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We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime
driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a
driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the
repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this
evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for
the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force
phases in the bubble couple to ion motion significantly differently than in the linear electron mode. The
electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble
cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton
is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-
in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for
positron acceleration in the crunch-in regime.
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I. INTRODUCTION

Plasma ions are generally assumed to be stationary in the
theory of ultrarelativistic plasma electron waves [1]. Such
waves are regularly excited by high-intensity energy
sources such as an ultrashort laser or particle beams [2]
and have proven to be promising for accelerating and
transporting beams with 109 Vm−1 field strengths. The
nonlinear regime of cavitated electron “bubble” modes
[3–5] of these waves which rely on the immobility of ions
for exciting charge-separation fields, have been proposed to
form the basis of plasma colliders [6].
Important exceptions to the fundamental assumption of

stationary ions occur as the intensities of the energy sources
become high enough (for instance in the final stage of
envisioned plasma-based collider designs) to lead to
significant ion trajectories within a period of the electron
wave [7]. Ion motion also invariably becomes important
over several periods of the electron wake train further
behind the driver because as we will show the energy left
over in the electron oscillation modes couples to the ion
modes. This long-term evolution of wakefields in plasma
[8] constrains the repetition rate of colliders or light sources

that use plasma-based acceleration, and is the primary
motivation for this work.
This work is fundamental and important from two

different perspectives: (i) it is the first analytical consid-
eration of an ion-wake driven by the bubble regime of
electron plasma waves. Our work proves the excitation and
persistence of a radially propagating cylindrical ion soliton-
like mode. It is shown to be directly excited by the bubble
fields, unlike the ion motion driven behind a linear electron
wake. Its radial motion is sustained by the thermalizing
wake energy in electrons. (ii) We show that an ion-wake
channel, which can be meter scale for the beam-driven
plasma electron waves, can be used for a novel hollow-
channel mode in the “crunch-in” regime [9,10]. The
evacuation of electrons and ions behind the soliton results
in a channel-like ion-wake structure which persists over
many hundreds of plasma electron periods and is here
shown to be suitable for exciting nonlinear hollow-channel
electron modes driven by relativistic positron and electron
beams, first investigated by the author.
Ion wake is analyzed theoretically and using computa-

tional modeling, to show that it is the time asymmetry of the
phases of the focusing fields of the bubble which leads to
the excitation of a nonlinear ion-acoustic mode in the form
of a cylindrical ion soliton. Its characteristics are similar to
the solutions of the cylindrical Korteweg–de Vries equation
(cKdV) [11–14]. The bubble electron mode may be driven
by any type of an ultrashort high energy-density energy
source such as an intense laser [15] or a particle beam [16].
This work gains a distinct importance because the bubble
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regime is the underlying acceleration mode for future
plasma-based colliders, but there is currently no under-
standing of the long-term behavior of the plasma [8,17]
which determines its state for the succeeding bunches,
defining an upper limit on the repetition rate.
The critical result of this work is the fact that the ion

wake is a cylindrical solitonlike mode which is self-
reinforcing collective motion of ions, resulting in consid-
erable lengthening of its lifetime in comparison to an
entirely randomized ion motion. The long-lived ion-mode
leftover in the plasma is tracked over many hundreds of
electron periods in simulations. This establishes its per-
sistence for hundreds of picosecond time scale for an
operating plasma density of 1017 cm−3.
The excitation of crunch-in using the nonlinear ion-wake

mode for plasma-based acceleration in a hollow channel
using positron beam is demonstrated. The crunch-in regime
in an ideal hollow channel using positron beams was first

introduced in [9,10] and Chapter 8 of [18]. In this regime,
the excitation of strong focusing fields was shown in
complete contrast to the conventionally established con-
clusion that relativistic particles excite zero focusing fields
in a hollow channel [19]. The ion-wake channel-wall
electrons collapse towards the energy-propagation axis
resulting in a nonlinear on-axis electron density compres-
sion. The optimal compression is shown to be only possible
if the driving beam properties are matched to the channel
radius [9], a strong characteristic dependence on the
excitation which is a signature of nonlinearity. The choice
of an appropriate channel radius is enabled by waiting for
the expansion of the ion-wake channel to take the ion-wake
radius to the chosen value.
For outlining the detailed physics in the sections below,

representative particle-in-cell (PIC) simulation snapshots in
Figs. 1 and 2 illustrate the excitation phase and the
propagation phase of the ion soliton, respectively. The
detailed initial conditions and setup of the simulations are
in Secs. III B and IV B. Figure 1 shows the excitation phase
at an early time when the bubble wake train is still
executing orderly oscillations and its fields have begun
to excite inertial ion motion resulting in a solitonlike ion-
wake structure (δni=n0 ≃ 0.2) as seen in Figs. 1(b)
and 1(c). At later times shown in Fig. 2 the radial

FIG. 1. Laser driven nonlinear ion wake at early time
(t ¼ 46ω−1

pe ¼ 0.17f−1pi , where fpi is the plasma ion frequency)
in mi ¼ mp ¼ 1836me plasma. (a) Electron bubble mode in
Cartesian coordinates (fixed box) with ω0

ωpe
¼ 10 driven by a

matched laser pulse (vector potential a0 ¼ 4 and frequency ω0)
with RB ≃ 4 c

ωpe
. (b) Nonlinear ion wake in the form of a

cylindrical ion-soliton of radius ≃4 c
ωpe

excited behind the bubble

electron wake in a proton plasma. (c) Transverse ion-density
profile at z ¼ 15c=ωpe. Notice that the ion density perturbation in
this excitation phase is still building up and is a fraction of the
background ion density, δni

n0
< 1.

FIG. 2. Electron beam-driven nonlinear ion wake at late
time (t ¼ 460ω−1

pe ¼ 1.7f−1pi ) in mi ¼ mp ¼ 1836me plasma.
(a) Beam-driven ion-wake electron density in cylindrical coor-
dinates (fixed box). The beam parameters are nb ¼ 5n0,
σr ¼ 0.5c=ωpe, σz ¼ 1.5c=ωpe, γb ¼ 38; 000, these beam-plasma
parameters are quite similar to [5]. (b) Corresponding ion density
in cylindrical coordinates (fixed box). Note the N-soliton for-
mation in the ion density, 50c=ωpe ≤ z ≤ 100c=ωpe. The later
times in the time evolution of the ion wake are also inferred from
density snapshots farther behind the beam. (c) Radial electron and
ion density profile at z ¼ 150c=ωpe. A full movie of radial
electron and ion density dynamics is presented in Supplemental
Material [20].
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oscillations that sustain the bubble train have phase mixed,
converting much of the plasma wave energy into electron
thermal energy. The resulting electron thermal pressure
drives the ion soliton (δni=n0 > 1) outwards. The time
evolution of the radial dynamics of the ion density structure
driven by the bubble electron mode is shown in a movie in
Supplemental Material [20].
It is important to note that this work builds upon several

earlier works on related topics such as (i) on long time
scale phase mixing of electron wakefield oscillations—
estimation of phase-mixing time scales [21], heating
of electrons in wakefields in finite radius plasma [22]
and (ii) on ion motion in response to plasma electron
wakefields—on-axis ion density spike excitation by the
ponderomotive force of the wake of a laser pulse [23],
excitation of an on-axis ion filament by the electron beam
accelerated in a laser wakefield accelerator [24], ion motion
in electron wakefields driven by self-modulated proton
bunches [25]. The existence of a regime similar to the
crunch-in regime of positron beams discussed here, using
proton beams where fields just behind the driver are
utilized, has been illustrated in [26]. The proton beam
driven regime however does not show a nonlinear surface
wave unlike shown in the work of the author [9,10]. The
nonlinear surface wave allows using accelerating and
focusing fields much further behind the driver.
The paper is organized into the following sections.

