Striking the balance between primary prevention of allergic disease and optimal infant growth and nutrition.

*John Wei-Liang Tan, MB,BS, FRACP, *Paul J Turner, BM, BCh, FRACP, PhD, Carolina Valerio, Rebecca Sertori BN, Elizabeth H Barnes, BAppSc, MStat,

Dianne E. Campbell, MB,BS, FRACP PhD.

*The Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia; b The Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney, Australia; c NHMRC Clinical Trials Centre, University of Sydney d The Section of Paediatrics (Allergy and Infectious Diseases) and MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK.

*John Wei-Liang Tan and Paul J Turner contributed equally to this work

Key words: allergy, food allergy, primary prevention, breast feeding, infant, growth

Tables -2

Word count 1577

Corresponding Author:
Professor Dianne E. Campbell, FRACP, PhD
Allergy and Immunology, Children’s Hospital at Westmead
NSW 2145
Australia
Phone: +61 298453366
Fax: +61 298453421
E-mail: dianne.campbell1@health.nsw.gov.au
To the editor:

The timing of introduction of solids and/or complementary feeds continues to be an area of intense interest with respect to allergy prevention and general optimal infant nutrition. There is recent evidence from RCTs (1-3) and a meta-analysis(1), that the earlier introduction of peanut (between 4 and 11 months) and egg (between 4 and 6 months), in infants at higher risk of allergic disease, may be beneficial. However, concerns have been raised over the impact this may have on duration of breastfeeding, nutrition and growth, when a high protein and calorie-containing food, such as egg or peanut, is introduced. Duration of breast feeding appears to have little impact on development of allergic disease, but is important for protection against overweight and obesity, diabetes and childhood infections (particularly in resource poor settings)(4).

We recently reported results from a primary prevention RCT (the BEAT study) which examined the effect of dietary introduction of egg, from 4 months of age, on sensitization and allergy to egg at age 12 months. Methods and results have been published elsewhere(3), but briefly infants were randomized (in a double-blind fashion) to receive either 350mg of whole pasteurized powdered egg or placebo (rice powder) daily following successful weaning on to appropriate solids from 4 months of age, until dietary liberalization at 8 months. Infants were otherwise on a strict egg-free diet from 4-8 months of age.

We were interested to explore any possible impact of the intervention (or introduction of solids) from 4 months of age on growth or duration of breastfeeding. Differences in proportions between groups was analysed by Chi-squared tests, and growth parameters at 4, 8 and 12 months between groups were compared using non-parametric rank test.

319 infants attended the initial visit at approximately 4 months of age (mean=3.9, SD= 0.5). Detailed feeding data were collected at this visit, and at 8 and 12 months. As might be expected, parents of study infants were generally well-educated and had higher combined annual household incomes than the general population. 65% of mothers had tertiary qualifications and 56% of families had a combined income greater than $AUD100,000/year. 44% of infants had at least one parent born outside Australasia, with parents born in Greater Asia (South East Asia, India, China) constituting the largest group of those with non-Australasian region of birth.

At the initial 4 month visit, 72% (230) of infants were receiving breast milk and 45% (142) exclusively breastfed. 9% (30) had never been breastfed and 29% (66) of breastfeeding mothers were avoiding specific allergenic foods in their own diets-despite receiving no medical advice to do so. In the 177 infants not exclusively breastfed at 4 months, formula was started at a median age of 1 month (IQR- 0.0-2.0) and the majority receiving formula were on a standard cow’s milk based formula (142/177). Across the cohort, 69 (22%) of 319 infants had already recently commenced solids prior to the first study visit at 4 months (median 4 months IQR-
The median age at introduction of the study intervention was 4.0 months (IQR 4.0-4.8) for egg and 4.0 (IQR 4.0-4.5) for placebo respectively.

At 8 months all infants were receiving solids (as part of the study protocol) and the majority (201, 63%) had introduced solids successfully between 4 and 5 months of age. The most common first weaning foods were fruits and vegetables, with over 80-100% of infants having been successfully introduced to grains, vegetables, fruits and meat by 8 months of age. 45% (118) and 23% (57) infants were still receiving breast milk at 8 and 12 months respectively; this did not vary by study intervention (p=0.78 and p=0.068 at 8 and 12 months, respectively).

Growth parameters for the infants are shown in Table 1. There were no differences in weight, length or weight-for-length (WFL) between those randomised to receive egg or placebo at baseline (4 months), 8 or 12 months of age. Infants in the egg-introduction arm had slightly lower head circumference at baseline prior to any intervention, which persisted throughout the study. There was no difference in weight, length, WFL or head circumference between those 69 infants who had received solids prior to the first visit (4 months) and the remainder of the cohort at 4, 8 or 12 months.

