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ABSTRACT 

The environment can elicit biological responses such as oxidative stress (OS) and 

inflammation as consequence of chemical, physical or psychological changes. As population 

studies are essential for establishing these environment-organism interactions, biomarkers of 

oxidative stress or inflammation are critical in formulating mechanistic hypotheses. By using 

examples of stress induced by various mechanisms, we focus on the biomarkers that have 

been used to assess oxidative stress and inflammation in these conditions. We discuss the 

difference between biomarkers that are the result of a chemical reaction (such as lipid 

peroxides or oxidized proteins that are a result of the reaction of molecules with reactive 

oxygen species, ROS) and those that represent the biological response to stress, such as the 

transcription factor NRF2 or inflammation and inflammatory cytokines. The high-throughput 

and holistic approaches to biomarker discovery used extensively in large-scale molecular 

epidemiological exposome are also discussed in the context of human exposure to 

environmental stressors. Finally, we consider the role of biomarkers as signs and distinguish 

between signs that are just indicators of biological processes and proxies that one can interact 

with and modify the disease process. 
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BIOMARKERS OF INFLAMMATION AND OXIDATIVE STRESS (OS) 

 

The theory that OS - an unbalance between production of toxic oxygen species, reactive 

oxygen species (ROS) and endogenous antioxidants (143) -may be at the basis of a disease 

has been first put forward by Harman in 1956 with the “free radical theory of aging”, in which 

he concluded “This theory is suggestive of chemical means of prolonging effective life “ (55). 

Despite this,there are no antioxidants currently approved by regulatory agencies for any 

disease (50), with the possible exception of edaravone, an antioxidant approved in Japan and 

India for aiding neuroprotection in stroke patients. 

Inflammation is also postulated as a pathogenic mechanism in most diseases or as a major 

risk factor. Its oldest definition is by Aulus Cornelius Celsus in the first century AD, who 

defined the four hallmarks of inflammation: “rubor, et tumor, cum calore, et dolore”, redness, 

swelling, heat and pain (25). These are, for Celsus, “notae vero inflammationis”. “Notae” is 

usually translated in English with “signs” (“the cardinal signs of inflammation”). This is our 

first encounter, in our review, of the concept of biomarker. In a way, biomarkers are “signs”. 

The father of semiotic, Charles Sanders Peirce, described a semiotic triad where he defines 

the relationship between a sign, the object it stands for and the interpretant (8). This concept 

is shown in Figure 1 where when the interpretant sees smoke, she knows that that sign 

indicates that somewhere there is a wildfire.  
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Figure 1. The semiotic triad according to Peirce. 

 

From Celsus’ perspective, the signs of inflammation were viewed mainly with a diagnostic or 

classification purpose. However, in clinical and preclinical studies, as well as in 

epidemiological studies, biomarkers are also used to gain insights into the causal mechanisms 

underlying diseases. Biomarkers have been classified in biomarkers for the aetiology of the 

disease (risk factors; including biomarkers of exposure), and biomarkers of disease used in 

the screening or diagnosis, or to monitor disease progression (prognosis) (98). Even if not 

implicit in their definition, one desirable criterion for a biomarker is to be accessible - i.e. 

measurable in biological fluids that can be obtained  in a minimally-invasive manner (such as 

urine, blood or synovial fluid). In animal models biomarkers can also be measured in tissues 

and organs, possible only in human patients in the few cases where biopsy samples are 

obtained for diagnostic purposes. 

The study of diseases can, in its turn, lead to the definition of new biomarkers and to the 

refinement of the criteria for disease classification. For instance, an inflammatory response 

often results in tissue damage (e.g. joint damage in arthritis) and loss of function, the “functio 

laesa” described by Galen (125). The study of the molecular mechanisms of inflammation led 

to infiltration of blood cells, their recruitment in the tissues as a result of inflammatory 
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mediators known as chemokines (171), being considered as additional criterion of 

inflammation, more than the classical cardinal signs. Cytokines and chemokines, 

inflammatory mediators causative of many features of inflammatory diseases, including the 

old five cardinal signs, are now used as biomarkers of inflammation. 

The identification of cytokines as mediators of inflammation in the mid 1980s led to what 

Tracey called the “cytokine theory of disease” (155).  Contrary to the OS theory of disease, 

this led to major advances in the treatment of chronic inflammatory diseases, and less than 

15 years after the identification of the cytokine tumor necrosis factor-α (TNF-α), anti-TNF-α 

antibodies were approved in the therapy of chronic inflammatory diseases and are now the 

top-selling biologicals.  

Here we review both biomarkers of OS and inflammation; not a random choice, as the two 

fields are tightly linked. ROS can activate the transcription factor NF-B (135), which has many 

inflammatory cytokines among its target genes. Conversely, inflammation can induce OS 

(127), as for instance in the case of ROS production by polymorphonuclear neutrophils (105). 

Although the two pathways are so intertwined, they present entirely different challenges in 

terms of biomarkers. When studying disease mechanisms, we want to be able to measure the 

effectors of inflammation. The development of anti-TNF-α drugs was possible as researchers 

could measure TNF-α levels in patient with commercially available immunoassays that detect 

TNF-α in stored blood samples. 

All this is very difficult when studying OS in disease. Here the effector molecules are ROS, 

which have short half-lives, ranging from nanoseconds to milliseconds (73). This makes it 

impossible to measure ROS in biological samples and we must rely on signs, chemicals that 

are produced by the interaction of ROS with various cellular molecules (48). 

Another important aspect to consider is the difference between biomarkers that are 

measuring the formation of the effector molecule and those that measure the response of 

the organism to an inflammatory stimulus; inflammation is a defence/repair reaction of the 

organism to an infection or injury. The process is complex, as the effector cytokines in 

inflammation are produced after a series of steps. As we mentioned above, there are several 

biomarkers of OS that indicate the exposure of the organism to ROS by measuring oxidative 

breakdown products of cellular molecules. However, exposure to OS can be inferred by 
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measuring the cellular defence response to it, and in this review we will give the example of 

the transcription factor nrf2/antioxidant response element (ARE) transcription factor that is 

activated by ROS and other electrophiles. Sections in this review will deal with psychological, 

environmental or noise-induced stress, trying to focus on how their effects on inflammation 

or OS were detected. 

 

ENGINEERED NANOMATERIALS AS ENVIRONMENTALLY-BORNE AGENTS INDUCING 

INFLAMMATION AND OS 

 

Engineered nanomaterials (ENM) are manufactured materials in which at least one dimension 

is in the nanometer-range (< 100 nm). The higher surface area increases the material’s 

reactivity (106). Redox interactions of ENM is a major mechanism of toxicity, particularly for 

metal and metal oxide nanomaterials, quantum dots and carbon nanotubes (CNT). 

Typically, OS is induced by ENM in a three-tiered hierarchical sequence (Figure 2) (106,111).  

