
 

 

 

1 

Abstract— We proposed a multi-class tactile brain-computer 

interface that utilizes stimulus-induced oscillatory dynamics. It was 

hypothesized that somatosensory attention can modulate tactile 

induced oscillation changes, which can decode different sensation 

attention tasks. Subjects performed four tactile attention tasks, 

prompted by cues presented in random order and while both wrists 

were simultaneously stimulated: 1) selective sensation on left hand 

(SS-L), 2) selective sensation on right hand (SS-R), 3) bilateral 

selective sensation (SS-B), and 4) selective sensation suppressed or 

idle state (SS-S). The classification accuracy between SS-L and SS-R 

(79.9±8.7%) was comparable with that of a previous tactile BCI 

system based on selective sensation. Moreover, the accuracy could 

be improved to an average of 90.3±4.9% by optimal class-pair and 

frequency-band selection. Three-class discrimination had accuracy 

of 75.2±8.3%, with the best discrimination reached for the classes 

SS-L, SS-R and SS-S. Finally, four classes were classified with 

accuracy of 59.4±7.3%. These results show that the proposed system 

is a promising new paradigm for multi-class BCI. 

Index Terms— Tactile BCI, Selective Sensation, 

Stimulus-induced Oscillatory Dynamics, Somatosensory Attention 

 

I. INTRODUCTION 

Brain-computer interface (BCI) provides a non-muscular 

channel for interaction with the external environment [1], [2]. It 

has been demonstrated that subjects can voluntarily modulate 

sensorimotor rhythms (SMR) generated from the motor cortex 

[3] by performing motor imagery (MI) of their limbs (e.g., left 

or right hand) [4]–[9]. However, there is a latency, usually in 

the order of seconds, between the MI task and the generation of 

SMR patterns [10]–[12], making it difficult to develop a highly 

interactive BCI. Furthermore, SMR-based BCIs suffer from the 

issue of “BCI Illiteracy” [13], [14], in that a significant portion 

of users (15-30 % of the general population) cannot 

successfully use SMR-based BCI systems even after extensive 

training [15]–[18]. Alternatively, visual P300 or steady-state 

visual evoked potential (SSVEP) from EEG can also be used 

for BCI systems [19], [20], but these fast visual BCI requires 

full engagement of the users’ gaze control, which can be 

challenging and undesirable in real-life application settings. It 

is suggested that auditory and proprioceptive BCIs are the only 

remaining channels of communication for many potential BCI 

users, such as those in the late stage of amyotrophic lateral 

sclerosis (ALS) [21]–[23]. By requiring the active involvement 

of the somatosensory system, somatosensory stimulation might 

also provide a way to avoid the “extinction of thought” [24]. 

Thus, BCI systems based on tactile stimulation will not only 

provide a way for communication with the external world [25], 

[26], but also help to engage the remaining somatosensory 

system [24]. 

A tactile BCI provides a complementary approach to 

increasing BCI diversity by fully exploring the functioning 

somatosensory system of the BCI user. The first prototype of a 

tactile BCI was proposed by Mueller-Putz et al [25], and based 

on steady-state somatosensory evoked potentials (SSSEP) 

[27]–[29]. This system does not require eye control. SSSEP is a 

steady-state component of the brain signal, evoked by sustained 

vibrotactile stimulation within the frequency range of 17 to 35 

Hz [30]. The evoked amplitude of the SSSEP can be modulated 

by subjective attention [31]. Experiments on five subjects have 

shown that the classification accuracy for this BCI modality 

ranged from 64% to 84%, with an average accuracy of 70.4%. 

Four of the investigated subjects attained an accuracy below 

70%. Another study on SSSEP showed a mean classification 

accuracy of 58% for 16 subjects, with 15 out of 16 subjects 

below the 70% accuracy level [32]. Subsequently, a tactile 

P300 system, similar to the visual P300 BCI, based on the 

oddball paradigm, was proposed [33]. This system achieved a 

mean accuracy of 72% in 11 subjects, when selecting between 

two targets.  

Recently, in a series of studies, we proposed a tactile BCI 

based on oscillatory dynamics from the somatosensory area of 

the cortex, which we termed selective sensation (SS) tactile 

BCI [34]–[36]. This approach is based on the fact that 

event-related desynchronization/synchronization (ERD/ERS) 

not only has a strong correlation with real or imagined 

movement but also with the processing of afferent inflow in the 

human somatosensory system [37], [38]. The somatosensory 

attention could also modulate the amplitudes of ERD/ERS [39]. 

The 43 subjects that we have so far investigated attained an 

accuracy of 79.2%, with only seven with an accuracy below 

70% [36]. Therefore, this tactile BCI modality based on SS 

substantially outperformed previous tactile BCI systems, 

making it potentially applicable to a larger number of users. 

