y. C. Ho, “Nonzero-sum differential games,”
Journal of Optimization Theory and Applications, vol. 3, pp. 184–
206, 1969.

[27] A. W. Starr and Y. C. Ho, “Further properties of nonzero-sum
differential games,” Journal of Optimization Theory and Applica-
tions, vol. 3, pp. 207–219, 1969.