 

 

Figure 2. The three-tiered paradigm of OS induced by nanomaterials at the single cell level. 
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A mild production of ROS induced by ENM (Tier 1) lowers the reduced glutathione (GSH) / 

oxidized GSH (GSSG) ratio and upregulates genes encoding type II anti-oxidant enzymes, thus 

re-establishing homeostasis. In Tier 2, the defensive reaction is more complex, ENM induce 

the production of ROS triggering the production of inflammatory cytokines and chemokines. 

However, the inflammatory response is transient, as the elimination of the triggering event 

(e.g., the phagocytosed ENM) and inflammation-damping feedback mechanisms re-establish 

homeostasis. In Tier 3, the GSH/GSSG ratio is completely unbalanced and essential 

components of cells are damaged, causing genotoxicity and cytotoxicity. 

This sequence does not distinguish between the capacity of ENM to generate ROS in cell-free 

systems (111) and ROS generation consequent to nano-bio interaction. In a complex system 

(tissue, organ) a different three-pronged model can be proposed for the inflammatory 

response to ENM (Figure 3).  

 

Figure 3. The three-pronged response of complex living systems to nanomaterials. 

In this model, Prong 1 represents the lack of response, due to either “ignorance” or 

“tolerance”, in which the living system eliminates ENM immediately, e.g. by excretion with 

urine. Prong 2 is the classical protective inflammatory response, in which a tissue reacts to 

ENM sending alarm signals, with recruitment of blood immune cells to eliminate the ENM. 

The reaction is, however, limited in time and circumscribed; after eliminating the ENM, 

inflammation resolves. Prong 3 is the pathological situation of an inflammatory reaction that 

cannot resolve, as in the case of persistent materials (e.g., fiber-like particles).  This may result 

in persistent inflammation with tissue destruction and development of non-functional neo-
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tissue (granuloma, scarring tissue, pannus, fibrotic tissue). Only Prong 3 can be eventually 

harmful for the organism and cause irreparable damage.  

The three-tiered model of ENM-induced OS does not reflect the three-pronged model of 

ENM-induced inflammation because the entire organism considers the death of single cells 

as an acceptable event that may be important in the “cleaning” and healing reaction.  

 

ROS production by nanomaterials 

Unstable ENM can undergo oxidation, reduction and dissolution in biological media, releasing 

reactive free ions (in the case of metal ENM such as silver), or excitation of electrons and 

generation of ROS (as in the case of titania ENM and fullerenes upon UV irradiation). In 

addition, the reactive surface of ENM may absorb transition metals that catalyze ROS-

generating reactions (Fenton, Fenton-like, Haber-Weiss) and produce cytotoxic and genotoxic 

hydroxyl radicals (106,111,117). Production of ROS resulting from the interaction of ENM with 

living systems is mainly indirect, due to damage or alterations caused by ENM to membranes, 

which trigger an alarm inflammatory reaction. The production of ROS is one of the defensive 

mechanisms initiated by innate defense cells such as phagocytes, aiming at killing 

microorganisms. Silica and polycationic particles can interact with plasma membrane 

phospholipids leading to membrane destabilization and ROS production (3,87). Urate crystals 

can also bind plasma membrane cholesterol and induce to aggregation of receptors and other 

molecules within lipid rafts, thus activating Syk-dependent inflammatory signaling and ROS 

generation (108,176). ROS induction can also be indirect, as for instance in the case of 

crystalline silica particles that can induce TNF-α production that stimulates ROS generation 

(12). Once internalized, ENM can destabilize and rupture the membranes of organelles such 

as phagolysosomes and mitochondria, causing ROS production and inflammation. 

High-aspect ratio ENM (rigid fiber-like or needle-like ENM) are particularly challenging for 

phagocytes and generate a phenomenon known as “frustrated phagocytosis”, with waves of 

phagocytes attempting to take up the material, and persistent inflammation, including ROS 

production. ROS production induced by ENM is in most cases associated with Akt/mTOR 

pathway, autophagy and apoptosis (5). This can evolve into a Tier 3 reaction, with ROS 

production inducing lipid peroxidation, membrane destabilization, DNA and protein damage. 
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Rigid needle-like ENM can also cause phagocyte death by literally perforating the cell 

membrane (102).  

Unlike apoptosis, necrotic cell death implies membrane damage and release of intracellular 

components, which perpetuates the inflammatory reaction (164). This may lead to tissue 

damage or, in a “pathological” attempt to contain the danger, can result in fibrotic or 

granulomatous reactions (Prong 3). In some cases, leukocytes can successfully degrade high-

aspect ratio EMN without phagocytosing them, as in the case of multi-walled CNT, which are 

sensitive to several leukocytic enzymes, and can therefore be eliminated rapidly without 

causing excessive ROS-mediated tissue damage (160). This would therefore be a classical 

Prong 2 inflammatory reaction that resolves without causing permanent damages. 

 

Inflammatory reactions induced by nanomaterials 

Inflammation (Prong 2) is therefore a central event in ENM-induced OS (20). At the organism 

level, inflammation is a defensive mechanism, which succeeds in tagging and eliminating 

potentially dangerous agents (including ENM). Inflammation however always induces some 

collateral damage, i.e. the death of some cells (including both the effector cells and innocent 

bystanders). In terms of ENM cytotoxicity, at the single-cell level inflammation can be in Tier 

2 (resolves without cell death) or in Tier 3 (ending with cell death). Both events can be 

included in Prong 2, an inflammatory reaction at the tissue/organ/organism level that 

succeeds in eliminating the danger despite some cell death and tissue damage, and succeeds 

in repairing the collateral damage and restore functionality. Tier 2 and Tier 3 cellular 

reactions, on the other hand, are also included in Prong 3, the unresolving inflammation that 

fails in re-establishing tissue homeostasis, so that organ function is eventually compromised. 

One aspect of ENM-induced inflammation is the capacity of activating the inflammasome, in 

particular NLRP3, which is the main inflammasome complex. This is a complex of proteins that 

assembles in the cytoplasm in response to inflammatory stimuli and leads to the activation of 

the enzyme caspase-1, responsible for cleavage and activation of the precursor forms of two 

important inflammatory cytokines, IL-1 and IL-18 (70). Caspase-1 can also auto-activate and 

mediate cell death (151). Several studies have shown that ENM can activate the NLRP3 

inflammasome (reviewed in (150)), similarly to other particulate agents (e.g. hydroxyapatite 
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crystals, cholesterol crystals, and aluminum hydroxide particles) (44,64,71). Inflammasome 

activation by ENM can occur through different mechanisms, including generation of ROS, 

which participate in inflammasome activation (54). Another mechanism is the destabilization 

of phagolysosomal membranes with consequent release of lysosomal enzymes, in particular 

cathepsin B, that activate the inflammasome either directly or via ROS (70). Other putative 

mechanisms of ENM-induced inflammasome activation include activation of the NADPH 

oxidases, K+ efflux, purinergic receptor P2X7 (P2X7R)-mediated ATP depletion, decrease of 

mitochondria membrane potential, and thioredoxin-interacting protein (TXNIP)-induced 

NALP3 activation (70,128). A summary of typical data of ENM-induced NLRP3 inflammasome 

activation is presented in Table 1. The general conclusion is that crystals and high-aspect 

particles (such as fibers) are excellent activators of the inflammasome. However, since 

inflammasome activation is not per se a sign of toxicity or pathological inflammation, it is a 

reaction that can be included both in Prong 2 and in Prong 3, and only a deeper kinetic analysis 

may allow us to discriminate between protective and pathological activation. 