In our cohort, duration of breastfeeding did not differ between those receiving early introduction of egg and those in the placebo arm (receiving rice), and is in line with recent Australian population data(5). Both groups in our study had a median age of introduction of the allocated intervention of 4.0 months. There are a number of caveats to interpreting growth and feeding data from this study cohort. Firstly, this was not a primary outcome measure of the study, and the study was not specifically powered to examine growth or duration of breastfeeding. The study was blinded, so any potential effects on growth or breastfeeding duration are unlikely to be related to parental knowledge of the allocated intervention, but rather could be due to the higher fat, protein and overall caloric content of the egg (weight for weight, rice powder has 70% of total energy of egg, 20 times less fat and approximately 7 times less protein).

Both study groups were encouraged to introduce solids from 4 months of age, so it is not possible to draw any direct conclusions about how growth or breastfeeding duration may have been altered by delaying introduction of solids to after 6 months of age. This is in contrast to the EAT study(6), where infants were either randomised to introduce 6 allergenic foods from 3 months of age, or encouraged to follow UK infant feeding guidelines (solids from 6 months of age). No impact on growth(7) or duration of breastfeeding(8) were noted between the early intervention and conventional introduction groups in the EAT study, and growth patterns between studies were very similar (Table 2); however higher rates of breast feeding were achieved in both groups in the EAT study at 9 and 12 months, compared to our cohort.

It is possible to make some comparisons between growth and feeding parameters of infants from our study and known Australian population norms; however, our study infants may not be wholly representative of the general population, with higher maternal education and household income both being associated with longer duration of exclusive and any breastfeeding in high resource settings such as Australia(9). In 2010 the Australian National Infant Feeding Survey (ANIFS)(5) reported that only 39% of infants were exclusively breastfed after 3 months of age, and 60% were still receiving some breast milk at 6 months. These rates were higher in mothers with a higher level of education: 80% and 62% with degree or diploma respectively were...
exclusively breastfeeding their infants at 4 months of age, with 53% and 36%
continuing to breastfeed to some degree between 7-12 months (exact breastfeeding
rates at 8 months were not reported in ANIFS). These rates are very similar to those in
our study, suggesting that within this demographic, neither encouragement to
introduce solids from 4 months nor introduction of a high protein food (egg) from 4
months appeared to greatly influence the duration of breastfeeding. It is noteworthy
that 22% of infants in our cohort had already commenced solids prior to 4 months of
age, which was contrary to Australian infant feeding guidelines, nor encouraged by
the study coordinators. This is also at odds with ANIFS data, where only 2% of
mother with a tertiary education, and 5% of infants with a family income
> AUD$88,000 had solids introduced before age 4 months.

We did not observe any differences in growth between groups by allocation,
something consistent with both the unblinded EAT and LEAP studies in the UK(10)
(7)(Table 2). There was some suggestion of an increasing median weight trajectory
from randomization at 4 months to 12 months, based upon WHO growth charts in our
study infants. The median weight in both groups at baseline (4 months) corresponded
to the 36-44th centile for males and 63-71st centile for female; at age 8 months, 46-
62nd centile for males and 72-82nd for females; and at 12 months, 57-69th for males
and 78-85st for females. Similar trends were not obviously apparent for length, with
median length at baseline, 8 and 12 months corresponding to the 22-34th, 39-55th
and 54th centile, respectively, for males, and 51-67th, 70-82nd and 78th centile, respectively,
for females.

However, WHO charts for children age 0-2 years are based upon infants who were
exclusive breast feeding for 4 months, and continued partial breast feeding up to at
least 12 months and such infants are recognized to have different weight/length
trajectories in their second 6 months of life, when compared to infants who have been
weaned prior to this time(11). Whether our cohort is different from similar Australian
infants introduced to solids at 6 months or older is unclear (as these data are not
currently available), but does suggest that a closer inspection of possible effects of
early introduction to solid foods on growth trajectory is warranted. Determining the
approximate balance between optimal growth patterns, promotion of breastfeeding
and primary prevention of allergic disease will not be straightforward. It will depend
upon risk stratification at the individual family level. It is encouraging that few
detrimental effects on duration of breastfeeding have been noted to date in the EAT
and LEAP studies, nor in our cohort. Further exploration of this outcome in
population-based cohorts, outside the confines of a supported trials setting, is required
to support these initial observations.