Section II uses the linearized fluid equations for modeling
the ion dynamics to show the two distinct phases of the ion
wake: the excitation phase and the propagation phase. We
use an analytical model based on the fields of a nonlinear
bubble plasma wave and simulations to demonstrate the
inertial phase of the ion wake in Sec. III, while the fields of
the bubble persist. Once the fields die out to nearly a
hundredth of their initial value and the wake electrons
thermalize into a non-isothermal spatial distribution sus-
taining radial electron temperature gradients supported by
the electrostatic forces of electron-ion charge separation,
we show that the driven nonlinear ion-acoustic waves is in
the form of a cylindrical ion soliton. In Sec. IV the
propagation phase of the ion wake is analytical modeled
with simulations verifying the propagation of the cylindri-
cal ion soliton driven by the radial temperature gradient of
the phase-mixed electrons. Finally, in Sec. V we introduce
and analyze the properties of the crunch-in regime driven
by a relativistic positron beam in an ion-wake channel,
using an analytical model and simulations. In the Appendix
we present considerations and assumptions made to derive
the ion-wake model.

II. ION WAKE: A DRIVEN PLASMA ION WAVE

To develop insight into the ion wake physics, we
consider the 1D simplified dispersion relation of the ion-
acoustic plane waves,

ω2 ¼ c2sk2

1þ ðcs=ωpiÞ2k2
; ð1Þ

where ωpi ¼ ωpe

ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
and cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe

wk=ml

p
under the

collisionless condition, Ti
wk ≪ Te

wk andϒ ¼ 1þ 2=f is the
adiabatic index with f being the degrees of freedom of
the ions.
At early times the ion motion is dominated by inertia,

thus ions move over the plasma-ion time scales when
driven by time varying and asymmetric phases of the fields
of nonlinear electron plasma-wave (asymmetry of the
phases is shown in Figs. 3 and 4). Thus initially, ω≃ωpi

and the ion density spike grows over the plasma-ion
frequency time scales, 2πω−1

pi . The radial electron oscil-
lations sustaining the bubble undergo phase mixing [21],
the electron trajectories lose orderly motion and thermalize.
As the electrons thermalize, the ion motion is driven by
thermal pressure of electrons.
The tendency of the thermal pressure of the electrons to

expand outwards leads to charge separation electric field
due to ion inertia and thus imparts a significant momentum
to the ions. However, the interplay between electron
thermal pressure and the ion electrostatic force gets the
ions oscillating over larger spatial scales. In this thermally
driven phase, the acoustic wave propagation becomes
dispersionless with ω ¼ kcs.
An ion-acoustic wave growing in amplitude undergoes

self-steepening, forming a density spike over much smaller
spatial scales; k becomes large while dispersion becomes
important. The ion wake modeled here is nonlinear, thus
the large k dispersion relation retaining the higher-order
terms in k in the Taylor series expansion of Eq. (1) is
ω ¼ csk − 0.5csλ2Dek

3.
At much later times, the ions undergo heating; as

Ti increases, the sound speed modifies to cs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBðϒeTe þϒiTiÞ=mi

p
.

A. Time-scale separation of ion dynamics:
Soliton excitation and propagation

We illustrate the time-scale separation of the nonlinear
electron mode using a PIC simulation snapshot over tens of
electron oscillations behind the driver in Fig. 3. In Fig. 3(a)
the coherent motion in the first four or five oscillations
behind the driver is evident; whereas further behind the
driver, the electrons begin to decohere due to phase
mixing [21].
To understand how these electron oscillations couple to

the ion mode we derive the ion-wave equation for the ion
wake in the linear fluid approximation driven by two
terms: the coherent electron mode and the electron thermal
pressure. The linearized ion acoustic wave can be obtained
by perturbative expansion of ion density, ni and ion
fluid velocity vi in the ion fluid continuity equation,
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n0∇ · vð1Þi þ ∂nð1Þi∂t ¼ 0. Taking a partial derivative with time,

∇ · ∂v
ð1Þ
i∂t þ ∂2

∂t2
nð1Þi
n0

¼ 0. The ion-fluid equation of motion
where the electron temperature (Te) has a spatial
gradient and electron mode electric field (Ewk) still

persist is mi
∂vð1Þi∂t ¼ eZiEwk −ϒkBTe∇

nð1Þi
n0

−ϒkB
nð1Þi
n0

∇Te.
The assumption of spatial gradient of electron temperature
has been used because electron plasma wave oscillations
phase mix into nonisothermal plasma (this is substantiated
through numerical results in the simulations section in
Fig. 5). Upon substituting the equation of motion in the
time derivative of the linearized continuity equation,

∇·
�
eZi
mi
Ewk−

ϒkBTe
mi

∇nð1Þi
n0
−ϒkB

mi

nð1Þi
n0
∇Te

�
þ ∂2

∂t2
nð1Þi
n0
¼0. Thus, a

driven ion-acoustic wave linearized to the first order in
density perturbation has the form

� ∂2

∂t2 − c2s∇2

�
nð1Þi ðr; tÞ

n0

¼ −
eZi

mi
∇ · Ewkðr; tÞ

����
wake

þϒkB
mi

nð1Þi

n0
∇2Te

����
thermal

:

In this first-order approximate ion-fluid model the right-
hand side of Eq. (2) shows two separate time scales of the
ion wake.
At earlier times, the first term on the right-hand side

dominates. This is the formation or inertial phase of the ion
wake where the bubble electron oscillations undergo
ordered radial motion and the bubble radial electric field
excites the inertial response of the ions. The group velocity
of the electron bubble wake (βg ≈ 3v2th=c

2, in the 1D limit,

where vth ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=me

p
is the mean electron thermal

velocity [27–29]) is much smaller than the phase velocity
so the bubble fields interact with the background plasma
over several oscillations. Figure 3 shows the nonlinear
electron-wake train [electron density in real space in 3(a)]
and its time-asymmetric fields [longitudinal 3(b) and
radial 3(c)] driven by a near speed-of-light energy source
of high intensity. The fields lead to the formation of the on-
axis and RB ion density spikes. At later times after the
phase mixing between radial oscillators the electrons
thermalize and Ewkðr; tÞ ∼ 0. This is the propagation or
thermal phase where the electron thermal pressure gradient
drives the cylindrical soliton around RB radially outwards
to many times RB.
Equation (2) is used to demonstrate the separation of ion

response over two different time scales (its solution only
describe the linear ion modes). In the inertial or excitation
phase when the plasma is cold (Te ≃ 0, cs ≃ 0), a better
description is provided by an ion-ring model driven by the
fields of the electron wave. The ion-ring model is devel-
oped and verified using PIC simulations in Sec. III. The
thermally driven propagation phase is modeled as a driven
ion-acoustic soliton and verified by PIC simulations
in Sec. IV.
The falling off of the electron mode fields to nearly zero

as the electrons thermalize is later shown using PIC
simulations over a much longer time scale in Sec. IV
[see Fig. 6(b) where the radial electric field goes to zero
around 200ω−1

pe and the ion soliton is seen moving outwards
radially in 6(a)].
There is another way to appreciate the separation of ion-

wake dynamics into two phases: (i) in the inertial phase ion
rings move in response to the fields of the wake, sustained
primarily by electron motion. We model the ion dynamics
using a kinetic theory approach and an ion-ring model has
been presented to study the motion of ions resulting from
different ion rings taking individual trajectories in response
to the spatially varying forces. (ii) In the thermal phase
where the collective fields nearly vanish, we expect a fluid
theory approach to dominate the modeling of the dynamics,
but there is still some kinetic behavior which affects the ion
motion. However, during the thermal phase the dominant
behavior is more fluidlike with higher-order corrections
from the residual kinetic effects.