A final note of caution, when studying OS and inflammation induced by RNM, regards the 

possibility that ENM are inadvertently contaminated with endotoxin. This is a very common 

event when ENM synthesis and handling are not carried out in endotoxin-free conditions 

(158). The presence of endotoxin can cause per se inflammation that may be erroneously 

attributed to ENM (88). 

 

NRF2 AS AN INDICATOR OF RESPONSE TO OS 

 

One approach to monitoring OS as well as environmental electrophilic chemicals is to use 

biomarkers based on the response of the organism, as opposed to measuring oxidized 

products ofcellular components. NRF2 is the main transcriptional regulator of cellular 

homeostasis and protects against multiple stress conditions. Upon dimerization with small 

MAF proteins, it recognizes an enhancer in the promoter regionof target genes, termed 

Antioxidant Response Element/Electrophile Responsive Element (ARE/EpRE) genes. These 

account for about 1% of human genome and encode phase I, II and III detoxification enzymes, 
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GSH, peroxiredoxin (PRDX) and thioredoxin (TXN) metabolism, intermediary metabolism 

related to pentose phosphate pathway, etc. (58).  

The main mechanism of regulation is protein stability by the ubiquitin/proteasome system 

(UPS) illustrated in Figure 4.  

 

Figure 4. Regulation of NRF2 by protein stability. 

 

Under non-stress conditions, the E3 ubiquitin ligase adapter Kelch-like ECH-

associated protein 1(KEAP1) drives NRF2 to ubiquitination by the Cul3/RBX complex and rapid 

proteasomal degradation. However, KEAP1 contains several cysteine residues which have a 

low pKa value, making highly suited for acting as a sensor for oxidative and electrophilic stress 

(94). Oxidant or electrophilic modification of critical cysteines in KEAP1, mainly C155, C273 

and C288, prevent the protein from connecting NRF2 to the UPS, thus resulting in the 

accumulation of nuclear NRF2 and transcriptional activation of ARE genes. Another crucial 

mechanism for control of NRF2 stability is by phosphorylation. Several kinases phosphorylate 

NRF2 with different outcomes. Activating phosphorylation by MAP kinases, PKC or PERK at 

Ser40 and other residues appears to free NRF2 from KEAP1 control. On the other hand, the 

Ser/Thr protein kinase GSK-3 phosphorylates at least Ser 335 and 338 in murine NRF2 thereby 

creating a recognition site for the E3 ubiquitin ligase adapter -TrCP, leading to ubiquitination 

by Cul1/RBX and proteasome degradation of NRF2 (35,121,122). Importantly, several 

phosphatases, such as phosphatase and tensin homolog (PTEN), contain thiol reactive 

cysteines in their catalytic centre, which become inactive upon oxidation or reaction with 

electrophiles (119,129). In this case, PTEN inhibition leads to sustained activation of AKT and 
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inhibition of GSK-3. As a result, NRF2 escapes Glycogen synthase kinase 3 (GSK-3)/-TrCP 

mediated degradation (35). Below will discuss advances on its role for protection against 

several environmental forms of stress. 

 

Heavy metals  

Occupational or environmental exposure to heavy metals generate OS that, depending of the 

route of entrance and clearance, may produce liver, kidney or lung damage among others. 

Chromium, arsenic, cadmium, mercury, and lead can interact with nucleophilic thiol groups, 

e.g. cysteines residues in proteins. Cells have a thiol buffering capacity represented by the 

GSH and PRDX/TXN systems. Exposure to heavy metals will compromise these systems and 

alter a significant fraction of thiols in critical enzymes. Formation of sulfur-metal bonds in 

redox-sensitive cysteines of KEAP1 will result in its stabilization. Also, signaling pathways are 

altered, with phosphatases such as PTEN being inhibited resulting in increased activation of 

AKT, inhibition of GSK-3 and further stabilization of NRF2. The result is up-regulation of genes 

involved in GSH synthesis and maintenance of reduced TRX and GSH, both important to 

tolerate metal exposure.  

Furthermore, as reported for cadmium, chromium, arsenic and others, low-level chronic 

exposure to metals may induce cancer. Somatic mutations in the interface of interaction 

between KEAP1 and NRF2 have been correlated with several types of tumors (141), and NRF2 

levels are elevated in cancer cells, resulting in a metabolic reprogramming that allows to 

withstand OS and adverse growth conditions. It is therefore possible that part of the 

tumorigenic activity associated with exposure to heavy metals might be due to dysregulation 

of NRF2 (144).  

Most of the exposure to heavy metals is in the form or reactive molecules. For example, 

intracellular reduction of hexavalent chromium generates highly reactive pro-oxidant 

intermediates, together with superoxide, hydrogen peroxide, and hydroxyl radical. These 

compounds irreversibly inhibit TXN reductase and deplete TXN and PRDX (104). While this 

situation is typical of KEAP1 inhibition, it is also recognized that TXN depletion has additional 

effects on signalling pathways such as activation of ASK1, leading to up-regulation of NRF2 by 

MAPK kinases by yet unknown mechanisms.  
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Mental stress  

Recent studies have correlated depression, typically caused by mental stress and social 

defeat, with low grade chronic inflammation that affects critical regions of the brain (11). 

NRF2 modulates inflammation by down-regulating the NF-B pathway (36,66). Additionally, 

NRF2 inhibits expression of IL-6 and IL-1 by directly binding the proximal promoter of these 

genes (78). Nrf2-knockout mice exhibit a depressive-like behaviour, with reduced levels of 

dopamine and serotonin and increased levels of glutamate in the prefrontal cortex, altered 

levels of proteins associated to depression such as VEGF and synaptophysin, as well as 

microgliosis. Importantly, depressive-like behaviour elicited by endotoxin in wild-type mice 

could be attenuated with the NRF2 activator sulforaphane (96).  

 

Ionizing and UV-radiation 

Exposure to cosmic, ionising radiations and UV radiation, either from natural sources of from 

devices, represents a significant challenge to homeostatic redox mechanisms and nucleic 

acids integrity. Recent studies have demonstrated that NRF2 promotes DNA repair and drives 

detoxification of superoxide that is generated after irradiation (137). In particular, NRF2 

regulates the expression of RAD51, many DNA repair genes, including those of homologous 

recombination repair pathway, and have putative antioxidant response elements (68).  

