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Abstract

A model for ionic and electronic grain boundary transport through thin films,
scales or membranes with columnar grain structure is introduced. The grain
structure is idealized as a lattice of identical hexagonal cells – a honeycomb pat-
tern. Reactions with the environment constitute the boundary conditions and
drive the transport between the surfaces. Time-dependent simulations solv-
ing the Poisson equation self-consistently with the Nernst-Planck flux equations
for the mobile species are performed. In the resulting Poisson-Nernst-Planck
system of equations, the electrostatic potential is obtained from the Poisson
equation in its integral form by summation. The model is used to interpret alu-
mina membrane oxygen permeation experiments, in which different oxygen gas
pressures are applied at opposite membrane surfaces and the resulting flux of
oxygen molecules through the membrane is measured. Simulation results involv-
ing four mobile species, charged aluminum and oxygen vacancies, electrons, and
holes, provide a complete description of the measurements and insight into the
microscopic processes underpinning the oxygen permeation of the membrane.
Most notably, the hypothesized transition between p-type and n-type ionic con-
ductivity of the alumina grain boundaries as a function of the applied oxygen
gas pressure is observed in the simulations. The range of validity of a simple
analytic model for the oxygen permeation rate, similar to the Wagner theory of
metal oxidation, is quantified by comparison to the numeric simulations. The
three-dimensional model we develop here is readily adaptable to problems such
as transport in a solid state electrode, or corrosion scale growth.
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1. Introduction

Thin films of insulating material at metal – gas and metal – liquid interfaces
accomplish a range of service functions in materials technology. Common ex-
amples are functional ceramics in electronics, energy related applications and
sensors. Thin films formed by surface oxidation of a metal can have either ben-
eficial or corrosive effects. Alumina and chromia formed by thermal oxidation
are examples of protective oxide films, which find application in thermal barrier
coatings, and can be engineered for durability by additions of rare earth ele-
ments [1–4]. They can also grow in an uncontrolled manner, adhering weakly to
the metal and allowing corrosion to proceed. Metal oxidation is a heterogeneous
process, consisting of multiple steps, involving the dissociation of molecular oxy-
gen, transport through the growing oxide layer, and the reaction between oxygen
and metal atoms. Generally speaking a growing oxide layer on the metal surface
requires either metal atoms, normally ions, to be transported to the oxide – gas
interface to sustain the oxidation reaction, or alternatively oxygen atoms or ions
to be transported through the oxide to the metal – oxide interface to sustain an
internal oxidation reaction. Furthermore, the transport is usually thought to
be effected by diffusion of cation or anion vacancies. Both processes may pro-
ceed, depending on the material under consideration and on the environmental
conditions such as temperature and oxygen partial pressure, PO2

. While the
slowest process is rate-determining for consecutive processes, like dissociation
of oxygen molecules and their transport through the oxide, the fastest process is
rate-determining for parallel processes, like bulk and grain boundary diffusion
through the oxide. The measured oxygen and aluminum diffusion coefficients
in α-alumina are found to be several orders of magnitude greater at the grain
boundaries than in the bulk material [5–7]. The fact that grain boundaries pro-
vide the dominant transport mechanism underlines the importance of including
their geometric and transport properties in a realistic model of the process.
Since vacancies in strongly ionic oxides such as alumina or chromia are charged
species relative to the perfect crystal, the fluxes of these species carry an electric
current, which in the usual scenario of steady-state growth is not sustainable,
unless compensated by an equal and opposite current of electrons or holes, as
described by the classic model of Wagner [8, 9]. The prediction of the growth
behaviour of thin films, and its influence on the material or device performance,
requires us to describe the mixed ionic, electronic transport through the films,
while taking their grain boundary structure into account.

Because of the widespread importance of alumina films [10], and since it is a
relatively well characterized material, we focus on alumina films for the valida-
tion of our modelling approach. Moreover, a recent series of permeation exper-
iments for α-alumina polycrystal membranes, e.g. [11], conducted for different
combinations of applied oxygen gas pressures at high temperatures, provides
an ideal test case for our transport model. These experimental results will be
summarized briefly in the following section.
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1.1. Brief review of oxygen permeation and diffusion experiments

Permeation rates of oxygen through a polycrystalline membrane of alumina
have been reported in the literature [11, 12], and cover a range of oxygen partial
pressures. Scanning Electron Microscope (SEM) imaging of the films prepared
under different applied pressures strongly suggests that mass transfer occurs
along grain boundaries. The thermodynamic driving force in these experiments
is the difference in the oxygen chemical potential between the two membrane
surfaces ∆µO2 = kBT ln

(
P IIO2

/P IO2

)
. Figure 1 shows a schematic of membrane

permeation experiments.

Figure 1: Schematic of the membrane permeation experiments where mass transfer occurs by
grain boundary transport. Different oxygen gas partial pressures, P I

O2
and P II

O2
, are applied

on the surfaces.

The experiments included nominally pure α-alumina polycrystals [11, 13],
doped α-alumina polycrystals [14–17], and nominally pure α-alumina bicrys-
tals [18], with temperatures of ∼ 1700 − 2000 K. A simple analysis of the
permeation rate data in reference [11], assumed a model of one-dimensional,
steady-state diffusion, in which either Al or O is transported by vacancy migra-
tion, depending on the absolute magnitude of the applied oxygen pressure.

In the non-doped polycrystalline alumina experiments [11], when applying
high oxygen pressures at surface (II), P hi

O2
= 103 − 105 Pa, while keeping sur-

face (I) at P IO2
= 1 Pa, grain boundary ridges formed on the P hi

O2
surface and

grain boundary trenches were observed on surface (I). Applying a low oxy-
gen pressure at surface (II), P lo

O2
= 10−5 − 10−8 Pa, while keeping surface (I)

at P IO2
= 1 Pa, no grain boundary ridges are formed and only grain boundary

trenches are observed. Since the oxygen permeation rates of a single-crystal alu-
mina wafer were below the measurable limit and as the visible surface growth
and “dissolution” proceeds at grain boundaries it is reasonable to assume that
grain boundaries dominate the transport [11]. The oxygen permeation rates, P ,
for fixed P IO2

= 1 Pa were found to follow distinct power laws [11]; in the limit

of P IIO2
= P hi

O2
,

P ∝
(
P IIO2

)3/16
, (1)
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and in the limit of P IIO2
= P lo

O2
,

P ∝
(
P IIO2

)−1/6
. (2)

The power laws and the pressure dependent formation of the grain boundary
ridges have led to the interpretation of the experiments in terms of, aluminum
vacancy transport being dominant in oxygen chemical potential gradients with
high oxygen pressure magnitude, P IIO2

= P hi
O2

, and oxygen vacancy transport

being dominant in the case of P IIO2
= P lo

O2
.

Indeed, the rational power laws appear in the theory as a direct consequence
of the +3 and -2 ionic charges of the ions, assuming that the negative of these
charges is carried by each vacancy, with a counter-current of electrons or holes,
and no time-dependence of the fluxes (the steady-state assumption) or net local
charge densities within the grain boundaries. These assumptions are discussed
further in section 4. Furthermore, only aluminum vacancy transport can lead
to ridge formation, which is observed by SEM imaging in the case of P IIO2

=

P hi
O2

, supporting the above interpretation. The switch-over in dominant point
defect species in the grain boundary has been termed “p− n transition” in the
literature [5, 19].