III. EXCITATION PHASE: ION INERTIAL
RESPONSE TO THE BUBBLE FIELDS

Since the characteristic time of ion motion is much
longer than the electron oscillations, the longitudinal field
Ewk · ẑ averages out over one full bubble electron oscil-
lation in time. In other words the net change in the spatial
average of the potential over the bubble is zero (from the
Panofsky-Wenzel theorem). So, the ions gain relatively
small net longitudinal momentum. However, atypical radial

FIG. 3. Bubble-wake train behind an ultrarelativistic electron
beam with bubble: βg ≪ βϕ ≃ βbeam. (a) Electron density in 2D
cylindrical real space, (b) corresponding longitudinal electric
field profile and (c) corresponding radial-field profile. Here the
beam is located between 170 and 180 c

ωpe
. The bubbles just behind

the driver in (a) undergo phase mixing over several cycles. The
intermediate stages of the extent of phase mixing can be inferred
from the bubbles that are closer to the beam. The beam-plasma
parameters are the same as in Fig. 2 but the electron wake is
shown at an earlier time t ¼ 150ω−1

pe .
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ion dynamics arise because the radial fields, Ewk · r̂ are
asymmetric in time as shown in Fig. 4 and drive radial ion
momentum which does not average to zero, resulting in an
average radial ion momentum. It is shown here that the ions
are driven into a solitonlike density buildup which stably
propagates radially over many hundreds of electron periods
(shown in Sec. IV).

A. Ion-ring analytical model: Interaction
with time-asymmetric bubble radial fields

The first stage of the ion-wake formation is controlled by
the different time-asymmetric phases of ion dynamics
inertially responding to the bubble radial field impulses
shown in Fig. 4, namely, “suck-in” due to the electron
compression in the back of the bubble Fback during τback
shown in Fig. 4(c), and the “push-out” due to the mutual-
ion space-charge Coulomb repulsion force Fsc during τcav
shown in Fig. 4(d). The crunch-in force is spatially periodic
at nonlinear plasma wavelength, λNp ≈ 2RB with a duty
cycle D ¼ τback

τbackþτcav
≪ 1. It is important to note that even

though the duration of the radial forces in the two phases
are highly asymmetric, their magnitudes are nearly equal
[seen by comparing Figs. 4(c) and 4(d)].
In addition to the forces from the electron wake, the

propagating energy sources themselves impart impulses
such as the laser ponderomotive force Fpmτlas (τlas is laser

pulse duration), where Fpm
e ðr; zÞ ¼ − mec2

2γe
∇r;zjaðrÞj2 (γe is

the plasma electron Lorentz factor) and the radial force of
the drive beam Fbτb, where FbðrÞ ¼ −2πe2nbr. The short

driver impulses are neglected (beam density here is below
threshold intensity for direct nonlinear ion excitation [7])
because they act on the ions over their subwavelength short
duration. This is unlike the slowly propagating wake-
plasmon bubbles that undergo continual interaction over
many plasma periods. The validity of this assumption is
evident from the laser ion wake in Fig. 1. Since the
ponderomotive force of a laser driver is an outward force
for both the electrons and ions, the on-axis density spike
cannot be from this direct force from the laser. Similarly the
ion-density spike at the radial wake edge in an electron
beam driven ion motion cannot be excited directly by the
space-charge force of the beam, and is caused by the
electron wake’s radial-edge density compression.
The Lagrangian model of the ions in a bubble consists of

ion rings under cylindrical symmetry with mid2ri=dt2 ¼
ΣFwk (where Fwk is the force of the electron wake on the
ions). The bared-ion region inside the bubble is assumed
to be a positively charged cylinder under steady-state
approximation (RB > rBe, back of the bubble electron
compression radius). The force on the ions from the
nonlinear electron compression δne ¼ nBe ≫ n0 in the
back of the bubble and radius rBe pulls the ion rings
towards the axis; and within the bubble, the mutual space-
charge force of the ion rings leads to them being driven
outwards, away from the axis. The suck-in force on the ions

is Fback ¼ −Zi2πe2nBe
r2Be
ri
. The space-charge force on the

ions in the cavity is Fsc ¼ Zi2πe2n0ri. The equation of

motion ismid2ri=dt2 −
cβϕ
λNp

ðFscτcav − FbackτbackÞ ¼ 0 using

ω2
pi ¼ Zi4πe2n0=mi, we have

d2ri
dt2

þ βϕ
ω2
pi

2

�
nBe
n0

τback
τcav

r2Be
r2i

− 1

�
ri ¼ 0; ð2Þ

where we have assumed that cτcav=λNp ≃ 1. Therefore the
ion dynamics is dictated by an equilibrium or a separatrix
ion-ring radius, where the inward and the outward impulses

balance out, reqi ¼ rBe
ffiffiffiffiffiffiffiffiffiffi
nBe
n0
D

q
. The ion rings at ri ≤ reqi

collapse inwards towards the axis resulting in an on-axis
density spike, whereas the ion rings at ri ≥ reqi move out
away from the axis. For mi=Zi > mp the ion response is
slower but similar.
When the radially outward moving ion rings reach

beyond RB, there is excess net negative charge of the
wake electrons within the bubble sheath. As a result the
radially outwards propagating ion rings pushed initially by
the bubble forces cannot freely escape the bubble sheath
and slow down to start accumulating just inside the bubble
sheath, forming a density compression at RB. So, the
cylindrical ion soliton is formed around RB. This accumu-
lation of the moving ion rings is shown in Fig. 1, where it is
seen that the ion and electron density start forming a peak
at RB.

FIG. 4. Ion dynamics in longitudinally asymmetric phases of
the radial forces in an electron bubble. (a) Electron density of a
bubble in 2D cylindrical real space. (b) Longitudinal on-axis
profile of the electron density (black), longitudinal field (blue),
focusing field (red). (c) Radial-field profile close to the back of
the bubble. This is the focusing suck-in phase for the ions. (d) The
fields at the center of the ion cavity of the bubble. This is the
defocusing “push-out” phase for the ions.
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The radial location of the excitation of the ion soliton in
the nonlinear electron-wave regime is much greater than a
skin depth, c=ωpe; thus the ion wake starts off with a spatial
scale which is over several c=ωpe. This is due to the balance
of opposing radial forces on the plasma electrons from
the driver and the ion cavity, resulting in their radial
accumulation at RB [4]. In the laser-driven case, the
outward ponderomotive force is balanced by the evacuated

ion cavity: Fpm
las ¼ − mec2

2γe
∇rja0ðrÞj2 ≃ Fcav ¼ 2πe2n0RB

gives RB ∼ ðc=ωpeÞ2 1
γe
∇rja0ðrÞj2 when simplified using

∇rja0ðrÞj2 ≃ a20=RB and γe ≃ a0, RB ≃ ffiffiffiffiffi
a0

p c
ωpe

(computa-

tionally, ≃2
ffiffiffiffiffi
a0

p
c=ωpe [4,30]). In the electron beam-driven

bubble the outward force of the beam on the plasma
electrons is balanced by the inward pull of the evacuated
ion cavity: FbðRBÞ ¼ 2πe2nbr2b=RB ≃ Fcav ¼ 2πe2n0RB.
This gives, RB ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λb=ðπn0Þ
p

[30], where Λb ¼ nbπr2b is
the line charge density of the beam, where rb is the beam
radius computed here as 2.3σr to account for 95% of beam
particles for a radially Gaussian beam profile.

