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Abstract

A methodology for the calculation of gradients with respect to design parameters in general Fluid-
Structure Interaction problems is presented. It is based on fixed-point iterations on the adjoint variables
of the coupled system using Algorithmic Differentiation. This removes the need for the construction of
the analytic Jacobian for the coupled physical problem, which is the usual limitation for the computation
of adjoints in most realistic applications. The formulation is shown to be amenable to partitioned
solution methods for the adjoint equations. It also poses no restrictions to the nonlinear physics in either
the fluid or structural field, other than the existence of a converged solution to the primal problem from
which to compute the adjoints. We demonstrate the applicability of this procedure and the accuracy
of the computed gradients on coupled problems involving viscous flows with geometrical and material
non-linearities in the structural domain.

I. INTRODUCTION

Computational methods in Fluid-Structure Interaction (FSI) have reached sufficient maturity to
address complex engineering problems, including those defined in the analysis stage of indus-
trial applications. A major open challenge is still their effective incorporation into the design
chain, which requires the integration of complex FSI solvers into (possibly even more complex)
optimization frameworks. Due to the high computational cost of FSI analysis for large problem:s,
gradient-based algorithms are usually the most appropriate for this task, but they rely on the
efficient computation of sensitivities for the coupled problem [1]. Given that a small change in a
single design variable is likely to affect the behavior of the full system, the task of assessing the
influence of a large number of design parameters is a challenging task.

Adjoint methods have shown to be an efficient alternative for problems involving a very large
number of design variables. They have been known for over four decades and have been extensively
applied to problems in fluid dynamics [2}|3] and structural mechanics [4]. The main appeal of
adjoint methods is that their cost is practically independent of the number of design variables,
unlike alternative methods for computing gradients, such as finite differences, the complex-step
method [5], or the direct method (see, e.g., [46]). In the early 2000s, adjoint method applications for
the optimization of high-fidelity coupled systems began to appear. This was initiated by Maute et
al. [7}/8] and Martins et al. [9}|10] for aero-structural steady-state optimization, and adjoint methods
have since become a key feature in the development of high-fidelity multidisciplinary optimization.

Later works by Maute et al. [11]], Martins et al. [[12]], Barcelos et al. [13[], Fazzolari et al. [|14]
and Abu-Zurayk and Brezillon [15]), among others, have further explored the use of adjoints for
optimizations in computational aeroelasticity. Given the ability of the adjoint method to efficiently
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compute sensitivities with respect to thousands of design variables, recent applications have
tackled very large multiphysics problems, such as those associated with the shape optimization
of full aircraft configurations [16]. Adjoint methods for FSI have also been investigated in other
disciplines, such as parameter identification for medical applications [[17,/18], coupled electrostatic
FSI problems [19], goal-oriented error estimation 20,21, steering applications [22], to name a few.
However, the complexity of this technique often leads to simplifications in their implementation
that have limited the scope of their application.

From a fluid-dynamics point of view, many applications in aero-structural optimisation have
neglected viscosity (see, for example [7}|11}/16},23]), or, if the Reynolds-averaged Navier-Stokes equa-
tions were considered, turbulence models have often been “frozen,” meaning that their linearization
is ignored and omitted from the adjoint formulation [24]]. The implications of this assumption are
discussed in a paper by Dwight and Brezillon [25]. Although linearization of viscous terms and
turbulence models and their inclusion within adjoint formulations is now becoming routine, the
process can be cumbersome and error-prone for non-automatic techniques of differentiation.

From a structural point of view, in most cases only linear elastic approaches have been adopted.
This assumption limits the structural deflections to the small deformation regime [[11}12}/16}23].
Although structural non-linearities have been incorporated by Lund et al. [26], the problem is
in that case solved monolithically using an approximate Jacobian, which as pointed out later by
Barcelos and Maute [6], limits its application to small “academic” problems.

These simplifications are normally related to the requirement, for an accurate computation of
the adjoint, of an exact linearization of the physical problem. Obtaining the exact analytic Jacobian
on fully-nonlinear coupled FSI problems is however an extremely complex task, both in terms of
code development and memory handling. Peter and Dwight [24]), working on the adjoint method
for fluid applications, have recently pointed out that, given the complexity of the physical models
needed for realistic applications, analytical Jacobians are becoming increasingly impractical. This
complexity increases even more for coupled, multidisciplinary problems.

Algorithmic Differentiation (AD) techniques [27,28] provide a computational alternative to the
analytic evaluation of the Jacobian. The basic concept is that any computational code is built as a
sequence of elementary operations that only depend on one or two variables [27]], and therefore,
the sensitivities may be obtained applying the chain rule recursively. AD has been applied to
compute discrete adjoints in both fluid [[29431]] and structural [32] problems, and also for FSI
adjoint applications [16]. In these cases, AD is typically applied selectively to some routines
that compute the flow residual [30] or some cross-dependencies in the FSI problem [16[, which
complicates the generalization of the methodology.

In this work, we propose an alternative approach that consistently applies AD to a partitioned
FSI solver. It is a natural extension to the work presented by Albring [33}/34] and Zhou [35] for aero-
dynamic and aeroacoustic optimization, where it has been already shown that it brings minimum
requirements to the characteristics of the problem or its solution methods and it does not interfere
in the future development of the direct solvers. Here, we will introduce an AD-based Discrete
Adjoint (ADDA) iterative methods to compute accurate gradients for FSI problems involving both
viscous flows and non-linear structural behaviour. We employ Expression Templates [36] in order
to avoid the large computational cost and memory requirements that result from the application
of the most common AD techniques (operator overloading and source code transformation). The
implementation has been done in the partitioned, strongly-coupled FSI solver available in the
open-source SU2 software suite [[37}/38]]. SU2 consists of a set of C++ libraries developed from
the ground up for the solution of complex, multiphysics Partial Differential Equation-based prob-
lems [39-41] and has already shown its viability for aerodynamic shape design in industrial-scale
applications, including full aircraft configurations and wind turbine blades [41]. The software
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is supported by an international consortiumﬂ that seeks collaborative work in the solution of
complex, multidisciplinary problems. In this work, we will restrict ourselves to an computation of
sensitivities for steady-state problems with compressible flows, and the gradients will be computed
with respect to structural parameters only. These starting assumptions have been adopted in order
to develop and test the methodology, but constitute no fundamental limitation to the proposed
method.

This paper is organized as follows. Section [[I]reviews the different methods available in the
literature to compute sensitivities for gradient-based optimization problems. Section [[I]| presents
the concepts behind the forward and reverse modes of AD and also covers Expression Templates.
Section [[V] briefly summarizes the governing equations and the coupling conditions for the FSI
primal solver. Section [V|presents both the conventional and the new methodology developed
in this paper for the application of the adjoint method to structural and FSI problems. The
sensitivities computed using finite differences, the conventional adjoint approach, and the AD-
based methodology that we have developed in this work are shown in section demonstrating
the potential of this new technique. Finally, section summarizes the main findings and the
contributions of this work.

II. BACKGROUND

Given a physical system, we define an objective function J as
J=]x(a),a), (1)

which depends on a vector of design variables a explicitly and/or implicitly through the state
variables of the system x(a). The implicit dependency is determined by the governing equations of
the system, which we will write as

Y =9x(a),a)=0, (2)

with the equations being satisfied for each value of @. We can then define the following constrained
optimization problem:
min J(x(a), &)
N (3)
subject to ¥(x(a),a) = 0.

Many optimization algorithms have been proposed to solve (3). They are often divided into
two large groups, namely, zero-order (gradient-free) and gradient-based methods, as described,
for example, by Hernandez [42]] and Martins et al. [12]. Zero-order methods, such as conjugate
directions, genetic algorithms, or neural networks, require only the evaluation of the objective
function | during the iterations of the optimizer. However, when dealing with a large design
space and complex problems where the calculation of the objective function is expensive, the
computational cost of these methods rapidly increases, rendering them prohibitively expensive.

First-order, or gradient-based, methods require the evaluation of the derivative of the objective
function with respect to the design variables (and generally assume a smooth design space). They
typically require a smaller number of evaluations, which is advantageous for large multiphysics
problems due to the high cost of computing the objective function. Given an initial guess of the
design variables a, each iteration of the optimizer updates the value of & using an expression of
the form [42}/43]

i1 = ap + Brdy (Vo] (x(ag), ax)), (4)

Thttp://su2.stanford.edu/
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where f is the step size, and d; is the search direction, which is a function of the gradient of the
objective function, V,J(x(ay), ax). Clearly, an efficient computation of this gradient is essential for
keeping the cost of gradient-based algorithms low relative to zero-order methods, and the main
strategies adopted in the literature are briefly reviewed next. Further details can be found in the
books of Arora [44] and Gunzburger [45].

