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Abstract

We present an power systems optimisation model for national-scale power
supply capacity expansion considering endogenous technology cost reduction
(ESO-XEL). The mixed-integer linear program minimises total system cost
while complying with operational constraints, carbon emission targets, and
ancillary service requirements. A data clustering technique and the relaxati-
on of integer scheduling constraints is evaluated and applied to decrease the
model solution time. Two cost learning curves for the different power techno-
logies are derived: one assuming local learning effects, the other accounting
for global knowledge spill-over. A piece-wise linear formulation allows the
integration of the exponential learning curves into the ESO-XEL model. The
model is applied to the UK power system in the time frame of 2015 to 2050.
The consideration of cost learning effects moves optimal investment timings
to earlier planning years and influences the competitiveness of technologies.
In addition, the maximum capacity build rate parameter influences the share
of power generation significantly; the possibility of rapid capacity build-up is
more important for total system cost reduction by 2050 than accounting for
technology cost reduction.
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1. Introduction

Climate change mitigation and adaptation strategies are influencing the
debate in national and international politics, economies, and science. As a
consequence, there is a marked increase in the number and diversity of clima-
te and energy models developed for the analysis of future pathways. Despite
inherent uncertainty in input parameters and unforeseeable events outside
the typical modelling scope, such analyses have the value of being able to as-
sess general feasibility, profitability, and effectiveness of relevant “real-world”
actions. In the context of the electricity sector, assessing the implications
of power technology improvement is crucial to assist a reasoned decision-
making, especially when considering long time scales.

The observation of a reduction in technology cost with increased experi-
ence was first reported by Wright in 1936 for the case of aeroplane manu-
facturing [1]. Solow and Arrow later extended and formalised this observed
trend as “learning by doing” [2, 3]. In the 1970s and 80s, Zimmerman, Jos-
kow, Lieberman and others began studying learning effects on the cost of
power plants and chemical processes [4-6].

Today the concept of technology cost reductions is embodied mathema-
tically in the form of learning curves or experience curves, which are often
used to project future technology cost trends [7—10]. Incorporating the corre-
lation between technology deployment and cost into energy system models is
an attempt to build a framework capable of evaluating whole-system effects
caused by and inducing technology cost reduction.

The aim and contribution of this paper is to address the following ques-
tions: How can endogenous technology learning be integrated effectively in
power system models? What is the impact on optimal capacity expansion and
total system cost when considering technology learning effects? The paper is
structured as follows:

Section 2: A brief discussion on technology cost reduction and an introducti-
on to the concept of cost learning curves; a review of energy and power
system models including technology cost learning effects.

Section 3: The development of a mixed-integer linear program (MILP) for
cost-optimal capacity expansion of an power system considering en-
dogenous technology learning curves as piecewise linear functions and
accounting for operational detail.



Section 4: A presentation of case studies on the power system of the Uni-
ted Kingdom (UK) for optimal planning with and without technology
cost learning; demonstration of the importance to consider cost re-
duction in long term system planning; an evaluation of system-wide
and technology-specific effects on individual competitiveness and in-
vestment timing.

Section 5: Summary of findings and conclusions for future research.

2. Technological Learning and Cost Reduction

Three fields of research have dealt with the topic of technology cost re-
duction: the economic growth theory, the learning curve concept, and the
innovation literature [11]. Explanations for the underlying reasons of tech-
nology cost reduction have provided different answers and insights, ranging
from investment in research and development (R&D), to shared knowledge,
and economies-of-scale. Although a classification is not straightforward, and
effects are often correlated, we categorise the main cost reduction drivers
following [12-15] in table 1.

Cost driver Characteristics Example
Market-push competition, R&D investment computer
Demand-pull government policies, demonstration pro- flue gas desulfuri-
ject, consumer adaptation sation (FGD)
Process economies-of-scale, infrastructure, indus- photovoltaic (PV)
advancement try integration, components panels

Technological  functionality improvement, material, de- wind turbines
change sign, application

Table 1: Main technology cost reduction driver and their corresponding characteristics.

Market-push factors and governmental funding can result in non-incremental
capacity deployment increase and abrupt cost reduction. Technologies that
are being promoted by policies such as feed-in-tariffs often experience rather
incremental changes in capacity additions [15]. Additionally, network effects
can increase the value and rate of deployment of a technology [14]; an in-
creased availability of the technology can be an enabler to a service, e.g.
telephone for communication, high-voltage direct current (HVDC) cables for



power transmission. The aggregate effect of cost reductions in individual
technology components, especially in the case of power stations, is known as
compound learning [8, 9].

Information transfer is essential to the speed and extent of technologi-
cal advancement and cost reduction. The phenomena of technology learning
depends on the region of deployment. Differences in local and global techno-
logy diffusion across enterprises, industries, and countries has been studied
empirically [16, 17] and within energy system models (section 2.2).

Obvious uncertainties exist in technology learning analyses. Besides the
fundamental assumption that future trends can be extrapolated from historic
ones, differences in data, the uniqueness of individual projects, and the fact
that learning rates may change over time, are often overlooked [9, 11, 12].
The learning rate and the shape of the curve (exponential, s-shaped) can
vary between different technologies [18].

Furthermore, not all technologies experience cost reduction with increa-
sing deployment. Famously, the cost of nuclear power plants have increased
due to the system complexity and more stringent safety regulations [19]. For
mature technologies cost can temporarily increase if the market is short [15],
or with fluctuations in commodity prices. Especially power generation techno-
logies often experience a cost increase in the early phases of commercialisation
due to difficulties in scale-up and cost underestimation based on demonstra-
tion projects or pilot plants [18]. Nemet highlights other limitations of the
technology learning theory, which in the case of solar PV fails to account for
factors such as module efficiency or the price of silicon [20].

A necessary and often overlooked point of discussion is how substantial-
ly a technology changes with deployment. Through manufacturing advances
or disruptive scientific improvements, additional features can diversify po-
tential applications of a technology. Depending on the significance of the
technological transformation, the observed process might be considered the
development of a new technology rather than improvement of an existing
one. Changes in energy technology performance parameters, e.g., efficiency,
flexibility, or ability to provide ancillary services, should be studied alongside
the effect of cost reduction. In the context of this paper, however, we focus
one the effect of technological change reflected in cost reduction.

2.1. Learning Curve Model

The learning curve theory can be formalised in an exponential correlation
between the unit cost, C, (£/kW), and the cumulative capacity installed,
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C=Cro/(1+LR)

Unit cost (£/kW)

X4 Xn/2 X
Cumulative capacity (GW)

Figure 1: Illustrative cost learning curve.

x, (kW), with the index n € {1,2..., N}, where n = 1 indicates the first-
of-a-kind and n = N an n'-of-a-kind power plant. The unit cost of the
n'" capacity addition can then be determined via constraint 1. For each
doubling of cumulative installed capacity the unit cost reduce by a factor
LR. A schematic of a cost learning curve is visualised in figure 1. Equation 2
presents the learning rate LR as a function of the rate of cost reduction by g.

The progress rate PR is defined as 1 — LR.

C, = Cya;ben (1)
LR=1-2"r (2)

As an extension to this so called one-factor learning curve model, efforts
have been made to include different learning effects into a similar form. The
most prominent alternative is the two-factor learning curve model. This ap-
proach typically aggregates the “learning-by-doing” (brr) and “learning-by-
research” effects (brp). Equation 3 outlines this approach, where in addition
to the above y denotes the cumulative R&D investment and brp the rate of
cost reduction due to research. Although the two-factor learning curve model
promises greater accuracy and an explicit reflection of R&D driven techno-
logical advances, its application is limited due to data unavailability [18].

C,=0C, x;bLR y_bRD (3)



The argument that technologies can be described as a combination of mo-
dular components which experience cost reduction individually, is the basis
of the so called compound learning. Equation 4 summarises this approach
by defining the unit cost of a technology as the sum of the standard cost
reduction function (eqn. 1.) over all technology components i.