B. Bubble field time-asymmetry
driven ion soliton: Simulation results

The above ion-ring model is verified using 2 1
2
D OSIRIS

PIC simulations [31] of the ion wake in the bubble regime
by simulating various energy sources–laser pulses in
Cartesian coordinates and electron beams in cylindrical
coordinates. The laser pulse is circularly polarized with
Gaussian radial and longitudinal profile with a0 ¼ 4 (not
shown a0 ¼ 1.0 to 40.0), pulse length of 30 1

ω0
, matched

focal spot-size radius of 40 c
ω0
, and laser frequency ω0 ¼

10ωpe (the pulse dimensions are in the FWHM of the field).
The electron beam is initialized with γb ∼ 38; 000, nb ¼
5n0 (not shown nb ¼ 0.25n0 to 50n0) and spatial Gaussian
distribution with σr ¼ 0.5 c

ωpe
and σz ¼ 1.5 c

ωpe
(the beam

spatial dimensions are 5σ in both dimensions). The smallest
spatial scale, c=ωpe is resolved in the beam case and c=ω0

in the laser case (laser frequency ω0), with 20 cells in the
longitudinal direction and 50 cells in the transverse
direction. Each of the plasma grid cells has 36 particles.
The beam is initialized with 64 particles per cell. The
plasma is initialized in the Eulerian specification (non-
moving window) and preionized with Zi ¼ 1. At the
longitudinal boundaries we initialize vacuum space of
50c=ωpe followed by density ramps of 20 c=ωpe sandwich-
ing the homogeneous plasma [32]. Absorbing boundary
conditions are used for fields and particles.
The electron-beam driven ion-wake soliton structure

in theory is compared to the simulations in Figs. 4(a)
and 3(a). We observe RB ¼ 2.45c=ωpe (just behind

the beam), whereas the estimated bubble radius is RB ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nb=n0ð2.3σrÞ2

p
¼ 2.57c=ωpe (rb ¼ 2.3σr ¼ 1.15c=ωpe,

the assumption rb ≪ RB is not strictly satisfied). In
Fig. 2 which is in the propagation phase, the observed
ion-wake soliton is located at r≃ 3.3c=ωpe at 460ω−1

pe

which is about 1.7 2π
ωpi
. The ion soliton is excited at an

early time around RB and in the snapshot in Fig. 2 it has
propagated outwards. The on-axis density spike drops to a
minimum at reqi ≈0.45c=ωpe in Fig. 2 whereas the estimated
reqi ¼ 0.5c=ωpe (nBe=n0 ≃ 12, D≃ 0.1, rBe ≃ 0.5c=ωpe).
The radial ion momentum pr − r phase space in Fig. 7(b)
shows the ions accumulate at the axis and the channel edge,
at a time corresponding to Fig. 2(b). The ions at the channel
edge are seen to have a drift velocity and a thermal spread.
The radial electron momentum pr − r phase space in
Fig. 7(a) shows that a large density of thermalized electrons
are trapped within the ion soliton which is confirmed from
the density plots in Fig. 2(a).
In the laser-driven bubble simulations the expected and

observed RB ≃ 4c=ωpe as shown in Fig. 1(a). In Fig. 1(c)
the ion-wake soliton is created at r ¼ 4.2c=ωpe. The
expected and observed on-axis density-spike radius is
reqi ¼ 0.45c=ωpe (nBe=n0 ≃ 8, D≃ 0.1, rBe ≃ 0.5c=ωpe).
The model for the excitation of this structure of the
nonlinear wake has been verified for a range of laser
and beam parameters from quasilinear to strongly nonlinear
electron wake regime.

IV. PROPAGATION PHASE: SOLITON DRIVEN BY
ELECTRON THERMAL PRESSURE GRADIENT

As described in Sec. III the electron bubble–wake train
fields excite a cylindrical ion soliton. Eventually, the
electron oscillations phase mix and thermalize as electron
thermal energy on the time scale of about an ion plasma
period. In light of this ongoing thermalization process over
the evolution of the ion wake, we note that the terminology
of temperature is not exact until phase mixing is complete
and individual electrons have lost any synchronization in
time and space. However, as the energy in the decohering
wake electrons has the tendency of radial outflow, for
simplicity it may be characterized as thermal energy.
In this section we model the propagation of the cylin-

drical soliton radially outwards driven by the temperature
(or wake electron energy) gradient as modeled in Eq. (3).
This soliton propagation is modeled using a modified
cKdV equation in a nonequilibrium condition such that
an electron temperature gradient sustains and drives the
cylindrical ion soliton.

A. Analytical model: Thermally driven
ion-acoustic soliton

In the linear regime the homogenous ion-acoustic wave
equation predicts sinusoidal radial ion oscillations that
support the wave. However, the linearized ion-acoustic
wave equation is inadequate to describe the propagating
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solitary ion density spike at the edge of the ion-wake,
with ion density accumulation many times the background
density.
When the density in the ion perturbation begins to rise to

the order of the background density, the electrostatic
potential due to charge separation between the ions and
the thermal electrons correspondingly rises. This leads to
wave steepening due to the preferential acceleration of ions
in the direction of the ion-acoustic wave velocity. When the
potential of the wave is large enough the ions get trapped
and copropagate at the ion-acoustic wave phase velocity,
this nonlinearity is the basis of the soliton. It should be
noted that the linearized kinetic theory does not formally
incorporate the trapping of particles at the wave phase
velocity. In this limit the density perturbation shape is
therefore not sinusoidal as the copropagating background
ions accumulate and their density perturbation takes the
form of an ion soliton. The copropagating ion velocity in
the soliton can therefore exceed the ion-acoustic phase
velocity, vi > cs andM − 1 > 0 whereM ¼ vi=cs is the
Mach number. Therefore, nonlinear acoustic waves are in
the form of a soliton and propagate faster than the ion-
acoustic velocity.
To the second order, the nonlinear ion-density spike

niðr; tÞ > n0 propagation is governed by the Korteweg–de
Vries (KdV) equation [14] which has propagating solutions
of the form Uðr −McstÞ [13] where U is the ion-acoustic
waveform, a soliton solution and M is the Mach number
(¼ vi=cs) of the propagating solution. Higher-order con-
tributions to the KdV equation have also been considered
by earlier works. However, the more important and relevant
consideration here is that the standard form of the cKdV
equation assumes an isothermal plasma whereas the bubble

wake phase mixes into a plasma with a radial electron
temperature gradient, whereas the ions are initially cold. In
a nonisothermal plasma the effect of trapped electrons in
the ion soliton have been considered using the Bernstein-
Greene-Kruskal model at the ion-acoustic velocity [33].
It is also known that a single ion soliton under the

appropriate conditions can break up into multiple solitons
leading to a N-soliton solution [29]. N-solitons are a train
of multiple solitons that are supported by the soliton
equations because the entire train is a solution too. This is
also a phenomenon we observe in the simulations shown
in the ion density of the beam-driven case at z ¼ 60 c

ωpe

in Fig. 2.
We consider a description of the nonlinear cylindrical

ion-acoustic waves with a radial temperature gradient. We
assume that the background electron trapping does not
significantly modify the distribution function. We assume
that the temperature changes slowly in the vicinity of the
ion soliton. This assumption is validated by the PIC
simulations in Fig. 5.
To obtain the KdV equation [18] in cylindrical coor-

dinates (cKdV) with radial temperature gradient we nor-
malize with respect to the local electron temperature, the

radius: r̂ ¼ r
λD
; time: t̂ ¼ ωpit ¼ t

ffiffiffiffiffiffiffiffiffiffi
4πe2n0
mi

q
; electric field:

Ê ¼ eλDe
kBTe

E; potential: ϕ ¼ e
kBTe

Φ; ion-density perturbation:
n̂i ¼ ni=n0; electron-density perturbation: n̂e ¼ ne=n0;
ion-fluid velocity: v̂ ¼ vi

cs
. Under this normalization the

cylindrical coordinate equations transform as electron
Boltzmann distribution equation ∂n̂e∂r̂ ¼−n̂eÊ−n̂eϕ ∂

∂r̂lnTe,

ion-fluid continuity equation ∂
∂ t̂ n̂i þ 2 n̂iv̂

r̂ þ 2 ∂
∂r̂ n̂iv̂ ¼ 0,

ion-fluid equation of motion ∂
∂ t̂ v̂þ v̂ ∂

∂r̂ v̂ ¼ Ê and the

Poisson equation ∇2Φ ¼ 1
r̂
∂
∂r̂ ðr̂ ÊÞ ¼ n̂i − n̂e. The electric

field Ê is both due to the thermal pressure and the radial
fields of the wake, Êwk þ Êth. But, in the following analysis
the propagation of a nonlinear ion-acoustic wave is
considered, so we assume that the electron oscillations
are thermalized and thus the effect of the fields of the wake
is negligible, Êwk → 0 (to the second order).
We look for a propagating disturbance of n̂e, n̂i, v̂ and Ê

in a stationary background plasma with uniform back-
ground density n0. We consider weakly nonlinear ion-
acoustic wave and expand all the wave quantities in the
powers of δ ¼ M − 1. We perturbatively expand n̂i, n̂e, Ê,
ϕ, Te and v̂i and retain all terms up to the order of δ2. Note
that we have assumed that before the electron wake

excitation the plasma is cold, Tð0Þ
e ≃ 0.