In this study, we extended the two-class BCI in our previous 

studies to a multiple-class tactile BCI system. Four mental tasks 

were randomly presented to the subjects: selective sensation on 

the left hand (SS-L), selective sensation on the right hand 

(SS-R), bilateral selective sensation (SS-B), and selective 

sensation suppressed or idle state (SS-S). As a first step toward 

a multi-class tactile BCI, we focused on addressing the question 

whether two-class classification can be improved by optimal 
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selection of pairs of SS tasks. In addition, we tested the 

performance of three- and four-class discrimination. 

II. METHODOLOGY  

A. Subjects 

Twelve healthy subjects participated in the experiments (five 

female, seven male, all right handed, average age 21.2±1.5 

years), all were BCI naïve subjects. This study was approved by 

the Ethics Committee of the University of Waterloo, Waterloo, 

Canada. All participants signed an informed consent form 

before participation. 

B. EEG Recording and Somatosensory Stimulation 

EEG signals were recorded using a 32-channel wireless 

g.Nautilus EEG system (g.tec, Austria). The electrodes were 

placed according to the extended 10/20 system. The reference 

electrode was located on the right earlobe, and the ground 

electrode on the forehead. A hardware notch filter at 60 Hz was 

applied to the raw signals. The signals were digitally sampled at 

250 Hz. 

Mechanical stimulation was applied to the wrists. Linear 

resonant actuators (10 mm, C10-100, Precision Microdrives 

Ltd., typical normalized amplitude 1.4 G) were used for 

producing vibrotactile stimulation. The stimulation device 

produced a 23-Hz sine wave for the left wrist, and 27-Hz sine 

wave for the right wrist. Both stimuli were modulated with a 

175-Hz sine carrier wave. These stimuli activate the Pacinian 

and Meissner corpuscles [40], which are sensitive to 

frequencies above 100 Hz and 20-50 Hz, respectively. The 

amplitude of the vibration was individually adjusted to be 

between the maximum amplitude (11.3 um) and half of the 

maximum amplitude at the resonant frequency. The selection of 

the optimal amplitude was based on individual feedback from 

the subject, such that they were comfortable with perceiving the 

vibration. 

C. Experimental Protocol  

During the SS task period, sustained vibrotactile stimuli were 

simultaneously applied to both wrists. Four SS tasks were 

performed according to different cues: 1. Selective sensation on 

the left hand (SS-L); 2. Selective sensation on the right hand 

(SS-R); 3. Bilateral selective sensation (SS-B); 4. Selective 

sensation suppressed (SS-S). 

The experimental paradigm is illustrated in Fig. 1. The 

subject was seated on a comfortable armchair, with both 

forearms and hands resting on the armrests. The subjects were 

instructed to limit their eye, facial and arm movements. During 

the experiment, a series of visual cues were presented to the 

subjects on a computer screen located at a distance of 1 m from 

the subjects. At the beginning of each trial, a white fixation 

symbol (“+”) appeared in the center of the screen. After 2 s, a 

vibration pulse stimulated both hands for 200 ms with the same 

intensity, to alert the user of the subsequent task. At the 3rd 

second, a red cue of the following four types was presented on 

the computer monitor: 1) a left-pointing arrow corresponding to 

the SS-L task; 2) a right-pointing arrow corresponding to the 

SS-R task; 3) a double-sided arrow corresponding to the SS-B 

task; and 4) a circle corresponding to the SS-S task. This cue 

was superimposed on the fixation symbol and lasted for 1.5 s. 

The subjects were instructed to perform the corresponding 

mental task after the appearance of the cue. The mental task 

continued for 5 s, until the fixation symbol disappeared. During 

this period, sustained vibrotactile stimulation was 

simultaneously applied to both wrists. Next there was a 

relaxation period lasting 1.5 s. Finally, a random time interval 

of 0 to 2 s followed the relaxation period, to prevent subject 

adaptation. A total of 240 trials (60 trials for each task) were 

performed by the subjects in 6 runs, each of which consisted of 

10 trials of each task in random order. There were 2-4 min 

breaks between two consecutive runs. 

D. Calculation of ERD/ERS and time frequency 

decomposition 

Event related desynchronization (ERD) and event related 

synchronization (ERS) are defined as the percentage of power 

decrease (ERD) and power increase (ERS) in a defined 

frequency band in relation to a reference interval (usually taken 

at a different time interval) [41]. The frequency band alpha-beta 

of [8 26] Hz was adopted in this study for EEG filtering before 

the ERD/ERS calculation. The reference interval for the 

ERD/ERS calculation was from 1.2 s to 2.0 s prior to the 

appearance of the cue. The grand averaged ERD/ERS curves 

from all subjects of the same task were used to determine the 

activation and deactivation of the cortex areas involved in the 

mental tasks. 