The diffusion coefficients determined from alumina bicrystal experiments
with P IIO2

/P IO2
= 105 Pa/1 Pa for several distinct grain boundary types have

been found compatible with those measured in polycrystalline samples [18].
The bicrystal diffusion coefficients were calculated from the grain boundary
ridge volume and a caveat regarding this approach is that the formation of the
ridges on the P hi

O2
side does not necessarily imply an exactly equivalent mass

transport from the opposite side of the membrane, since oxide can be displaced
by formation of internal pores in the subsurface region of the crystals, as has
indeed been observed in some polycrystal permeation experiments [14].

1.2. Scope of the paper

The above level of analysis leaves several open questions, e.g. does the grain
boundary diffusion mechanism, with the associated inhomogeneity of fluxes and
electric fields, map accurately onto a 1D diffusion problem? And what are the
magnitude and roles of the surface and interface charges, the electric fields,
currents, space charges, and transients that are all believed to be present in a
three-dimensional film, traversed by grain boundaries?

To address these questions we have modelled the transport of oxygen through
a planar film by making an idealised representation of the grain structure, in
which we suppose the grains to be columnar, with identical and perfectly hexag-
onal cross sections, see figure 2. We describe in this paper the set of coupled
reaction-diffusion equations we have used to model the oxygen permeability
across the membrane, our method of solving them, and the results we have ob-
tained for the model alumina membrane. Within this geometry, grain boundary
transport through the film of charged cation and anion vacancies, electrons, and
holes is simulated, while reactions with the environment constitute the bound-
ary conditions. We expect our 3D model to be applicable to different materials
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and to be readily adaptable to the problem of oxide scale growth, which is very
similar to the problem of oxygen diffusion through a membrane, the most sig-
nificant difference being the boundary conditions.

The equations describing time-dependent diffusion of ions, electrons and
holes through a polycrystalline film, driven by electric fields and defect con-
centration gradients, cannot be solved analytically in general, and numerical
methods must be applied. Models including numerical computations to describe
transport through films have been developed for homogeneous films [20–22], for
which a one dimensional model may be a suitable approximation. The sym-
metry of the present model of idealized columnar hexagonal grains is used to
reduce the problem to 2D boundary diffusion along the rectangular boundaries
of the hexagonal grains, while explicitly taking account of the long-ranged elec-
trostatic interactions between the charged species within the 3D structure. In
order to be able to describe transient behaviour and time-dependent environ-
ments, time-dependent boundary conditions are taken into account, but the
movement of the boundaries is neglected. This means surface charges can build
up or be depleted as a function of time, due to the reactions with oxygen in the
environment, in our case a prescribed oxygen partial pressure, and the delivery
of charged species to the surfaces from the grain boundaries.

The system of equations used in our model to describe the fluxes of point
defects, electrons and holes and their Coulomb interaction, is mathematically
equivalent to the drift-diffusion (DD) equations applied in semiconductor device
simulations for electron and hole transport [23, 24], and to the Poisson-Nernst-
Planck (PNP) system, which is used for ion channel simulations [25, 26] and
other electrochemical applications [27]. Unlike most computational methods of
solution for the DD and PNP equations, which solve the Poisson equation in
differential form and often only consider the steady-state solution, the solution
method developed here allows for time-dependent calculations and the Pois-
son equation is solved in its integral form, taking into account the long-range
Coulomb interaction within the 3D structure.

2. The hexagonal cell model

2.1. 2D-periodic hexagonal prism grain structure

The model is developed for films with columnar grain structure. The colum-
nar grains are idealized as hexagonal prisms, with the rectangular faces denoting
the grain boundaries, see figure 2. The hexagonal prisms are periodically re-
peated to construct a slab of infinite extent in two dimensions.
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Figure 2: Section of the slab with thickness, L, composed of hexagonal cells of side length,
ahex.

Transport through the slab is presumed to be dominated by that through
the rectangular grain boundaries, located at the interfaces between the cells.
The grain boundaries are assumed to be composed of a very thin homogeneous
and isotropic medium of finite width δ. The width of the boundary is not a
physical width, but rather a theoretical construct, which allows concentrations
to be expressed per unit of volume or per atomic site rather than per unit of
area.

From the symmetry of the system only the “irreducible zone” of the hexago-
nal cell, shown in figure 3, needs to be considered as a domain for calculation. It
includes a triangular piece of the surface hexagon and half of a grain boundary
rectangle. The 2D-periodic tiling enables an explicit calculation of the long-
range Coulomb interaction between the charged point defects.

2.2. Equations for grain-boundary transport

The point defect concentrations within the boundary are assumed to be
continuous functions of space and time. Based on the local equilibrium hypoth-
esis the electrochemical potential, ηs, of point defects, and electrons or holes of
species “s”, is given by

ηs(r, t) = µs(r, t) + zse0 φ(r, t) (3)

where, µs is the chemical potential of species s, φ is the electrostatic potential,
zs is the charge (integer number), e0 is the positive elementary charge, and r is
the position vector. Phenomenologically, the particle flux due to a gradient in
the electrochemical potential may be written as,

Js = −Dscs
kBT

∇ηs (4)

which in the ideal solution approximation [28] is equivalent to

Js = −Ds∇cs −
Dscszse0

kBT
∇φ (5)
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where Ds is the diffusion coefficient, and cs(r, t) is the concentration (number
per unit volume) of species s. Equation 5 is referred to as the Nernst-Planck
flux [29, 30], and combines Ohm’s law of conduction and Fick’s law of diffusion.
It is used here as the constitutive equation for the description of the point defect
transport; magnetic field effects are not considered.

The local charge density is given by

ρ(r, t) =
∑
s

zse0 cs(r, t) (6)

where the sum is performed over all charged species present. The instantaneous
electrostatic potential can be calculated from the charge density by solving
Poisson’s equation, which is given here in integral form for a linear dielectric
material,

φ(r, t) =
1

4πε0εr

∫
V

ρ(r′, t)

|r − r′|
d3r′ (7)

where ε0 and εr are the vacuum and relative permittivity respectively, and the
domain of integration V of the “Coulomb integral” includes the entire system,
in which charge densities are non-zero within a slab of infinite extent in two
dimensions, composed of identical hexagonal cells and their surfaces. Overall
charge neutrality holds for the domain V, at any instant of time∫

V
ρ(r, t)d3r = 0. (8)

The continuity equations for the individual species are given by

∂

∂t
cs = −∇ · Js +Rs (9)

where a reaction term, Rs, has been added to enable processes such as electron
and hole recombination within the grain boundary to be described. The conti-
nuity equations for the different mobile species are used in the simulations to
evolve the defect concentrations in time; they are solved self-consistently with
the equation for the electrostatic potential 7, which depends on the charge den-
sity ρ(r, t).

To model coupling effects in the species transport we could formulate the dy-
namics in terms of linear irreversible thermodynamics [31, 32], but this theory
does not provide explicit expressions for the constitutive equations including
the transport coefficients. The linear constitutive equations, like Fick’s first
law, have a phenomenological basis; however, they can also be thought of as
laws of inference based on probability theory [33]. For electron and hole trans-
port in semiconductor device simulations a system of equations, mathematically
equivalent to equations 5, 7, 9 was first introduced by van Roosbroeck [34].
They are referred to as drift-diffusion equations, and can be derived from the
Boltzmann transport equation by either the Hilbert expansion or the moment
method [23, 24].

7



2.3. Time dependent boundary conditions

The boundary conditions are formulated to describe oxide creation and dis-
solution at the slab surfaces by reaction with the environment. We refer to our
system, which includes its upper and lower surfaces, as ‘the slab’. The thin
surface layers of the slab are treated as a homogeneous and isotropic medium of
thickness δ. The flux of defects between the surfaces and the grain boundary,
and the reactions between the slab and the environment, change the concentra-
tions of species s in the surface layers, Cs, as expressed by∫

VTRI

∂Cs
∂t

d3r =

∫
AGB

Js · n̂ d2r +

∫
VTRI

Rs d3r. (10)

Reactions between the slab surface and the environment produce species s in
the surface layer at a rate Rs. The unit normal, n̂, and the integration domains
are defined in figure 4. Equation 10 holds for all species “s” and separately for
the surfaces (I) at x3 = 0 and (II) at x3 = L.