 

NOISE INDUCED HEARING LOSS 

 

Noise-induced hearing loss (NIHL) can be induced by exposure to loud sound. Affected 

individuals may have inability to hear certain frequencies of sound, cognitive impairment of 

sound perception, including sensitivity to sound and ringing in the ears (tinnitus) (1). The 

association between noise exposure and hearing loss was first recognized by Sir Francis Bacon 

(1561-1626) (56).  

NIHL is caused by acute (e.g. sudden exposure to loud noise, explosion) or chronic acoustic 

trauma (e.g. loud music). NIHL is the most common occupational disease and its severity 
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differs amongst individuals, and increases with age, compromising the quality of life that 

extend beyond hear loss. Unfortunately, unlike birds and amphibians, ability to regenerate 

hearing is lost in mammals. Thus, in human beings any damage to the hearing organ from any 

sound source over time leads to permanent hearing loss.  

Cochlea is located within the inner ear and houses the specialized peripheral end organ of the 

auditory system, which mediates the transduction of sound waves into electrical nerve 

impulses that travel to the brain for central processing of auditory information. Acoustic 

insults to the cochlea cause mechanical and metabolic changes affecting almost all cell types, 

but particularly the sensory hair cells and neurons. Temporary and permanent threshold 

shifts occur from mechanical and metabolic changes caused by the exposure to different 

noise levels (30,61,80,83,85).  Mechanical damages occur with exposure to the noise levels 

of 115-125 dB suond pressure level (SPL), while metabolic damages occur with exposure to 

the noise level of less than 115 dB SPL. These changes in threshold shifts are related to noise-

induced neural degeneration, which begins shortly after noise exposure and can progresses 

for several years post exposure (82,101) Importantly, early noise exposure can intensify age-

related hearing loss (82).  

 

Noise induced hearing loss - pathology 

Early studies of NIHL demonstrated mechanical damages of the cochlear structures including 

the disruption of Reissner’s and basilar membranes, damage and loss of stereocilia bundles, 

damage of the inner and outer hair cells (IHCs, OHCs), stria vascularis, spiral ganglion cells, 

and lateral wall of the OHCs (19,80,85,147). OS and inflammation are major contributors to 

NIHL. 

Cell death induced by acoustic overexposure occurs primarily through apoptosis and necrosis. 

Apoptosis is a programmed cell death, with no inflammatory response (61). As discussed 

below, the apoptosis can be mediated by the activity of enzymes, induced by increased 

production of ROS (ROS) and Reactive Nitrogen Species (RNS) (80,109,165). The second cell 

death pathway is necrosis, a passive unprogrammed cell death which is identified by swollen 

and pale-staining cytoplasm resulting in rupture of the cell, spillage of the cell contents, 

damage to surrounding tissue, and evocation of an inflammatory response (61). Both 
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apoptotic and necrotic pathways have been observed in the cochlea immediately after noise 

exposure (65), as discussed below and illustrated in Figure 5.  

 

 

Figure 5.  Mechanisms of ototoxicity induced by acoustic trauma. 

 

OS induced apoptosis in hearing loss 

The cochlea is a highly metabolically active sensory organ, which receives 0.5 mL per minute 

of blood flow in normal conditions (80). Metabolically, noise exposure can decrease cochlear 

blood flow leading to cochlear ischemia-reperfusion injury, induce cell death by producing 

ROS, and contribute to injury and death of hair cells and spiral ganglion cells (29,61,80). Noise-

induced OS causes lipid peroxidation in the spiral ganglion, organ of Corti, and stria vascularis, 

leads to oxidation of actin filaments of stereocilia and cell membrane lipids, protein oxidation, 

damage to nuclear and mitochondrial DNA, swelling and degeneration of afferent nerve 

endings, and release of toxic lipid peroxidation products such as 4-hydroxy 2, 3-nonenal (HNE) 

(43,80).  
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OS biomarkers in hearing loss 

OS occurs immediately and is present up to 30 days following noise exposure (61,174). In the 

first 10 days, the formation of ROS reaches its peak (174). OS has been identified by a variety 

of biomarkers of ROS and RNS activity in the cochlea and the brain (43). These biomarkers 

include HNE, nitrotyrosine (NT), malondialdehyde (MDA), inducible nitric oxide synthase 

(iNOS), cytochrome-C, caspase-3, 8, 9, and p66shc. Formation of HNE was observed after 

noise exposure in the lateral wall and Claudius cells, the Deiter’s cells and the outer hair cell 

bodies (29,43,174). Formation of NT, a biomarker of NO production formed by nitration of a 

tyrosine residue in proteins, occurs in the hair cells after noise exposure (29,43,174).  MDA 

was observed in cochlea immediately after noise exposure (29). The expression of iNOS in the 

hair cells, wall of the blood vessels of stria vascularis and marginal cells was observed 

immediately after noise exposure (139). Noise exposure induces cytochrome-C release from 

mitochondria and caspase-3, -8, or -9 activation in both apoptotic and necrotic OHCs, while 

caspase activation occurred only in apoptotic OHCs  (109)..  

 

Inflammatory biomarkers in hearing loss 

Acoustic trauma can also initiate inflammation in the stria vascularis, compromising blood 

supply to the cochlea, causing hypoxia and injury to HCs (145). Injuries to the stria vascularis 

and spiral ligament occur following noise trauma, damaging type II and IV fibrocytes leading 

to permanent hearing loss (62). 

As a response to acoustic trauma, the cochlear cells express cytokines, such as TNF-α and IL-

1β, and chemokines, which cause leukocyte migration (74). These inflammatory cells, 

producing cytokines, chemokines, ROS and RNS, then propagate the inflammatory process to 

the inner ear.  

Following acoustic trauma, an influx of inflammatory cells occurs (62,152,153,163).  These 

cells are mostly found in the spiral ligament (type I, III and type IV fibrocytes), and in the 

perilymph of the scala tympani and scala vestibule (62,152,153,163). ). IL-6 immunoreactive 

cells were observed initially in the cytoplasm of type III and IV fIbrocytes, then throughout 

the spiral ligament and the stria vascularis (49). Double labelling with the neuronal marker 

NeuN showed IL-6 expression in the spiral ganglion neurons after noise exposure. 
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Chemokines (such as MCP-1/CCL2, MCP-5/CCL12, and MIP-1β/CCL4) are upregulated by 

acoustic trauma (153). ICAM-1/CD54, a vascular adhesion molecule that mediates leukocyte 

extravasation, as well as other adhesion molecules including P-selectin, PECAM-1 and VCAM-

1, are also increased after noise exposure (140,153,173).  