We transform to a moving frame of the steepened ion
density perturbation using the coordinate transform ξ ¼
δ1=2ðr̂ − t̂Þ and τ ¼ δ3=2t̂. Using this, r̂ ¼ δ−1=2ðξþ δ−1τÞ
and ∂ξ

∂τ ¼ ∂ξ
∂ t̂

∂ t̂
∂τ ¼ − 1

δ. We renormalize the electric field as
~E ¼ δ−1=2Ê. Note that in the moving frame the potential

FIG. 5. Radial profile of the root-mean-square radial
electron momentum (proportional to the square root
of the electron temperature,

ffiffiffiffiffi
Te

p
) at 460 ω−1

pe for the beam-
driven ion wake in Fig. 2. The blue curve shows the
root-mean-squared radial electron momentum, pe

thðrÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Σkp2

rðk; rÞ2πrneðk; rÞ�=Σk2πrneðk; rÞ
p

profile of the wake
electrons corresponding to the time in Fig. 2 at 460 ω−1

pe . This
represents the square root of the electron temperature, pe

th ∝
ffiffiffiffiffi
Te

p
.

The radial gradient of the temperature, ∂
∂r Te is thus computed at

the peak of the soliton (red) and in its vicinity (green). It is

interesting to note that ∂
∂r T

ð1Þ
e jpeak ¼ 0.
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gradient is E ¼ − ∂
∂r̂Φ ¼ −δ1=2 ∂

∂ξΦ, so ~E is a more
appropriate quantity.
Under the assumption that in the moving frame the

quantities of the disturbance change with small δ¼M−1,
the terms in equations are perturbatively expanded and the
terms with same powers of δ are collected. From the δ1

order terms of all the equations above, it is inferred that

Φð1Þ ¼ nð1Þe ¼ vð1Þ ¼ nð1Þi ≡ U and ∂
∂ξU ¼ − ~Eð1Þ.

By collecting the δ2 terms from the Boltzmann’s equa-

tion we obtain ~Eð2Þ ¼ − ∂
∂ξ n

ð2Þ
e þ U ∂

∂ξU − U ∂
∂ξT

ð1Þ
e .

Similarly, collecting the δ2 terms from the ion-fluid

equation of motion we obtain ∂
∂ξ v̂ð2Þ −

∂
∂ξ n

ð2Þ
e ¼

∂
∂τU þ U ∂

∂ξT
ð1Þ
e and from the Poisson equation we obtain

∂3
∂ξ3 U ¼ − ∂

∂ξ ðnð2Þi − nð2Þe Þ. Taking the δ-order terms of the

continuity equation and substituting U we obtain

Uþτ
�

∂
∂τUþ2U ∂

∂ξUþ
h
∂
∂ξvð2Þ−

∂
∂ξn

ð2Þ
e

i�
−δðU2þvð2ÞÞ¼0.

Neglecting quantities with δ times the second-order
terms and using the ∂

∂τU result above, U
τ þ 2 ∂

∂τU þ
2U ∂

∂ξU þ ½ ∂∂ξnð2Þe − ∂
∂ξ n

ð2Þ
i � ¼ −U ∂

∂ξT
ð1Þ
e .

Using the δ2 terms of the Poisson equation in the above
result and using the self-similarity property of the ion
soliton, we obtain the driven Korteweg–de Vries equation
in cylindrical coordinates [11] (a more detailed derivation
of this modified cKdV model can be found in [18]),

Φð1Þ ¼ nð1Þe ¼ vð1Þ ¼ nð1Þi ≡ U

U

τ
þ 2

∂
∂τU þ 2U

∂
∂ξU þ ∂3

∂ξ3U ¼ −U
∂
∂ξT

ð1Þ
e : ð3Þ

It differs from the Cartesian-KdVequation by the term U
τ

and the temperature-gradient based driver term −U ∂
∂ξT

ð1Þ
e .

The Cartesian KdV equation can be analytically solved to
obtain two classes of solutions: (a) self-similar solutions
which are shown in [13] to be Airy functions and (b) soliton
solutions. A “soliton” is a single isolated pulse which
retains its shape as it propagates at some velocity, vsoliton.
This means that for a solitonlike solution U only depends
upon the soliton-frame variable, ζ ¼ ξ −Mcsτ and not on
spacelike ξ and timelike τ variables separately. The solution
of the Cartesian KdV equation in this comoving frame is
UðζÞ ¼ 3vssech2ð

ffiffiffiffivs
2

p
ζÞ [13].

The cKdV equation and the driven cKdV equation
obtained here cannot be solved analytically. However,
earlier numerical analysis and experimental verification
[12] of the cylindrical-KdV (cKdV) equation show that it
supports functions of the form U ∝ sech2ðr −McstÞ in
the form of a cylindrical ion soliton. But, the amplitude of
the cylindrical soliton changes as it propagates. The
velocity of the soliton in the cylindrical case is higher
than in the Cartesian case [11]. Since the ion wake is

excited in a nonisothermal plasma its velocity changes as it
is driven. The mean electron temperature reduces as the
soliton propagates radially outwards because the electron
thermal energy is distributed over a larger volume, thus as
the drive weakens the soliton slows down.
We have numerically solved the driven-cKdV equation,

Eq. (3) and as expected, when the right-hand side is set to
zero, the amplitude of an outwards propagating ion soliton
asymptotically decreases over time. However, when the
driving term is present the soliton amplitude stabilizes or
undergoes growth depending upon the initial temperature.
Note that the integrated thermal energy is held constant in
these numerical analyses. Thus, this work shows that the
wake electron temperature gradient radially drives the ion
soliton for much longer distances than possible in an
isothermal plasma.
The cKdV equation is also known to support an

N-soliton solution, and simulations show N-soliton form-
ing during the propagation phase. We computationally seek
the dependence of the nonlinear ion-density spike on the
ðr −McstÞ-coordinate.
It should be noted that such soliton solutions are

supported under certain limiting conditions on the Mach
number, M. The strict condition on the existence and
stability of ion soliton arises from a threshold limit on the
magnitude of soliton potential to continue trapping the
background ions.
Here we find that the speed of the ion soliton is nearly

equal to and only slightly higher that the ion-acoustic speed
calculated using the mean temperature. As this is not an
isothermal plasma, there is no well-defined ion-acoustic
speed. So, the ion-acoustic wave is phase mixed and its
velocity also changes as it propagates.
The local electron temperature of the ion soliton, as

shown in Fig. 5, is used to calculate the Mach number M
and thus a stability criterion can be derived. This problem is
represented using the condition on the Sagdeev pseudo-
potential, VðϕÞ¼−½expðϕÞ−1þMðM2−2ϕÞ1=2−M2�
that it has to be a real number. This condition is
satisfied when M2 − 2ϕ ≥ 0; therefore, ϕ < M2=2 and
ϕmax ¼ M2=2. Using this we find the well-known
condition,

1 < M < 1.6; vi < 1.6cs

ϕ <
M2

max

2
¼ 1.28: ð4Þ

As will be shown later, we find from simulations that the
Mach number calculated using the mean temperature is
well within these bounds, and thus the soliton is stable.