Figure 3: Irreducible zone of the
hexagonal cell. The grain boundary
rectangle, enclosed by ABCD, is in-
dicated. The coordinate system is de-
fined.

Figure 4: Exploded-view of the
irreducible zone of the hexag-
onal lattice defining the sur-
face and grain boundary do-
mains. The grain boundary
thickness, δ, which is equal to
the surface layer thickness, δ,
the grain boundary cross-section,
AGB, the outward pointing unit
normal, n̂, and the volume of the
surface triangle, VTRI, are indi-
cated. Drawn out of proportion,
since in general δ � ahex.

Assuming transport to be much faster across the surface than between sur-
face and grain boundary, uniform defect concentrations are used on the surfaces.
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This leads to the following simplification of equation 10

∂

∂t
Cs =

1

VTRI

∫
AGB

Js · n̂ d2r +Rs (11)

which is used as the boundary condition in the simulations reported below. If
the surface transport mechanism and parameters are known it is straightforward
to relax the above assumption.

No separate boundary condition is needed for the electrostatic potential
since it is calculated by a summation technique, only requiring the instanta-
neous charge distribution as a function of position. The reaction rates in the
grain boundary, Rs, and on the surface, Rs, depend on the application of the
model. For the present purpose of describing the alumina permeation experi-
ments the rate equations are derived with the law of mass action, and discussed
in more detail in section 4.2.1. The application to oxide scale growth will require
a separate boundary condition at the interface between oxide and metal.

The initial conditions also depend on the application. For the oxygen per-
meation experiments they are discussed in section 4.3.1.

3. Method of solution

An object oriented C++ code has been developed to solve the system of
coupled partial differential equations 5, 9, and 11, self-consistently with the
Coulomb integral, equations 6, and 7, which is approximated by the summation
technique described in section 5. Since the system of equations is nonlinear,
involves vastly different rates in the diffusion processes and the reactions, and
involves different length scales characterized by the Debye length, defined below,
and the system size, this is a challenging computational problem.

3.1. Dimensionless equations

To obtain dimensionless equations for the numerical calculations the vari-
ables, parameters, and fields are scaled as follows [24]:

r =
1

L
r̃, Ds =

1

Dref
D̃s, cs(r, t) =

1

cref
c̃s,

t =
Dref

L2
t̃, φ(r, t) =

e0

kBT
φ̃,

(12)

where L is the thickness of the scale; Dref = max{Ds} is the largest diffusion
coefficient for all species; cref is a suitable reference concentration; and e0 is the
elementary positive charge. To avoid unnecessarily heavy notation, the original
quantities were denoted with the “tilde” mark over the symbol in the definition
of the scaling, and the dimensionless quantities without the tilde are used in the
following.
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With the scaling defined by equations 12, the system of transport equations
and the Coulomb integral can be brought into dimensionless form

∂

∂t
cs = −∇ · (−Ds∇cs −Dszscs∇φ) (13a)

κ2φ(r, t) =
1

4π

∫
V

∑
s zscs(r

′, t)

|r − r′|
d3r′ (13b)

where the dimensionless parameter, κ,

κ =
`D
L
, `D =

(
ε0εrkBT

e2
0 cref

)1/2

(14)

and the reference screening length, `D, are introduced. L denotes the thickness
of the slab, see figure 2. The Debye screening length is defined by

λD =

(
ε0εrkBT

e2
0

∑
s z

2
sc

0
s

)1/2

(15)

where c0s are the spatially uniform concentrations obtained in the limit of T →
∞, while holding the total number of each species, Ns, constant. In the ap-
plication considered in this work the oxygen gas chemical potentials are fixed
at the surfaces, the concentrations, cs(r, t), are independent variables, and the
total number of each species depends on time, Ns(t); however, cref is chosen
such that `D has similar magnitude to λD, and `D is therefore referred to as the
reference screening length.

Overall charge conservation and zero total charge within the system are
maintained during the evolution of the concentrations, while charge is redis-
tributed within the grain boundary and moved in or out of the surfaces by the
fluxes.

3.2. Discretization of the transport equation

The finite difference method is used to discretize the continuum equations
in space and time [24, 35]. For the spatial discretization a rectangular mesh
is used, and it covers the irreducible zone of the hexagonal cell, indicated in
figure 3. The concentrations and electrostatic potential at mesh node (i, j)
at position r(xi1, x

j
3) in the grain boundary (x2 = 0) and discrete time tn are

denoted by, cs(x
i
1, x

j
3, tn) = ci,j,ns , and φ(xi1, x

j
3, tn) = φi,j,n, respectively, where

i = 1, 2, ..., N1 and j = 1, 2, ..., N3.
The mesh spacings near the surfaces need to be significantly smaller than the

reference screening length to resolve the behaviour near the surfaces correctly.
However, the whole grain boundary cannot be meshed with such a fine spacing
in the ê3 direction, because the summation technique used for calculating the
Coulomb interaction would become too computationally expensive. Therefore,
a layer-adapted mesh is used in the ê3 direction.
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The Nernst-Planck flux in equation 5 is approximated with the Scharfetter-
Gummel discretization scheme [36]; in one dimension for fixed j it is given by

J i+1/2,j,n
s =

−Ds

ci+1,j,n
s B

(
−zs∆φi,j,n

)
− ci,j,ns B

(
zs∆φ

i,j,n
)

∆xi1
(16)

where J
i+1/2,j,n
s is the flux of species s between node i and i+1 at time tn, ∆xi1 =

xi+1
1 −xi1 is the length of the interval, ∆φi,j,n = φi+1,j,n−φi,j,n is the potential

difference between the mesh nodes at time tn, and B(x) = x/(exp(x)− 1) is the
Bernoulli function [24].

For the time stepping the continuity equation 9 is discretized in implicit
form,

ci,j,ns − ci,j,n−1
s +

∆tn

∆xi1

(
J i+1/2,j,n
s − J i−1/2,j,n

s

)
+ (17)

∆tn

∆xj3

(
J i,j+1/2,n
s − J i,j−1/2,n

s

)
−∆tnR

i,j,n
s = 0

where ∆xi1 = (∆xi1 +∆xi−1
1 )/2, ∆xj3 = (∆xj3 +∆xj−1

3 )/2, and ∆tn = tn− tn−1.
The initial time step, ∆t1, is chosen such that the discretizations in space and
time have a similar order of accuracy, hence ∆t1 ≈ (∆xmin)2 where ∆xmin de-
notes the smallest mesh element. ∆xmin is chosen to have the same size as
the surface layer thickness, δ, therefore typically ∆t1 = 10−6 and the time
step is subsequently increased adaptively, to improve efficiency of the procedure
while ensuring convergence at each time step. The maximum time step is typ-
ically ∆tmax ∼ 0.1 which allows calculations to be performed long enough to
reach steady-state conditions without the need for exceptional computational
resources.