The EEG data was manually corrected for artifacts using the 

EEGLAB toolbox [42]. Trials contaminated with swallowing 

and physical movement artifacts (either in baseline or task 

interval) were excluded from the analysis. For all subjects, at 

least 45 trials (over all classes) were used for subsequent 

 
Figure 1. Illustration of the experiment protocol. (1) Graphic 

representation of the applied bilateral vibration stimulus (indicated by the 

two red hexagons), and the four SS tasks (the red dots or the lack of it for 

SS-S) (2) The temporal sequence of each trial. 
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analysis (while no trials were discarded for the classification 

evaluation). Time-frequency decomposition of each trial along 

each EEG channel was performed to construct the 

spatio-spectral-temporal structure according to the pre-defined 

mental tasks. It was calculated every 200 ms with a hanning 

tapper, convoluted with a modified sinusoid basis, in which the 

number of cycles linearly changed with frequency to achieve 

proper time and frequency resolution [43]. The R2 index 

(squared Pearson-correlation coefficient between feature and 

class label) [44], [45] was calculated based on the above 

spatio-spectral-temporal structures between different mental 

tasks, and used to locate the component of different EEG 

channels for the classification of the corresponding mental 

tasks. The Discriminative Brain Pattern (DBP) was defined as a 

topographic plot of the R2 index, which was averaged along the 

task time interval mentioned above, and along certain 

frequency bands, such as alpha (8-13 Hz), beta (13-26 Hz), or 

alpha-beta (8-26 Hz).  

E. Algorithms and Performance Evaluation 

Spatial filtering was adopted to reduce the number of 

channels and to enhance the feature discrimination among the 

investigated SS tasks. The spatial filters were determined with 

the Common Spatial Pattern (CSP) procedure, which has been 

extensively validated for BCIs [46], [47]. The log-variance of 

the first and last three components produced by CSP were 

chosen as feature vectors, and linear discriminative analysis 

(LDA) was used for classification. As the most discriminative 

frequency bands are highly subject-dependent, the bands were 

selected as: lower alpha [8 10] Hz (α-), upper alpha [10 13] Hz 

(α+), lower beta [13 20] Hz (β-), upper beta [20 26] Hz (β+), 

alpha [8 13] Hz (α), beta [13 26] Hz (β), alpha-beta [8 26] Hz 

(αβ), and eta [10 16] Hz (η). A fourth-order Butterworth filter 

was applied to the raw EEG signals before the CSP spatial 

filtering.  All available channels were used in CSP calculation. 

A 10×10 fold cross-validation was utilized to evaluate the BCI 

performance among different frequency bands, and for 

selecting the optimal frequency band. 

EEG signals were segmented from 1 s to 4 s after the 

appearance of the cue (the timing interval of the 4th to 7th 

seconds from the beginning of the trial) for the analysis. For the 

two-class scenario, two out of the four classes were selected for 

discriminative analysis, resulting in six two-class cases: SS-L 

vs SS-R (P1), SS-L vs SS-B (P2), SS-L vs SS-S (P3), SS-R vs 

SS-B (P4), SS-R vs SS-S (P5), and SS-B vs SS-S (P6). 

Similarly, four three-class cases were investigated: SS-L vs 

SS-R vs SS-B (T1), SS-L vs SS-R vs SS-S (T2), SS-L vs SS-B 

vs SS-S (T3), and SS-R vs SS-B vs SS-S (T4). Further, the 

four-class classification was also performed. To investigate the 

general applicability of the proposed SS tactile BCI system, the 

performance for the two-class, three-class and four-class cases 

was analyzed with fixed frequency bands for all subjects. In 

addition, as there was a large inter-subject variability, we also 

performed subject-specific optimization of frequency bands 

and class pairs, to explore the best possible performance for 

individual subjects. 

F. Statistics 

One-way ANOVA with repeated-measures was used to 

analyze performance differences among different BCI task 

pairs (with p=0.05), and multiple comparisons with Bonferroni 

correction was used for post-hoc comparison whenever the 

main effect was found to be significant. For the interpretation of 

the classification result, the theoretical chance level was 

corrected with the number of the trials [48]. The corrected 

chance accuracy for p=0.05 for two-class classification was 

61.67%, for three-class 42.78%, and for four-class 32.50%. 

III. RESULTS 

A. Oscillatory Dynamics of Selective Sensation Tasks 

Fig. 2 shows the grand-averaged oscillatory dynamics across 

four different tactile sensation tasks. At the -1s, a vibration 

burst of 200 ms was applied to both wrists to alert subjects to 

get ready for the tasks. This corresponded to a clear 

simultaneous alpha-beta frequency power reduction for both 

C3 and C4 with the same strength for all four tasks. From 0s to 

5s, there was sustained stimulation on both wrists, while the 

subjects performed different SS tasks. This resulted in 

distinctive oscillatory changes across the left and right 

somatosensory cortex. During the SS-L task, the ERD on the 

contralateral (right side) hemisphere C4 was more pronounced 

than that in the ipsilateral (left side) hemisphere C3. 