Yours sincerely

*John Wei-Liang Tan, MB,BS, FRACPa,b
*Paul J Turner, BM, BCh,FRACP, PhDa,d
Carolina Valerio b, BN
Rebecca Sertori BN b
Elizabeth H Barnes, BAppSc, MStat
Dianne E. Campbell, MB,BS, FRACP PhDa,b.

aThe Discipline of Child and Adolescent Health, University of Sydney, Sydney, New
South Wales, Australia; b The Department of Allergy and Immunology, Children's
197 Hospital at Westmead, Sydney, Australia; NHMRC Clinical Trials Centre,
198 University of Sydney d The Section of Paediatrics (Allergy and Infectious Diseases)
199 and MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial
200 College London, London, UK.
201
202 *John Wei-Liang Tan and Paul J Turner contributed equally to this work
203
204 PJT is in receipt of a Clinician Scientist award funded by the UK Medical Research
205 Council (reference MR/K010468/1), and is supported by the National Institute
206 for Health Research (NIHR) Biomedical Research Centre based at Imperial
207 College Healthcare NHS Trust and Imperial College London. The views expressed
208 are those of the author and not necessarily those of the NHS, the NIHR or the
209 Department of Health.
210
211 1. Ierodiakonou D, Garcia-Larsen V, Logan A, Groome A, Cunha S, Chivinge J,
212 et al. Timing of Allergenic Food Introduction to the Infant Diet and Risk of
213 Allergic or Autoimmune Disease: A Systematic Review and Meta-analysis. Jama.
216 Randomized trial of peanut consumption in infants at risk for peanut allergy. The
218 3. Wei-Liang Tan J, Valerio C, Barnes EH, Turner PJ, Van Asperen PA,
219 Kakakios AM, et al. A randomized trial of egg introduction from 4 months of age
221 2016.
223 Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect.
225 5. (AIHW) AIoHaW. Australian national infant feeding survey: indicator
226 results. Canberra, Australia; 2011. Report No.: Cat. no. PHE 156.
228 Trial of Introduction of Allergenic Foods in Breast-Fed Infants. The New England
230 7. Lack MPKLG. Enquiring About Tolerance (EAT) Study
232 No.: FS231063.
234 Enquiring About Tolerance (EAT) study: Feasibility of an early allergenic food
236 2016;137(5):1477-86.e8.
237 9. Amir LH, Donath SM. Socioeconomic status and rates of breastfeeding in
238 Australia: evidence from three recent national health surveys. The Medical
241 Impact of peanut consumption in the LEAP Study: Feasibility, growth, and
244 Organization and CDC growth charts for children aged 0-59 months in the United
245

Scholarone, Inc. Support (434) 964 4100
TABLE 1: Comparison of growth parameters from infants in BEAT cohort at 4, 8 and 12 months of age

<table>
<thead>
<tr>
<th></th>
<th>Placebo (rice)</th>
<th>Egg (intervention)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight-4 months</td>
<td>6.88 kg (6.25-7.27)</td>
<td>6.70 kg (6.17-7.31)</td>
<td>0.89</td>
</tr>
<tr>
<td>Weight- 8 months</td>
<td>8.89 kg (8.10-9.48)</td>
<td>8.53 kg (7.97-9.40)</td>
<td>0.28</td>
</tr>
<tr>
<td>Weight- 12 months</td>
<td>10.20 kg (9.40-10.90)</td>
<td>9.85 kg (9.3-10.70)</td>
<td>0.10</td>
</tr>
<tr>
<td>Length- 4 months</td>
<td>63.0 cm (61.0-65.0)</td>
<td>62.1 cm (61.0-64.2)</td>
<td>0.70</td>
</tr>
<tr>
<td>Length- 8 months</td>
<td>70.9 cm (69.0-72.5)</td>
<td>70.0 cm (67.0-72.0)</td>
<td>0.06</td>
</tr>
<tr>
<td>Length- 12 months</td>
<td>76.0 cm (73.8-78.0)</td>
<td>76.0 cm (74.0-77.5)</td>
<td>0.44</td>
</tr>
<tr>
<td>Head Circumference- 4 months</td>
<td>41.5 cm (40.5-42.5)</td>
<td>41.1 cm (40.5-42.0)</td>
<td>0.041</td>
</tr>
<tr>
<td>Head circumference- 8 months</td>
<td>45.0 cm (44.0-46.0)</td>
<td>44.0 cm (43.0-45.0)</td>
<td>0.0006</td>
</tr>
<tr>
<td>Head circumference –12 months</td>
<td>46.5 cm (45.5-48.0)</td>
<td>46.0 cm (45.0-47.0)</td>
<td>0.013</td>
</tr>
</tbody>
</table>
TABLE 2: COMPARISONS BETWEEN EARLY INTRODUCTION STUDIES WITH GROWTH DATA PUBLISHED