 

BRAIN-BODY INTERACTIONS OF STRESS, OS AND INFLAMMATION 

 

While stress and inflammation are often implicated in disease, there is a bidirectional 

regulation between the two. Figure 6 outlines the main regulatory pathways. The classical 

pathway is mediated by glucocorticoids (GC). The fact that stress activates the hypothalamus 

pituitary adrenal axis (HPAA) to increase GC has been known for a long time, and GC are 

probably the oldest anti-inflammatory drugs. The finding that GC inhibit the expression of 

inflammatory cytokines provided an important mechanism of action (17). It soon became 

clear that inflammatory cytokines activate the HPAA and thus increase GC that not only inhibit 

cytokine synthesis but also protect from their toxicity, in a classical feedback (15,16,31,157). 

This raises an important point in the interpretation of the scheme in Figure 6: inflammatory 

cytokines and inflammation are also stressors themselves, sometime defined as “immune 

stressors”. 

 

Figure 6. The main neuroendocrine-immune pathways. 
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It comes therefore to no surprise that corticosteroids are used as biomarkers of stress. 

Because their level in the blood vary with time, the measurement of hair cortisol, which 

accumulates over weeks and months, has been proposed as a biomarker of stress (99) and 

has been successfully used in the study of post-traumatic stress disorder (PTSD) (93). More 

recent studies have identified in the cholinergic response mediated by vagus nerve 

stimulation another mechanism of regulation of peripheral inflammation by the brain, which 

also led to development of novel therapeutic options (113,156). 

The fact that infection induces a sickness behaviour (lethargy, anorexia, social isolation) is an 

old observation, but findings by Dantzer (reviewed in (40)) that this is mediated by cytokines 

has provided a molecular mechanism for what is thought to be an adaptive response of the 

organism to better survive an infection (39).  Similar to their effect on IL-1-induced lethality 

(16), GC inhibit the anorexigenic response to IL-1 (120), indicating that they act not only by 

inhibiting cytokine production but also their action.  

As we mentioned earlier, OS can induce inflammation and, vice-versa, inflammation induces 

OS. This has been hypothesized to be the case in PTSD, where a study measuring levels of 

inflammatory cytokines and markers of OS suggests that inflammatory cytokines induce ROS 

production, which then amplifies the inflammatory response (169). 

Fitting GC and the HPAA in this bi-directional autostimulatory loop between inflammation 

and OS is more difficult. Clearly GC, by blocking production of inflammatory cytokines, could 

remove a major stimulus of OS. On the other hand, activation of the HPAA, by increasing 

metabolic rate and glucose availability, can result in increased OS (146) and, in agreement 

with this hypothesis, administration of corticosterone to rats causes an increase in biomarkers 

of OS, lipid peroxides and protein carbonyls (132).  

It should be pointed out, however, that the latter study, as well as the study on PTSD cited 

earlier (169) were performed measuring, among other biomarkers, superoxide levels in 

plasma and blood. Because, as mentioned above, superoxide has a half-life in milliseconds, 

some aspects of the methodological approach might be questioned. 
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Effect of emotional states on OS and inflammation 

Emotions, inflammation and OS share three fundamental features: 1- they help the host to 

adjust to different environmental challenges and maintain a status of homeostasis; 2- they 

can have both protective or deleterious effects for the host; 3- they are deeply intertwined in 

ways that we have only started to appreciate and are not fully explored. The few examples 

below should be sufficient to support these statements.  

There is evidence that basic emotions, like laughter and joy, improve immunological 

competence of host through NK cells, important in cancer surveillance (51). It is possible that 

the negative emotional state often experienced following a diagnosis of cancer might 

contribute to the development of this disorder, and that ‘laughing therapy’ (51) and patient 

support groups might have a biological therapeutic value for cancer patients undergoing 

chemotherapy.  

Negative emotions (anger and rage) can be protective as they represent an immediate 

reaction to real or imaginative dangers but also contribute to the exacerbation of chronic 

inflammatory diseases (21,76). Anger, rage and aggressive behaviour cause a significant 

increase in the serum levels of IL-1 (116). 

Several studies (9,22,28,37,38,95,118) have highlighted the link between emotion and 

immunity. Studies have shown how external conditions (massage-like stroking or enriched 

environment) can improve the host resilience to immunosuppression (89,118).  

We think that the implications of these studies go beyond the simple duality of emotions and 

immunity as an example of body-mind continuum. Indeed, the “mirroring effect” that we 

have proposed to explain how emotions influence immune response and vice-versa 

(22,37,38) might as well work for another system.  There is increasing evidence that emotional 

state and personality affects inflammation and OS. Interestingly, several risk factors for 

cardiovascular disease (CVD) (high fat diet, sedentary lifestyle and smoking) are associated 

with elevated OS, and are lifestyle choices associated with depression (6,84). 

Many recent studies highlighted links between outlook on life and outcome in disease. For 

example, people who have Type D personality, a pessimistic and socially inhibited outlook, do 

worse during CVD. Heart failure patients with this personality type have elevated levels of 

xanthine oxidase (XO) and reduced heat showk protein 70. These factors combined might 
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increase OS and inflammation, leading to a worse prognosis (77). On the other hand, higher 

optimism correlates with lower levels of inflammation, IL-6, and markers of endothelial 

dysfunction. Similarly, there is a positive correlation between higher optimism scores and 

increased carotenoid and antioxidant levels, suggestive that optimists may lower OS (18). 

These studies might help with the stratification of patients based on their personality traits. 

People who practice meditation have lower levels of lipid peroxidation in serum but higher 

levels of NO, which is indicative of normalized endothelial function (60). The risk of all-cause 

mortality, stroke and myocardial infarction can be lowered by as much as 45%, due to a 

reduction in psychosocial stress and in blood pressure which are both linked to OS (130). 

Similarly, yoga seems to attenuate OS possibly increasing  glutathione reductase (GR) and 

glutathione peroxidase (GPx) and decreasing serum lipid peroxides and F2-isoprostane. Yoga 

practice in type 2 diabetics decreases MDA, increase GSH and vitamin C and improve 

glycaemic control (57). However, studies done in this area are small and therefore should be 

interpreted with caution until larger randomised clinical trials are done. 

Social isolation is an increasingly worrying threat, as socially isolated people are at increased 

risk of several diseases including atherosclerosis and dementia (47,136). Social isolation 

downregulates the genes required for the glucocorticoid response, which could impair ability 

to dampen immune responses, and inflammation is exacerbated by increased expression of 

NF-κB (34). Similarly, in rats who have been chronically isolated OS is observed, accompanied 

by decreased GPx and GR (41). 

Opposed to social isolation, environmental enrichment normalises levels of TNF-α, CCL3 and 

CCL4 by preventing changes in microglial expression in Alzheimer’s Disease models (161), and 

lowers hippocampal damage and OS during chronic cerebral hypoperfusion (95).  