I
Co=> Ciya; i (4)
=1

However, not all observed cost reduction trends match the exponential curve
shape. In particular, technologies that are forced into the market, e.g., pro-
moted by governmental policies, show little time for cost reduction through
competition [7, 21]. In these cases, costs initially reduce slowly, followed by a
steeper cost decline and a final levelling out [22]. In exponential and s-shaped
learning curves, there is a marked end point for cost reduction. This price
floor is attained at market saturation or when the technology has reached
complete maturity [21].

Rather than to provide a detailed review of learning rate data or to re-
plicate existing reviews, we refer the interested reader to studies comparing
learning rates of multiple power generation technologies by NREL [23], Ru-
bin et al. [8, 17], Kahouli-Brahmi [24], McDonald and Schrattenholzer [25],
and van der Broek [26]. Overall learning rates for energy technologies are
reported to range between 3-34 % by Ferioli [9], and similarly between 9-27
% by Staffell [22], both with a mean of 20 %.

Junginger et al. report component-wise cost reduction for offshore wind
farms [16, 27]; Staffell and Green study the learning of fuel cells [22]. Work
on estimating future cost reduction for carbon capture and storage equipped
power plants has been performed by Rubin et al. [8, 28], Knoope et al. [29],
and van der Broek [30]. Cost reductions in the solar industry have been
studied by van der Zwaan [31] and Nemet [20]. Matteson and Williams report
learning rates for grid-scale lead acid battery [32]. The learning rate data used
in this report is summarised in section 4.1, table 4.

2.2. Review of Energy System Models Including Technology Cost Learning

The ubiquitous trade-off in model building between breadth and depth
has to be weighed according to the research questions asked. The integration
of technological change adds to the challenge of balancing spatial, temporal,
and complexity dimensions. The omission, however, of such effects in future
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energy systems planning can lead to significant market failures in R&D, as
Kohler et al. report [11]. Finally, Weyant et al. articulate the need to assess
policy implications on technology cost learning [33].

Most models reported to date consider constant or exogenously driven
cost reduction, as a time-dependent input parameter [34, 35]. However, eco-
nomic causality analyses provide evidence that technological change and dif-
fusion are indeed dependent variables [24, 36]. The endogenous consideration
of technology learning effects as a function of capacity deployment requi-
res an explicit integration of one of the learning curve models as introdu-
ced in section 2.1. Previous approaches including technology learning into
large modelling frameworks have been reviewed for example by Grubb [13],
Kohler [11], Seebregts [37], Gillingham [34], Kahouli-Brahmi [24], the Innova-
tion Modeling Comparison Project [38], and the System analysis for progress
and innovation in energy technologies (SAPIENT) project [39)].

This paper reviews in particular energy system models based on mixed-
integer linear programming (MIP) with endogenous technology learning (ETL)
similar to the framework proposed in this work. To the best of our know-
ledge the models MESSAGE [40, 41}, MARKAL-TIMES [42, 43], MERGE-
ETL! [44, 45], NEMS [46, 47], ERIS [50], and GALLM [51, 52] fall into this
category. The POLES [48, 49] model is based on partial equilibrium simula-
tion. Due to its detailed modelling of technology learning it is included in the
model comparison. Table 2 compares some salient model features with our
Electricity System Optimisation - Expansion with Endogenous Technology
Learning (ESO-XEL) formulation which is presented in detail in section 3.
For a more extensive comparison including macroeconomic and computable
general-equilibrium models (CGE) we refer to the aforementioned reviews.

!The Model for Evaluating the Regional and Global Effects of GHG Reduction Policies
(MERGE) is now integrated into MESSAGE and therefore not listed individually in table
2.

2This refers to the integration of the Model for Energy Supply Strategy Alternatives
and their General Environmental Impact (MESSAGE) and the MACRO model which
details the energy demand side. The MERGE model with ETL function was developed by
Bahn and Kypreos [44, 45] and built the basis for the MACRO model.

3NEMS is a large integrated model written in different programming lanuages. We here
refer to the Electricity Market Module within NEMS.

4The costs projected by the Global And Local Learning Model (GALLM) function
as input to CSIRO’s Energy Sector Model (ESM) which preforms electricity generation
capacity expansion based on leas-cost optimisation for 8 representative load blocks per



Name ETL geographic  time horizon language Source
model region / granularity / solver
MESSAGE- i}‘ﬁal’ 1990-2011/  C/ 40, 41
MACRO? . 5-10 yearly CPLEX ’
regions
lobal 2000-2110 /
MARKAL- IF f;lation’al 4 seasons, GAMS / 42, 43
TIMES . ’ 2 weekdays, CPLEX ’
regional
2 hours
2000-2030 /
1F, 3 LR national yearly, GAMS? /
NEMS levels (US) multi-hour Xpress [46, 47]
segments
2005-2050 /
POLES 9F global, 57 L1y, 2 days, Vensim  [48, 49)]
countries .
bi-houry
1F, 2F, global, 11 2000-2100 / GAMS /
ERIS compound regions yearly CPLEX [50]
GALLM! 1F, local, globa.l, 2010-2050 / in-house  [51-53]
global 9 regions yearly
national + 2015-2050 / GAMS /  this
ESO-XEL 1F 5 yearly,
connectors CPLEX paper
hourly

Table 2: Comparison of energy and electricity system models with representation of en-
dogenous technology cost learning. ETL: endogenous technology learning; 1F: one-factor
learning curve; 2F: two-factor learning curve.

All models in table 2 which represent the cost reduction of technologies
in one-factor learning curves apply these as piecewise linear approximations.
This technique expresses a non-linear function as a convex combination of
linear segments which can be integrated into an MIP framework. Depending
on the degree of non-linearity, a sufficient number of linear segments is chosen
to accurately represent the original function. The number of line segments
increases the number of binary and continuous variables and constraints pro-
portionally [37].

Barreto implements a dynamic segment generation such that in the early
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stages of capacity deployment segments are short, capturing the steep part
of the curve more accurately. The segment length doubles for each followi-
ng piece producing longer segments for the latter, more linear parts of the
curve [54]. This approach is implemented for one-factor learning in the ERIS
and MARKAL model with 6-20 segments [37, 50]. The ESO-XEL model ap-
plies 5 line segments of increasing but individual length per technology type.
There is no explicit documentation on the number of line segments for the
MESSAGE and NEMS model.

The NEMS model defines three distinct learning phases (revolutionary,
evolutionary, conventional) with corresponding LRs of 10%, 5%, and 1%,
which are rather low compared to the reported mean of LRs for all energy
technologies at 20 % [9, 22]. Technologies pass through some or all of the
phases according to their initial stage of development. After three doublings
of cumulative installed capacity a technology moves from the revolutionary
to the evolutionary phase, after five doublings it is classified as conventio-
nal. The NEMS documentation details the important choice of the starting
capacity, the annual capacity growth rate, a minimum annual LR which is
exogenous to the model, and a technology “optimism factor” which adjusts
the initial price for “revolutionary” technologies upwards [46].

The two-factor learning curve in ERIS is modelled as non-linear program
(NLP). Component-based learning can be applied to 26 different technolo-
gies, where the full cost reduction effects are aggregated from the individual
component cost learnings (e.g., gasifier, steam reformer, fuel cell) [50]. Also
the POLES model implements the classical two-factor learning curve, ac-
counting for R&D investment and “learning-by-doing” effects [49]. There is
no information available on the number of linear segments in the POLES
documentation.

3. The ESO-XEL Model Formulation

As introduced above, the ESO-XEL model is a mixed-integer linear pro-
gram for cost-optimal electricity generation and storage capacity planning
including endogenous treatment of technology cost learning. It builds on
the model formulation presented in Heuberger et al. [55] and is extended
to perform optimal capacity expansion on a national-scale while considering
international electricity interconnectors.