II.1. Finite differences

The simplest, yet still extensively used, method for computing the gradient of the objective function
is by finite differences. The method is closely related to the definition of a derivative: a small
perturbation h in a design variable is introduced, the objective function is re-evaluated, and
the resulting change is computed by subtraction. It is possible to approximate the gradient of
the objective function using first-order schemes, such as forward or backward differences, or
alternatively using a second-order central difference scheme, such as the one that will be employed
later in this work, or

AT _ e+ ghi) age ahy) Ol Z 3k Z 3R e 5)
d()(j h
Finite differences are extremely popular in engineering applications due to their ease of imple-
mentation, especially for black-box solvers. They do not require any source code modifications
and will give reasonably accurate gradients, assuming that the increment 4 is adequately chosen.
However, these methods suffer both from cancellation and truncation errors that result in their
accuracy being highly dependent on the value of i, which generally requires a parametric study.
Additionally, the computational cost of the calculation of the gradient is directly dependent on the
number of design variables of the problem, n,. For first-order schemes, it is necessary to evaluate
the objective function at least n, + 1 times, while for second-order schemes, this number increases
to2n, +1.

II.2. Complex step method

The complex step method is an alternative to finite differences which effectively eliminates the
cancellation errors due to the subtraction in the numerator of , thereby allowing one to choose a
very small increment h. The method is conceptually very similar to finite differences. However,
in this case, the increment is applied in the complex domain [5]. The computational cost of the
gradient calculation remains directly dependent on the number of design variables of the problem,
i.e., the objective function needs to be computed at least n, + 1 times. Moreover, it requires access
to the source code in order to redefine the variables of the problem in the complex domain, which
generally reduces its range of applicability to in-house codes or open-source platforms. However,
due to its accuracy and lack of dependency in the value of h, the derivatives obtained using this
method are commonly used to verify the accuracy of gradients obtained by other techniques [16].

I11.3. Direct method

Using the chain rule, one can express the gradient of the objective function as the row vector

4 _9J ddx
da Jda oJxda’
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It can also be noted that, for each value of the design variable a (within certain bounds), the
governing equations (2) will be satisfied, which implies that their total derivative with respect to
the design variables is equal to zero, i.e.,

4% 99 99 dx

220 7
da  da ' Jxda @
within the design space. If we now define the Jacobian of the governing equations as Ky = d¥/0x,
we can rewrite (7) as

X (3
da da

Therefore, one can obtain the sensitivities of the state variables with respect to the control
parameters dx/da by solving one linear system of the size of problem % per design variable and then
introducing this result into (6). This is called the direct method [4,[11], and its computational cost
is directly proportional to the number of design variables n,, as this defines the number of linear
systems (8] that must be solved. The cost of solving this linear system is equivalent to one implicit
iteration of the solver of the primal problem. However, it must be noted that the linear system in
requires the exact representation of the Jacobian of the problem K. Unfortunately, depending
on the solution method chosen for the primal problem, this Jacobian may not be explicitly available
or may be available only in an approximate form, which is the case in many problems in fluid
dynamics and also in structural analysis with complex material models.

Ky

II.4. Adjoint methods

Problem (3) can also be recast as an unconstrained optimization problem. In this case, its solution
is obtained by minimizing the corresponding Lagrangian, L=]+x%'¥%, i.e.,

min J(x,a)+ X' 9(x,a), 9)
a,X,X
where the Lagrange multipliers X are typically referred to as the adjoint, or dual, variables. The
solution to this problem is sought by differentiating the Lagrangian with respect to the adjoint
variables, the state variables, and the design variables, which yields, respectively, the governing
equation (2), the adjoint equation
o’
T -
Ky x= o (10)
and the optimality condition, d.Z/da = 0 at the optimum. These are the well-known Karush-Kuhn-
Tucker (KKT) optimality conditions [[44}/45]. Substituting now the value of dJ/dx from into (6)

and using , we can finally write
d d] _1d9
32" 2a % 34
Adjoint methods have superior performance for the computation of sensitivities for a single
objective with a large number of design variables, as the adjoint equation does not depend on the
number of design parameters n,. The biggest contribution to the computational cost of the solution
process is the linear system in (10), which is comparable to the cost of solving (8) for the direct
method. In both cases, the number of equations and variables of the linear system is equal to the
number of state variables of the system n,. However, for the direct case it is necessary to solve n,
linear systems; alternatively, this number is the number of objective functions, n;, for the adjoint
method. As in the case of the direct method, solving the adjoint equation requires the Jacobian

(11)
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of the problem K¢, which may not be readily available.

III. ArcoriTEHMIC DIFFERENTIATION

Of particular interest in this work is the evaluation of derivatives by means of Algorithmic Differ-
entiation (AD). The main idea behind AD is better described with an example: Let y = f(x) be a
function of some input variables x. The numerical evaluation of f can be represented as a sequence
of | elementary functions ¢;. These functions are simple operations, such as addition, subtraction,
multiplication, sine, etc. Let v; be a set of intermediate values in the computational sequence.
Following the description of Albring et al. [33]], one can express the evaluation of this function as
shown in Tab. 1| (for a function with two inputs and one output).

Table 1: Computational evaluation of the function y =f(x), ny =2, n, = 1.

v_1 =X
(4 =X
4 = (Pi(vj)j<i i =1,.,1
y =

In this paper, we rely on AD for the computation of gradients. The forward mode will be used
as a reference, as it is able to provide the exact gradient of any magnitude in the solution process
with respect to (only one at a time) design parameter, accurate to the same level of accuracy of
the primal solver. On the other hand, the reverse mode will allow for the efficient computation
of gradients with respect to any number of design variables, in a similar fashion as the adjoint
methods described in section Both methods will be briefly described in the next sections,
and the use of Expression Templates [36] for the implementation of the reverse mode will be then
outlined. For further reference, the reader can refer to the book by Grienwank [28].

III.1. Forward mode of Algorithmic Differentiation

The application of the chain rule to each elementary functions in Tab. [I]yields the so-called forward
mode of AD. This method propagates the tangents of the variables x; in the numerical solution by
evaluating the derivative of each intermediate function ¢; along with the function itself [28}[33].
This is shown in Tab. 21

Table 2: Forward mode of AD.

Function Evaluation Derivative Evaluation

V1 =X v_q =X

Yo =X Vo =X

Vi = (Pi(v]’>j<i 'l}i = Zj<i 9({;,5]1/])7}] 1 =1,.., I
y =7 % =7

The forward mode yields the propagation of infinitesimal changes in the input value throughout
the evaluation of the function [33]. Noting that it is y = %X, we can now directly obtain any
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matrix-vector product involving the Jacobian. The method is conceptually similar to the complex
step method, as defined in section The main difference lies in the quantity that is being
propagated through the computational solution process, which in this case is no longer a complex
increment but rather the value of the derivative itself.

Implementation of the forward mode often leverages advanced capabilities of some program-
ming languages, such as operator overloading in C++. Here, each variable in the original code is
augmented to store the value of its derivative, and every operator computes not only the elementary
function that it represents, but also its derivative.

An alternative is to use a source-code transformation tool, such as Tapenade [46]. This approach
is normally more efficient in terms of memory requirements than operator overloading [28]], which
may make it more appealing for large problem sizes. This is especially relevant for application in
the reverse mode, as explained in the next section. In both cases, access to the source code of the
solver is necessary in order to implement the forward mode of AD. Similarly to the complex-step
method described in section and the direct method in section[[[.3] the cost of the calculation of
the gradients using the forward mode is proportional to the number of design variables n,, as one
simulation needs to be run per input parameter being investigated.

III.2. Reverse mode of Algorithmic Differentiation

Analogously to the direct and adjoint methods described in sections[[I.3]and in the context
of AD, it is also possible to redefine the problem to determine the sensitivities of an output value
with respect to a large number of design variables a. It is based on a backward application of the
chain rule in the sequence of elementary functions of the numerical solution. This technique is
known as the reverse mode of AD. Following the description of Grienwank et al. 28], we consider
the function y = f(x) and let y and x be the dual variables of the inputs and outputs in the forward
problem. The overbar effectively indicates the (transpose of) derivative of the output with respect
to the corresponding variable. Consequently, the equivalent relation to the adjoint equation in
is

x =(8)'y (12)
which implies the relation y7y = x”x between the primal and dual variables. The transpose in Eq.

implies a reverse sequence of operations starting with y [47]], which results in the numerical
procedure of Tab.

Table 3: Reverse mode of AD with two inputs and one output.

v_q =X

Vo =X

Vi = (Pi(vj)j<i i =1,.., )
2! =V

Uy =7

7; :']+17,a(gv(;)j),1>] i =1..,1
3?1 = 17_1

The backward evaluation of the elementary functions ¢;(v;) requires that the intermediate
variables v; have been previously computed. The reverse mode allows for the calculation of as
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many rows of % as needed using only one additional computation run backwards through the
adjoint path 28], which corresponds to the second block in Table 3] This means that the gradients
with respect to any number of input variables can be obtained performing a single run, which has a
cost between one to four times that required for the primal problem [28]. However, this is only
true for a single output, and the reverse method needs to be rerun as many times as the number of
outputs.