B. Simulation results: Thermally driven
ion-acoustic soliton

The channel-edge density spike, with a form similar to
the cKdV solution in the r −Mcst frame as shown in
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Figs. 1 and 2 is seen to be propagating radially outwards.
The propagation phase starts around t ¼ 200ω−1

pe as the
radial electric fields Ewk → 0 as shown in Fig. 6(b). The
propagation phase is evident in Fig. 6(a) where the red
curve is the position of the peak of the ion soliton in time.
The radial position of the peak of the ion soliton from
each of the PIC electrons and ion density snapshot is
obtained in the postprocessing scripts and this is shown in
Fig. 6(a). The cylindrical ion soliton has propagated
from rsolitonð460ω−1

pe Þ ¼ 3.3c=ωpe (also seen in Fig. 2) to

rsolitonð1100ω−1
pe Þ ¼ 4.1c=ωpe which corresponds to an

average speed of hvsolitoni ¼ 0.0013c.
We compare the time-averaged soliton speed hvsolitoni to

the average speed of sound, cs=c ¼ pe
th

ffiffiffiffiffiffiffiffi
ϒ
2
me
mi

q
, where the

average pe
th ≃ 0.06 from the electron phase space (not

shown). This gives cs ≃ 0.001c (ϒ ¼ 2 for 2D) in agree-
ment with the average soliton velocity. Using this time-
averaged analysis we see thatM≃ 1.3 and so the stability
criteria in Eq. (4) is satisfied.
However, as the soliton moves out the volume between

the axis and the soliton edge increases. Thus the electron
thermal energy redistributes and spreads over a larger
volume. This leads to the reduction in the temperature with
time. The soliton is not freely propagating but is driven by
the radial gradient of the electron temperature as shown in
Eq. (3). The soliton speed thus changes in time as shown in
the red curve of Fig. 6(c). The sound speed also varies with
time and it is estimated using the temperature at that instant
using csðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBhTeðtÞi=mi

p
. The plasma is not in thermal

equilibrium and its temperature varies radially as shown in
Fig. 5. The root-mean-square radial momentum is used to
estimate the temperature at any instant of time, and is

FIG. 6. Time evolution of the cylindrical ion soliton. (a) Elec-
tron (black) and ion (red) spike radial positions (in terms of cω−1

pe )
with time and a third-order fit (green) for the position of the ion
density-spike of the soliton. (b) Radial fields of the electron
bubble oscillations (in terms of mecωpee−1) at the electron
density spike (magenta) and at the ion density spike (blue).
(c) Radial velocity of the ion density spike of the soliton
calculated from the third-order fit curve (red). An estimate of
the sound speed (green) using the mean temperature, between the
axis and the soliton location (green) and in the vicinity of the
soliton peak (blue), in the expression cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBhTei=mi

p
. Since

the plasma is not isothermal the mean temperature is calculated
by averaging the temperature of electrons over the indicated
spatial region. (d) Gradient of the electron temperature at the
soliton ion density peak (blue) and in the vicinity of the peak
(red). The vicinity of the ion density peak of the soliton is defined
as shown in Fig. 5.

FIG. 7. Radial phase-space snapshots of the electron and ion
density in Fig. 2. (a) Electron pr − r radial momentum phase
space showing the accumulation of thermalized electrons within
the ion soliton. (b) Ion pr − r radial momentum phase space
showing the on-axis and ion-wake edge ion accumulations.
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calculated over radial dimension from the pr − r phase
space. The mean temperature is calculated by taking
the average of the rms radial momentum—over the
entire channel: channel-hpe

thi ¼ ½Σrsol
r¼0pthðrÞ2πrneðrÞ�=

Σrsol
r¼02πrneðrÞ ∝ channel −

ffiffiffiffiffiffiffiffiffihTei
p

or in the vicinity
of the soliton: soliton-hpe

thi¼½Σrsolþϵ
rsol−ϵpthðrÞ2πrneðrÞ�=

Σrsolþϵ
rsol−ϵ2πrneðrÞ∝soliton−

ffiffiffiffiffiffiffiffiffihTei
p

. The instantaneous sound
speed, csðtÞ computed with channel-hpe

thi is in the green
curve in Fig. 6(c) and csðtÞ computedwith soliton-hpe

thi is in
the blue curve in Fig. 6(c). The extent of the vicinity (ϵ)
around the soliton peak is shown in Fig. 5.
We compare the curves in (i) red: vsolitonðtÞ (from the

third order polynomial curve fit of the radial position of the
ion-density peak as a function of time); (ii) green: csðtÞ
from channel-hpe

thðtÞi; and (iii) blue: csðtÞ from soliton-
hpe

thðtÞi in Fig. 6(c). From the comparison it is observed
that they are in good agreement. It can be seen that the
velocity of the soliton estimated using the location of the
ion-density peak (red) lies between csðtÞ calculated using
the average temperature over the channel (green) which is
the upper limit and csðtÞ calculated using the average
temperature over the soliton (blue) which is the lower limit.
We also present the radial gradient of the electron

temperature, ∂
∂r Teðr; tÞ in Fig. 6(d). It is interesting to note

from the blue curve in Fig. 6(d) that the temperature gradient

at the peak of the ion soliton is zero, ∂
∂r Teðr; tÞjpeak ¼ 0.

In the vicinity of the soliton peak we see that the gradient of
the temperature follows the variation in the ion soliton
velocity, this follows fromEq. (3). Thevicinity of the soliton
peak is shown as the green curve overlaid on the thermal
momentum curve in Fig. 5.
In Fig. 2(b) N-soliton formation is observed in the ion

density at around z≃ 60 c
ωpe
. The single-ion soliton is seen

splitting into several solitons. The N-soliton solution can be
explained by the seeding of different initial momentum of
the ion rings because ion rings driven in the push-out phase
have a radial position dependent defocusing force acting on
them, FscðriÞ ¼ Zi2πe2n0ri. This is shown in Fig. 4(d).
Thus the ion rings originating at a larger radii from the axis
are pushed outwards with a force of a higher magnitude and
the rings originating at a smaller radii just outside reqi are
pushed outwards by a smaller force. So, over a longer time
the set of ion rings with a higher initial momentum
propagate radially outwards at a larger radial velocity.
This break-up of a single ion soliton into N-solitons occurs
over a longer time scale because the difference in momen-
tum is small compared to the average momentum.
The thermal momentum, pth

e , at this time is less than one-
tenth of the peak wake quiver momentum. There are several
reasons for the cooling, such as transfer of the wake energy
to the ions and the trapped electrons [32], escape of
the highest energy electrons and untrapped ions from the
channel edge, the thermal heat flux, energy loss to the

bow-shock and the redistribution of the energy over an
expanding volume. The peak radial ion momentum is
≃0.005 which shows that not all the radially propagating
ions are trapped. The untrapped free-streaming ions at
≃7c=ωpe can be distinguished from the ions at the channel
edge in pr − r phase space.
It shouldbenoted that the long-term stability of theon-axis

ion-density spike of the nonlinear ion-acoustic wave is not
fully modeled here. The on-axis ion-density spike will
disintegrate due to mutual Coulomb repulsion of the ions
over the sub-skin-depth spike radius. This effect of the
collapse of the on-axis density spike will be addressed in
future work. We expect that the disintegration of the central
structure to be further by azimuthal asymmetries not included
in the cylindrically symmetric simulations. Earlier disinte-
gration is seen in Cartesian simulations shown in [18].
In summary, the ion wake is a near-void channel with

sub-skin-depth density spikes on axis and at the bubble
edge located at the bubble radius, RB of several c=ωpe. The
ion accumulation in both the density spikes is many times
the background density, and the outer spike propagates
outwards as a solitary structure at slightly above the speed
of sound.
The time scale of dissipation of ion wake and relaxation

of the plasma distribution to vth=c ∼ 0 sets an upper limit
on the repetition rate [17] of the future plasma colliders. In
our PIC based analysis, the ion soliton is tracked up to time
duration of around 3000 ω−1

pe , which is used to infer an
upper limit on repetition rate of the order of 0.5 ns. It is well
known that the ion acoustic wave is damped by collisions
and ion-wave Landau damping. The ion dynamics opens
questions upon the plasma container walls and the distance
needed from the beam axis to avoid damaging them by the
significant radially outward ion flux. We leave a more
complete answer for the dissipation of the ion wake and
equilibration of the plasma for future work.
It was earlier suggested that the electron-mode energy in

the plasma wave could be replenished and sustained [34] by
a train of energy source in order to achieve high repetition
rate. However, as shown in this paper due to ion motion this
is not possible.