The ESO-XEL model does not aim at being put on the same level with
large-scale energy system models (a subset listed in table 2), which build



on a rich modelling history often dating back to the 1990’s and which are
mostly developed and maintained by multi-institutional and international re-
search groups. The advantage of such models is their ability to cover multiple
energy vectors (e.g., transport, industry, residential) from supply to end-use.
However, the management of such model structures and large corresponding
data sets can lead to difficulties in recognising the complex underlying effects,
which for example promote the increased deployment of a power technology
and evoke cost reductions.

The strength of the ESO-XEL model is to provide a transparent and fle-
xible framework which enables us to scientifically observe interdependencies
and determine the origin of whole-system effects caused by and leading to
technology cost reduction. The distinguishing mark of the ESO-XEL model
is its technical detail in the operational power plant behaviour, and high
granularity in the representation of time. It simultaneously performs optimal
capacity expansion in 5-yearly increments and unit commitment of the power
plants on an hourly scale with a rigorous energy balance over time rather than
“time slicing”. A mathematically rigorous data clustering approach reduces
the full hourly data sets from 8760 to 504 hours per year with a maximum
deviation in results of 6.5 %. Section 4 will further expand on this point. The
high time-wise granularity is essential in systems with a high penetration of
power generation from intermittent renewable sources (IRES). System relia-
bility and operability issues are decisive in system planning and can often
not be addressed accurately if only a small subset of hours is considered.

We present the model formulation building on our previous work [55, 56]
in section 3.2-3.7 while reviewing existing capacity expansion models without
the representation of technology learning. In the relevant literature this con-
cept is also referred to as generation expansion planning (GEP). Existing
GEP models have been reviewed from both a conceptual [57] and a detailed
modelling perspective [58-60]. The studies highlight two main categories of
GEP models, the centralised/monopolistic and the decentralised /deregulated
market view. Large centralised national-scale GEPs have been developed for
example for the Greek [61] and Polish [60] power system, with a minimum
time granularity of years or days. Murphy and Zou contribute modelling
frameworks and case studies for GEP in imperfect markets [62, 63].

3.1. Assumptions and Simplifications

In the interest of minimising computational expense and to tackle the
research questions outlined in section 1, we makes the following assumptions
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in the context of the ESO-XEL model:

« We assume perfect foresight over the planning horizon.
. We take the perspective of a monopolistic system planner.

« We assume electricity demand and prices to be inelastic. Electricity
demand is driven exogenously.

« Uncertainty in the input parameters is not considered. The model is
deterministic.

« The national electric transmission system is represented as a single-
node network. We do consider overall transmission losses.

. We assume that technological change is reflected in the capital cost
of the power plant. Technology performance parameters remain exoge-
nous.

« We assume that the learning effects for all power plants are based on
global experience until today. This means that, e.g., gas-fired power
plants are considered to be a mature technology, and thus benefit mar-
ginally from deployment related cost reduction, whereas offshore wind
power plants show significant learning potential. For future cost reduc-
tion we consider two scenarios; one based on national experience only,
the second taking global knowledge spillover effects into account.

« We do not consider clustered learning where component-wise improve-
ments impact the cost or performance of all affected technologies.

3.2. Power System Design and Expansion

The first set of constraints deals with the initial power generation and
storage capacity design and the subsequent expansion, the investment and
decommission plan. We refer to the nomenclature at the end of the ma-
nuscript for an explanation of the symbols. In the following all lower case
symbols refer to decision variables, whereas all upper case symbols refer to
parameters. Constraint 5 initiates the number of units of each technology
type ¢ for the first planning year a. In the subsequent years the number of
new build units is constrained by the annual build rate BR; multiplied by
the planning time step width A, in years (eqn. 6), and by the maximum
capacity limitation in terms of space/availability /potential DMax; (eqn. 7).

Constraints 8-10 represent the capacity balances over the planning hori-
zon. We differentiate between the lifetime of existing capacity stock 8 and
new build units 9-10.
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di,a = DImZ \V/’L, a=1 (5)
b@a S BRI Aa Vl, a>1 (6)
dio < DMaxz; Vi, a (7)
LT Ini;
dig=dig1—b, _wrm +big Viia< =41 (8)
) Aq a
LTIni,; LT,
dz’ a — dz a— bz a ., . 1 S ! 1
, a—11b; Vi A +1<a A + 9)
LT;
dia:dia—l_b- LT +bia ‘v’i,a> ‘|—]. (10)
o= Gt Tl T A

a

Constraints 11-12 limit the number of power generation and storage units
operating in each time period t to the installed number of units. The state
variables for generation and storage technologies, nigq.c+ and 0js q.c¢, respec-
tively, represent the integer number of units of technology type ig or ¢s which
are operating/charging/discharging in year a at time ¢ in time cluster c.

nig,a,c,t S dig,a VZQJ a, ¢, t (11>
Ois,a,c,t S dis,a ViS, a, c, t (12>

3.3. System-wide Constraints

On the system-level, a range of energy and ancillary services need to
be met for each planning year a and time period t. Equation 13 ensures
sufficient electricity provision from generation (ig) and storage (ir) units.
Unmet demand slak,.; is penalised monetarily in the objective function
(eqn. 44).

> p2digaci + Y 2disacs = SDopa (1+TL) = slakee, Va,c,t  (13)
ig s

Z di,a Desi TEi,Cmax > PLa (1 + CM) \V/CL, t (14)
Z rig,a,c,t TEig,RP + Z Szris,a,c,t TEis,RP
ig S

Z SDc,t,a RM + Z p2dir,a,c,t WR \V/(I, ¢, 13 (15)

wr
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Constraints 14-15 represent reserve requirements (capacity margin C'M) and
regulation services as fixed (reserve margin RM) and dynamic factor balan-
cing intermittent power output. Frequency control requirements are establis-
hed by constraint 16 in form of a minimum level of system inertia®. System-
wide annual carbon emissions are limited by SF, (eqn. 17). The total amount
of unsupplied electricity demand is limited by constraint 18.

Z Nig.a,ct D@Sig TEZ‘ng Z ST \V/CL, C, t (16)
ig

> eigacs WF. < SE, Va (17)

19,C,t

> slakye; WF. <UD Y SDeyq Va (18)
c,t t

3.4. Conventional and Intermittent Power Plant Operation

The operation of conventional thermal power plants ic is constrained by
an upper (eqn. 19) and lower bound (eqn. 20). Power output from a genera-
ting unit is either feeds to the grid or charges a grid-connected energy storage
(eqn. 21).

Dicaet = Nicaet D€Sic T' Eic pmin Vic,a,c,t (19)
Digact T Tigaet < Nigact DeSig T Eig pmag Vig,a,c,t (20)
Pigact = P2ligact + P2Sigacit Vig,a,c,t (21)

(22)

For the intermittent renewable power generators ir (excluding interconnec-
tors “Interlmp”), the upper (eqn. 23) and lower (eqn. 24) bound for power
output is determined by the time-dependent availability factor AVj, ;. Equa-
tion 25 summarised the carbon emission by generation technology.

pir,a,c,t Z Nira,ct Desir TEir,Pmin A‘/:i’r,c,t Vir\lnterlmp7 a,c, t (2?))
Pir.a,ct + Tira,ct S Nir.a,ct Desir Av;r,c,t ‘v’ir\fnterlmp, a, ¢, t (24)
eig,(l,C,t = (piQﬁMQt + Tig’avc7t) TE@Q,EmS v/l/g7 a’ C7 t <25>

5System inertia refers to the amount of kinetic energy stored in spinning generators
connected to the grid which provides important frequency and voltage control services.
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3.5. Up-time and Down-time Constraints

The switching behaviour of the power plants is reformulated from the ty-
pical unit-wise up-time and down-time constraints with binary variables per
unit (e.g., by Morales et al. [64, 65]) to integer variables per technology type.
Inspired by the convex hull form presented by Takriti et al. [66], we generalise
constraints 26-29 for a design problem where the number of generators is a
variable itself (d; instead of 1 in eqn. 29).