Conversely, during the SS-R task, the ERD in C3 was more 

pronounced than that in C4; during SS-B, a clear bilateral 

activation was presented; during the SS-S task, the ERD 

strength was much lower bilaterally than for all other tasks. 

Moreover, Fig. 3 shows the grand-averaged ERD/ERS spatial 

distribution during different tasks in alpha frequency band. It 

can been seen that in Fig. 3 (5) the vibration burst resulted in 

 
Figure 2. The time varying grand-averaged ERD/ERS curves at 

small-Laplace filtered C3 and C4 channels within alpha-beta frequency 

band [8 26] Hz. (A) ERD/ERS corresponds to SS-L task. (B) ERD/ERS 

corresponds to SS-R task. (C) ERD/ERS corresponds to SS-B task. (D) 

ERD/ERS corresponds to SS-S task. The upper and lower curves indicate 

standard error. Time 0s corresponds to the time when the indicating cue 

appeared (3rd second from the beginning of the trial). 
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left and right somatosensory cortex co-activation, and it was 

clearly concentrated on left (C3) and right (C4) hemispheres. A 

clear occipital ERS was also present during this vibration burst 

ready period. There was a clear somatosensory activation 

during the sustained tactile stimulation (Fig. 3 (1) (2) (3) (4)); 

while different SS tasks resulted in distinctive cortical 

activation distributions, with contralateral stronger activation 

during both SS-L and SS-R task, with bilateral activation 

during SS-B task and suppressed activation during SS-S task. 

Moreover, occipital suppression (ERS) was shown in all SS 

tasks, with stronger ERS in both SS-L and SS-R tasks than that 

in SS-B and SS-S tasks. Moreover, grand-averaged ERD/ERS 

spatial distribution in alpha-beta frequency band ([8 26] Hz) is 

shown in Fig. 4. 

B.  Two-Class Scenarios 

Table 1 summarized the two-class performance of the 

proposed tactile BCI system. With a common frequency band 

of [8 26] Hz, the average accuracy was 79.9±8.7% for P1 (SS-R 

vs SS-L), 73.8±8.0% for P2, 83.4±5.6% for P3, 69.6±5.6% for 

P4, 81.3±10.0% for P5, 75.1±10.8% for P6. Without any 

subject-specific optimization, one-way ANOVA with repeated 

measures revealed a significant difference in classification 

accuracy among different pairs (p<0.05). Post-hoc testing 

showed that P1, P3 and P5 were significantly better that P4, and 

no significant difference was found among P1, P3 and P5. If the 

best two-class task pair for individual subjects was used 

(optimized pair selection in Fig. 5), the average classification 

accuracy increased to 87.4±6.0% (p<0.05), with the highest 

subject above 95%. If the frequency bands were optimized for 

individual subjects, the average accuracy further increased to 

90.3±4.9%. Fig. 6 illustrates an example of differences in 

discriminative information R2 distribution of the best and the 

 
Figure 3. Grand-averaged ERD/ERS distribution within alpha frequency 

band [8 13] Hz. (1) ERD/ERS activation with respect to SS-L task. (2) 

ERD/ERS activation with respect to SS-R task. (3) ERD/ERS activation 

with respect to SS-B task. (4) ERD/ERS activation with respect to SS-S 

task. (5) ERD/ERS activation with respect to vibration burst (1 second 

before the appearance of the cue). Color bar indicates the ERD/ERS value. 

Note: ERD/ERS value is averaged between 1 to 4 second after the 

appearance of the cue in subfigure (1) (2) (3) (4); ERD/ERS value is 

averaged between -0.5 to 0 second before the appearance of the cue in (5). 

 
Figure 5. BCI performance in two class tactile BCI systems. The red bars 

indicate the BCI performance based SS-L and SS-R, which we proposed in 

[34], [36]; the green bars indicate the BCI performance with the optimal 

task pair for each subject; and the blue bars indicate the BCI performance 

with both task pair and frequency band optimization for each subject. The 

green dash-dotted line indicates 61.67% corrected chance level with 

p=0.05 according to [48]. 

 
Figure 6. R2 value distribution of subject s1. (A) R2 value distribution of 

task pair P1 (SS-L vs SS-R); (B) R2 value distribution of task pair P5 

(SS-R vs SS-S). The R2 value was averaged between 1 to 4 second from the 

appearance of the cue, within 10 and 13 Hz frequency band. The clear 

advantage in discriminative power of P5 over P1 is readily seen. 