3.3. Calculation of the long-range Coulomb interaction

Since the functions cs(r, t) are discretized in space and time the Coulomb
integral in equation 13b can be approximated with a summation technique. In
this section the concentration at the mesh nodes is abbreviated as cs(rj , tn) =

cs(x
j1
1 , x

j2
2 , x

j3
3 , tn) = cj,ns , with the composite index j = (j1, j2, j3), and in the

same way cs(ri, tn) = ci,ns . The volume element corresponding to mesh node j
is denoted by, νj . The charge density in the volume, νj , around mesh node j
is turned into a point charge, qj,n =

∑
s zs c

j,n
s νj , placed at position rj . With

this definition the Coulomb integral is converted into the Coulomb sum

φ(r, tn) = κ−2

V∑′

j

∑
s zs c

j,n
s νj

|r − rj |
(18)

where φ(r, tn) is still a continuous function of space, and it can only be evaluated
at the discrete times, tn, since the cj,ns are only known at discrete times tn. The
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prime indicates that the possible term r = rj is excluded from the summation.
The summation index j runs over all volume elements of the infinite slab, and
since the potential decays with r−1, the sum is only slowly and conditionally
convergent; it cannot be trivially truncated. Therefore, the Parry summation
technique [37, 38], which is an Ewald summation technique for 2D periodic
systems, is used. In this technique the sum is split into a real and a Fourier
(reciprocal) space part, the short-range interactions are evaluated in real space
and the long-range interactions are evaluated in Fourier space. The advantage
is rapid convergence compared to the direct summation.

The rhombus shown in figure 5 is defined as the repeat unit of the 2D
periodic tiling, and the rhombohedral prism shown in figure 6 is a repeat unit
of the infinite slab, used to carry out the Parry summation. The symmetry of
the hexagonal prism, with distinct hexagonal surfaces on the top and bottom
surface, is used to increase the computational efficiency of the evaluation of the
Coulomb sum.

Figure 5: A 2D repeat unit of
the hexagonal tiling used in the
simulations. The shaded area is
the irreducible zone of the sur-
face, referred to as the surface
triangle.

Figure 6: A 3D repeat unit of the
infinite slab, seen in plan view in
figure 5. The shaded planes indi-
cate the grain boundaries within
the repeat unit.

During a calculation the charge density changes with time and the potential
needs to be updated with the changing charge density; however, the geometry
of the hexagonal structure and the mesh do not change. Therefore, the Parry
summation is performed only once, at the beginning of the calculations, to de-
termine the Green’s function for the given mesh and periodic cell structure. The
Green’s function is calculated for unit charges on the individual mesh nodes, and
is stored as a matrix, gij , for the nodes of the irreducible zone, where gij denotes
the potential at node i due to a unit charge and all its images, generated by
symmetry and periodicity, at node j. During the time-dependent calculations,
the potential is calculated by summing the discretized charge density, multiplied
by the Green’s function, over the nodes of the irreducible zone,

φ(ri, tn) =
∑
j

qj,ngij . (19)

This strategy greatly reduces the computational cost of evaluating the Coulomb
integral.
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A stretched mesh with variable mesh spacings, which are different in the ê1

and ê3 direction, is found to lead to divergence problems when performing the
summation over the point charges, qj,n. Therefore, “Gaussian smearing” is used
for the charge densities at the individual mesh nodes. The local charge density
at mesh node j and discrete time tn, ρ(rj , tn), is replaced by a normalized
Gaussian distribution

ρg(r, rj , tn) = ρ(rj , tn)

(
β

π

) 3
2

exp(−β|r − rj |2) (20)

where β = (2σ2)−1 and σ is the width of the Gaussian centered around rj . With
the Gaussian distribution the electrostatic potential contributed by the charge
density corresponding to mesh node j takes the form

φg(r, rj , tn) = κ−2 qj,n

|r − rj |
erf(
√
β|r − rj |). (21)

In the limit of |r− rj | → 0 the electrostatic potential contributed by the charge
density centred on mesh node j itself becomes

φg(|r − rj | → 0, tn) = 2κ−2

(
β

π

) 1
2

qj,n, (22)

which has to be added to the potential at this node generated by all the other
charges in the system. The width σ of the Gaussians is chosen to be that of the
smallest mesh spacing in the slab.

3.4. Iterative solver for the self-consistent calculations

A multidimensional Newton method is used to solve the nonlinear system
of discretized equations, including the continuity equations for all species on
all mesh points, their boundary conditions, and the Coulomb summation to
obtain the self-consistent electrostatic potential value at each mesh point. De-
pending on the number of mesh points and the number of species the system,
which needs to be solved in every time step, can contain several thousand vari-
ables. Therefore, we have implemented a Jacobian-Free-Newton-Krylov (JFNK)
method from the NOX package of the Trilinos Project [39] in our code. JFNK
methods are nested iteration methods and can achieve Newton-like convergence
without the cost of forming and storing the true Jacobian required for ordinary
Newton methods [40].

4. Diffusion of oxygen through an alumina film

The effective charges of the point defects are defined with respect to the
ions of the pristine lattice, and the Kröger-Vink notation for point defects is
used, although for generality we use integers to denote the charge states rather
than the original superfix • or ′ symbols, but retain the × notation for neutral
species.
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The charged point defect concentrations depend on the electron or hole chem-
ical potential, and the oxygen chemical potential, which depends on the oxygen
partial pressure and the temperature. In the analysis of the permeation ex-
periments [11] in oxygen chemical potential gradients due to oxygen pressures,
P IIO2

= P lo
O2

and P IO2
= 1 Pa, the V2+

O are thought to be formed on the side of
lower oxygen pressure and to diffuse to the side of higher oxygen pressure; the
overall reaction being

1

2
O2 + V2+

O +2 e- 
 O×O . (23)

In chemical potential gradients due to oxygen pressures, P IIO2
= P hi

O2
and P IO2

=
1 Pa, the V3-

Al are thought to be formed on the side of higher oxygen pressure
and to diffuse to the side of lower oxygen pressure; the overall reaction being

3

4
O2 


3

2
O×O + V3-

Al +3 h+ . (24)

in the steady-state analysis of reference [11].
Furthermore, it is assumed that for, P IIO2

= P lo
O2

, with V2+
O as dominant

vacancy species the electrons are the charge compensating electronic species,
preserving charge neutrality. Conversely, for P IIO2

= P hi
O2

the V3-
Al are assumed

to be charge compensated by holes. Based on the local charge neutrality ap-
proximation between the dominating vacancy species, ν ∈ {V2+

O ,V3-
Al}, and the

charge compensating electronic species, and the reactions 23 and 24, the law of
mass action can be used to derive power laws for the dependence of the defect
concentration on the oxygen pressure

cν = fν P
nν

O2
(25)

nν =
−zν

2|zO| (|zν |+ 1)
(26)

fν =
(
|1/zν ||zν |Kν

) 1
|zν |+1

(27)

where zO is the integer charge number of the oxygen ion, zν is the charge
of the dominant vacancy species, and the power law exponent, nν , which in
our case takes the values, nV2+

O
= −1/6 and nV3-

Al
= 3/16, and the prefactor,

fν , are introduced. Kν is the equilibrium constant of the reaction involving
the ν type vacancy out of the reactions 23, and 24. It is noteworthy that
the realisation of these power laws in the experiments supports the model of
vacancies carrying nominal ionic charges, not the fractional charges that are
usually estimated in electronic structure calculations, which typically vary from
1.0 to 1.6 in DFT calculations for oxides [41, 42]. It is also far from obvious that
simple point defect diffusion, well understood in bulk crystals, is the mechanism
of diffusion in grain boundaries, in which the prefactors of diffusion coefficients
are anomalously large [6, 43].
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4.1. 1D analytic model for the permeation rate

In general, the flux of aluminum ions, JAl implies the take up or release of
|3JAl/4| molecules of O2 per unit time and unit area of surface, and the opposite
flux of oxygen ions leads to |JO/2| molecules O2 taken up or released. The ionic
charges have the opposite sign and the fluxes have the opposite sign due to
their different gradients, therefore the permeation rate in molecules of oxygen
per unit area per second is given by

P =

∣∣∣∣34JAl

∣∣∣∣+

∣∣∣∣12JO

∣∣∣∣ =
1

4e0
|Iion|,

and hence by using Iion = Ivac

P =
1

4e0
|Ivac| (28)

where the current density carried by the ions, Iion, and vacancies, Ivac, represent
the same physical current density, which has to be balanced by the electron and
hole currents.