Uigaet = Nigaet — Niga,et—1 Vig,a,c,t  (26)
Wig.a,et = Nigaet—1 — Niga,ct Vig,a,c,t  (27)
Uigaet < Nigacr Vig,a,c,t=t+t —1,t' <UT;,,  (28)
Wigact < diga — Nigaer Vig,a,e,7 =t +t —1,t' < DT}, (29)

3.6. Storage Operation

The operation of energy storage technologies is defined in constraints 30-
37. The lower bound and upper bounds of service provision (electricity and
revere depending on a technologies “reserve potential” T'E;s grp) are given in
constraints 30-32. Equation 33 gives the initial state of charge per technology
type is. The storage capacity is limited by the maximum and minimum
state of charge (eqn. 34-35); grid electricity to be stored is assigned to the
storage technologies (eqn. 36), maximum charging (eqn. 37), and charging
and discharging electricity is balanced according to constraint 38.

82dis et + S2Tisact = Oisact DeSis T Eig pmin Vis,a,c,t  (30)
$2is et + S2isa et < Oisaer Desis Vis,a,c,t (31)
82is g0t + S2Tisact < Sisact SEtas Vis,a,c,t (32)
Sisact = Desis SOCTIni;s SDurys Vis,a,c,t =1 (33)
Sisact < Oisact Desis SOCMaz;s SDurgg Vis,a,c,t  (34)
Sisact = Oisact Desis SOCMin;s SDur;g Vis,a,c,t > SDur;s  (35)
> P2Sigact = Y P2iSisac Va,t  (36)
ig is
P20Sisact < Oisact Desis Vis,a,c,t  (37)
Sis,a,c,t = Sis,a,ct—1 — SZdis,a,c,t (38)
+ Zp?z’sisﬂ,c,t SFEta;, Vis,a,c,t > 1

S
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In this version of the ESO-XEL model, the hourly time dependent input
parameters are compressed into ¢ clusters, each associated with a weighting
factor W F,. Hence, the maximum storage duration is limited by the cluster
length dim(c); we choose the continuous time period of 24 hours. We assume
that at t = 1 of each cluster ¢ the energy storages are empty. The data
clustering approach is described in more detail in section 3.9.

3.7. Piecewise Linear Formulation of the Learning Curve Model

We develop a piecewise linear representation of the exponential cost lear-
ning curve as described in section 2. We follow the mixed-integer linear im-
plementation based on Barreto [54]. The cost learning curve relates the tech-
nology unit cost to the amount of cumulative installed capacity, such that
CAPEX; = f(d;,). In the objective function this straightforward implemen-
tation would lead to non-linearities in CAPEX; x b; ,. To avoid this problem,
we convert the unit cost curve into a cumulative cost curve, such that y; ,
represents the cumulative capacity cost of all assets of technology il in year
a as visualised in figure 2.

Z pil,a,l =1 V’ll, a (39)
l

TSita1 = X0y pitay Vil,a,l  (40)
TSitar < XUPit Pit,a,l Vil,a,l  (41)

Z bit.a = szil,a,l Vil,a,a’ <a  (42)
a’'=1 l
Yil,a = Z YlOil,l

I

+ pitaiSlopei (x8i.q; — X0 pitas) Vil,a  (43)

Equation 39 ensures the selection of one segment, while constraints 40-
42 determine the x-axis position on the segment. The breakpoints of the
linear segments [ are given as coordinates on the cumulative capacity versus
cumulative cost curve , X10;;, Xupi;, Yoy, Yup; . Via linear interpolation

we then receive the cumulative cost y;;, by constraint 43, where Slope;;; =
Yupi 1 —Ylo
Xupg—Xlog ;1 *
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Figure 2: Illustrative technology cost learning curve as a continuous (a) and piecewise
linear function (b) of cumulative capacity installed. The y-axis on the right hand side
in graph (b) refers to the progressive cumulative cost curve. Symbol y;; , represents the
unit cost of technology 4l in year a, which are determined via variables zs; 4, and pjj q,
according to constraints 39-43.

3.8. Objective Function

We minimise the total cost of building and operating the power system
over the observed time horizon. The first summand in constraint 44 repres-
ents the capital expenditures for each technology type i € I'il not subject
to technology cost learning, whereas the second factor adds the cost of each
new build capacity increment which is modelled via the piecewise linear cost
learning curve. We note that the capital expenses occur in the respective
planning time step a in which the operation of the power generation or sto-
rage technology begins. The individual construction period for any new build
capacity is considered monetarily via the interest during construction (IDC).
The operational cost components consist of the start-up cost OPEXSU,,,
variable running cost (OPEX,,, and OPEX;,,), including fuel cost, opera-
tion and maintenance cost, carbon tax and carbon transport and storage cost
where applicable, and fixed operation cost (OPEXN L;; and OPEXNLjy).
The imported electricity is costed with the respective whole-sale market price
ImpFElecPr;, and unmet electricity demand slak, ., is monetarily penalised
with the Value of lost load® (VoLL).

6The so called Value of lost load is a monetary measure for the damaged caused to a
society or economy by an electricity shortfall or outage. Estimated values are typically in
the rage of £5,000-45,000/MWh, with a weighted average at £17,000/MWh [67, 68].
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Constraints 5-44 compose the ESO-XEL model. We refer to the Electricity
System Optimisation model with capacity expansion but without technology
learning (constraints 39-43) as ESO-X model.

3.9. Solution Strategies

In order to reduce the computational effort of solving the ESO-XEL MIP
for each hour of the year over the course of several decades we apply two
different solution strategies, individually and in conjunction:

(1) k-means data clustering, as presented in [69], with “energy-preserving”
profiling
(2) relaxation of integer scheduling constraints, as shown in [70, 71].

Figure 3 visualises the k-means clustering approach. The size of a data
set is reduced by matching each data point, or an array of consecutive data
points, into k clusters such that the Fuclidean distance between the data
point and the cluster mean is minimised. For each cluster a representati-
ve profile is chosen and weighted according to the frequency of occurrence.
Traditionally the cluster mean value is chosen as a representative profile.
However, this can smoothen and distort the true data pattern which is par-
ticularly disadvantageous when dealing with data of intermittent renewable
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energy sources, where power availability can vary starkly over short periods of
time (see figure 3). To avoid this problem, we develop an “energy-preserving”
profiling method, which chooses a specific profile for each cluster k such that
the cluster average is preserved best. This enables us to retain the original
profile’s intermittency while accurately capturing the total available energy
volume over the whole data set, here the course of a year.

We apply the k-means clustering and “energy-preserving” profiling to
the normalised hourly data sets of annual electricity demand, onshore wind
power availability, offshore wind power availability, solar availability, and the
electricity import price, such that their hourly correlation is maintained.

full hourly
—
—Z———:‘

clusterin;

WF,., WF,., WF,_cena
&
= \-
1S VA
=,
[1‘"24] [Cend—24w Cend]

Figure 3: K-means clustering approach organising a full hourly data set into C¢"? clusters
each with a length of 24 consecutive hours and a weighting factor W F_; each cluster is
then described by one representative profile. Wind and solar data is taken from Pfenninger
and Staffell [72-74].

Increasing the solution speed by relaxing the integer scheduling cons-
traints of the classic unit commitment formulation has been demonstrated
successfully by Tran and Palmintier [70, 71]. In the presented formulation
this is achieved by transforming the integer variables nigq.: and 054+ to
continuous variables in R. Palmintier reports a negligible sacrifice in accuracy
for the objective function values from the relaxed model compared to the full
MIP formulation. The presented capacity difference, however, ranges from
0-40 %, increasing in cases with a greater share of conventional power gene-
ration capacity where up- and down-time decisions matter. Wind capacity is
observed to be underbuilt in the relaxed formulation, as it fails to capture
the full (in)flexibility of conventional thermal power plants [71].
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We conduct a detailed error analysis on the system-level and hourly ope-
rational results for the ESO-X model under the two outlined solution strate-
gies. Table 3 presents the difference in the objective function value between
the full hourly case with relaxed scheduling constraints F'R and a scenario s
as Ayses = % - 100. The full hourly integer case F'I is not tractable
in solution times less than 200 hours. Hence, the error values shown for the

integer clustered cases are in comparison to the full hourly relaxed model.