The program reversal is the main challenge for an the efficient implementation of the reverse AD
method. Both operator overloading and source code transformation, as described in section
may be used, although source code transformation is normally preferred, as explained by Mader et
al. [30]. The main drawbacks relate to the memory footprint, which is largely increased for both
methods with respect to the forward mode due to the need to store intermediate results. Moreover,
the use of source code transformation requires a very deep knowledge of the solution process
and can hinder the applicability to realistic problems, which often require large, sophisticated
software packages that would be difficult to transform. Source code transformation also complicates
the addition of new methods to the solver, as they would not be automatically included in the
differentiation and would require constant updates of the code.

I11.2.1 Expression Templates.

In this work we will implement the reverse mode using Expression Templates (ET), a methodology
first proposed by Veldhuizen [48]. ET is an efficient alternative to source code transformation
and regular methods for operator overloading, and that can be defined as a meta-programming
technique that creates a compile-time parse tree of the overloaded expressions in the code. This
method has been successfully applied in the efficient solution of complex PDE systems using
optimized code. Some examples of this are the application on the Stokes operator by Pflaum [49],
or the application on continuous and discontinuous Galerkin FE by Di Pietro and Veneziani [50].

A very interesting feature of ET is that it allows for the computational graph of any expression
to be efficiently recorded and run in reverse mode using an AD tool. An example of implementation
of this methodology in C++ libraries for reverse adjoint applications was recently described by
Hogan [36]. A similar philosophy has been followed in order to link the AD tool CoDiPack with the
PDE solver used in this work, SU2, as discussed in previous works by Albring et al. [33}[34]. An
example of a function such as that in Tabs.[2]and 3]is presented in Fig.[I|for the computational path
of vy = vgcos(v_1). When using ET, the operators in the code return a relatively small, temporary
object instead of the more expensive result of the expression [33}/36]. Each one of these objects has
been highlighted over a corresponding arrow in Fig. [I]for this particular example. It must be noted
that su2double in the figure corresponds to the type that has been defined in SU2 for doubles in the
current implementation of AD-based sensitivities.

su2double Operator CcOs cos<su2double>
v.
- cos (v,)

Operator *

su2double
- v, * cos (v.))

Figure 1: Computational graph for the expression vy = vy cos(v_1). Adapted from [|33)/36]]

Product<cos<su2double>, su2double> E
i

The process of the backwards run of the computational graph in Fig.[I]is presented in Fig.
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As shown by Hogan [36], ET is able to improve the efficiency of the reverse mode by dramatically
increasing the speed of the backwards run, while also reducing the memory usage with respect to
regular operator-overloading libraries. This increase in performance makes ET a very competitive
alternative for the application of the reverse mode of AD in complex problems.

-sin (v.)) v, dv. -sin(v.) v Operator cos
1) Vo 0V, lTll (v.) vy P Vo
=]

cos (v.) duy = cos (v,) Operator %

[+

Figure 2: Propagation of gradients in reverse mode for the expression y = vy cos(v_1). Adapted from [|33}/36]]

Finally, another advantage of ET for the reverse mode of AD is that, once the framework has
been set, its extension to new iterative solvers is almost automatic as only the definition of the
inputs and outputs of the solver are required, and the AD tool then intrinsically deals with all the
solver operations independently of its physics. This is the case of the fluid-structure interaction
solver employed in this work, which is described next.

IV. FLuiD-STRUCTURE INTERACTION PROBLEM

The physical problem of interest is the reciprocal relationship that exists between a fluid and a
structural domain, governed each by their own constitutive equations, .#(w,z) = 0 and . (u,z,w) =
0, respectively, and affecting the behavior of each other over a common interface. Finite-volume
and finite-element spatial discretizations are on the fluid and the structural domains, respectively.

We define the flow conservative variable vector w = (pf, Pfv, pfe), where pr is the fluid density,
v is the vector of flow velocities in a three-dimensional Cartesian coordinate system, and e is the
total energy of the flow per unit mass. The position of the fluid mesh nodes of the finite-volume
scheme is defined as z. Finally, let u be the vector of displacements of the structural nodes.

In this work, we adopt a partitioned, three-field formulation for the solution of the primal
problem, as described in Fig.|3, which has been implemented in SU2 and thoroughly described in a
previous paper by Sanchez et al [37]]. The mesh .# = .#(z,u) becomes a third field of the problem,
as large displacements on the structural mesh are subject to change the fluid domain.

Fluid W,z
F(w,2)=0
Interface A (W, 2) Structure
z A(W,z)  u(u) " S (u,w,2)=0
Fluid Mesh
M (z,u)=0 u,(u)

Figure 3: Three-field formulation for Fluid-Structure Interaction problems.
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This three-field formulation was first proposed by Farhat et al. [51]] and was further developed
by Maute and co-workers [7}/8,/11}/52]]. According to Maute et al., [11]], this formulation is suitable
for problems with large structural deformations, even though it has a higher computational cost
than two-field approaches used by Martins et al. [9}|10,/16|. The three-field formulation leads to the
following governing equations,

S =S(u, w, z) =0,
Y=Yuwwz)={ F =F( w, z) =0, (13)
M =M (u, z) =0.

We use an appropriate solver for each subproblem that can treat strong nonlinearities in both the
fluid and structural domains. Then, we impose the coupling conditions on the interface and solve
the FSI problem using a strongly-coupled, block Gauss-Seidel (BGS) methodology. The solution
methods employed for each domain and the coupling strategy will be briefly described next.

IV.1. Fluid domain

The behavior of a viscous, Newtonian flow is governed by the compressible form of the Navier-

Stokes equations, [39]

%_Yw F(w,z) - V-F'(w,z) = 0, (14)

where F¢(w,z) is the vector of convective fluxes and F(w, z) corresponds to the viscous fluxes. Eq.
will be solved using the dual-grid, edge-based discretization implemented in SU2 [39]]. The
semi-discrete form of the fluid problem can be written as

F(W,z J —dQ+ [ng(w,z)—ij(w,z)]AAij(z):o, (15)
JjeN(i)

where the summation corresponds to the spatial residual, which is computed and stored at the
nodes. Also, Ff]- and f?}’j are the numerical convective and viscous fluxes projected over the edge ij,
respectively. AA;;(z) is the area of the face associated to the edge ij, and N(i) is the set of nodes in
the neighborhood of i. Q; is the control volume associated with node i.

After discretizing the time derivative term in Eqn. (L5), we recover a fully-discrete finite volume
form of the governing equations. The choice of time-marching method depends on whether a
steady state or a time-accurate solution is desired. In this work, we will be applying a backward
Euler implicit scheme to relax the flow equations to a steady solution, where the time derivative
term will vanish.

IV.2. Structural domain

We are interested in problems with large deformations and complex material behavior. For that
purpose, we adopt the finite-deformation framework of Bonet and Wood [53]. Ignoring inertial
effects, the point-wise equilibrium condition of the continuum is expressed as

dive+f =0. (16)

In order to adopt a finite-element solution strategy, a weak form of the equilibrium equation
must be obtained. In particular, we will compute the equilibrium in the current configuration

10
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using the principle of virtual work,

5W:J‘0:6ddv—(‘[f‘5vdv+J\ t'c‘ivda)zo, (17)
v v v

where the Cauchy stress tensor o and the virtual rate of deformation tensor 6d determine the
internal component of the virtual work, 0W. The external component depends on the actuating
forces per unit volume f, and the applied surface tractions per unit area t. ov is a virtual velocity
field v on the current configuration of the body. The integrals are defined over the current volume
of the body, v, and its external surface, dv.
Eq. is discretized using isoparametric finite elements. The static equilibrium can then be
written as
S (u)=T(u)—Fy—Fp(u) =0, (18)

where T(u) are the internal equivalent forces, F;, the body forces and Fr(u) the surface forces acting
over the boundary I'. Equation is solved iteratively using a Newton method,

K'Au'™*! = -7 ('), (19a)
wtl =ul + Au't, (19b)

until .(u) ~ 0. The tangent matrix K = d.(u)/du may be assembled as [53]
K =K. +K, -Kr, (20)

where K, and K, are, respectively, the constitutive and initial stress terms arising from the lin-
earization of the first term in . The term K results from the linearization of the vector of
surface forces Fr(u) described in (18), and it is normally non-symmetric [53]. The body loads F; do
not contribute to the tangent matrix.

IV.3. Mesh domain

Mesh deformations are obtained by solving a pseudo-elastic linear problem [11]. If K,, is the ficti-
tious stiffness matrix of the mesh and f is a fictitious force to enforce the boundary displacements,
the resulting linear elasticity problem is written as

M (,z) =K,z —f(u) = 0. (21)

IV.4. Coupling conditions

The coupling between both domains needs to be appropriately defined over the common interface
[54H56|. Continuity of displacements is imposed on the FSI interface I} as

ur =zp onl;. (22)
The tractions A on the fluid side of the interface may be defined as
Af=-png+tny only;, (23)

where n 7 is the dimensional normal oriented outward from the surface, including area information.