 
Figure 4. Grand-averaged ERD/ERS distribution within alpha-beta 

frequency band [8 26] Hz. (1) ERD/ERS activation with respect to SS-L 

task. (2) ERD/ERS activation with respect to SS-R task. (3) ERD/ERS 

activation with respect to SS-B task. (4) ERD/ERS activation with respect 

to SS-S task. (5) ERD/ERS activation with respect to vibration burst (1 

second before the appearance of the cue). Color bar indicates the 

ERD/ERS value. Note: ERD/ERS value is averaged between 1 to 4 second 

after the appearance of the cue in subfigure (1) (2) (3) (4); ERD/ERS value 

is averaged between -0.5 to 0 second before the appearance of the cue in 

(5). 
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Table 1. Classification accuracy between each pair of the SS tasks. The first column of each pair (D1) indicates the accuracy in [8 26] Hz frequency band, 

whereas the second column (D2) indicates optimized accuracy, and brackets indicate subject optimized frequency band. And the entries in bold-face 

indicate the case with the highest accuracy for each subject when both the task pairs and frequency bands are optimized. 

 P1 (SS-L vs SS-R) P2 (SS-L vs SS-B) P3 (SS-L vs SS-S) P4 (SS-R vs SS-B) P5 (SS-R vs SS-S) P6 (SS-B vs SS-S) 

Sub D1 (%) D2 (%) D1 (%) D2 (%) D1 (%) D2 (%) D1 (%) D2 (%) D1 (%) D2 (%) D1 (%) D2 (%) 

S1 68.9±5.8 
73.2±4.8 

(α+) 
62.6±5.0 

66.3±5.

8 (β) 
80.0±4.1 

85.9±4.4 

(α) 
69.2±4.4 

74.9±5.6 

(α) 
89.5±2.1 

91.5±1.9 

(α+) 
83.6±2.2 

87.1±3.2 

(α) 

S2 84.9±4.5 
90.8±3.3 

(β) 
81.1±2.7 

81.1±2.
7 (αβ) 

91.1±2.7 
93.7±2.2 

(α) 
78.8±5.3 

79.4±2.6 
(α+) 

93.5±2.4 
95.6±2.5 

(α+) 
90.9±3.0 

92.6±2.2 
(β) 

S3 72.3±3.9 
72.3±3.9 

(αβ) 
77.8±2.9 

77.8±2.

9 (αβ) 
80.3±1.9 

80.3±1.9 

(αβ) 
67.1±4.1 

69.3±3.4 

(β+) 
77.8±3.9 

77.9±3.7 

(β+) 
62.9±4.0 

70.6±4.2 

(β+) 

S4 92.3±2.2 
92.8±1.9 

(β-) 
82.2±2.5 

85.0±2.
2 (β) 

83.1±2.7 
83.1±2.7 

(αβ) 
72.5±3.7 

75.3±3.2 
(β+) 

88.7±3.2 
88.7±3.2 

(αβ) 
78.3±4.1 

78.3±4.1 
(αβ) 

S5 75.2±3.5 
89.0±2.1 

(α+) 
73.9±4.5 

73.9±4.

5 (αβ) 
84.6±3.4 

84.6±3.4 

(αβ) 
76.8±4.4 

78.3±4.6 

(α) 
72.8±5.2 

79.3±3.6 

(α+) 
67.8±4.9 

71.0±4.1 

(β-) 

S6 69.3±3.1 
79.8±3.0 

(β) 
65.2±4.1 

69.2±2.
0 (β-) 

93.8±1.9 
95.9±2.1 

(β-) 
67.8±5.6 

69.8±2.7 
(β) 

87.8±2.7 
90.4±1.7 

(β-) 
85.2±1.9 

85.7±4.0 
(η) 

S7 87.8±2.0 
92.6±1.9 

(α+) 
71.0±5.2 

73.6±5.

7 (η) 
80.8±3.7 

88.8±2.3 

(α) 
71.7±2.7 

81.5±2.7 

(α) 
81.6±3.2 

84.3±4.7 

(α+) 
80.7±1.9 

81.5±2.8 

(α+) 

S8 82.6±4.6 
88.8±2.6 

(η) 
59.0±6.5 

66.7±4.

0 (β-) 
74.6±5.5 

76.0±3.2 

(η) 
62.6±5.0 

71.9±3.0 

(η) 
70.1±4.1 

73.8±4.6 

(η) 
62.8±6.1 

66.5±5.7 

(η) 

S9 78.0±4.5 
84.5±3.9 

(α) 
80.0±3.6 

80.0±3.