8760 hours 21 cluster 11 cluster

integer Full integer (FI) Apge = =13 %o FR Ay, =24 Rto FR
No. var.: 8.1 -10° No. var.: 4.5 - 10° No. var.: 2.4 -10°
No. discrete: 1.1-10 No. discrete: 6.1-10*  No. discrete: 3.2-10%
intractable Sol. time: 3.1 h Sol. time: 0.78 h

relaxed  Full relaxed (FR) Ay = —1.7 %R Ay =25 %o 'R
No. var.: 8.1 -10° No. var.: 4.3 -10° No. var.: 2.4 - 10°
No. discrete: 240 No. discrete: 240 No. discrete: 240
Sol. time: 43 h Sol. time: 0.25 h Sol. time: 0.07 h

Table 3: Deviation in objective function value of scenarios deploying clustering and rela-
xation solution strategies from the full hourly model with relaxed scheduling constraints.

All presented results in table 3 are obtained for the ZET emission scenario,
low build rates, and without technology cost learning. The clustered scenarios
are solved on an Intel i7-4770 CPU, 3.4 Ghz machine with 8 GB RAM using
8 threads. The full hourly case with relaxed scheduling constraints is solved
on a computer cluster composed of 32 machines with a total of 296 GB
RAM (12 threads). All calculations are terminated at 3 % optimality gap.
We implement the model in GAMS 24.8.3 [75] and apply the CPLEX 12.3
solver.

As outlined in table 3 the solution error in the objective function value
Ay increases as the time dimension is reduced to 21 and 11 clusters. Accor-
dingly, the solution time decreases significantly, such that the model version
with relaxed scheduling variables and 11 clusters can be solved in less than 5
minutes. A technology-specific results, such as optimal capacity deployment,
deviates on average -6 % to 0 % from the FR case. We find that CCGT
power capacity is overestimated in the clustered scenarios by 8-12 %, for
11 and 21 clustered respectively. Interconnector and IGCC power capacity,
however, is underestimated in the time clustered scenarios. Offshore wind
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capacity deployment is underestimated by 18 % in the 21 cluster scenario,
and overestimated by 2 % in the 11 cluster scenario. Remaining intermittent
renewable power technologies, nuclear, and abated fossil fuel capacity expan-
sion is determined in the clustered scenario without deviation from the full
hourly model.

As the aim of this paper is the proof of the modelling concept rather
than the performance of high accuracy optimal capacity expansion scenarios,
we choose the 11 cluster scenario with relaxed scheduling variables for the
following results.

4. Case Study on the UK Power System

The United Kingdom (UK) has enforced a legally binding carbon emis-
sion target, manifested as an 80% reduction by 2050 compared to 1990 le-
vels [76]. This translates to a virtual decarbonisation of the UK power sector
by mid-century [77]. In addition, the UK operates within the carbon emis-
sions trading scheme and publishes short-term carbon trading values up to
2030 [78]. The baseline year for this study is chosen to be 2015. Much like
today, the UK’s power capacity mix was then composed of 12 % nuclear,
26 % coal, 40 % gas, 8 % wind, 2 % solar, 5 % hydro, and 7 % other types
of power generating capacity [79]. The total annual power demand reached
303 TWh, with a peak of 53 GW [80].

Significant changes are expected in the capacity mix of the UK’s power
system. In the coming decades power station closures could amount to ap-
proximately 8.3 GW coal-fired, and 7.5 GW nuclear power plants [81]. The
UK’s electricity market regulator (Ofgem) argues that with supplemental
balancing reserve and demand-side response mechanisms reliability stan-
dards could be maintained [82]. Nevertheless, a capacity compensation for
the power plant retirements is indispensable. In the following sections we as-
ses a cost-effective capacity expansion strategy while accounting for security
of supply and environmental aspects. Demand-side management strategies,
however, are beyond the scope of this study. Total electricity demand is con-

sidered to increase at 1 %/yr, in line with the average projection rate of
National Grid [83].

4.1. Input Data and Scenario Definition

We consider fifteen different technology types, amounting to a total of
1722 individual power units in the first planning year of 2015. The tech-
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Offshore Wind
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H Coal
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Figure 4: Technology types, corresponding acronyms, and allocation to subsets of I in ESO
model formulation.

nologies are assigned to different subgroups of the set i € I, according to
figure 4. The existing capacity fleet has a lifetime LT Ini; which is less than
the lifetime LT; of new-build capacity in years a > 1. The two grid-level
storage technologies are lead-acid batteries at 100 MW /500 MWh (GenSto),
and pumped-hydro storages at 300 MW /2.4 GWh (PHSto) per unit. Electric
cross-boarder interconnectors are modelled in two ways. Firstly, as a storage
system to which electricity excess can be “charged” and from which elec-
tricity can be “discharged” or imported (InterSto). This type of operation
is common for the interconnectors between the British and the Irish power
system. Secondly, interconnectors are modelled as a pure electricity import
possibility, as it is the common mode of operation for the French and Dutch
interconnector (Interlmp). Projects are scheduled up to 2022 which could
add up to 6.3 GW of additional interconnection capacity [84]. Wind and
solar availability is based on temporally and spatially explicit simulation by
Staffell and Pfenninger [73, 74], aggregated to the national level and retrieved
from the online database [72].

Table 4 presents the input data relevant to the technology cost learning
model. The initially installed capacity in 2015 for the UK (DIni;) is com-
plemented by the global-level values. We analyse the ESO-X model results
under a low and a high capacity build rate scenario in section 4.2. Data
underpinning the build rate scenarios is derived from historic capacity data
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from 1980-2015 [79]. For conventional technologies (nuclear, unabated fossil
fuel power plants, pumped-hydro) the historic maximum annual build ra-
tes are chosen for the high build rate scenario of this study. For renewable
technologies historical values from the UK, Germany, and the Netherlands
are compared [85, 86]. In Germany, solar PV capacity increased at a maxi-
mum rate of over 7 GW in 2012, and onshore wind capacity by 3.2 GW in
2002. In the UK and the Netherlands renewables power capacity types grew
by less than 1 GW per annum. Anticipating an increasing effort to achieve
the energy transition but remaining within the bounds of historic observa-
tions, we chose the low and high build rate values for renewables according
to table 4. Little information on build rates for large-scale battery storage
technologies and interconnector capacity is available. The values presented
are chosen considering construction time and maturity of the technology.

The technology specific one-factor learning rates are chosen according to
Rubin et al. [17]. Values are aggregated from country-specific and global lear-
ning rate estimates. The learning rate for HVDC interconnectors (Interlmp
and InterSto) is reported by Junginger et al. [27]; Matteson et al. quantify
learning rates for large-scale lead-acid batteries [32]. The lower and upper va-
lues of learning rates shown in table 4 highlight the spread of available data
and the uniqueness of learning effects in different countries and economies.

The trends for some crucial parameters are presented in figure 5. We ana-
lyse three different carbon reduction pathways: (1), a trajectory following
DECC’s ’reference scenario’ up to 2035 and extrapolated to a zero-carbon
emission target (ZET) in 2050; (2), a trajectory based on DECC’s ’existing
policy scenario’ (ExPol) achieving an 88 % reduction of carbon emissions by
2050 compared to 2015 [90]; (3), a conservative emission target (CET) achie-
ving a 52 % reduction in the same time frame. The carbon price is based on
DECC estimates and extrapolated reaching £100/tco, by mid-century [91].
We assume state-of-the-art efficiencies and carbon intensity values for the dif-
ferent power plant types rather than performance parameters of the existing
capacity fleet. The full underlying data sets can be found in the supplemen-
tary documents provided.