11
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Analogously for the structural domain, A is defined as
As=omng only; (24)
Imposing now equilibrium conditions as
Ar+2A5=0, (25)

the problem may be rewritten as a fixed-point equation using the Dirichlet-to-Neumann nonlinear
operators as in [54,/56]

Af=Dp(zr) only,;
' 26
{ A= Zs(ur) onl;. 20)

Combining and while defining the inverse Neumann-to-Dirichlet operator on the
structural problem 95—1 (ur), we recover the following fixed-point iteration:

75" (-Zk(ur)) = ur. (27)

IV.5. Solution method
The governing equations in Eq. are now linearized as

.S 9F IS
S Ju ow oz Au 0
ZF |+ 0o 2¢Z 2Z Aw L= o [ (28)
ow Jz
Jdu Jz

In order to solve (28), we adopt a strongly-coupled strategy [6,/56H63]]. We follow the impleme-
mentation described by Barcelos and Maute [6]], who propose nonlinear BGS (NLBGS) iterations,
where the upper diagonal terms that couple the subproblems are neglected. The fluid, structural
and mesh subproblems are solved sequentially, and iterations are performed until convergence.
Here, the convergence criterion will be that a certain tolerance € is met in the residual of the
displacements on the interface, as %, = ||u?Jrl — u11|| <e.

We have included in the formulation a relaxation parameter, w, which has been shown to
help preventing divergence in BGS schemes [60], as long as it is sufficiently small. We have also
introduced a polynomial coefficient that transfers the loads to the structural domain incrementally
during the first N BGS subiterations, y" = —=2(n/N)3 + 3(n/N)?. This coefficient prevents from a
large imbalance between external and internal equivalent forces in the structural residual in the
first subiterations, and thus avoids overshooting of the solution process. We have also observed
that the final deformed fluid mesh, in problems with large structural displacements, maintains a

12
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better quality if the loads are transferred incrementally. The full approach is described in Alg.
n<«0;
ﬁlq =0
while n < n,,,, do

Mesh update: .Z (i} (u),z) = 0

Fluid solver: As r(pr, Tr) = Z¢(ir)

Structural solver: u?” = @S’l(—y”/\f,r)

ione witl _ =1 n+1
Relaxation: @™ = (1 — w)ip + wup

if ||1"1I’?+1 —ﬁ?” < € then
| break

else
| ne—n+1

end

end
Algorithm 1: Block Gauss-Seidel algorithm for the FSI problem.

V. ADJOINT PROBLEM

With the solution method for the primal problem defined, we will now describe the proposed
approach to compute sensitivities using an adjoint-based strategy with Algorithmic Differentiation.
We will begin in section [V.1|by describing the application of the classic direct and adjoint methods
to a single-discipline structural problem. Some considerations will be made in this section that will
be later extended to the coupled problem in section[V.2] A new approach to the computation of
gradients using AD will be introduced in section and lastly, its extension to the fully-coupled
FSI problem will be developed in section

For the purpose of the discussion in this paper, we will restrict ourselves to objective functions
of the form

J(u) = (u_uref)TC(u_uref)l (29)

which defines a measure of the deformation of the structure u with respect to a reference shape u,,.
In (29), C is a weighting matrix of size is n,, x n,,, where #n, is the number of degrees of freedom in
the structural problem.

V.1. Application of the direct and adjoint method to a single-discipline structural
problem

We first consider the structure problem separately, in order to outline the main features of the
solution procedure in a simple setting, and will demonstrate the approach on hyperelastic structures
built of a single isotropic material. Its Young’s modulus E is selected as the design variable for
which we want to obtain sensitivities. Recalling the definition of the non-linear structural problem
(u) from (18), we obtain its partial derivative with respect to E as

05 (u) JdT(u) do
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We then define the Cauchy stress tensor for the Neo-Hookean material model [53] as

=

ONH = = (b—I)+%(lnj)I, (31)

~

where j is the determinant of the deformation gradient of the structural problem, b is the left
Cauchy-Green deformation tensor, and A and p are defined as

1= Ev ) _ E
Thrwi-2v) P 2a+wy

(32)

aO'NH

The only terms in that depend explicitly on E are A and y, which allows us to compute
analytically. Given that E does not appear explicitly in the objective function, we have dJ/JdE = 0
and can solve the direct problem as

dJj  JJ du
dE = JudE’ (33)
where the first term can be analytically obtained from to give
Z
ol 2k(u—u,.f)"C. (34)
while the second term is computed from
du do 0.7 (u)
K—=- i = — )
dE GE od dv 5E (35)

where the right-hand side corresponds to a column vector of dimension #,,.
Alternatively, the problem may be solved using the adjoint equations and (11). The adjoint
vector is obtained from

K'a=-2u-u,)"C, (36)
and the gradient is computed as
d] =T 30 s _ _Tay(u)
d—E—u va—E.éddv—u OF . (37)

The computational cost of the direct and adjoint problems is, for this case, equivalent. However,
now let @ = [Ey, E,, ..., E;, v, V),..., v,,] be the vector of design variables, where E; and v; are, respec-
tively, the Young’s modulus and the Poisson ratio for any given element i, i € n, and n is the total
number of elements in the structural domain. In this case with the direct method, we need to solve
2n linear systems of equations

du du du  du ]__[ay(u) 97 (u) 9.7 (u) 85/’(u)] (38)

dE,dE, dn " dv, T | OB U OE, v o,

to compute the gradient dJ/da using (6). If K has not been factorized, which is typically the case
for the large problems of interest here, the cost of solving this problem would be equivalent to the
cost of solving 21 times (35). For the adjoint method, on the other hand, it is only necessary to
calculate 2n vector products in (37):

ﬂ:_ﬁT[&Y(u) 0.7 (u) 9.7(u) . By(u)]. (39)

da dE; "7 Q9E,  odvy 7 v,

14
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For linear structural problems, the matrix K is symmetric and only retains the term K. in
(20). Therefore, the problem is self-adjoint. This property also holds for geometrically non-linear
problems involving only the effects of dead loads, which have no contribution to the Jacobian.
However, it is no longer valid for problems involving follower forces (e.g., surface pressures), which
introduce a non-symmetric term in the tangent matrix as explained in section above. In
order to converge the equilibrium equations defined in (19), this contribution may be neglected,
since convergence can often still be achieved using an approximate Jacobian. The implications of
directly using this approximate tangent matrix for the adjoint problem are more serious and will
be discussed later in section [VL.2l

The calculation of the analytical tangent matrix is relatively straight-forward for structures with
simple material models. However, for strongly non-linear materials with a complex definition of the
Cauchy stress tensor o, the linearization process required to obtain the exact analytic representation
of the tangent stiffness matrix is non-trivial, and in most cases it is cumbersome and error-prone
(e.g., see [64}/65]]). This can be overcome using Algorithm Differentiation, as will be shown in
section[V.3] below.

V.2. Discrete adjoint solution of Fluid-Structure Interaction problems with ana-
lytic Jacobians

The formulation of the adjoint problem for Fluid-Structure Interaction applications may be obtained

by combining and as

a_yT 0 o T _ ﬂT
Jdu Jdu u Jdu .
To_| oT 92T | g T |__9
A - A A (40
07T 97T ou™ || z T
oz oz oz Jz

Eq. (40) warrants further discussion. Starting from the terms in the diagonal, it must be noted
that the structural equation now depends explicitly on the mesh and fluid variables,

S (u,z,w)=T(u)—F, —Fr(u,z,w) =0, (41)

where the surface forces Fr(u,z,w) in are now a function of the aerodynamic forces and the
position and the normals of the fluid wet surface. Kenway et al. [16] point out that the effect of the
changes in the normals with the applied forces, or JFp/du, must be taken into account. This effect
is equivalent to the directional derivative of the external work in the direction of an infinitesimal
perturbation of the structural displacements DOW,; (¢, Ov)[Au].

With regard to the off-diagonal terms, their calculation is normally convoluted and requires
special attention. In the solution of the primal problem, (28), the objective is to iteratively obtain
the increments of the state variables Ax that minimize the value of the residual. Therefore, it is
generally sufficient to employ an approximate tangent matrix, which is good enough to achieve
convergence. However, the adjoint problem is a system of linear equations in which the matrix
of coefficients of the system must be computed exactly. Although it is still possible to solve the
problem using an iterative BGS-like approach such as the Lagged Coupled Adjoint (LCA) method
proposed by Martins et al. in [[12], it is necessary to add the contributions of the all the cross terms
in the matrix to the right-hand side of the reduced systems of equations, and then iterate until
convergence.
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In particular, the terms 0.%/dz and 0./dw correspond to the derivatives of the aerodynamic
forces with respect to the fluid mesh positions dF/dz and to the fluid variables JF/dw respectively.
The term d.#/du may be obtained from as of/ou. Finally, the term 0.%/dz accounts for the
sensitivity of the fluid problem with respect to variations in the positions of the fluid mesh, both in
the FSI interface and its internal nodes due to the ALE formulation.