V. CRUNCH-IN REGIME IN THE
ION-WAKE CHANNEL

We explore the use of the ion-wake channel for positron-
beam driven plasma acceleration of particle beams in a
novel and relevant crunch-in regime [9,10]. This regime
requires that the hollow-channel (n0 density outside chan-
nel and 0 density inside it, with a Heaviside function like
transition) radius be matched to the beam properties, which
requires meter-scale channel of a few c=ωpe radius, this
condition is indeed satisfied by the ion-wake channel.
Hollow channels are promising [35,36] for exciting the

well-studied purely electromagnetic electron modes based
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on particle currents on the surface of walls. These pure
electromagnetic fields driven in a hollow channel have
proven to have zero focusing forces when driven by
relativistic particles [36]. In the crunch-in regime the on-
axis focusing forces originate from the on-axis compression
of electrons which produce a field that pull positrons
towards the axis.
Here we show that in the crunch-in regime driven even in

an ion-wake channel, strong accelerating and focusing fields
of electrostatic nature are excited by the electron rings
crunching in from the channel wall. The ion wake enables
the crunch-in regime because as it slowly propagates radially
outwards, the channel radii scans over a broad range of
coefficients of c=ωpe, while its length is the energy-source
plasma interaction length. Meter-scale propagation of elec-
tron beams and few centimeter-scale propagation of laser
beams in plasmas while exciting nonlinear bubble electron
waves have been well characterized in experiments. The
theoretical model presented above thus provides a mecha-
nism to generate long channels of several skin-depth radii.
As we show below, the excitation of nonlinear crunch-in
regime requires such channels to optimally match with the
driving energy source.
It is well known [37] that in a homogeneous plasma

positron beam driven wakes have two major problems [9]:
(i) The plasma electrons collapsing to the axis from
different radii arrive at different times, preventing optimal
compression. This is because the radial force of the positron
beam driving the crunch-in decreases with the radii. (ii) The
plasma ions located in the path of the positron beam result
in a defocusing force on it. The transport of positrons in a
positron-beam driven wake is thus not ideal in a homog-
enous plasma. The use of ion-wake channels with a few
c=ωpe is shown here to provide possible pathways to
overcome these fundamental problems.
The formation of much shorter plasma channels excited

by significantly different processes have been shown
previously. These processes include using a collimated
laser with annular profile [38], using a hollow capillary
discharge [39], among others [23,40].

A. Analytical model: Nonlinearly
driven ion-wake channel

Positron acceleration using the ion-wake channel which
is a realization of a hollow channel is explored in the
nonlinear crunch-in regime of perturbed electron oscillation
radii, δre ≥ rch, under the condition that the peak beam
density npb > n0. Here we intend to show that the radial
electron motion which sustains the nonlinear cylindrical
surface mode has the characteristics that the on-axis
electron collapse time depends on beam properties in
addition to the channel radius.
An analytical model of the radial electron suck-in based

excitation of a positron beam wake in a homogeneous
plasma is developed in [37]. The equation of motion of the

plasma electron rings at r from the axis, under the
electrostatic force of a positron beam, neglecting the
space-charge force of the collapsing electron rings is
d2

dξ2 r ∝ − 1
r nbpðξÞr2bpðξÞ, where ξ ¼ cβpbt − z is the space

just behind the positron beam with velocity cβpb driving the
collapse. This is under an assumption about the positron-
beam properties, nbpðξÞ and rbpðξÞ being constant during
the entire interaction of the positron beam with the
hollow channel over its full length. The solution to this
equation is [9] rch

ffiffiffi
π

p
erf½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðrch=rÞ
p � ¼ −

ffiffiffiffiffiffi
2C

p
ξ, where

C ¼ 1
2πβ2b

nbp
n0
πð rbp

c=ωpe
Þ2. Therefore, the collapse time duration

is ξcoll ¼ −rch
ffiffiffiffi
π
2C

p
. The collapse time in a homogeneous

plasma is [37]

τc ¼
ffiffiffi
π

p rch
ωpe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nbp=n0

p
rpb:

ð5Þ

We have used this expression to show that the collapse time
even in a homogeneous plasma depends strongly on the
properties of the beam and the radius from which the rings
are collapsing in. This solution is however not applicable to
the nonlinear hollow-channel regime, because the ion
density only exists for r > rch. Also, note that we have
neglected the initial expansion velocity of the channel,
drch=dt).
In a hollow channel for optimal compression of electrons

avoiding phase mixing, the electron rings should collapse
over τc ≃DλNp=c, where λNp is the nonlinear wavelength
of the positron-driven wake and D is the duty cycle of
compression phase. So, the optimal channel radius is

roptch ≃ 2
ffiffiffi
π

p
D λNp

λpe

ωpb

ωpe
rpb. The scaling of the r

opt
ch with positron

beam parameters is shown in [9].

B. Simulation result: Nonlinearly driven
ion-wake channel

Using 2 1
2
D PIC simulations in a moving window we

study the positron beam driven fields in cylindrical hollow-
channel plasma. We compare positron acceleration in an
ideal [Heaviside density function, n0Hðr − rchÞ] and an
ion-wake channel (with on-axis and channel-edge density
spike, channel minimum density of 0.1n0) with
rch ¼ 2.5c=ωpe, under fixed-ion assumption. For nonlinear
wake parameters rpb ¼ 2.3c=ωpe, npb ¼ 1.3n0 and roptch ≃
2.3c=ωpe (D

λNp
λpe

¼ 0.25).

The radial variation of the fields presented in Fig. 8(b) at
the peak longitudinal field shows that the peak on-axis
accelerating field is 0.4mecωpee−1 for an ideal channel and
0.2mecωpee−1 for the ion-wake channel with an on-axis
density spike. Figure 8 also shows that the potential of the
focussing force (normalized to 27.6mec2e−1) is similar and
overall focusing in both cases. However, in the ion channel
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the radial field is defocusing around the on-axis ion spike
(on-axis spike collapses at later times).
We note that the on-axis density spike has a detrimental

effect on the focusing fields near the axis. However, the on-
axis density spike is unstable over longer time scales and
collapses as shown in [18]. The cylindrical simulations
used in the current work to model the ion wake ignore any
azimuthal asymmetries in the distribution of electrons and
ions in the on-axis density spike. Exploring the collapse of
the on-axis density spike will be addressed in future work.
Ideal channels of a few c=ωpe are technologically chal-
lenging whereas the ion-wake channel of radius rch ≳ RB is
formed behind every bubble electron wake.

VI. CONCLUSION

In conclusion, using theory and PIC simulations we have
shown the dynamics of the formation and evolution of a
nonlinear ion wake excited by the time-asymmetric nature

of electron bubble fields independent of the type of energy
source. We have shown that the nonlinear ion wake has the
characteristics of a cylindrical ion-soliton solution contin-
uously driven by temperature gradient and evolves to an
N-soliton solution over longer time as described by a driven
cKdV equation. Thus over the period of persistence of the
ion soliton, a second electron bunch cannot be accelerated
in the plasma. We have tracked the ion soliton over a time
scale of thousands of plasma electron periods which
corresponds to hundreds of picosecond for 1017 cm−3
plasma electron densities. This establishes an upper limit
on the repetition rate of a plasma collider of at least many
hundreds of picoseconds for plasma electron densities
around 1017 cm−3. We have also shown the feasibility of
using the ion-wake channel for positron acceleration in the
positron-beam driven crunch-in regime within an exper-
imentally relevant parameter regime.
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APPENDIX: CONSIDERATIONS IN THE
NONLINEAR ION-WAKE MODEL