<table>
<thead>
<tr>
<th>Study</th>
<th>BEAT STUDY (egg)</th>
<th>EAT STUDY (multiple foods)(7)</th>
<th>LEAP STUDY (peanut) (10)</th>
<th>Peanut avoidance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACTIVE introduction (from 4 months)</td>
<td>PLACEBO</td>
<td>EARLY introduction (before 6 months)</td>
<td>STANDARD introduction (after 6 months)</td>
</tr>
<tr>
<td>Baseline (randomisation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breastfeeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ever</td>
<td>91% (0.89)</td>
<td>90% (0.81)</td>
<td>100% (0.77)</td>
<td>6.27 (0.76)</td>
</tr>
<tr>
<td>- any current</td>
<td>75% (0.81)</td>
<td>90% (0.81)</td>
<td>100% (0.77)</td>
<td>-0.14 (0.92)</td>
</tr>
<tr>
<td>- exclusive</td>
<td>42% (0.81)</td>
<td>47% (0.93)</td>
<td>100% (0.77)</td>
<td>6.27 (0.76)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>6.8 (0.89)</td>
<td>6.82 (0.81)</td>
<td>6.27 (0.77)</td>
<td>6.29 (0.76)</td>
</tr>
<tr>
<td>Z-score (SD)</td>
<td>0.11 (0.98)</td>
<td>0.09 (0.93)</td>
<td>-0.14 (0.92)</td>
<td>-0.15 (0.94)</td>
</tr>
<tr>
<td>Length (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>62.8 (2.8)</td>
<td>62.9 (2.8)</td>
<td>62.0 (2.3)</td>
<td>62.2 (2.3)</td>
</tr>
<tr>
<td>Z-score (SD)</td>
<td>0.0 (1.19)</td>
<td>0.0 (1.23)</td>
<td>0.25 (0.98)</td>
<td>0.26 (1.00)</td>
</tr>
<tr>
<td>Weight-for-length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z-score (SD)</td>
<td>0.24 (1.15)</td>
<td>0.21 (1.09)</td>
<td>0.09 (0.98)</td>
<td>0.14 (0.92)</td>
</tr>
<tr>
<td>HC (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>41.3 (1.4)</td>
<td>41.7 (1.7)</td>
<td>41.1 (1.3)</td>
<td>41.1 (1.3)</td>
</tr>
<tr>
<td>Breastfeeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>@6mths</td>
<td>ND</td>
<td>ND</td>
<td>97.2% (0.89)</td>
<td>97.8% (0.93)</td>
</tr>
<tr>
<td>- any</td>
<td>ND</td>
<td>ND</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td>- exclusive</td>
<td>ND</td>
<td>ND</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td>@8 mths</td>
<td>46% (0.89)</td>
<td>47% (0.81)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>- any</td>
<td>46% (0.89)</td>
<td>47% (0.81)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>- exclusive</td>
<td>46% (0.89)</td>
<td>47% (0.81)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>@12 mths</td>
<td>18% (0.89)</td>
<td>28% (0.93)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>- any</td>
<td>18% (0.89)</td>
<td>28% (0.93)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>- exclusive</td>
<td>18% (0.89)</td>
<td>28% (0.93)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Duration of breastfeeding (weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median, IQR</td>
<td>NA</td>
<td>NA</td>
<td>52 (36-66)</td>
<td>53 (38-68)</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>NA</td>
<td>NA</td>
<td>52 (36-66)</td>
<td>53 (38-68)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>9.99 (1.14)</td>
<td>10.25 (1.27)</td>
<td>10.03 (1.20)</td>
<td>9.94 (1.17)</td>
</tr>
<tr>
<td>Z-score (SD)</td>
<td>0.65 (1.46)</td>
<td>0.71 (1.25)</td>
<td>0.28 (0.90)</td>
<td>0.20 (0.92)</td>
</tr>
<tr>
<td>Length (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>75.6 (3.5)</td>
<td>75.9 (3.6)</td>
<td>76.78 (3.1)</td>
<td>76.6 (3.0)</td>
</tr>
<tr>
<td>Z-score (SD)</td>
<td>0.3 (2.24)</td>
<td>0.3 (1.73)</td>
<td>0.02 (1.00)</td>
<td>0.01 (1.02)</td>
</tr>
<tr>
<td>Weight-for-length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z-score (SD)</td>
<td>0.62 (1.15)</td>
<td>0.78 (1.09)</td>
<td>0.39 (0.91)</td>
<td>0.28 (0.92)</td>
</tr>
<tr>
<td>HC (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean, (SD)</td>
<td>46.2 (1.5)</td>
<td>46.7 (1.7)</td>
<td>46.8 (1.5)</td>
<td>46.8 (1.5)</td>
</tr>
</tbody>
</table>
| ND- not done, SD- standard deviation, IQR- interquartile range, NA- not available

Pediatric Allergy and Immunology