6 (αβ) 
82.0±5.0 

82.0±5.0 

(αβ) 
61.8±3.6 

70.8±2.6 

(β) 
62.7±4.6 

79.3±5.3 

(α-) 
61.5±4.3 

68.8±6.2 

(η) 

S10 86.5±4.7 
86.5±4.7 

(αβ) 
76.1±4.3 

76.1±4.
3 (αβ) 

86.4±3.7 
87.5±2.6 

(η) 
62.5±3.3 

71.5±5.1 
(α+) 

94.9±2.0 
95.5±2.3 

(η) 
88.0±2.8 

90.5±2.4 
(α) 

S11 70.3±2.3 
72.2±3.4 

(α) 
73.5±4.2 

73.5±4.

2 (αβ) 
76.8±2.6 

85.7±2.9 

(α) 
75.2±3.4 

78.1±4.3 

(α) 
74.2±4.1 

80.4±2.7 

(β+) 
75.3±5.6 

75.3±5.6 

(αβ) 

S12 91.1±3.4 
91.4±3.3 

(η) 
83.3±3.3 

83.3±3.
3 (αβ) 

86.8±2.4 
90.0±2.9 

(α) 
69.6±4.1 

71.0±3.6 
(α) 

82.3±2.2 
85.1±3.6 

(α) 
64.4±3.8 

65.6±5.4 
(β) 

mean 79.9±8.7 84.5±8.1 73.8±8.0 
75.5±6.

2 
83.4±5.6 86.1±5.6 69.6±5.6 74.3±4.2 

81.3±10.

0 
85.2±7.2 75.1±10.8 77.8±9.6 

 

worst task pair of a subject. A sharp contrast can be observed. 

This indicates that a subject-specific selection of the best SS 

task pair can significantly enhance the performance of the SS 

tactile BCI. Interestingly, even for the basic SS-L to SS-R 

scenario, 10 out of the 12 subjects exceeded 70% accuracy and 

all of them were above the corrected channel level of 61.67% 

with p=0.05. With subject optimal frequency band selection 

and/or task pair selection, accuracy was above 70% in all cases 

(Fig. 5). 

C. Three- and Four-class Scenarios 

Table 2 summarized the three-class performance of the 

proposed tactile BCI system.  With a common frequency band 

of [8 26] Hz, the average accuracy was 61.8±7.4% for T1, 

71.4±9.1% for T2, 64.6±7.6% for T3, 62.2±8.8% for T4. For 

these three-class scenarios, one-way ANOVA with repeated 

measures showed that there was a significant difference in 

classification accuracy (p<0.05), and post-hoc comparison 

showed that the performance of T2 was significantly greater 

than the other three scenarios, and no significant difference was 

found among T1, T3 and T4. Fig. 7 illustrates the performance 

of the three-class tactile BCI system. All subjects exceeded the 

corrected random chance level of 42.78% (p=0.05), and 

reached an averaged accuracy of 71.4±9.1%. The selection of 

the optimal pair did not show substantial improvements from 

the original T2. However, subject specific frequency band 

selection improved the three-class accuracy to 75.2±8.3% 

(paired-t test; p<0.05). 

 
Figure 7. BCI performance in three-class tactile BCI systems. The red 

bars indicate the BCI performance based left hand SS, right hand SS, and 

suppressed SS tasks; the green bars indicate the BCI performance with 

the optimal task set for each subject; and the blue bars indicate the BCI 

performance with both task set and frequency band optimization for each 

subject. The green dash-dotted line indicates 42.78% corrected chance 

level with p=0.05. 

 
Figure 8. BCI performance in four class tactile BCI systems. The red bars 

indicate the BCI performance within the baseline time period; the green 

bars indicate the BCI performance in taskline period; and the blue bars 

indicate the BCI performance with optimization of frequency band for 

each subject. The green dash-dotted line indicates 32.50% corrected 

chance level with p=0.05. 
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Fig. 8 illustrates the performance of the proposed four-class 

SS tactile BCI system. The task activity discrimination 

accuracy was compared against the baseline performance, 

when no tasks were performed. The proposed system achieved 

an average accuracy of 59.4±7.3%, and all subjects exceeded 

the corrected random chance level of 32.50% (p=0.05). For this 

scenario, subject-specific frequency band selection resulted in a 

small (but significant) improvement of 2% (p<0.05).  