Most animal models of environmental enrichment use physical exercise. Depressed patients 

who exercise have lower markers of OS (134). In rats, GSH depletion causes anxiety-like 

behaviour, while moderate exercise on a treadmill prevents OS-induced anxiety and 

decreasing OS markers in the hippocampus, amygdala and the locus coeruleus (126).  
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THE HUMAN EXPOSOME 

 

Proposed by Wild in 2005 as an environmental counterpart to the human genome, the human 

exposome represents the totality of environmental (i.e. non-genetic) exposure individual 

experiences between conception and death (166). As a “comprehensive description of 

lifelong exposure history” (167) the exposome effectively provides a new framework for 

bringing together interdisciplinary teams to understand the environmental determinants of 

chronic disease risk, the influence of which are estimated to exceed those relating to genetic 

predisposition (124).  Wild subsequently elaborated on his definition of the exposome, 

emphasising the dynamic nature of exposures over a lifetime and categorising components 

of the exposome into three domains; internal, specific external and general external (167). 

Specific reference was made to factors that influence the internal or cellular environment 

(e.g. metabolism, ageing, gut microflora activity), vary at the individual level (e.g. occupation, 

lifestyle components, medical interventions) or influence populations (e.g. climate, 

education, urban/rural surroundings) (167). The definition was also expanded to include 

behavioural interactions and products of endogenous exposure (e.g. epigenetic changes), and 

to account for the cumulative nature of exposures and their corresponding biological 

adaptations (100). While there have been several proposed revisions of this original 

definition, the practical implementation of this general concept has led researchers to 

embrace more holistic and integrated methods for assessing the external and internal 

environments. Central to the implementation of this idea is the application of data-dense 

omics techniques that report on various aspects of the internal chemical milieu (in most cases 

focused on the blood) to provide complementary datasets relating to biochemical status in 

individual biosamples. Combined with access to mature biobanking resources, the recent 

radical advances in molecular biology approaches, multivariate data analysis tools, 

biomonitoring technology, and the proliferation of inexpensive mobile devices have enabled 

exposome studies to become a reality. The exposome proposal came in response to the 

limitations in epidemiological studies attempting to link environmental exposure assessments 

with disease endpoints – effectively ‘bottom-up’ approaches, focused on a small number of 

priority exposures. By contrast, exposome studies seek to benefit from ‘top-down’, data-

driven, agnostic approaches that can uncover previously unknown and/or complex 
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relationships, as well as guide subsequent hypothesis-based investigations to provide 

mechanistic insight about disease aetiology. Complete characterisation of the exposome - 

which would require high-resolution, real time monitoring of all exposures throughout life - 

is clearly unfeasible for multiple obvious reasons (7). However, it is proposed that 

understanding the status of the exposome, particularly that of the internal chemical 

environment, at the individual level during critical periods of life may help delineate the 

contributions of various genetic and environmental factors. 

 

Studying the exposome 

An improved ability to characterise the external chemical environment can enhance exposure 

models both spatially and temporally, but it is the extensive characterisation of internal 

chemical environment that represents the most significant advance in recent years, and an 

opportunity to delineate the contributions made by multiple, interacting factors, to the 

biological changes observed at an individual level. High-throughput platforms now exist for 

profiling the metabolome (metabolites), proteome (proteins), transcriptome (gene 

transcripts) and adductome (typically endogenous-xenobiotic conjugates) and provide 

collectively a wealth of information about the status of a biological samples (reviewed in the 

context of the human exposome by (168), summarised briefly in Table 2). These platforms 

(mostly, now) provide broad coverage of their biomolecular target classes, and therefore 

permit the application of data-driven approaches that mirror those used in the genome-wide 

association studies (GWAS). The techniques may be performed on cells, tissues or biofluids, 

making novel biomarker selection possible for in vitro, in vivo and human studies and 

integrated analyses may be performed across the omics platforms to cross-validate or 

integrate findings. Initial studies have indicated that suitably collected/stored biobanked 

samples are amenable to analysis by multiple omics platforms (59), and large scale initiatives 

to conduct exposome studies are now underway (including the EXPOsOMICS (159), HELIX 

(162), and HEALS (http://www.heals-eu.eu) projects in the EU). 
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Unpicking the exposome: cellular inflammatory responses to diesel exhaust particles 

While there is considerable activity in molecular epidemiological analysis to characterise 

biological samples archived in biobanks, the validation and mechanistic understanding that 

accompanies these largely correlative analyses is both complementary and vital; tying 

together evidence from multiple levels of analysis is required to corroborate the correlative 

analyses that are conducted on these omics readouts (124,159). For example, while many of 

the ongoing exposome studies include aspects concerning air pollutants, validation of these 

studies requires a coherent molecular context, while conversely targeted analyses need to be 

directed appropriately. For example, diesel exhaust particles (DEP) are considered important 

environmental causes of OS and pulmonary inflammation due to their ubiquitous presence in 

air (72), their concentration in populated areas (179) and the breadth of sub-populations that 

are susceptible to their inflammatory and oxidative effects (10,14,23,33,45).  Adverse 

responses to DEP exposure have traditionally been assessed by quantifying specific 

inflammatory cells, cytokines or cell adhesion molecules (CAM) following exposures 

(2,81,107,131,154). These targets are well characterised mediators of inflammation that 

provide strong evidence of DEP induction of inflammatory cellular response, but are limited 

in their potential to expand our mechanistic knowledge of the observed toxicity. In contrast, 

agnostic approaches for omics screening report on both characterised and uncharacterised 

markers, offering chances to explore a wider range of associations with DEP toxicity. Xiao et 

al used a proteomic screening approach, showing that DEP induced OS in RAW 264.7 

macrophages; the response was accompanied by > 8-fold increases in new protein 

expression. Furthermore, the biological functions of the proteins reflected a hierarchical 

response to OS with the macrophages expressing antioxidant enzymes after low dose 

exposures (≤ 10 µg/ml), pro-inflammatory signalling proteins after mid dose exposures (10-

50 µg/ml) and regulators of mitochondrial function at cytotoxic doses (≥ 50 µg/ml) (172). 

Although many of these proteomic changes validated existing hypotheses of how 

macrophages respond to DEP, others (including the induction of receptor-induced apoptosis) 

were previously uncharacterised (172). These changes revealed novel pathways that are 

triggered by DEP-induced OS, advancing our understanding of the response.  
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Metabolomic, transcriptomic, and proteomic profiles are strongly dependent on the 

expression and behaviour of the other molecular species as well as experiencing a dynamic 

interaction with the external chemical environment (Figure 7).  

 

Figure 7. The exposome. 

 

Proteomic response to DEP-induced OS (172) are mirrored by transcriptomic studies showing 

changed expression of oxidative response genes after DEP exposure (79,114) as well as micro 

RNA (miRNA) (67).   

Supporting the hypothesis that surface bound metals and polycyclic aromatic hydrocarbons 

(PAHs) contribute to particulate toxicity (75,115), metal and PAH-rich heavy fuel oil (HFO) 

particles induce inflammatory and OS pathways more than carbonaceous DEP (110).  