To interpret and compare with results of our fully time-dependent approach,
we introduce a simple one-dimensional, steady-state treatment, the derivation
of which is given in Appendix B. By considering only the flux of the dominant
vacancy species, denoted by suffix ν, and its charge-compensating electronic
species, ν:

Ivac ' Iν , (29)

the permeation rate is approximated by

P =
|zν |
4
Deff
ν

|cIIν − cIν |
L

, (30a)

Deff
ν =

DνDν

Dν |zν |+Dν
(|zν |+ 1). (30b)

Using equation 25 the permeation rate can be written as

P =
|zν |
4
Deff
ν fν

|
(
P IIO2

)nν − (P IO2

)nν |
L

(31)

where again nV2+
O

= 3/16, and nV3-
Al

= −1/6. Equation 31 shows that the

permeation rate becomes a power law only for
(
P IIO2

)nν � (
P IO2

)nν
. It is also

worth noting that the permeation rate is not proportional to the oxygen pressure
difference across the membrane, but rather to the difference in the vacancy
concentration between the two surfaces.

The oxidation rate “J” of aluminum in atoms per second per unit area in
terms of the permeation rate of oxygen in molecules per second per unit area is
given by

J =
2

3
P . (32)
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We can compare the above results with the Wagner theory [8, 9, 44], in
which the oxidation rate is given by

J =
1

|zAl|z2
Oe

2
0

∫ II

I

(σV2+
O

+ σV3-
Al

)(σh + σe)

σV2+
O

+ σV3-
Al

+ σh + σe
dµO (33)

where zAl is the aluminum ion charge and µO is the oxygen component chemical
potential. By assuming that the conductivity of the dominant vacancy species,
σν = Dνcνz

2
νe

2
0/kBT , is much larger than that of the other vacancy species, and

similarly for the dominant electronic species, ν, the oxidation rate simplifies to

J =
1

|zAl|z2
Oe

2
0

∫ II

I

σνσν
σν + σν

dµO . (34)

Applying the charge neutrality approximation to this equation and considering
relation 32 the permeation rate given in equations 30 follows, which makes our
1D model consistent with the Wagner theory. The derivation of this form of
the Wagner theory, however, requires Schottky and electron-hole equilibrium at
any position in the film or scale,

3µV2+
O

+ 2µV3-
Al

= 0 and µe- + µh+ = 0 (35)

neither of which is enforced in our treatment. Strictly speaking, the above con-
ditions only need to be met by the spatial variations of the chemical potentials,
but if equations 35 hold at the surfaces both formulations are equivalent and
there is no arbitrary additive constant.

Equations 30 are equivalent to the formulas given by [11] for the permeation
rate in the limit of Dν � Dν . However, the details of the derivation are different
such as the assumption of purely conductive transport of electrons and holes,
Is = −σs∇φ, which is made in [11].

4.2. Time-dependent 3D calculations

In the calculations within the hexagonal slab model transport of vacancies
is simulated for the 3D grain structure and grain boundaries with finite width
δ. The time-dependent calculations prove to have a similar steady-state limit
to the 1D model described above, in which the fluxes and current densities
are constant as a function of the position in the grain boundary. The vacancy
flux is calculated directly from the concentration and electrostatic potential
gradients, and the permeation rate follows from equation 28. Before the steady-
state is achieved, an average permeation rate can be calculated by numerical
integration of the vacancy flux through the grain boundary, which converges
faster to the steady-state permeation rate than the permeation rate calculated
from the vacancy fluxes on individual mesh nodes.
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4.2.1. Reaction equations

Exchange of oxygen between the gas phase and the oxide surface includes
multiple steps, namely adsorption, dissociation, surface diffusion, charge trans-
fer, and incorporation into the oxide surface, each of which might be the rate
limiting step. Here two mechanisms are considered and summarized by one
reaction for each mechanism. Firstly, oxygen absorption (desorption) by anni-
hilation (creation) of an oxygen vacancy

1

2
O2(g) + V2+

O

kO,f


kO,b

O×O +2 h+ (36)

and secondly, oxygen absorption (desorption) and creation (annihilation) of an
aluminum vacancy

1

2
O2(g) + 2 e-

kAl,f



kAl,b

O×O +
2

3
V3-

Al . (37)

If we assumed that the local equilibration of electrons and holes was instanta-
neous the product of their concentrations would be fixed by the temperature and
reactions (36) and (37) were equivalent to the reactions (23) and (24). Whether
the charge balance is achieved by creation of holes on the right-hand side or ab-
sorption of electrons on the left-hand side makes no difference mathematically.
The reactions (36) and (37) are more convenient for the numeric treatment and
in this work only simulations are discussed in which the electron hole reaction,
to be introduced below, is faster than the transport, and the choice of reactions
(36) and (37) over (23) and (24) does therefore not affect the simulation results.
The Schottky reaction is included at the alumina - oxygen gas surfaces

2

3
V3-

Al + V2+
O

kS,f


kS,b

Nil. (38)

Electron and hole recombination and generation,

e- + h+
kel,f


kel,b

Nil, (39)

is considered in the grain boundary and on the surfaces.
In this application the surface reactions, Rs, depend on the time-dependent

surface concentrations, CI/IIs (t), and the oxygen partial pressures, P IO2
or P IIO2

,
on the respective surfaces, (I) or (II), and the reaction rate constants, ki,f and
ki,b

Rj
s

(
{Cj
s(t)};P

j
O2
, {ki,f}, {ki,b}

)
(40)

s ∈ {V2+
O ,V3-

Al, e
-,h+} species

i ∈ {O,Al,S, el} see reactions 36, 37, 38, and 39

j ∈ {I, II} surface index
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The law of mass action is used to derive expressions for the reactions Rs, and
Rs. The coupled system of reactions, Rs, at the alumina - oxygen gas surfaces,
is used for the boundary conditions of the transport equations. The equations
are provided in Appendix A and they describe reactions that may proceed in
either direction, depending on the species concentrations and the oxygen gas
pressure applied.

4.3. Simulation results

Results are presented here to address some of the questions posed in sec-
tion 1.2 of the introduction, regarding the membrane experiments [11] and their
interpretation with 1D diffusion models based on the Wagner theory. Time de-
pendent calculations are performed and characteristic aspects of the dynamics
are highlighted and explained. A permeation calculation reproduces the power
laws found in [11].

4.3.1. Initial conditions and choice of parameters

The system at t = t0 is assumed to be of strictly stoichiometric composi-
tion, 2cV2+

O
(t0) = 3cV3-

Al
(t0), and the set of initial values of the concentrations,

{cs(t0)}, and {Cs(t0)}, is assumed to be in equilibrium with oxygen partial pres-
sure P eq

O2
, which is defined as the reference pressure so that only ratios PO2

/P eq
O2

enter the equations. The initial concentrations in the surface layer and in the
grain boundary are chosen to be equal, cs = Cs, and independent of the posi-
tion in the grain boundary and on the surface. This choice also constrains the
electron and hole concentrations, ce-(t0) = ch+(t0), in order for overall charge
neutrality to be maintained. The initial values for the concentrations, cs(t0),
are used to specify the equilibrium constants, Ki, of the reactions, which are
also related to the reactions rates

Ki = exp

(∑
s wi,sµ

0
s

kBT

)
=
∏
s

cwi,ss (t0) =
ki,f
ki,b

(41)

where µ0
s = −kBT ln(cs(t0)) is the reference chemical potential, and wi,s is the

stoichiometric coefficient of species s in the i-th reaction.
This choice of initial parameters only leaves undetermined the ratio of point

defect to electronic defect initial concentrations, which is a function of the dif-
ference between the vacancy formation (segregation) energy and the Fermi level.
Furthermore, one reaction rate constant in each reaction and the diffusion co-
efficients of the species are estimated.