The computation of these terms becomes one of the most important tasks in the solution of the
adjoint FSI problem. If possible, they should be computed analytically. However, this is not always
an option, and therefore, some alternatives arise [[12]. One of the most common approaches is finite
differences, due to their ease of implementation. A more accurate, yet still simple to implement,
method to compute such sensitivities is the use of the complex-step derivative approximation [5].
Finally, it is also possible to use AD [27,/28]] both in its forward and reverse modes. All of these
options, except for the reverse mode of AD, require one computation per state variable, which may
be prohibitively expensive for realistic applications [5].

Finally, it must be noted that the need for an exact analytic tangent matrix for the adjoint
problem also applies to the diagonal terms in (40). The Jacobian in the adjoint equation is the
matrix of the linear system (10), and thus changes in the matrix will result in change sin the
solution. On the contrary, exact Jacobians are not needed while converging a non-linear problem
using Newton iterations, as the objective in that case is not to solve a linear system but to minimize
the residual. For the structural problem, this was discussed in section and can become an issue
for complex material models. Analogously, the exact Jacobian of the flow problem, especially when
viscous and turbulent effects are included, is not typically available due to memory requirements
and low-order approximations commonly introduced in the numerical solution of the primal
problem.

V.3. Adjoint solution of a structural problem using Algorithmic Differentiation

Optimization problem (3), when particularized for a non-linear structural problem, can be written
as
min J(u(a), @)
subject to . (u(a),a) =0,

where .(u(a), @) is described in (18). The linearization of yields the Newton iteration in
(19), where as previously explained in section the matrix K may not necessarily be the exact
Jacobian d.%/du of the problem. If convergence is achieved, the solution u* will only depend on
the definition of the residual and not the Jacobian. The problem may be rewritten as a fixed-point
iteration [34]:

(42)

"l =" -K(u"). (", @) = S(u", a), (43)

where the operator S(u”, ) is only feasible at the solution u*, i.e.,
S(u,a)=0su" =S(u’, a) (44)

According to the Banach fixed-point theorem, the problem defined by converges if S(u"a)
is contractive, which means here that, in a suitable matrix norm, it is [34]

|71 -

As already mentioned, the traditional adjoint approach requires the construction of the exact
Jacobian K. This task is normally complex, and it may not even be possible in some cases. To avoid
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this issue, we pursue the procedure proposed by Korivi et al. [66] and adopted by Albring et al. [34]
for CFD problems that permits the use of an approximate Jacobian and efficiently evaluates the
gradients using AD.

In this scenario, the optimization problem takes the form

min J(u(a), &)

subject to u(a)=S(u(a), a). (46)
We can define the Lagrangian associated to this problem as
L(a,u,d) = J(u,a)+a’ [S(u,a)-ul. (47)
Differentiating the Lagrangian with respect to the state variables, one obtains
al = g—i(u,a)+ﬁT§—lsl(u,a), (48)

which allows us to define the following fixed-point iteration in @, with the derivatives of ] and S
evaluated around the previously converged (feasible) solution (44), as proposed in Ref. [34]:

T
atl = [g—i(u*,a)] +

It can be shown that § is contractive provided that S is contractive [33]], although, in general,
this cannot be guaranteed a priori for the primal solver in coupled problems and so far has been
checked numerically. Once the Lagrange multipliers have been obtained, the total derivative of the
objective function with respect to the design parameters is, from Eq. (11),

as

T
a—u(u*,a)] a" = S(a"). (49)

dj _d] _rdS
a = % +u %

Note that, for the objective function defined in , the first term in cancels out. Albring et
al. [33}[34] have further shown that the right-hand side of can be easily evaluated using AD of a
numerical solution process for S(u(a), a). For that purpose, we have linked the non-linear structural
solver developed within the open-source SU2 suite [37]] with the also open-source C++ library
Code-Differentiation Package (CoDiPackEb. CoDiPack provides a special datatype for use within
SU2 and the ability to run the reverse mode of AD using the Expression Templates method [36[. A
top-level approach to the procedure is shown in Fig.|4 For additional details on the implementation
of the AD-tool in SU2, the reader is referred to the work by Albring et al. [33,34]] and Zhou et
al. [35]).

When solving an AD-based Discrete Adjoint (ADDA) problem in SU2, the first step is to load the
converged solution of the non-linear structural problem (primal problem), u*. This solution must
have been previously computed using the structural solver in SU2. Then, the computational graph
of the primal problem is recorded using CoDiPack, which corresponds to the grey-shaded area
indicated as RECORDING in Fig.|4] The state variables u and the design variables a are registered
in the AD tool as the input of the fixed-point solver (43). One iteration of the structural solver is
executed, obtaining a new solution u* + Au* ~ u”. If the primal problem has converged, the residual
of this new solution should be practically negligible. The objective function is now evaluated using

(50)

Zhttp://www.scicomp.uni-kl.de/software/codi/
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this updated solution, where J(u* + Au”) ~ J(u"). Finally, and before stopping the recording process,
the displacement variables are registered in the AD tool as the output of the primal iteration, as
these are the variables for which the adjoint, @, will be computed.

The vector of the adjoint variables is then initialized as @, and the fixed-point iterations in (49)
are carried out using the recorded computational graph until convergence, when Hﬁ”“ - 1‘1”” <e.
The resulting adjoint # is then used in to obtain the sensitivities with respect to the design

variables.

I Output: U

o . %
| Read converged solutions: u Structural Iteration: S "

[

) Updated solution u*+Au*~ u*
| Register Input: u | T [
T T
i u = Fi (u*+Au¥, a)} 4 F—S (u*, a)} u
| Run One Solver Iteration: S (u*, a) | ou ou

|

| Evaluate Objective Function: J (u*+Au*, a)l

!

| Register Output: u |

l" Converged solution: u*

Input: u

\:, Recorded path: S(ii)

Qz~OmOOmTmA

n=0 a’'=0

| Initialize Adjoint of Output: @& =~— i’ }

| Reverse Run Through Recorded Path: S(ii) @

|
n+l —* |

| Extract Adjoint of Input: u""'<—u I

n <«—n+l

Figure 4: Top-level approach to the structural adjoint calculation using AD

V.4. Fully-coupled adjoint solution of a Fluid-Structure Interaction problem
using Algorithmic Differentiation

The complexity associated with the solution of the fully-coupled adjoint solution of a Fluid-
Structure Interaction problem has already been discussed in section[V.2] In particular, the BGS
Alg. [[]used to solve the primal problem in never constructs the exact Jacobian of the coupled
problem, a very difficult task in most realistic cases. This Jacobian is needed to compute the
adjoint variables in (40), or alternatively, all of the off-diagonal terms have to be computed. To
overcome some of these difficulties, we present a consistent methodology that extends the procedure
presented in section|[V.3} and in previous papers by Albring et al. [33}[34] and Zhou et al. [35], to
fully-coupled, Fluid-Structure Interaction problems. Each of the three sub-problems defined in
(13) is now rewritten in the form of fixed-point iterations. The structural problem depends on
its own state variables u, on the flow state w, on the positions of the flow nodes z, and may also
depend explicitly on the design variables a:

L(u',z",w',a) =0 u" =S(u’,z", W', a). (51)

The fluid problem is dependent on its own conservative variables and the position of the nodes
both on the FSI interface (zr € z) and the interior of the domain (zg € z). For the purpose of
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generality, an explicit dependency on the design variables a will also be considered:
F(whzha)=0ow =G(w',z", a). (52)

Finally, the mesh problem depends on the position of the interface, which is determined by the
structural domain (ur € u). As described in (21), the problem is linear. Therefore, the dependency
on the node positions z is explicit:

Mu,z) =K,z -fu) =0z =K, f(u') &z =M(u", a), (53)

where a generic explicit dependency on the design variables a has been included.
The overall optimization problem takes the form

min J(w(a),z(a
)

subjectto u(a) =S(u

We can now define the Lagrangian of the coupled problem as

L(a,u,q,w,W,z,Z) = J(u,wW,z, &) + WT[G(w,z,a) -w] (55)
+al[S(u,w,z,a)-ul+z" [M(u,a)-z],

and the gradient of the objective function can be then evaluated using the adjoint variables as

A I 95 _19G ;oM
daz da Y 92t 2t Ga

(56)

We evaluate the derivatives of L around the feasible solution of the FSI problem, defined by u*,
w*, and z*, in a similar fashion as in . Differentiating with respect to the structural variables
u, the flow conservative variables w, and the mesh variables z, we obtain implicit equations for
their adjoints, as

S

_T_ — 5
i _—au(u,w,z,a)+u —au(u,w,z,a)+l S (u),
] G JS
T _ T T 57
w w (w,w,z, @) +W 3 (wW,z,a)+1 3 (u,w,z,a), (57)
G oS
=T _ - T - T
Z _—az(u,w,z,a)+w 5 (w,z,a)+1 —az(u,w,z,a).