Redox status, inflammation and ROS are all intricately linked with biotransformation of 

compounds across this continuum. For example, dietary components have been linked with 

modulation of cytokine levels, with concomitant impact on the metabolome (32), with other 

recent examples including herbal medicine (178), involvement in arthritis (reviewed by 

Chimenti et al. (27)), and broader implication in pathways identified by cross-omics analysis 

(13,142). Additionally, a comprehensive survey focused on the role of metabolome studies in 

characterising oxidative studies was previously published by Liu et al (90). 
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Exposome and Adverse Outcome Pathways: inflammation and ROS are key integrators of 

complex exposure-response relationships 

One exemplar that elegantly illustrates the interplay of inflammatory mediators and ROS with 

other components of the internal chemical milieu, is the analgesic/antipyretic compound 

paracetamol (a.k.a. acetaminophen), one of the most commonly used over-the-counter drugs 

worldwide. Self-administration is the main cause for personal exposure (exposure in the 

wider environment is negligible), and large-scale, cross-sectional metabolic phenotyping 

studies of humans have shown a high prevalence of significant (e.g. therapeutic dose) 

exposure (91,92). Characterising population-level use of therapeutics (e.g. anti-inflammatory 

agents) provides an overall profile of the exposome, and help contextualise and validate 

observed responses at the individual level (e.g. when addressing research questions relating 

to chronic inflammation that may be confounded by unreported pharmaceutical use). Intense 

scrutiny has allowed many of the toxicological consequences of paracetamol exposure and 

metabolism be elucidated (including depletion of cellular antioxidants, increased ROS 

formation, formation of reactive intermediates). However, despite such widespread, long-

term and consistent use, the complexities of the exposure-response relationship continue to 

be uncovered (including metabolite conjugation to arachidonic acid to produce an active 

metabolite AM404 (63) and metabolite modulation of the nociceptive response (4). This also 

illustrates the challenge that is faced when considering how to dissect the complex, 

multicomponent exposures that occur throughout life; considerations of additive or non-

linear effects arising from co-exposures all add up. 

Attempts to bring together the diverse pieces of evidence that relate to exposure-response-

disease relationships, and address the challenge of this inherent complexity have resulted in 

the formulation of systems toxicology tools such as adverse outcome pathways (AOPs), as 

summarised by Burden et al. (24). By establishing a series of causal steps from an initial 

molecular initiating event (MIE) onwards, the AOP approach may help integrate knowledge 

about multiple environmental exposures that share common pathways, described using an 

agreed ontology. The combination of the exposome and AOP frameworks is likely to be 

particularly useful when the complexity of exposure-response relationships is considered; 

exposures do not occur in isolation, but in a context that encodes previous exposures and 

responses, and mediates the dynamic relationship between co-exposures.  
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In the context of oxidative stress, several redox proteomics techniques and their application 

to the field of inflammation and neuroinflammation have led to the identification of specific 

oxidized proteins undergoing carbonylation (149) or glutathionylation (26,103). The 

extension of omics to oxidative post-translational modifications may add a dimension to the 

information obtained and eventually provide a more precise way of identifying exposure to 

agents that cause oxidative stress. 

The strong underlying biological network connections between certain sets of pathologies - 

particularly those relating to systemic inflammatory status that underpin multiple chronic 

disease conditions - may mean we move away from attempts to find correspondence 

between individual exposures and outcomes, and towards using biological networks to link 

and explain complex exposure patterns with (multi)morbidities defined by detailed molecular 

phenotyping (86,148). 

 

CONCLUSIONS 

 

The use of biomarkers of inflammation or OS has been instrumental to formulating causal 

hypotheses on disease mechanisms (such as the effect of environmental stressors).  

We mentioned above that, in a way, biomarkers are signs. However, there are different types 

of signs and so, if biomarkers really are signs in a non-metaphorical sense, there must be 

different types of biomarkers as well, depending on the relation they have with their referent. 

In fact, we don’t just measure biomarkers, in some cases we can measure the “real thing”. 

For instance, to quantify exposure to heavy metals we can measure their level in the 

organism. When this is not possible, we can measure signs that are indicators of the exposure 

of the body to heavy metals. Some of them have a direct relationship to the object, for 

example a product of lipid peroxidation is directly formed by a chemical reaction between a 

ROS and a lipid. Others can be an indicator of the response of the organism to the object we 

want to measure, and this is the case of NRF2 or the markers of exposure described in the 

section on the exposome; all these will have various degrees of separation from the object 

we want to measure and this needs to be considered as some may require just transcription 

(if we measure a mRNA), others transcription and translation (if we measure a protein). This 
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is particularly important if we are measuring exposure to a physical stressor, such as noise, or 

a psychological stressor, that is not present at the time of the examination. 

Interestingly, even if not obvious, inflammation itself is a response to a foreign body or to an 

endogenous of exogenous stressor. It is important to note that measuring biomarkers is not 

always a second, imperfect choice when we cannot measure what we need (like in the case 

of short-lived radicals). Often measuring a biological response adds a second dimension, that 

of biological relevance. But in the case of inflammatory biomarkers, we observe a further level 

of relevance. 

Let us consider inflammatory cytokines. As we wrote earlier, they are easily measurable 

biomarkers of inflammation, many of which measurable in plasma or serum. However, some 

of them are not simple signs but proxies. A proxy of something is a sign that has a vicarious 

relation with that something: it both “stands for” its referent and “stands in for” it. This means 

that not only there is a link between proxy and referent; one can also interact with the 

referent by operating on the proxy and, as a result, affect the object (or process, in this case) 

it stands for (46). In short, they have a bidirectional relationship with the referent. If MDA is 

elevated in a disease because of increased lipid peroxidation, you cannot improve the disease 

by administering an anti-MDA antibody, because it is just a sign of OS. However, in 

inflammatory diseases IL-6 and TNF-α are not only signs of the inflammatory process but 

proxies, and so their inhibition, for instance with antibodies, improves the disease in patients 

with chronic inflammation.  
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Figure 7. Biomarkers for stress-induced inflammation and OS. The symbols denote 
whether the biomarker is a sign (that indicates the activation of a process) or a proxy (that 
are also targets we can interact with to modify the disease process). 
 

This concept is exemplified in Figure 7 where the mediators and processes described in this 

paper are assigned a value of biomarker (considering their ease of measurement) or proxies. 

The definition of biomarkers as signs and their value, whether they are proxies or just signs, 

will need to be considered when considering their role in disease. 

 

Acknowledgements. LS is supported by an Integrative Toxicology Training Partnership (ITTP) 

PhD studentship from the Medical Research Council (MRC). AH is recipient of a PhD 

studentship from the BHF. AC and GM are funded by SAF2013-43271-R of the Spanish 

Ministry of Economy and Competitiveness and European Regional Development Fund, 

Competitiveness Operational Program 2014-2020, grant P_37_732/2016 REDBRAIN. DB is 

supported by the H2020 MSCA project PANDORA (GA 671881) and by the Cluster project 

Medintech granted by the Italian MIUR. AH is a recipient f a BHF PhD studentship. 