The reference concentration for the simulations is chosen as cref = 1018 cm−3,
which would correspond to about 4 × 10−5 defects per formula unit of bulk
Al2O3, and will only be reached in the high or low pressure limits. For T =
1900 K and with εAl2O3

r = 9.8, the reference screening length, see equation 14,
becomes, `D = 9.4 nm. The thickness of the slab is set to, L = 1µm, the side
length of the hexagon to ahex = 1µm, the grain boundary and surface layer
thickness to δ = 1 nm. The diffusion coefficients of the species are chosen as:
Dh+ = De- = 1Dref, and DV2+

O
= DV3-

Al
= 0.01Dref where Dref is unknown
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and used to define the time scale of the simulations. The reaction rates are set
to: kO,b = 103, kAl,f = 102, and kel,f = kS,f = 103. The concentrations cs
and Cs are initialized at t = t0 uniformly in space and in overall charge neutral
proportions, as follows, ce- = ch+ = 0.1 cref, cV2+

O
= 5× 10−3 cref, cV3-

Al
= 2

3cV2+
O

,

and cs = Cs.
In sections 4.3.2, 4.3.3 and 4.3.4 calculations are discussed for which the

oxygen partial pressure is raised at surface (II), the pressure at surface (I) is
kept constant at P IO2

= P eq
O2

, and the pressure ratio is given by P IIO2
/P IO2

= 105.
Snapshots of the evolution at two times, tn, and tN , with tn � tN , are shown.
The time tn is chosen to capture characteristic behaviour in the initial transient,
and tN is the time at which steady-state conditions are achieved.

4.3.2. Evolution of the concentrations

Figure 7 shows snapshots of the concentrations; the coordinate system is
defined in figure 3. The pressure P IIO2

= P hi
O2

and the V3-
Al and the h+ concen-

trations are the dominant species. Local charge neutrality holds approximately
for the dominant species, 3cV3-

Al
≈ ch+ , throughout most of the grain boundary

and at surface (II) in the steady-state tN limit but is clearly violated at surface
(I).
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Figure 7: Snapshots of the concentrations of vacancies, electrons, and holes as a function of
x3 in the grain boundary plane, with fixed x1 = ahex/4, for two different times and with
P II
O2
/P I

O2
= 105. Scaled units with cref = 1018 cm−3 and L = 1µm.

4.3.3. Evolution of the charge density and the electrostatic potential

Figure 8 shows the charge density, ρ, and the electrostatic potential, φ,
corresponding to the concentrations shown in figure 7. Charge is accumulated
near the high pressure surface (II) initially until time tn, see figures 8 (a)
and 9; this change in the local charge density is due to the different magnitudes
of the diffusion coefficients of the mobile species and the requirement of charge
conservation within the irreducible zone of the structure. If all species had the
same diffusion coefficient the charge density would be identically zero, ρ(t) ≡ 0,
for all times in calculations with the present model. The negatively charged

19



surface (II) generates a linearly decreasing potential with increasing x3 (φ =
−|a|x3 + b); however, at tn it is screened to an almost constant value by the
charge density that has accumulated near surface (II). At time tN , see figure 8
(b), some of charge in the grain boundary has propagated to surface (I) and
the grain boundary has become weakly negatively charged, see also figure 9.
However, the electrostatic potential has become almost linear as a function of
x3, and is dominated by the surface charges; the remaining departure from
linearity is due to the charge density within the grain boundary.
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Figure 8: Snapshots of the charge density and the electrostatic potential as a function of x3
at fixed x1 = ahex/4 for two different times. Two screening lengths κ, and κ2D are indicated
and described in the text. Scaled units with e0 cref = 0.16 C cm−3, kBT/e0 = 0.16 V, and
L = 1µm. The stages (a), and (b) of the overall dynamics are discussed in the text.

The quantity κ denotes the scaled reference screening length `D/L, defined
in equation 14, and characterizes the decay in the local charge density from the
surface into the grain boundary. κ2D is the equivalent of the scaled reference
screening length for two dimensional systems and is defined here as

κ2D = `2DD /L, where `2DD =
ε0εrkBT

e2
0crefδ

. (42)

The simulations show that `2DD is a better estimate for the spatial extent of the
variations in the charge density within the grain boundary than `D. It should
be pointed out here that simulations in which the grain boundaries and surfaces
are idealized as planes without finite thickness δ would yield the same results,
and crefδ in equation 42 would be replaced by a reference concentration per
unit area. The only requirement for this to hold is that the total numbers of
each species present in the irreducible zone initially, are chosen equal for the
simulations with and without finite thickness δ.

4.3.4. Surface and grain boundary charges

The simulations are initialized with zero total charge and charge conservation
requires the total charge in the irreducible zone of the structure, qtot, to remain
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equal to zero. This is satisfied for the calculations performed, see figure 9, which
provides a useful check on the numerical accuracy and stability of the solution.
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Figure 9: The charge (integrated charge density) in the irreducible zone as a function of time.
qI and qII are the charges in the surface triangles of surfaces (I) and (II), respectively, qGB

is the charge in the grain boundary, qtot = qI +qII +qGB is the total charge in the irreducible
zone. The characteristic time scales τc, τd, and τs are indicated, and further discussed in
the text. Scaled units are used with the thickness of the slab, L = 1µm, and e0 the positive
elementary charge.

The charge integrated over the grain boundary volume changes with time,
qGB(t), and the boundary carries an excess of electrons in the steady-state limit.
This demonstrates that local charge neutrality, which is an assumption of the
simple 1D models, is not consistent with this 3D model. Two characteristic
time scales for the charging and discharging of the grain boundary are found.
The time constants can be estimated by analogy to “RC”-circuits, with time
constant τ = RC, where R is the resistance, and C is the capacitance. The
initial charge built up within the grain boundary is due to the diffusion of the
faster of the dominant species, for P IIO2

= P hi
O2

the positively charged holes,
ν = h+, and the time constant is estimated as follows from appropriate values
of R and C:

Rν =
1

〈σν〉
4L

ahexδ
, (43)

Chex = ε0εr
a2

hex

√
3

8L
, (44)

τc ∼
ε0εr
〈σν〉

ahex

√
3

2δ
. (45)

The time constant characterizing the discharging of the grain boundary is esti-
mated from the diffusion of the slower of the dominant species, for P IIO2

= P hi
O2
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the aluminum vacancies, ν = V3-
Al:

Rν =
1

〈σν〉
4L

ahexδ
, (46)

τd ∼
ε0εr
〈σν〉

ahex

√
3

2δ
. (47)

Where the angle brackets denote the spatial average and the physically mean-
ingful conductivity is the product σδ. A third time scale characterizes the time
elapsed until reaching the steady-state, and is estimated here from the diffusion
length using the effective diffusion coefficient defined in equation 30b. For the
parameters uses here, Dν = Dν/100 and in the limit of Dν � Dν ,

τs ∼
L2

Deff
ν

' L2

(|zν |+ 1)Dν
. (48)

The three time scales are indicated in figure 9.