There are several considerations and assumptions that
underlie the nonlinear ion-wake model. Here we briefly
describe these and seek to differentiate the ion wake from
other phenomena. Primarily, we establish that the ion wake
is a collisionless phenomena and it is significantly different
from diffusion. Second, as the ion wake is formed behind
the high phase-velocity nonlinear electron plasma waves
that are excited by the fields of near speed of light
propagating energy sources, it is significantly different
from hole-boring which occurs while the energy source has
near-zero group velocity.
We recognize that to study the time evolution of a wake-

excited plasma, for establishing the duration over which it

FIG. 8. 2D-PIC simulations: (a) electron density in real space
showing electron density excitation in the crunch-in regime;
(b) corresponding radial profile of fields excited by a positron
beam in an ideal-channel versus an ion-wake channel. The
radial profile of the normalized electron density (black) in an
ion-wake channel (normalized to the maximum electron com-
pression) at longitudinal location of the peak accelerating field
(rpb ¼ 2.3c=ωpe, γpb ¼ 380 00, npb ¼ 1.3n0). The radial profile
of the accelerating field and the normalized potential of the
focusing field (Er-Bθ) (radial field integrated from the edge of the
box to a radius on x-axis).
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relaxes to thermal equilibrium, both collisional and colli-
sionless dynamics have to be considered along with the
physics of recombination modes such as electron-ion
recombination. However, in this work the dynamics of
plasma is modeled under the collisionless approximation.
Thus, diffusion is not important during the time scales over
which the ion wake is studied. We do not discuss
recombination except mentioning that the “afterglow” is
dominated by volume recombination while localized
effects appearing in this work cannot be ruled out.
In order to formally establish the difference between the

density wave processes that occur over collisionless time
scale in contrast to the ones that start dominating under
collisions, we show the assumptions made to arrive at the
dynamics of diffusion. The process of diffusion is modeled
with a parabolic partial differential equation which is
deduced from the ion-fluid equations under the assumption
that the inertial response of the ions is much faster than the
collisional time scales.
The effect of collisions is introduced as a drag

force, minνcollhv⃗ii. The collisional drag force modifies
the ion-fluid equation of motion as mini

dv⃗i
dt ¼ minið∂hv⃗ii∂t þ

hv⃗ii∇⃗ · hv⃗iiÞ ¼ �enE⃗ − ∇⃗Pe −miniνcollhv⃗ii where νcoll is
the average electron-ion collision frequency and is obtained
from the mean-free path. Diffusion of plasma is thus driven
by the charge-separation field, E⃗, and the thermal pressure,
Pe, while being impeded by the collisional drag. Upon
ignoring the inertia of the ions, ∂v⃗i∂t ¼ 0, the equation for the
ion velocity by diffusion in an isothermal plasma is

hv⃗ii ¼ � e
mνcoll

E⃗ − kBTe
mνcoll

∇⃗ni
n0
. The characteristic parameter

of diffusion is the diffusion coefficient or diffusivity D ¼
kBTe
mνcoll

and mobility μ ¼ e
mνcoll

which depend upon the colli-
sion frequency. Using the gradient of the velocity in the
continuity equation and ignoring the mobility, μ, leads to a
Fick’s law diffusion equation,∇2 ni

n0
∝ ∂

∂t
ni
n0
, characteristic of

a parabolic equation.
When the mobility is retained, the fluid equation is a

moment of the Fokker-Planck equation which is the kinetic
model of the collision-driven drift and diffusion. The
diffusion equation thus cannot support a wavelike solution
because such solutions are characteristic of a hyperbolic
partial differential equation.
The solutions of linear and nonlinear diffusion equations

show the evolution of density profile by diffusion and can be
obtained using the self-similar formulation. The self-similar
solutions show the spatial and temporal evolution of the
density to be exponentially decaying. In the nonlinear case,
the density can have a sharp front as it decays. However, a
solitonlike propagating solution cannot be described with
the diffusion equation. Hence, the cylindrical ion soliton
presented here is not diffusion but a wave phenomenon.
The electron bubble wake is excited by a subwavelength

impulse of an ultrashort driver. In contrast, the ion wake is

excited as the ions undergo sustained interactions with the
bubble fields within the spatial extent of the wake over
several plasma electron oscillations. This happens because
the electron wake-plasmon oscillations [28] have a near
speed-of-light phase velocity (βϕ ≃ 1) but negligible group

velocity [27] βg ≈ 3v2th=c
2 (in the 1D limit), where vth ≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBTe=me

p
is the mean electron thermal velocity of the

background plasma. Therefore a slowly propagating train
of coupled electron plasmons is excited in a cold collision-
less plasma [27]. A large difference between phase velocity
and the group velocity of the electron oscillations allows
sustained field-ion interactions. It should be noted that high
phase-velocity plasma electron waves are possible only
in a cold plasma with appropriate density, n0, that allows
near speed-of-light propagation of the energy sources,
βes ≃ 1 ≊ βϕ. The ion soliton modeled here is assuming
a significant difference between the phase velocity and the
group velocity of the plasma-electron waves.
A time symmetric electron mode would excite time

symmetric ion oscillations where the ion velocities average
to zero. However, the bubble wake is asymmetric in time as
the back of the bubble electron compression is a small
fraction of the length of electron cavitation. The electron
oscillations become nonlinear at high driver intensities
as all the interacting electrons are displaced radially,
δne=n0 > 1, forming a nonlinear bubble-shaped electron
spatial structure enclosing ions in its cavity. The fields
excited in the bubble are useful for accelerating electrons
[5,15,16]. High intensities also lead to fields that can
directly drive the plasma electrons to velocities near the
speed of light. This occurs when for a laser pulse a0 ≥ 1

and an electron beam nb
n0
ð rb
c=ωpe

Þ2 ≥ 1, where a0 is the peak

normalized laser vector potential, nb, rb the peak beam
density and radius. The radially expelled electrons oscillate
radially under the force of the plasma ions. These oscil-
lations are excited over plasma electron oscillation time
scales, 2πω−1

pe (ωpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πn0e2=γeme

p
), where γeβemec is

the temporally anharmonic relativistic electron quiver
momentum. The normalized quiver momentum of the
electrons in the bubble oscillations is relativistic γ⊥β⊥≥1
and the quiver frequency is ω⊥ ¼ ωpeð β2ϕ

γð1−β2ϕÞ
Þ1=2 [1].

We show that nonlinear ultrarelativistic electron-
mode fields interacting with the plasma ions lead to the
excitation of a nonlinear ion wake. The nonlinear ion wake
δni=n0 > 1 in Figs. 1 and 2 is excited over time scales
≫2πω−1

pe in the trail of a bubble-wake train. By shaping the
energy source it can be matched or guided to excite a long
train of nearly identical plasmons, Fig. 3. Since it is the
electric fieldEwk of a nearly stationary bubble plasmon that
excites collective ion motion we model the ion dynamics in
a single bubble. Using the single bubble ion dynamics,
Fig. 4, we model the ion wake over the whole bubble train
spanning several hundred plasma skin depths (c=ωpe).
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The wake-plasmon energy density {Ewk ¼ 0.5½ejEpj=
ðmecωpeÞ�2mec2n0, where Ep is the plasma field ampli-
tude} is continually partitioned between the field energy
and the coherent electron quiver kinetic energy. In our
model we do not include heavy beam loading of the bubble
electron wake. Under heavy beam loading the bubble field
energy is efficiently coupled to the kinetic energy of the
accelerated beam. In this scenario the bubble collapses and
the magnitude of the ion wake is smaller. The decoherence
of the ordered electron quiver to random thermal energy,
Ewk → kBTwk, due to the phase mixing [21] of individual
electron trajectories caused by the nonlinearities and
inhomogeneities is further stimulated by the ion motion.
The details of the thermalization of the wake electrons
under ion motion is beyond the scope of this paper. It is
over these time scales upon thermalization that the steep-
ened ion density expands outwards radially as a nonlinear
ion-acoustic wave driven by the electron thermal pressure.
The energy transfer process observed here is a coupling
from the nonlinear plasma electron mode to a nonlinear
ion-acoustic mode [8]. We also observe energy coupling to
the bow-shock which is formed behind the bubble, Fig. 4,
due to the trapped particles propagating faster than wave
phase velocity.
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