Figure 6 illustrates the cost learning curves for the power technologies

"Referring to the nomenclature in the model formulation in section 3.
8Global capacity installed of HVDC interconnectors (InterImp and InterSto) amounteed
to 195 GW in 2012 [88].
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Symbol”  DIni; BR; LR; -
low high low nom. high

Nuclear 9.6 0.6 3 -6 -1 6 385
Coal 21 0 0 6 8.3 12 1647
IGCC 0 0.25 0.5 3 9.25 16 7.6
CCGT 31.5 0.9 4.5 -1 14 34 1296
OCGT 4 0.5 0.5 15
Coal-CCS 0 0.25 0.5 1 5.5 10 0.11
CCGT-CCS 0 0.375 0.75 2 4.5 7 0
BECCS 0 0.25 0.5 0 1.1 24 0
Wind-Onshore 10 1 2 -1 12 32 421
Wind-Offshore 5 1 2 5) 12 19 12
Solar 9.5 1 3 10 23 47 200
InterImp 3 1 2 38 1958
InterSto 1 1 2 38
PHSto 3 0.6 1.5 1.4 1055
GenSto 0 0.5 0.5 19 0.7
Totals 97.6 9.225 23.25 - 5,219.4

Table 4: Technology parameters related to the capacity expansion and cost learning curve
model. Learning rate data can be found in [17, 27, 32], global capacity levels in [87-89].
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Figure 5: Input parameter trends over the planning time horizon. Scenarios in (a) re-
fer to the zero emission target (ZET) extrapolated monotonously decreasing from 2035
in DECC’s "Reference scenario’, the existing policy pathway (ExPol) extrapolated from
DECC’s ’Existing policy scenario’ [90]. Carbon prices in (d) are reported in real 2015
values.

considered in this study. For comparison of the nominal learning rates as
presented in table 4, figure 6 (a) depicts the current CAPEX values at 1 GW
installed capacity experiencing a reduction for a capacity increase to 25 GW.
In the context of global experience with power technologies, we present fi-
gure 6 (b) moving the learning curve starting points to the global level of
installed capacity in 2015. Figure 6 (c¢) and (d) present two scenarios consi-
dered in this study, where the first is characterised by the assumption that
only local (UK-wide) learning impacts the technology prices, whereas the
latter accounts for cross-country spillover such that technology prices in the
UK are affected more significantly. Based on the EIA and IEA global energy
scenarios [87, 92] up to 2050 we derive a cost reduction curve for each techno-
logy according to their nominal learning rate presented in table 4. The global
capacity increase is then rescaled to a UK-level applying the 2015 fraction
between UK capacity and global capacity deployment per technology type.
In cases where the technology is not yet deployed in the UK, the ratio is
chosen such that a continuous build-up reflects current estimates for the UK
capacity stock in 2050 [93]. Matching global cost reduction estimates with
UK-level capacity additions leads to the optimistic learning curve scenario
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in figure 6 (d). The simplification that the current scaling ratio between UK
and global capacity stock remains constant until mid-century is a shortco-
ming of this method. Expecting a larger share of capacity additions coming
from non-OECD countries, the presented global learning curves outline an
optimistic scenario.

4.2. Optimal Capacity Planning without Technology Cost Learning

In order to validate the energy systems optimisation model for capacity
expansion without technology cost learning (ESO-X) we present a set of
scenarios examining the model’s capabilities and limitations. Each scenario
is defined by the choice of a time representation (full hourly, 21 clusters, 11
clusters), the scheduling formulation (integer, relaxed), the emission scenario
(ZET, ExPol, CET), and the build rate (low, high). Remaining technology-
specific and system-level parameters are unchanged between the scenarios.
As discussed in section 3.9, the computational effort of solving the ESO-
X model is significantly reduced by clustering the time sets and relaxing
the scheduling constraints. The overall error incurred ranges from -1.7 % to
2.5 % for system-level results. All the following results are computed for the
11 cluster time compression and under the scheduling relaxation approach.

The feasible solution space of a scenario with a stringent emission target
and a low build rate is tighter; the feasibility of such a scenario depends
on the technologies available. If the full technology portfolio as listed in ta-
ble 4 is accessible and capacity expansion is assumed at a low build rate the
zero-emission target in 2050 (ZET) is achievable. However, we find that the
same scenario is infeasible without the availability of the negative-emission
technology bio-energy with carbon capture and storage (BECCS?). The emis-
sion target of 86 % reduction (ExPol), however, can be achieved without the
deployment of BECCS technology.

We choose to present three scenarios in detail: the zero-emission target
with low build rate (ZET_1loBR), zero-emission target with high build rate
(ZET hiBR), and the existing policy emission reduction target with low build
rate and no BECCS availability (ExPol loBR noBECCS). Figure 7 shows the
energy output (a) and capacity stack with corresponding level of carbon in-
tensity of total power generation (b) as a result of the ESO-X optimisation.

9We model a BECCS power plant combusting 25 % biomass and 75 % coal combined
with a post-combustion monoethanolamine (MEA) CO, capture system operating at a
90 % capture rate [94].
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Figure 6: Learning curves for the capital cost (CAPEX) of various power technologies; (a)
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Figure 7: Energy output by technology type (a) and capacity stack (b) for the base case
scenario with zero-carbon emission constraint by 2050 and without considering technology
cost learning.

The largest carbon emission reductions happen in early planning years due
to the switch in power generation from coal to gas. Coal capacity is schedu-
led to retire by 2025, accordingly power generation from coal power plants
is phased out in the same time frame. The optimal mix of power generation
up to 2050 involves an increase in zero-carbon nuclear and intermittent re-
newable power sources. In 2035, we observe a reduction in nuclear capacity
and energy output due to the retirement of the existing capacity fleet from
2015. The share of electricity generation from CCS-equipped power plants
increases while unabated CCGT power plants show low utilisation rates of
below 26 % beyond 2035. Onshore wind proves to be the most valuable source
of intermittent renewable power generation, growing at its maximum annual
rate in each planning year from 2025 onwards. Large amounts of interconnec-
tion capacity are deployed which are operated to import electricity at 88 %
of the time in 2050 and can be adjusted flexibly. The total capacity installed
increases from 97 GW in 2015 to 165 GW in 2050, with the amount of firm
capacity increasing form 73 GW to 92 GW, respectively.

The power plants’ operational patterns change as we move from 2015 to
a decarbonised power system. Figure 8 illustrates the hourly power output
and storage charging operation for two sample days in 2015 and 2035. The
annual average utilisation of nuclear power plants remains at a base load le-
vel of 85 %. The penetration of wind power increases significantly from 2015
to 2035. For the sample day on the right-hand side of figure 8 in 2035, all
fossil fuel fired power plants except BECCS are shut down to accommodate
wind power generation. CCS power plants run predominantly in base load
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Figure 8: Power output and storage charging by technology type for the base case scenario
in 2015 and 2035.

operation up to 2030/35. Thereafter, fossil fuel fired power plants are incre-
asingly turned down and are forced to operate flexibly. BECCS utilisation
rates, however, increase from 77 % in 2035 to 85 % in 2050. Being able to
provide dispatchable electricity and ancillary services at zero-carbon emissi-
ons proves to be highly valuable despite operating cost exceeding those of
the remaining CCS-equipped power plants. Up to 2020 the grid-level energy
storage technologies are predominantly utilised to smoothen operation and
reduce cycling of thermal power plants. As the share of intermittent capacity
increases, onshore and offshore wind power plants charge short-term excess
electricity to the storages to avoid curtailment. Their share in storage utilisa-
tion increases from 37 % to 80 %. In 2015, virtually no power generation from
intermittent renewables (onshore and offshore wind, and solar) is curtailed
due to supply-demand issues; in 2050, curtailment levels increase to 1 % of
the intermittent power availability potential. Overall, electricity generation
in 2050 is 31 % from intermittent renewables including storage operation,
25 % from CCGT and CCS-equipped power plants, 33 % from nuclear, and
11 % from imports.