4.3.5. Membrane permeation calculations

The permeation rate normalized by the thickness of the slab, PL, can be
calculated from the current densities of the mobile defect species. Figure 10
shows the permeation rate in the steady-state limit as a function of the oxygen
pressure ratio P IIO2

/P IO2
for a range of P IIO2

values, while P IO2
is held fixed. The

individual contributions of the V3-
Al and V2+

O are indicated by PLV3-
Al

and PLV2+
O

,

respectively. The parameters are the same as those in the previous section.
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Figure 10: Oxygen permeation rate in the steady-state limit as a function of the ratio of applied
oxygen gas pressures. The simulated permeation rate tends to the same power law exponents
as those determined in the 1D analytic model (blue line), nV3-

Al
= 3/16 and n

V2+
O

= −1/6,

see section 4.1, and the experimentally found ones [11]. δ is the grain boundary width,
Dref [m2 s−1], cref = 1.66 mol m−3, and SGB = 4/

√
3ahex is the grain boundary density of the

hexagonal cell structure.
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Comparing the simulated permeation rate with the experimental values [11,
13] for T = 1900 K and P IIO2

/P IO2
= 105 Pa/1 Pa the reference diffusion coefficient

is calculated, δDref = 3.4× 10−13 m3 s−1. From the average aluminum vacancy
concentration in the grain boundary at P IIO2

/P IO2
= 105, 〈cV3-

Al
〉 = 1017 cm−3, and

the concentration of alumina formula units, cAl2O3 = 2.26× 1022 cm−3, the alu-
minum diffusion coefficient is estimated to be δDAl = δDV3-

Al
〈cV3-

Al
〉/2cAl2O3

=

7.6 × 10−21 m3 s−1, which is close to the value reported in [11], δDAl = 4.5 ×
10−21 m3 s−1. The agreement indicates that the reference concentration is a rea-
sonable choice provided the assumptions of cν(P eq

O2
) � cν(P eq

O2
) and Dν � Dν

are applicable. Indeed, if electrons and holes would diffuse slower than the
vacancies, Dν � Dν , the permeation rate would be limited by the electronic
defects and the diffusion coefficients determined from the permeation experi-
ments [11] would reflect the electronic diffusion coefficient rather than the ionic
one.

The variation of the logarithm of the permeation rate P , see equation 31,
with the oxygen chemical potential at surface (II) in the limits of high and low
applied oxygen partial pressure, P IIO2

, yield the power law exponent correspond-
ing to the dominant defect species, ν,

∂ lnP

∂ lnP IIO2

= nν (49)

in the limit of high and low P IIO2
.

An asymptotic electronic current density, Iel, and vacancy current density,
Ivac can be calculated similarly to the permeation rate. The current density of
vacancies, Ivac = IV2+

O
+ IV3-

Al
, is equal and opposite to the electronic current,

Iel = Ie- + Ih+ , at all pressure ratios in the long time limit, see figure 11, this
means the net current, Inet = Ivac + Iel is zero.
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Figure 11: Current densities per grain boundary “cross-section area” AGB, see figure 4, in the
steady-state limit as a function of the ratio of applied oxygen gas pressures. Scaled units with
e0 cref = 0.16 C cm−3, and L = 1µm.
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The plot for the average conductivities, see figure 12, is equivalent to a
Kröger-Vink (Brouwer) diagram [45] for the mobile species present, except that
the average concentrations are scaled by the corresponding diffusion coefficients.
The averaged conductivities of the dominant point defect species, ν, adhere to

∂ ln〈σν〉
∂ lnP IIO2

= nν . (50)

The crossover in the dominant point defect species in the permeation rate and
the average conductivity is observed at the same value of P IIO2

.
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Figure 12: Conductivities averaged over the grain boundary layer, 〈σs〉. The reference lines
are given by const.× Pnν

O2
. Scaled units with e20 cref/kBT ≈ 1 C2 cm−3 J−1.

4.3.6. The Schottky equilibrium

As discussed in section 4.1, Schottky equilibrium and electron-hole equilib-
rium are required conditions for the validity of the Wagner model and equa-
tion 33. In this section we examine to what extent these equilibria are attained
in our grain boundary calculations as the steady-state limit is approached.

Figure 13 shows an example of the voltages, ηs/zse0, in the long time limit,
the component chemical potentials are shown in figure 14. The calculations
are performed for P IO2

= P lo
O2

, and P IIO2
= P hi

O2
. In these calculations Schottky

equilibrium does not hold, see figures 13, and 14, except at the surfaces where the
Schottky reaction is included in the equations. The reaction rates at the surfaces
are higher than the transport between the surfaces and the grain boundaries,
therefore Schottky equilibrium is attained at the surfaces. The defect chemical
potentials are calculated from the ideal dilute solution approximation, µs =
kBT ln(cs/cs(t0)), where cs(t0) are the equilibrium concentrations. The spatial
variation of the electrochemical, and chemical potentials would be significantly
different if internal Schottky equilibrium was imposed.
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Figure 13: The voltages, ηs/zse0, calculated from the ideal solution electrochemical potentials,
of the mobile species for fixed x1 = ahex/4 in the grain boundary plane. Schottky equilibrium
is not satisfied in the grain boundary since −ηV3-
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/2, but electrons and holes are
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thermal voltage is given by kBT/e0 = 0.16 V, and Ve- = −(ηIIe- − ηIe- )/e0 = 50 mV.
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x1 = ahex/4 in the grain boundary plane. Schottky equilibrium holds at the surfaces where,
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= 0, but is not satisfied in the grain boundary. Same parameters are used as in
figure 13.

The component chemical potential distributions µAl(x3), and µO(x3) shown
in figure 14 are different from those shown in figure 8 of reference [13] for poly-
crystalline alumina membrane permeation experiments. Schottky equilibrium
together with electron-hole equilibrium implies 3µO + 2µAl = 0, which is not
satisfied within the grain boundary, see figure 14, because 3µV2+

O
+ 2µV3-

Al
6= 0.
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The qualitative discrepancy in the chemical potential distributions between ref-
erence [13] and this treatment is likely due to the assumption of Schottky equi-
librium in [13].

A Schottky reaction term could be added to the transport equations 9, which
would lead to Schottky equilibrium in the grain boundaries depending on the
reaction and transport rates. However, the internal Schottky reaction with
formation and dissolution of oxide at the grain boundaries would induce stress
and cause a non-trivial modification in the permeation rate. The simulations
discussed in this work are thought to correspond to the limit in which stress at
the grain boundaries prohibits the formation and dissolution of oxide internally,
similarly to its effect in the bulk material.

5. Discussion

The power laws for the oxygen permeation rate found experimentally in the
limits of high and low applied oxygen pressures, are confirmed in the calculations
with the slab model in the steady-state limit. The experiments are performed
on 0.25 mm thick polycrystalline alumina membranes while the geometry of the
slab in the calculations with L = ahex = 1µm is chosen to resemble more closely
the situation of planar films growing with a columnar grain structure. The
variation of the permeation rate, and the average conductivity with the oxygen
chemical potential are related to the power law exponent nν , see figures 10
and 12, and equations 49 and 50. The power law exponent in turn depends on
the stoichiometry of the quasi-chemical reactions at the surfaces, see equation 26.
The applied pressure at which the transition between p-type and n-type ionic
conductivity of the grain boundaries takes place depends on the ratio of the
vacancy diffusion coefficients in the grain boundary, DV2+

O
/DV3-

Al
, given that

V2+
O , and V3-

Al are the mobile vacancy species.
The time-dependent calculations not only elucidate the initial transient be-

haviour but also help to clarify the steady-state. Varying the applied oxygen
partial pressure from P eq

O2
to P hi

O2
or P lo

O2
on one of the surfaces changes the rate

of creation and annihilation of vacancies, electrons and holes in stoichiometric
proportions on the surface, the resulting chemical potential gradients between
the surfaces along the grain boundaries drive the transport of species through
the slab. The resulting fluxes of the mobile species depend on their diffusion
coefficients and will therefore not necessarily preserve the stoichiometric propor-
tions of the surface populations of the species, except when all species have the
same diffusion coefficient. The local charge density thereby becomes non-zero,
and generates an electric field that retards the diffusion of the fastest dominant
species, but enhances the diffusion of the slower dominant species which has an
effective charge of opposite sign.