Eqn. is a linear system in the adjoint variables. However, the partial derivatives of S, G and
M in the equation are not directly computed, as this will result in very large memory requirements,
and instead CoDiPack returns the matrix-vector products of these derivatives multiplied by the
adjoint variables. As a result, the solution of is sought again using an iterative procedure. For
that purpose, we first redefine the cross-dependencies in as

i

’ ,M o r rdG p 708
ow

T _ _
— Z- = Z- —U
u ou ’ w oz ’ u oz’

NI~

w u; =

(58)

which mathematically resemble the coupling effects in the solution of the primal problem. Next,
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we approximate Eq. by the fixed-point iteration

T T
@l =§(@", ;) = g—{l + % a’ +1d;,
) - T T
Xn+1 :g(xn) o V_Vn+1 _ G(W”,Wﬁ) — g_"]v + 3—3 w’ + Wﬁ ) (59)
T
z =M(Zg,Zw) = % 2ty

For the solution of (59), we adopt a block Gauss-Seidel procedure, analogous to the Lagged
Coupled Adjoint method proposed by Martins et al. [12]. Barcelos and Maute [6] used a very similar
method for the computation of FSI sensitivities using a 3-field formulation and the direct approach,
which also requires incorporating coupled terms to the formulation. This method is described in

Alg.

k < 0;
Xo = [uo,v'vo,zO] =0
;0=0
while k < k,,,, do
ke—k+1
Iterate structural adjoint: ﬁ,’j“ = S(ﬁZrﬁi,k—l)

Compute structural cross dependencies: Wy (Tx), Zg ¢ (Tx)
Iterate fluid adjoint: W}*! = G(W}, Wg )

Compute flow cross dependency: Zy (W)

Evaluate mesh adjoint: z, = M(Zg ko Zw k)

Compute mesh cross-dependency: 1i; r(Z; )

Construct complete adjoint vector: X = [ﬁk,wk,ik]

if ”)_(k _ik—IH < € then
| break

end

end
Algorithm 2: Block Gauss-Seidel algorithm for the adjoint FSI problem. The subindex k refers to

outer loop iterations (BGS iterations) and the superindex n refers to inner iterations in the flow

and structural adjoint subsolvers

The top-level approach in Fig.[4]is also applicable to the computation of the fixed-point iteration
of the flow and structural adjoints in (59). The cross terms are evaluated using AD in a very similar
fashion, shown in Fig. [5|for the term Zy,. The input are the primal variables for which we want to
obtain the adjoint, in this example the positions of the mesh nodes, z. The output corresponds to
the state variables of the problem being differentiated, in this case the fluid conservative variables.
The adjoint of the output, W, is initialized with the approximate value computed in the stage
“Iterate fluid adjoint” of Algorithm [2|for the outer loop BGS iteration k, or Wy. One single reverse
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run through the path of the flow iteration G(w",z*, &) is enough to obtain the cross contribution
Z, k as there is no implicit dependency on Z in the reverse path G(W). The value of Zg ; will then be

used to obtain Z; = M(Zg , Zw k) in the step “Evaluate mesh adjoint” of Algorithm

‘ Read converged solutions: w*, z* ‘ Output: W <——
[
v R Flow iteration <
| Register Input: z | E
C | T
l. 0] Zg= 0G (w*, z*,a) | W
| Run One Solver Iteration: G(w*, z*, a.) | R oz | |
D
l I L, Converged Deformed Mesh
| LRI QUGN | I(\}I Input: z <! Converged Flow Solution

— converged

‘ Initialize Adjoint of Output: W<— W

I

‘ Reverse Run Through Recorded Path: (_}(v'v) ‘

I:I Recorded path: G(W)

— ¢ — — **No inner iterations required as the
‘ Extract Adjoint of Input :  Zg <—7* ‘ recorded path is independent of z

Figure 5: Top-level approach to the cross-term calculation in the adjoint of FSI problems using AD.

VI. Resurts AND DiscussioN

The ADDA methodology introduced above will be demonstrated on a flexible, vertical cantilever
beam, which is modeled using solid elements, under three different loading states: a uniform body
load, a uniform follower pressure, and a fluid load for which the fully-coupled, FSI problem is
solved. These test cases are defined in Fig.[6]

We will compute the gradient of the objective function defined in with C = kI, k = 10° and
Uy = 0, with respect to the Young’s modulus E of the cantilever, which will be initially constant for
the structure but it will be subsequently redefined independently in multiple regions. The Young’s
modulus ranges in this study from 13 — 28 kPa. This problem is consistent with the classic adjoint
methodology presented in section where k is a scaling factor. The Poisson ratio is v = 0.4 for all
cases, and the material model is Neo-Hookean (31). We will consider both material and geometrical
non-linearities in the structural domain and adopt a plain-strain assumption for the solution of the
two-dimensional problem.

VI.1. Test case (a): single-discipline, non-linear structural problem under a
uniform body load

The test case (a) in Fig.[6] corresponds to a uniform body load applied to a flexible cantilever beam.
We compute the objective function of the problem for a range of Young’s moduli, E = (13 — 28)
kPa, in increments AE = 0.25 kPa. We also compute the gradient dJ/dE using central differences, as
defined in (5)), with h = 2AE = 0.5 kPa.

As it was discussed in section the linearization of the problem .7(u) for cases under a
uniform body load results in a symmetric tangent matrix K = K”. The only non-zero terms are the
constitutive and stress terms in (20). Consequently, the non-linear structural problem becomes
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Figure 6: Test cases studied in this work. Flexible cantilever under the effect of (a) a uniform body load, (b) a follower,
uniform pressure, and (c) a fluid load in a straight channel at a low-Reynolds number condition.

self-adjoint, and we may obtain the gradient dJ/dE using the adjoint method described in section
[V.1]with the same K as for the primal problem. The sensitivities obtained in this section using the
conventional discrete method will be referred to here as the Conventional Adjoint. We will also
compute the gradient using the forward mode of AD and the AD-based Discrete Adjoint (ADDA)
method introduced in section The forward mode, as discussed in section consists of the
propagation of the derivative of the input variable E throughout the whole solution process of the
primal solver. The level of accuracy of the gradient will be exactly consistent with the accuracy
of the solution scheme. Throughout this section, the gradients obtained using the Forward mode
will be the reference value that defines the most accurate representation of the sensitivity studied.
Finally, we compute dJ/dE using the (ADDA) iterative method.

In Fig. |7} we present the values of the objective function, the sensitivity computed using the
Forward mode, and the relative error for this value when computed using the AD-based Discrete
Adjoint, the Conventional Adjoint method, and Central Differences.

Fig.|7|shows that the gradients computed using both the Conventional Adjoint and the AD-based
Discrete Adjoint have negligible errors compared to the Forward mode. This is further shown in
Tab. for E =15 kPa and E = 25 kPa, where the relative error ranges from 1E-14 to 1E-12 for the
AD-based Discrete Adjoint and is around 1E-10 for the Conventional Adjoint, demonstrating the
validity of both approaches in computing nearly exact gradients. The error obtained using a Central
Differences scheme is on the order of 0.01 - 0.04 %, an approximation likely to be acceptable for
most engineering applications of the gradient.
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Figure 7: Objective function, sensitivity and relative error between AD-based Discrete Adjoint, Central Differences
(h =500) and Conventional Adjoint with respect to Forward Mode, for test case (a).

Table 4: Test case (a). Value of the objective function (OF), sensitivities computed using the Forward Mode (FM),
AD-based Discrete Adjoint (ADDA), Conventional Adjoint (CA) and Central Differences (CD), and relative

error to FM.
E =15 kPa E =25 kPa
OF 6.48903888843946 E+00 2.51557271486488 E+00
dJ/dE Rel. Error to FM dJ/dE Rel. Error to FM

FM -7.70726301107035 E-04 - -1.92352570834721 E-04 -

ADDA | -7.70726301107007 E-04 3.629 E-14 -1.92352570834159 E-04 2.922 E-12
CA -7.70726301191935 E-04 1.102 E-10 -1.92352570809854 E-04 1.293 E-10
CD -7.71031487924020 E-04 3.960 E-04 -1.92386207228861 E-04 1.749 E-04

VI.2. Test case (b): single-discipline, non-linear structural problem under a
follower, uniform pressure

As discussed in section a major advantage of the AD-based Discrete Adjoint method is that
it does not require the construction of the exact analytic Jacobian K of the problem. We will
demonstrate this feature in this section using test case (b) in Fig.[6] Although for most structural
problems this matrix may be exactly obtained, it becomes more complicated for problems in which
the loading condition or the material model are difficult to linearize.

The problem involves a uniform pressure applied on the left boundary of the vertical cantilever.
The pressure follows the deformation of the beam, and thus the component Kr in will be
nonzero. Moreover, this term will be non-symmetric and thus Koy,c; # K7 ;. However, we will
use a symmetric, simplified tangent matrix K = K, + K, # K,,,; for the solution of the structural
problem, which proves enough to converge the linearized problem while only reducing the order
of the Newton scheme.

In order to quantify the error that results of using an approximate Jacobian for the solution of
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the adjoint problem, we will deliberately use the same tangent matrix for the solution of (36). We
will refer to this as the “Conventional Adjoint” approach. It is noted that, especially for problems
in which the displacements are large, K may have a relatively large contribution to the Jacobian.