IV. DISCUSSION 

We presented a novel approach for a multiple-class tactile 

BCI based on stimulus-induced oscillatory dynamics. This is 

the first example of a multi-class BCI based on somatosensory 

oscillations. The proposed SS tactile BCI approach is different 

from existing tactile BCI systems based on SSSEP [25] or 

event-related potentials [33]. The present system does not need 

the user to engage his/her visual attention, which is vital for 

patients without eye control. Moreover, the intrinsic low SNR 

of SSSEP led to a relatively low BCI performance and 

relatively high BCI-illiteracy rate in previous systems. An 

alternative tactile BCI system is the tactile P300 system, which 

is based on the oddball paradigm, and was shown to allow an 

accuracy of approximately 72%. In the current study, we took a 

different approach in exploring EEG dynamics associated with 

tactile stimulation. We showed that the stimulus-induced 

oscillatory dynamics provides a powerful approach for 

high-performance tactile BCI systems. In the two-class 

scenarios, the mean classification accuracy of P1 was 

approximately 80%, in agreement with the results from our 

previous studies [34], [36]. With subject-specific task pair and 

frequency band optimization, however, the performance of the 

two-class classification reached approximately 90%. This 

accuracy level is substantially greater than any tactile BCI 

reported in the literature, and is among the best among current 

two-class BCIs [25], [33], [49], [50]. Even in the worst case 

scenario (without task pair and frequency band selection), 10 

out of 12 subjects exceeded the 70% threshold in accuracy. This 

indicates potential for the proposed system to be used by a large 

portion of the population. 

Combining the SSSEP and transient ERP signal modalities, a 

hybrid three-class tactile BCI was recently proposed by 

Breitwieser et al. [26], with an average accuracy of 57%. In our 

current experimental evaluation, we showed an accuracy of 

75.2% for a three-class scenario. Thus, in multiple-class BCI 

settings, the stimulus-induced oscillatory dynamics provides 

extra information for somatosensory attention decoding and has 

a higher SNR as compared to SSSEP and tERP. Moreover, our 

four-class tactile BCI system showed an average accuracy of 

59.4%, thus making it a promising approach for multiple-class 

BCI development. The SSSEP response reflects the somatic 

information processing. It has a frequency specific feature, 

which is related to the stimulation frequency [27], [31]. In 

contrast, the ERD/ERS oscillatory dynamics reflects 

somatosensory processing, and has a non-stimulation 

frequency specific feature [51]. Therefore, the ERD/ERS 

oscillatory response and SSSEP response provide 

complementary information of the somatosensory input 

processing. Thus theoretically, in tactile BCIs, hybridizing the 

oscillatory dynamics and SSSEP response will provide a way to 

improve the BCI performance. 

It was clearly observed that the vibration burst for alerting 

subjects to get ready for the subsequent task induced an 

oscillatory ERD response in the [8 26] Hz alpha and beta 

frequency bands in both the left and right hemisphere (Fig. 2 

and Fig. 3 (5)), but it did not exhibit task-related differences as 

no specific tasks were performed. During sustained tactile 

stimulation in task periods, ERD/ERS oscillatory activation 

showed task-related differences in the left and right 

hemisphere. In SS-S tasks, the subjects were instructed to 

actively ignore or suppress the tactile sensation (idle state), thus 

the activation on both hemispheres represented mainly the 

stimulus effect. In contrast during SS-B tasks, the subjects were 

instructed to focus the sensation on both hands. In this case, the 

ERD oscillatory activation was much more pronounced than 

Table 2. Classification accuracy among every three SS tasks. The first column of each pair (D1) indicates the accuracy in [8 26] Hz frequency band, 

whereas the second column (D2) indicates optimized accuracy, and brackets indicate subject optimized frequency band. And the entries in bold-face 

indicate the case with the highest accuracy for each subject when both the task pairs and frequency bands are optimized. 

 T1 (SS-L vs SS-R vs SS-B) T2 (SS-L vs SS-R vs SS-S) T3 (SS-L vs SS-B vs SS-S) T4 (SS-R vs SS-B vs SS-S) 

Subj D1 (%) D2 (%) D1 (%) D2 (%) D1 (%) D2 (%) D1 (%) D2 (%) 

S1 53.8±2.6 53.8±2.6 (αβ) 63.9±4.5 69.0±4.0 (α+) 62.5±3.8 62.5±3.8 (αβ) 67.7±4.1 71.6±5.3 (α) 

S2 73.2±3.2 73.2±3.2 (αβ) 85.7±3.3 85.7±3.3 (αβ) 79.3±4.2 79.3±4.2 (αβ) 79.0±3.2 79.6±2.9 (α) 

S3 60.7±4.7 60.7±4.7 (αβ) 62.4±1.9 62.4±1.9 (αβ) 57.3±4.5 59.3±4.1 (β+) 53.1±2.7 59.1±1.6 (β+) 

S4 70.7±2.1 73.1±3.2 (β) 81.2±3.7 81.2±3.7 (αβ) 68.8±2.8 70.3±3.1 (β) 68.3±1.9 68.6±3.4 (β+) 

S5 66.6±2.8 66.6±2.8 (αβ) 68.8±3.0 74.8±2.8 (α+) 63.5±2.3 63.5±2.3 (αβ) 59.3±2.5 62.9±4.4 (α) 

S6 49.2±3.4 59.4±3.6 (β) 69.9±2.8 80.2±3.2 (β) 67.5±3.0 68.9±2.3 (β-) 68.4±4.1 68.4±4.1 (αβ) 