Three time scales involved in the dynamics of species concentration evolution
are identified, τc (see equation 45) characterizes the rate of charge build up on
the surface and in the grain boundary, τd (see equation 47) characterizes the
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discharging of the grain boundary, and τs (see equation 48) characterizes the
time to reach the steady-state at which ∇ · Js ' 0.

During the initial transient, t . τc, the different diffusion coefficients lead
to the accumulation of charge in the grain boundary and on surface (II). If,
for example in the P hi

O2
case, holes and aluminum vacancies are generated on

surface (II), the holes, which are assumed to be the faster species, DV3-
Al
� Dh+ ,

diffuse away from the surface, generating positive charge density in the grain
boundary, and surface (II) becomes negatively charged due to the aluminum
vacancies. Once the holes reach surface (I) it becomes positively charged, and as
the slower aluminum vacancies diffuse into the grain boundary it is discharged
over a time t ∼ τd. In this example the electric field effectively enhances the
aluminum vacancy diffusion, and retards the diffusion of the oxygen vacancies
and holes. In the steady-state limit the electrostatic potential difference between
the surfaces, ∆φ = φII − φI , is on the order of the thermal voltage, kBT/e0, in
the high and low pressure limits considered.

For the calculation shown in figure 13 with P IIO2
= P hi

O2
and P IO2

= P lo
O2

the voltage between the surfaces observed in the simulations is Ve- = −(ηIIe- −
ηIe-)/e0 = 50 mV. Ve- depends strongly on the species diffusion coefficients.

Physically, the mobile species distributions reconfigure to screen the electric
field arising due to non-zero local charge density, and the Debye screening length
(see equation 15) characterizes the spatial extent of the variations in the local
charge density. Due to screening effects the local charge density and electrostatic
potential are challenging to resolve numerically near the surfaces. For spatial
variations in the charge density within the grain boundary the two-dimensional
equivalent of the reference screening length, see equation 42, is found to be
appropriate. Apart from the initial transient the electrostatic potential in the
simulations is dominated by the contributions from the surface charges. In
the parameter regimes investigated the non-zero charge density in the grain
boundary does not affect the defect fluxes significantly, the 3D calculations can
therefore be mapped onto a 1D model. In the intermediate pressure regime
the dominance of one vacancy species is less pronounced and in particular for
cν(r, t) ∼ cν(t0) in the steady-state the local charge neutrality approximation
becomes invalid. For small species concentrations the Debye length gets larger,
and the electric field gets weaker. Both of the later facts are considered respon-
sible for the failure of the analytic model in the intermediate pressure regime,
see figure 10.

The simulations with the fixed oxygen chemical potential difference between
the surfaces reach a stationary non-equilibrium state with a constant rate of en-
tropy production. This means the populations of vacancies, electrons, and holes
reach a dynamic equilibrium state, in which they are created and annihilated
at the same rate and ∂cs

∂t ' 0, while the oxygen chemical potential difference
sustains non vanishing fluxes between the surfaces.
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6. Conclusions

A model for time-dependent grain boundary diffusion of ions and electrons
through a film of polycrystalline oxide has been constructed, in the form of
a slab comprising hexagonal columnar grains. The long-range Coulomb inter-
actions between the grain boundary planes affect the mass transfer dynamics
through the slab significantly only during the initial transient. The electric
field generated by the evolution of the charge density influences the transport
significantly; in the long time limit it is dominated by the surface charges.

Four mobile defects, charged aluminum and oxygen vacancies, electrons and
holes, were considered, and simulations were made to compare with the be-
haviour observed in alumina oxygen permeation experiments. The power laws
for the permeation rate in the alumina membrane calculations depend on the
stoichiometry of the quasi-chemical reactions at the membrane surfaces.

Work is in progress to extend the model; for example by including a Schottky
reaction in the grain boundary we can couple the fluxes to the development of
internal stress.

We have introduced a simplified, one-dimensional analytic model that em-
ploys the approximation of a single dominant defect, which appears from the
3D calculation to be justified. It does not assume internal Schottky equilibrium
which is often assumed in Wagnerian treatments of oxidation. The analytic
model is shown to agree well with the simulation results under certain limiting
conditions, but fails in the intermediate oxygen partial pressure regime.
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Appendix A. The system of reaction equations

Applying the law of mass action to the reactions, 36, 37, 38, and 39 yields

RO = kO,b

(
KO P

1/2
O2
CV2+

O
− C2

h+

)
(A.1)

RAl = kAl,b

(
−C2/3

V3-
Al

+KAl P
1/2
O2
C2

e-

)
(A.2)

RS = −kS,f

(
C2/3

V3-
Al
CV2+

O
−KS

)
(A.3)

Rel = −kel,f (Ce- Ch+ −Keh) (A.4)

and the coupled system of reactions at the alumina – oxygen gas surfaces can
be written as

RV2+
O

= −RO +RS RV3-
Al

= RAl +
2

3
RS (A.5a)

Rh+ = 2RO +Rel Re- = −3RAl +Rel (A.5b)

Appendix B. The analytic model

The current density of the mobile species s is expressed by

Is = zse0Js = −σs
(
∇µs
zse0

−∇φ
)

(B.1)

with σs =
Dscsz

2
se

2
0

kBT
. (B.2)

We give here a derivation valid for the fluxes in the steady-state limit, as-
suming that one point defect species dominates and that there is no local ex-
cess of charge. Considering only the flux of the dominant vacancy species,
ν ∈ {V2+

O ,V3-
Al}, and the charge compensating electronic species, ν ∈ {h+, e-},

their current densities in the steady state must balance at any point in the slab

Iν = −Iν . (B.3)

Inserting equation B.1 into this condition results in a constraint on the electric
field,

−(σν + σν)∇φ = σν
µν
zνe0

+ σν
µν
zνe0

(B.4)

and the current density, which can therefore be written as

Iν =
σνσν
σν + σν

∇µν + |zν |∇µν
zνe0

. (B.5)

In the steady-state Iν does not depend on the position in the slab, hence upon
integration over the instantaneous thickness of the slab, L,

IνL =

∫ L

0

σνσν
σν + σν

∇µν + |zν |∇µν
zνe0

dx. (B.6)
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The zero net current assumption is always expected to hold in the steady-state,
and the above expression for the current density is expected to be a very good
approximation. The local charge neutrality approximation is less general and
used to approximate the integral, it is given by,

zνcν + zνcν = 0 (B.7)

and by using |zν | = 1,

σνσν
σν + σν

=
DνDν

Dν |zν |+Dν

cνz
2
νe

2
0

kBT
. (B.8)

Using the ideal solution approximation,

dµν = kBTd (ln cν) = kBTd (ln cν) = dµν (B.9)

and hence

dµν + |zν |dµν = (|zν |+ 1) dµν (B.10)

the integral is given by,

IνL = zνe0
DνDν

Dν |zν |+Dν
(|zν |+ 1)

∫ L

0

∇cν dx (B.11)

and evaluated to yield the current density

Iν = zνe0D
eff
ν

cIIν − cIν
L

, (B.12a)

Deff
ν =

DνDν

Dν |zν |+Dν
(|zν |+ 1). (B.12b)
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