Figure 9 panel (a) and (c) depict the high build rate scenario under other-
wise equivalent parametrisation to the base case presented in figures 7 and 8.
Since power plants can be built more quickly in this case, investment in new
capacity is delayed and no substantial additions are necessary up to 2025.
Nuclear capacity expansion is delayed until 2035. In the low and hight build
rate scenario, the optimal starting point for the build-up of CCS-equipped
power plants is in 2020. The greater degree of freedom in the annual ca-
pacity additions reveals CCGT-CCS as the more valuable CCS technology.
Coal-CCS and CCGT-CCS could be deployed at the same rate, however,
CCGT-CCS proves to be more cost-competitive. BECCS remains essential
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Figure 9: Energy output (a) and capacity stack (c) for the zero-emission scenario at high
build rates, and (b)/(d) for the existing policy emission scenario at low build rates without
the availability of bio-energy and carbon capture and storage (BECCS).

to achieve complete decarbonisation, 3 GW of additional capacity are de-
ployed by 2050 compared to the low build rate case. Total system capacity
by 2050 reaches 132 GW.

Since the zero-emission target is not achievable without carbon-negative
BECCS technology, we present the case following the existing policy emission
target at a low capacity build rate. Similar to the base case, CCGT, CCS, and
onshore wind capacity is expanded continuously reaching the upper bound
of annual capacity additions in most years. In 2050 total capacity installed
amounts to 148 GW. CCGT remains a main source of power generation until
2040, whereas in the base case scenario including BECCS the utilisation of
CCGT power plants plummets after 2035. As coal-CCS and CCGT-CCS
power plants are able to run at higher capacity factors in 2045 and 2050,
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77 % and 67 % respectively, a larger amount of OCGT capacity is deployed
to provide balancing and back-up capacity.

Figure 10 compares the cumulative total system cost for the three presen-
ted scenarios. As the initial power system design is predefined, the 2015 total
system costs are equivalent in each scenario. The high build rate case is the
least costly scenario, as capacity can be deployed effectively when it is requi-
red and can operate at high capacity factors. A level of 86 % decarbonisation
without BECCS can be achieved at 7 % lower overall cost by mid-century
compared to a complete decarbonisation with BECCS deployment. In both
scenarios continuous expansion of low-carbon capacity increases total sys-
tem cost until 2030 at a similar rate. The ensuing sections investigate how
the optimal system design, operation, and cost are affected by considering
technology cost learning.

4.8. Considering Cost Learning of Offshore Wind Capacity

The coastal areas surrounding the UK are among the locations with the
highest potential electricity output from offshore wind power plants. Howe-
ver, the combination of high capital costs and low capacity factors, relative
to dispatchable thermal power plants, acts to prevent the widespread deploy-
ment of this technology.

In the foregoing scenarios, offshore wind is part of the cost-optimal capa-
city mix in 2050 only under the low build rate assumption. Because it is a
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Figure 11: Share of power generation for the zero-emission scenario with low build rate
and local technology cost learning for offshore wind capacity (a), and global learning (b),
with LR data according to figure 6; difference in capacity installed between the base case
without learning presented in figure 7 to the case with local cost learning (c) and global
learning (d) of offshore wind capacity. Only technologies with a capacity deviation are
shown.

low-carbon technology which does not prove to be robustly economical un-
der the static cost assumptions, we apply the local and global cost learning
curves as presented in figure 6 in section 4.1 to offshore wind capacity.

Moreover, we find that in scenarios assuming high capacity build rates,
even under global cost reduction estimates offshore wind capacity expan-
sion is not economical. Available low-carbon dispatchable sources, such as
CCS-equipped coal, CCGT, and bio-energy power generators are more com-
petitive. Figure 11 presents the power generation mix for the low build rate
scenario with local (a) and global (b) learning, as well as the impact on the
optimal capacity mix for the local (c) and global (d) learning case.

Offshore wind capacity deployment increases to 23.4 GW by 2050 in the
local, and to 26.6 GW in global learning scenario, compared to 17.75 GW
in the base case. The share of power generation increases to 13 % and 15 %
respectively, compared to 10 % in the base case. The first capacity additions
are profitable in 2025 as opposed to 2030 in the base case. Under local cost
learning assumptions, a small amount (30 MW) is developed in 2025; under
global learning assumptions, however, an additional 5 GW (a 100 % increa-
se) are brought online in 2025. In the base case, offshore wind unit costs are
£2800/kW, whereas in the global learning case after a capacity increase by
2 GW unit costs have reduced to £2458/kW, falling further to £1963/kW
after 5 GW of deployment. Since, the ESO-XEL model assumes perfect fo-
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resight, the anticipated cost reductions move the investment timing for the
“learning” technology to earlier planning years.

System-level impacts of endogenous cost reduction of offshore wind ca-
pacity become apparent as capacity of other power technologies is displaced.
Panels (c¢) and (d) illustrate a reduction in solar PV capacity by 40 % (15 GW
vs. 25 GW in the base case) for both cost learning scenarios. In the global
learning case, 25 % additional storage capacity (InterSto) is deployed, main-
ly being utilised by onshore and offshore wind power generators. From 2035
to 2050 grid-level storages are charged on average to 85 % by wind power.
Nuclear power generation is affected marginally, however, a sufficient capaci-
ty mix with 600 MW less nuclear capacity (equivalent to one unit according
to the ESO-XEL parametrisation) is achieved in the global LR case.

In addition to the optimal capacity mix, operational dispatch patterns
are affected by the additional power generation from offshore wind power
plants. The utilisation of CCGT-CCS power plants in 2050 falls to an average
of 45 % as opposed to 50 % in the base case. In the global learning case,
offshore wind power generation begins to be curtailed reaching 3 % of annual
availability in 2050. Electricity is imported (InterImp) less frequently. The
average utilisation falls from 88 % in the base case to 83 %; interconnectors
remain an important source of electricity.

4.4. Considering Cost Learning for Multiple Technologies

We extend our analysis from a single technology to considering cost re-
duction for multiple technologies simultaneously. This results in a non-linear
increase in computational effort following il x a x [. Hence, only technologies
with measurable cost reduction relevant on a UK-scale, i.e., a change >2 %
over the considered capacity range, are included into the set il. The local
learning curves according to figure 6 are applied to coal-CCS, CCGT-CCS,
BECCS, onshore wind, offshore wind, solar PV, and battery storage under
low and high build rate assumptions. Both scenarios follow the zero-emission
trajectory as shown in figure 5.

In the case of low capacity build rates, illustrated in figure 12 (a), the sha-
re of power generation by mid-century and the corresponding optimal level
of capacity deployment remains similar to the base case with static techno-
logy capital cost. Offshore wind capacity, however, stands out; in 2050 the
amount of offshore wind capacity exceeds onshore wind (30 GW vs. 24 GW).
New investments in onshore wind capacity move from 2025 to 2020, such
that extensions in the following years benefit from the experience gained.
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Figure 12: Energy output considering local endogenous cost reduction for coal-CCS,
CCGT-CCS, BECCS, onshore wind, offshore wind, solar PV, and battery storage (GenSto)
in a scenario with low build rates (a), and high build rates (b); comparison of cumulative
total system cost (c).

Additional interconnector capacity (Interlmp and InterSto) is developed in
2020, as opposed to 2030 in the base case, providing the system with ex-
tra resilience, although costs remain constant. Fitted with sufficient energy
storage capacity in form of interconnectors and pumped-hydro, battery sto-
rage is deployed less heavily in 2025. From 2030 onwards, however, battery
storage capacity is continuously expanded as the cost comes down, reaching
1.6 GW in 2050. The deployment of solar PV is not accelerated by the cost
reduction potential considered here. Continuously low capacity factors in the
UK means that large scale deployment is not economically viable.