S7 63.3±3.5 70.2±3.8 (α) 75.2±2.8 82.4±2.4 (α+) 64.3±2.3 71.2±2.9 (α+) 67.2±3.9 72.4±3.4 (α) 

S8 52.1±3.2 58.3±3.2 (η) 63.9±3.1 68.9±3.7 (η) 51.4±4.5 55.6±3.3 (η) 50.1±2.4 58.2±3.9 (η) 

S9 62.3±2.7 62.9±5.9 (β) 63.2±5.2 65.8±6.6 (α) 58.9±2.3 61.3±4.2 (η) 50.0±4.1 52.7±4.6 (β-) 

S10 60.7±4.1 60.7±4.3 (α+) 84.1±3.0 84.1±3.0 (αβ) 75.4±4.1 76.3±3.6 (η) 66.6±4.3 74.0±3.0 (α+) 

S11 60.4±3.6 61.2±3.1 (α) 60.4±4.7 64.0±3.1 (β) 61.8±3.3 61.8±3.3 (αβ) 59.5±2.1 59.9±3.5 (β+) 

S12 69.1±5.1 69.1±5.1 (αβ) 77.6±4.6 80.9±2.5 (α) 63.9±3.2 64.7±2.5 (η) 57.1±3.7 58.5±2.5 (α) 

mean 61.8±7.4 64.1±6.2 71.4±9.1 75.0±8.5 64.6±7.6 66.2±7.0 62.2±8.8 65.5±8.1 
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that during the SS-S task, and the activation difference between 

SS-S and SS-B represented the active somatosensory attention 

involvement. In SS-L and SS-R tasks, it has been shown that 

the contralateral activation was stronger than that in ipsilateral 

activation, which was in accordance with our previously 

published results [36] and further supported our proposal of a 

novel tactile BCI based on stimulus-induced oscillatory 

dynamics. The frequency band of [8 26] Hz covered most of the 

stimulus-induced oscillatory components (alpha, beta), and was 

independent from the stimulation frequency specific SSSEP 

[25]. The stimulation pattern was the same during all the 

proposed four tactile sensation tasks. Therefore, the selection of 

[8 26] Hz would not influence current results. Moreover, the 

BCI performance of [8 30] Hz including both 23 and 27 Hz 

frequency did not shown significant difference from current [8 

26] Hz frequency band, which included 23 Hz frequency only. 

ERD/ERS oscillatory changes are not only correlated with 

real movement or imagined movement [52], [53], but also with 

tactile sensory processing [38]. In our previous study [18], 

these oscillatory dynamics were systematically compared 

between the motor imagery and sensory stimulation, showing 

that MI and SS shared a similar activation pattern and 

ERD/ERS dynamics although the brain activation sources were 

different (one is generated mainly from the motor cortex, while 

the other from the somatosensory cortex). In this experimental 

study, the subjects were instructed to selectively focus their 

somatosensory attention on one hand at a time while both wrists 

were simultaneously stimulated. SS-L and SS-R both showed 

stronger contralateral activation, which were similar to motor 

imagery, but from a different brain region (somatosensory 

cortex). Oscillatory signals from the somatosensory cortex 

would provide alternative opportunities for BCI design, when 

the motor cortex is impaired. The somatosensory-BCI [36] 

would also provide a promising signal for neurorehabilitation 

following stroke.  

In this experimental design, the subjects were instructed to 

perform the four selective sensation tasks according to their 

respective cues, which were randomly presented. In order to 

limit the subject’s potential mental adjustment while 

performing the tasks in an online scheme, no on-line feedback 

was presented to the subjects in this proof-of-concept study. 

However, the results from offline analysis for the two-class 

classification were comparable with our previous results 

obtained during an online protocol. In this study, the 

stimulation parameters were slightly different across subjects 

due to different wrist size. Such difference have shown to have 

limited influence for current tactile BCI performance and 

ERD/ERS dynamics [34], [35], [54]. Stimuli parameters, such 

as amplitude and frequency, and their correlation with 

ERD/ERS dynamics could be the topic of a future study, with 

the goal of further enhancing the performance tactile BCI. 

V. CONCLUSION 

A tactile BCI based on stimulus-induced oscillatory 

dynamics (selective sensation based tactile BCI), results in a 

significant improvement in detection accuracy compared to 

current tactile BCI designs, that are based on either steady-state 

somatosensory evoked or event related potentials. The 

oscillatory activation across the four tactile sensation tasks 

(SS-L, SS-R, SS-B, SS-S) exhibited distinct dynamic processes 

between the somatosensory attention and stimulus-induced 

oscillation, which provides a novel approach for a 

high-performance multiple-class tactile BCI setup. This tactile 

BCI design provides a novel approach for enhancing the current 

tactile BCIs based on SSSEP and ERP, reducing BCI-illiteracy 

users, and offering more commands. 
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