  

Pre-peer-review manuscript



 30 

ABBREVIATIONS 

AOP, adverse outcome pathway 
ARE, antioxidant response element 
CAM, cell adhesion molecules 
CCL, CC chemokine ligand 
CNT, carbon nanotubes 
CVD, cardiovascular disease 
DEP, diesel exhaust particles 
ENM, engineered nanomaterials 
EpRE, Electrophile Responsive Element 
GC, glucocorticoids 
GSH, reduced glutathione 
GSK-3, Glycogen synthase kinase 3 
GSSG, oxidized glutathione 
GWAS, genome-wide association studies  
HC, hair cells 
HFO, heavy fuel oil 
HNE, hydroxy-2-nonenal 
HPAA, hypothalamus-pituitary adrenal axis 
IHC, inner hair cells 
IL-, interleukin 
iNOS, inducible nitric oxide synthase 
KEAP1, Kelch-like ECH-associated protein 1 
MAF, musculoaponeurotic fibrosarcoma oncogene homolog 
MAPK, mitogen-activated protein kinase 
MDA, malondialdehyde 
MIE, molecular initiating event 
NF-kB, nuclear factor kappa B 
NIHL, Noise-induced hearing loss 
NLP3, NACHT, LRR and PYD domains-containing protein 3  
NRF2, nuclear factor (erythroid-derived 2)-like 2 
NT, nitrotyrosine 
OHC, outer hair cells 
OS, oxidative stress 
P2X7R, purinergic receptor P2X7 
PAH, polycyclic aromatic hydrocarbons 
PRDX, peroxiredoxin  
PTSD, post-traumatic stress disorder 
RNS, reactive nitrogen species 
ROS, reactive oxygen species 
SPL, sound pressure level 
TNF, tumor necrosis factor 
TXN, thioredoxin 
TXNIP, thioredoxin-interacting protein 
UPS, ubiquitin/proteasome system  
XO, xanthine oxidase  
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Table 1. Inflammasome activation induced by particles vs. engineered nanomaterials 

Material Main findings References 

MSU crystals NLRP3-dependent induction of IL-1 release in vitro (97) 

Cholesterol crystals Cholesterol crystals activate NLRP3 and induce IL-1 production in human 
macrophages 

(44,123) 

Hydroxyapatite crystals Induction of IL-1 and IL-18 production in mouse macrophages is induced by needle-
like and clumped nanocrystals, but not spherical and larger crystals, and depends on 
potassium efflux, generation of ROS, and lysosomal damage/cathepsin B in vitro, and 
on various NLRP3 components in vivo (KO mice) 

(71) 

Crystalline silica Crystalline silica induces NLRP3 activation and IL-1 production through 
phagolysosome destabilization 

(42,64,170) 

Amyloid  Induction of IL-1 release in vitro in LPS-primed primary mouse microglial cells, NLRP3 
inflammasome-dependent, ATP-dependent 

(52) 
 

Asbestos Asbestos induces NLRP3 inflammasome activation in vitro (human primary 
macrophages), dependent on ROS production, cathepsin B activity, P2X7 receptors 
and Src/Syk kinases 

(42,112) 

Aluminum salts Aluminum salts induce NLRP3 activation and IL-1 production through phagolysosome 
destabilization 

(64) 

CeO2 nanowires of various size Correlation between nanowires’ length and lysosomal damage, cathepsin B release 

and IL-1 release in vitro (human THP-1) 

(69) 

Polystyrene and PLG nanospheres Smaller particles are taken up better by mouse BMDC in vitro and induce more IL-1 
release, in a NLRP3-, cathepsin B- and phagosomal acidification-dependent manner 

(138) 

Silver nanospheres Smaller particles induce IL-1 release in monocytes better than larger ones, 
dependent on mitochondrial superoxide, cathepsin release and K+ efflux. 

(175) 

TiO2 nanobelts Induction of IL-1 release in vitro by long but not by short or spherical particles 
(human THP-1, murine alveolar macrophages)  

(53) 

TiO2 nanospheres Phagocytosis-independent induction of IL-1 release in vitro (mouse BMDM, human 
THP-1 and primary keratinocytes). Smaller particles more active than larger ones in 
murine DC, in an actin-, ROS-, NLRP3-, and caspase-1-dependent fashion. 

(170,177) 
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SiO2 nanospheres Phagocytosis-independent induction of IL-1 release in vitro (mouse BMDM, human 

THP-1 and primary keratinocytes). Amorphous silica NPs induce IL-1 production in 
mouse DC in an actin-, ROS-, NLRP3-, and caspase-1-dependent fashion. 

(170,177) 

Carbon nanotubes Long CNT induce NLRP3 inflammasome activation in vitro (human primary 
macrophages), dependent on ROS production, cathepsin B activity, P2X7 receptors 
and Src/Syk kinases 

(112) 
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Table 2. Summary of common omics approaches in exposome studies 

Omics Target 
Molecule  

Analytical Platform Typical 
Profile 
Content 
(~ # of 
molecules) 

Advantages and limitations of technique 

Transcriptome Gene 
transcripts 

Microarray 
 
 
 
 
Next generation 
sequencing 

<50,000 
 
 
 
 
Full 
transcriptome 

Custom arrays available 
Suitable for cellular, tissue and biofluid samples 
Limited target number 
Limited detection limit 
 
High sensitivity (single nucleotide level) 
Low limit of detection 
Qualitative and quantitative  
Suitable for cellular, tissue and biofluid samples 
High cost 

Proteome Proteins Mass spectrometry 
 
 
 
 
Protein array 

 
 
 
 
 
>20,000 

High throughput, specificity and sensitivity 
Qualitative and quantitative  
Multiple methods required to cover proteome 
Complex feature annotation 
 
High throughput and sensitivity 
Low sample consumption 
Efficient feature annotation  
Limited target number 

Metabolome Small molecule 
metabolites 

Nuclear magnetic 
resonance spectroscopy 
(1H NMR) 
 
 

>100 
 
 
 
 

Minimal sample preparation 
Suitable for cellular, tissue and biofluid samples 
Metabolite annotation/assignment typically 
straighforward  
Suitable for cellular, tissue and biofluid samples 
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Liquid chromatography - 
Mass spectrometry  
(LC-MS) 

>1000 Derivatisation required for polar and high molecular 
weight metabolites 
Metabolite annotation/assignment can be time-
consuming 

Adductome 
(serum 
albumin) 

Endogenous-
xenobiotic 
conjugates 

Mass spectrometry >100 Ability to capture information on reactive 
intermediates and/or short-lived exposures 
Variety of techniques available for targeting with 
different specificity and resolution 
Time-consuming annotation  
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