Figure 12 (b) provides information on the optimal power generation mix
under the high build rate scenario considering local cost learning for the
mentioned technologies. In contrast to the high build rate scenario without
learning (figure 9 (a)), nuclear capacity becomes less attractive while CCS-
equipped power plants account for even larger shares of power generation.
CCGT-CCS remains the most favourable low-carbon dispatchable source of
electricity. Nevertheless, the influence of endogenous cost reduction increases
the competitiveness of coal-CCS, diversifying the mix of main power pro-
ducers in 2050. BECCS capacity is deployed more heavily than in the high
build rate case with constant capital cost, amounting to 15 GW in 2050 (vs.
10 GW) and operating in a base load fashion. Despite the cost reduction
potential, offshore wind and solar PV cannot compete against dispatchable
low-carbon power generators in the high build rate scenario.
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The annual cumulative cost comparison in figure 12 verifies the, perhaps
intuitive, notion that overall total system cost decreases if endogenous tech-
nology cost reductions are considered. The observation that the effect of the
capacity build rate per technology type on overall cost is more pronounced
than the effect of technological learning is, perhaps, less intuitive. In the low
build rate scenario, the optimal level of offshore wind capacity deployment
is underestimated if learning effects are not recognised. Under high build ra-
te assumptions, however, offshore wind is not part of the least-cost solution
in 2050. Other technologies, such as onshore wind and BECCS, are robust
against build rate variation in the presented range.

5. Conclusion

We have integrated endogenous technology cost learning into a mixed-
integer linear power systems model. The technology cost learning curves are
modelled in a piecewise linear fashion, relating cumulative investment cost
to cumulative installed capacity. To improve model solutions times we have
employed a k-means data clustering technique, and a relaxation of the integer
power plant scheduling variables.

The consideration of technology cost learning impacts the optimal ca-
pacity mix, the share of power generation, and consequently the dispatch
behaviour of individual power plants. In the case of offshore wind capacity,
the omission of local (national) or global cost reduction effects leads to ca-
pacity estimates of 32 % or 50 %, respectively, below the optimal economic
deployment level in 2050. The effects of simultaneous cost reduction assump-
tions for coal-CCS, CCGT-CCS, BECCS, onshore wind, offshore wind, solar
PV, and battery storage vary under low and high capacity build rate sce-
narios. The economic deployment of offshore wind, solar PV, and battery
storage units is not robust against build rate variations. All three technolo-
gies cannot compete against the low-carbon dispatchable power generators
under high build rate assumptions.

We find that the model results are sensitive to both the integration of cost
learning curves and the build rate parameter. The choice of the maximum
build rate on the optimal capacity mix and the cumulative total system cost
form 2015 to 2050 is more pronounced. However, a failure to account for
learning effects in the low build rate scenario results in underestimating the
value of offshore wind capacity, a technology then contributing to a system-
wide least-cost pathways. Similarly, coal-CCS capacity, crowded out by less
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costly low-carbon sources under static cost assumptions, becomes competitive
and an attractive investment from a system perspective when cost reduction
is taken into account.

The integration of technology cost learning in the presented power system
model'” moves the optimal investment timing of the technology experiencing
cost reduction to earlier planning years. Early investments pay off and total
system cost by mid-century are reduced. Unsupported technologies might
undergo deployment delays although their early adoption could have contri-
buted to cost reduction.

If the aim of power system models is to analyse possible future pathways,
identify competitive technologies, and estimate their optimal investment ti-
ming, the integration of endogenous technology cost learning and realistic
build rates is essential. A proactive strategy to support and incentivise ear-
ly investment in promising technologies can lead to overall cost reductions
owing to the development of an experience base, thus leading to technology
cost reduction.
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Nomenclature
Sets
a VTS planning periods, a € A = {1, ..., Acpa}
t h time periods, t € T = {1, ..., Tena}
c - clusters of representative days of each year, c € C' =
{1,...,Cena}
7 - technologies, i € I = {1, ..., Iona}
19 - power generating technologies, 1g C [

10This is likely to also be the case for other power system models based on cost optimi-
sation and assuming perfect foresight over the planning time horizon.
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i

1S

il

{
Parameters
Aa

DMCLJIi

Des;

LT Ini;

LT;

TL

TE,.

where * is:
Pmin
Pmax
Cmax

RP
IP

Ems
CAPEX;
OPEX;,
OPEXSU;
OPEXNL,

ImpElecPr;

UT;

DT;

SEta;,
SDur;,
SOC Mingg
SOCMazx;,

MW /unit
unit/yr
VTS

VTS

%

various

%-MW
%-MW
%-MW
%-MW

Y%-MW

tc0,/MWh
£ /unit
£/MWh
£/MWh
£/h

£/MWh
h

h
%-MWh
h
%-MW
%-MW

conventional generating technologies, ic C [
intermittent renewable technologies, ir C I

storage technologies, is C [

technologies for which learning rate is applied, il C [
line segments for piecewise linear function

step width planning years

number of available units of technology i for a = 1

maximum number of available units of technology ¢
fora=1

nominal capacity per unit of technology i

build rate of technology

lifetime of initial capacity of technology ¢ for a = 1

lifetime of technology i

losses in transmission network

features of technology 1,

minimum power output

maximum power output

maximum capacity provision

reserve potential, ability factor to provide reserve
capacity €= {0,1}

inertia potential, ability factor to provide inertial
services €= {0, 1}

emission rate.

investment costs of technology '
operational costs of technology ¢ in year a
start-up costs of technology i

fixed operational costs of technology ¢ when opera-
ting in any mode

electricity import price

minimum up-time for technology ig

minimum down-time for technology ig

storage round-trip efficiency

maximum storage duration

minimum storage inventory level

maximum storage inventory level

12
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A‘/ir,c,t
SDc,t,a
UD

PL,
CM
RM
WR
ST
SE,
VoLL
Disc,
WE,
Xlog,

X Upii i
Yl Oil,1
Yupu,l
Variables
tsc

eig,a,c,t
uig,a,c,t

Wig,a,c,t

Jo-MW
MWh
MWh

MW
%-MW
%-MW
%-MW
MW .s

tco,
£/MWh

MW
MW

MW
MW

tco, /MWh

Positive Variables

pig,a,c,t

p2dig,a,c,t
pQSig,a,c,t
p2i3is,a,c,t
Tig,a,c,t

Sis,a,c,t

S2di5,a,c,t

MWh

MWh
MWh
MWh
MW

MWh

MWh

availability factor of technology ir in cluster ¢ at
hour ¢

system electricity demand in year a in cluster ¢ at
hour ¢

maximum level of unmet electricity demand in any
year a

peak load over time horizon 7" in each year a
capacity margin

absolute reserve margin

dynamic reserve for wind power generation
minimum system inertia demand

system emission target in year a

Value of Lost Load

discount factor (1 + ) in year a

weighting factor for clusters ¢

lower segment x-value of cumulative capacity of pie-
cewise linear cost function

upper segment x-value

lower segment y-value of cumulative CAPEX
upper segment y-value

total system cost

emission caused by technology i¢g in year a at hour
t of cluster ¢

number of units of technology ig starting up in year
a at time t of cluster ¢

number of units of technology ig turning down in
year a at time t of cluster ¢

energy output of technology ¢ in year a in hour ¢ of
cluster ¢

energy to demand

energy to grid-level storage

energy to storage technology is

reserve capacity provided by technology ig

effective state of charge of technology is at the end
of time period ¢

energy from storage to demand
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S2ris,a,c,t MW
slakg MWh
TSil,a,l MW
Yil,a £

Integer Variables
bi,a -
d; -

b
nz’g,a,c,t
Ois,a,c,t

Binary Variables
Pil,a,l -

7. Notes

reserve capacity provided by technology is

slack variable for lost load

position for technology ¢ in year a on line segment [
cumulative CAPEX for technology ¢ in year a

number of new built units of technology 7 in year a
number of units of technology ¢ operational in year
a, cumulative

number of units of technology ig operating in year a
at hour ¢ of cluster ¢

number of units of storage technology is operating
in year a at hour ¢ of cluster ¢

1, if cumulative CAPEX of technology il in year a
on line segment [

The underlying technical and economic data for the considered power ge-
neration and storage technologies, as well as for system-level data on electrici-
ty demand, fuel prices, etc., are available online at: https://www.imperial.
ac.uk/a-z-research/clean-fossil-and-bioenergy.

Yincluding interest during construction (IDC) with a discount rate of 7.5% over the
respective construction time period per technology type.
including fuel cost, carbon tax, CO, transport and storage cost, fixed O&M cost per

technology type.
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