As shown in Fig.[8] the use of an approximate Jacobian yields a much poorer approximation to
the gradient dJ/dE computed using the Conventional Adjoint. The relative error is quantified in
table 5] obtaining relative errors of 6.5 % for E =15 kPa and 2.9 % for E = 25 kPa compared to the
solution of the Forward Mode.

Objective Function Relative Error to Forward Mode
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Figure 8: Objective function, sensitivity and relative error between AD-based Discrete Adjoint, Central Differences
(h =500) and Conventional Adjoint with respect to Forward Mode, for test case (b).

Table 5: Test case (b). Value of the objective function (OF), sensitivities computed using the Forward Mode (FM),
AD-based Discrete Adjoint (ADDA), Conventional Adjoint (CA) and Central Differences (CD), and relative

error to FM.
E =15kPa E =25kPa
OF 7.49298988 E+00 2.73272689 E+00
dj/dE Rel. Error to FM dj/dE Rel. Error to FM

M -9.77613731 E-04 - -2.17180956 E-04 -

ADDA | -9.77614677 E-04 9.672 E-07 -2.17180960 E-04 1.607 E-08
CA -1.04131237 E-03 6.516 E-02 -2.23525958 E-04 2.922 E-02
CD -9.78119490 E-04 5.173 E-04 -2.17223413 E-04 1.955 E-04

The AD-based Discrete Adjoint methodology again provides an excellent approximation to the
gradient, even when an approximate Jacobian is being used. The relative error remains below 1E-6,
this is a 0.0001 %, for most cases. This is approximately 2 orders of magnitude more accurate than
Central Differences, which as expected give a very similar level of error as for the previous test case.
This is due to the dependency of the finite-difference scheme on the size of the increment k, which
remains h = 0.5 kPa.
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However, we do see that the results obtained for the AD-based Discrete Adjoint approach are
partially affected by the accuracy of the Jacobian. Although the approximation to the gradient is
very good in all cases, the error is more than two orders of magnitude larger for the most flexible
case as compared to the stiffest. The exact explanation for this is still under investigation, but one
possible explanation for this behaviour may be related to the recording method. All test cases were
run to the same convergence criteria for the residual. However, as discussed in section when
the solution process is recorded, only one iteration of the primal solver is executed. We assume that
the new solution is approximately equal to the converged one, or u* + Au* ~ u*. The size of Au”,
however, is likely to be larger relative to the stiffness matrix K for the most flexible cases.

VI.3. Test case (cl): fully-coupled, non-linear FSI problem with a single material

We have shown in section [VI.2that the AD-based Discrete Adjoint methodology for the calculation
of gradients is able to provide accurate sensitivities for problems in which the exact Jacobian
is not available. As it was discussed in section this is almost always the case for coupled
Fluid-Structure Interaction problems, as demonstrated next. Here, the structure will be the same
flexible cantilever used in sections and[VL.2} In this case, however, it is attached to the wall in
a channel with a low-Reynolds number flow, which defines a new loading condition, as shown in
(c) of Fig.[6] Therefore, a fully-coupled steady-state FSI problem needs to be run, as the solution in
the fluid domain will be determined by the deformation of the structural domain, and conversely,
the forces acting over the structure are determined by the solution of the flow field. We adopt a
BGS iterative procedure for the solution of the primal problem, and we solve for the same range of
values of Young’s modulus as for the previous tests.

First, we note that, although the FSI problem of this study is reduced in size (i.e., numbers of
degrees of freedom) to simplify our investigation and have a shorter turn-around time, we are not
reducing the complexity of the physics involved. The flow is fully-resolved using the Navier-Stokes
equations, which include the effects of viscosity. On the structural side, both geometrical and
material non-linearities are included. As an example of this, the deformation for the two most
extreme cases of the range of FSI problems solved is shown in Fig.[9] It may be observed that, for
the case of E = 13 kPa, the amplitude of the displacement at the tip is nearly 40% of the cantilever
length.

Cantilever displacement (cm) Cantilever displacement (cm)
0.0 02 0.4 0.6 00 0.2 0.4 0.6
E =28 kPa ! C — E =13 kPa C —

Figure 9: Flow streamlines and cantilever deformation for test case (c1) with E = 28 and 13 kPa.

In Fig. the objective function, the sensitivity dJ/dE, and the relative error to the Forward
Mode are shown. The relative error obtained using the Central Differences scheme is, consistent with
the values obtained in sections [VI.1]and on the order of 1E-04 for h = 0.5 kPa. Since the exact
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Jacobian is not available for the solution method employed in this work, a Conventional Adjoint
solution of this problem has not been attempted. It is well known that the Conventional Adjoint
approach is very challenging [11}/12}/16]], and indeed, the purpose of the current exercise is to avoid
it altogether.

The gradient obtained using the ADDA approach of [V.4] yields results on the same order of
magnitude as those obtained using the Central Differences scheme. The approximation to the exact
gradient obtained using the forward mode is excellent: the gradients for a fully-coupled non-linear
Fluid-Structure Interaction problem are computed with an error that is below 0.05 %. As it is
explained by Albring et al. in [34]], some approximations are made in the general reversal procedure
for the fixed-point solvers in order to improve the performance of the fluid adjoint. These are very
likely related to the increase in the relative error with respect to the purely structural problem in
sections and

Objective Function Relative Error to Forward Mode

10.0 T T T T T T T T T T I T T
=—— AD-based Discrete Adjoint
16400 - « Central Differences
le-02 |- —
oolLb—1 1 v DT PSS 7
14 16 18 20 22 24 26 28 ’
E (kPa) 1e-06 - i
-3 Sensitivit
0.0 ><|10 T T T ! I 1e-08 |- N
—05 1 1 telof -
—~1.0 .
le-12 —
—~1.5 F .
—92.0 L 1 1 1 1 1 1 le-14 1 1 1 1 1 1 1
14 16 18 20 22 24 26 28 14 16 18 20 22 24 26 28
FE (kPa) E (kPa)

Figure 10: Objective function, sensitivity and relative error between AD-based Discrete Adjoint and Central Differ-
ences with respect to Forward Mode, for test case (c1).

Let @ = [E, v] be now the vector of design variables, where v is the Poisson ratio. It was shown
in section that the direct method requires one solution of the linear system per design
variable. This is also applicable to the Forward Mode of AD: one simulation is required for each
input parameter for which we desire the sensitivity. However, for the AD-based Discrete Adjoint,
we may obtain the sensitivities with respect to the entire design variable vector and their level of
accuracy is consistent for both design parameters, as shown in Tab. [6]

Moreover, a parametric study is often required in order to determine the optimum value of h
that minimizes the error of the scheme. This is shown in Fig.|11}, which shows that good values of h
need to be independently determined for each of the design variable.

In order to analyze the convergence properties of the BGS method for the ADDA solver, the
residuals of the flow and structural adjoints are plotted in Fig.|12|against the number of iterations.
A very similar pattern of convergence appears in both domains. In the first stage, the convergence
is extremely fast, reducing the residuals of the flow adjoint by 3 orders of magnitude and the
residuals of the structural adjoint by 5 in only a few iterations. A slower convergence pattern is
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Table 6: Test case (c1). Value of the objective function (OF), sensitivities computed using the Forward Mode (FM),
AD-based Discrete Adjoint (ADDA) and Central Differences (CD), and relative error to FM.

E=21kPa,v=04
OF 4.20038299 E+00
dJ/dE Rel. Error to FM dJ/dv Rel. Error to FM
FM -3.49058121 E-04 - -8.33972786 E+00 -
ADDA | -3.48892392 E-04 4.748 E-04 -8.33583720 E+00 4.665 E-04
CD -3.48978725 E-04 2.275 E-04 -8.33823016 E+00 1.796 E-04
dJ/dE dJ/dv
1le-03 T T T T T . 1le-03 T T T T
C Central Differences ] C Central Differences
| = AD-based DA ] | = AD-based DA
le-04 - -] le-04 - -]
1e-05 | | | | | 1e-05 | | | |
0 500 1000 1500 2000 2500 3000 0.00 0.01 0.02 0.03 0.04 0.05
h h

Figure 11: Relative error for Center Differences for different values of h, compared with the relative error of the
AD-Based Discrete Adjoint, with respect to the exact gradient computed using the Forward Mode.

then followed until the solution is converged to the maximum level of convergence for each domain,
which appears to be closely related to the convergence threshold imposed for each independent
domain in the solution of the primal problem.

The convergence of the sensitivities dJ/dE and dJ/dv is shown in Fig.[13] A total of 94 iterations
were necessary for a reduction of 4 orders of magnitude in the flow adjoint residual and 6 for
the structural adjoint. It must be noted that, to ensure numerical stability of the primal problem,
the fluid load transfer was relaxed using a cubic function for N = 40 iterations as explained in
section No relaxation parameter was found to be necessary for the AD-based Discrete Adjoint
simulation for this particular test case.

The excellent computational performance of the AD-based Discrete Adjoint is finally shown in
Tab. [7] both in terms of computational time and memory footprint. With regards to the former,
the converged solution in Fig.[13|takes 73.4% of the computational time that is required for the
full convergence of the primal FSI problem. Even though the flow and structural adjoints may
be further converged and thus the computational time increased, it is shown in Tab. [7|that the
improvement in the calculation of the gradients is not substantial enough to justify it in this
particular case. In fact, after only 40 iterations of the adjoint solver, a very good approximation of
the gradient with a relative error under a 0.05 % is already obtained, employing a computational
time of only 28.3% of the FSI solution. The computation of the Forward Mode takes a 77.8% more
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Figure 12: Residuals of the flow and structural adjoints for 500 iterations
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Figure 13: Convergence of the gradients dJ/dE and dJ/dv for test case (c1) using ADDA.

than the solution of the primal problem alone, due to the increased number of operations needed
to propagate the gradients.

Regarding the memory footprint, the AD-based Discrete Adjoint uses approximately 6 times
more memory than the primal solution of the FSI problem. This compares positively with other
examples in the literature. Mader et al. [30]] report a memory footprint of approximately 10 times
for a single-discipline flow adjoint problem, where the employment of AD was selective and limited
to the routine that calculated the flow residual.

VI.4. Test case (c2): fully-coupled, non-linear FSI problem with multiple materi-
als

As discussed, the AD-based Discrete Adjoint method solves the adjoint problem with the major
advantage that, from only one solution of the reverse problem, we can obtain the derivatives of
the objective function with respect to many design variables or input parameters at a fixed cost.
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Table 7: Performance study. Memory footprint, computational time and convergence of the ADDA solver.

RAM | Time
(Mb) (rel.) Convergence of theAD-based Discrete Adjoint
FSI 68 t Relative Error to FM log of residual reduction
FSI - FM 99 1.778t dJ/dE dj/dv 0 pE i iy

0.283t || 4.9476 E-04 4.8625E-04 | -3.024 -2.953 -5.210 -5.298
0.734t || 4.7479 E-04 4.6660 E-04 | -4.080 -4.013 -6.536 -6.854
0.913¢ || 4.7344E-04 4.6527 E-04 | -4.847 -4.780 -7.215 -7.599
FSI-RM | 404 1.291¢ || 4.7319E-04 4.6502E-04 | -5.971 -5.904 -7.4475 -8.064
1.575t || 4.7317 E-04 4.6500E-04 | -6.825 -6.758 -7.416 -7.997
1.925¢ || 4.7317 E-04 4.6500E-04 | -7.867 -7.800 -7.443 -8.024

In order to demonstrate the potential of this technique for optimal design with a large number of
design variables, we now discretize the cantilever beam into 10 regions, as shown in Fig. The
regions are smaller towards the clamped end, as we expect to find larger sensitivity with respect to
the Young’s modulus in areas where the moment generated by the actuating forces is larger. The
vector of design variables is now a = [Ey,..., E1g].

N

0.36 E,
0.24 E,
0.24 E,
o016 | [ E
0.16 | Es
o2 | [ E
0.12 ] E,
008 [~ [l F,
0.04_008 I | K
\’/:ﬁ”%?\ Eg
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Figure 14: Geometrical distribution of the design variables for test case (c2).

We use an uniform value of the Young’s modulus, E; = 21 kPa Vi € [1,10] and compute the value
of the sensitivities for all 10 regions. We obtain this value by running 10 FSI simulations using
the forward mode, one per design variable. The results are presented in Fig.[15] together with the
values of the absolute and relative error obtained using the AD-based Discrete Adjoint (ADDA) and
Central Differences (CD).

The relative error of the AD-based Discrete Adjoint method is lower than the value obtained
using Central Differences (and below 0.01%) for 9 out of the 10 regions. This can be explained from
the absolute error, also shown in Fig. The absolute error of the ADDA method with respect
to the Forward Mode remains almost constant, at around 1e-09, while the central differences
method gives nearly constant relative errors. This is linked to the simultaneous evaluation of all
sensitivities in the ADDA, while in the central differences each sensitivity requires a simulation
to convergence of the full problem. As the interest is on the design variables that have a larger
value of the sensitivities and thus a larger impact on the value of the objective function, the ADDA

29



Sanchez et al. ¢ Coupled Adjoint-Based Sensitivities in Large-Displacement FSI using AD

— 1.6 1.6 1.6
E, . .
1.0 1.0 + 4 1.0} —
0.6 0.6 - 4 0.6 - -
0.2 0.2 ; abDAH 02 ; ADDA
B . « « CD i B . « « CD I
0.0 0.0 L I 0.0 = +l I
0 -1 -2 -3 -4-5 -6 -7 le-06 1e-04 1e-02 1e+00 le-10 1e-08 1e-06 1le-04
Sensitivity (x 1e-05) Relative error to FM Absolute error to FM

Figure 15: Left: Sensitivities for the design vector a = [Eq,...,E1g]. Center: Relative error of the sensitivities
computed using AD-based Discrete Adjoint (ADDA) and Central Differences (CD), h = 500, with
respect to the value computed using the forward mode (FM). Right: Absolute error of the same magnitude.

naturally targets those sensitivities.

The main advantage of the ADDA however relates to its computationally efficiency for gradient-
based optimal design. In a gradient-based optimization setting, we would normally need to
compute the value of the objective function and the sensitivities with respect to all the design
variables once per iteration. For the test case presented here, using the forward mode requires at
least 10 evaluations of the solver, which would all require the FM to be enabled (increasing the
cost of each simulation). 10 evaluations, and not 11, are needed given that each evaluation will
implicitly compute the value of J. Using central differences requires running 20 additional FSI
simulations. The ADDA method allows for an accurate computation of the gradients with only 1
extra simulation, which has a cost comparable to the evaluation of the primal solver as shown in
Tab.[7l This is summarized in Tab.[8]

Table 8: Number of evaluations per iteration of a problem with DV = 10 in an optimization framework.

Evaluation of | Evaluation of dJ/da Total

FSI | FSI-FM || FSI | FSI-FM | FSI-RM || Evaluations
Central Differences 1 - 20 - - 21
Forward Mode - 1 - 9 - 10
AD-based Discrete Adjoint 1 - - - 1 2

VII. ConNcrusioN

We have introduced a numerical approach for the efficient calculation of derivatives of fully-
coupled, non-linear Fluid-Structure Interaction problems. The primal problem is a three-field
formulation, where the fluid domain is characterized by the compressible Navier-Stokes equations
discretized using finite volumes, the structure by the geometrical and materially nonlinear solid
mechanics equations discretized using finite elements, and the mesh domain is solved using as a
pseudo-elastic problem undergoing finite displacements. This partitioned approach allows then

30



Sanchez et al. ¢ Coupled Adjoint-Based Sensitivities in Large-Displacement FSI using AD

naturally to develop independently solution features in either domain, including turbulence models
in the fluid and nonlinear material models in the structure, with an iterative solution method based
on a conventional block Gauss-Seidel method.

It has been shown that, if the coupled equations are cast in the form of fixed-point iterations,
then the coupled adjoint equations can also be written as fixed-point iterations and solved as well
using a block Gauss-Seidel algorithm. Moreover, the iterative solution process for the adjoint
equation facilitates the evaluation of the coupled adjoint equations using reverse-mode algorithmic
differentiation with a small memory footprint and including all cross-dependencies between
different domains. This methodology eliminates the need for analytical linearizations of the system
to obtain design sensitivities and replaces it instead by numerical approximations. Since the
evaluation of the gradients is done through a reverse set of operations on the last iteration of the
primal problem, the accuracy in the evaluation of the adjoint depends on the convergence criteria
selected for both primal and adjoint Gauss-Seidel iterations.

We have applied this technique to a non-linear cantilever beam modeled using solid elements
and subject to three different loading states: a uniform body load, a follower pressure, and a
coupled problem in which a viscous flow field determines the loads acting over the structure.
The proposed method performs consistently well for all three test cases, and the accuracy of
the gradients computed is demonstrated with convergence studies. Moreover, in the present
implementation leveraging the reverse mode of AD, we have demonstrated that the computational
performance is very competitive (less that the cost of the primal in some cases) and that the memory
overhead is quite modest. The main advantage of this approach for optimal design with multiple
design variables have been highlighted, demonstrating that it can dramatically reduce the cost of
computing gradients with respect to more extended techniques.

The results in this paper have demonstrated a computationally-efficient strategy to incorporate
fluid-structure interaction capabilities into SU2. For the demonstration of the approach in this
paper, the objective function has been restricted to the structural displacements, and the gradients
have also been limited to structural variables only. We have limited the implementation at this stage
to steady-state FSI problems and compressible flows. However, these limitations only responds
to the current stage of the software development and constitute no fundamental limitation in the
extension of the method. SU2 has already been shown as a viable analysis and design solution
for industrial-scale optimization applications in optimal flow design. Ongoing research relates to
the implementation of more complex objective functions on larger problems, and potentially to
time-domain FSI.
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