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A 4-node co-rotational quadrilateral composite shell element is presented. The local coordinate system of the element is a co-rotational framework defined by the two bisectors of the diagonal vectors generated from the four corner nodes and their cross product. Thus, the element rigid-body rotations are excluded in calculating the local nodal variables from the global nodal variables. Compared with other existing co-rotational finite-element formulations, the present element has two features: 1) The two smallest components of the mid-surface normal vector at each node are defined as the rotational variables, leading to the desired additive property for all nodal variables in a nonlinear incremental solution procedure; 2) both element tangent stiffness matrices in the local and global coordinate systems are symmetric owing to the commutativity of the nodal variables in calculating the second derivatives of strain energy with respect to the local nodal variables and, through chain differentiation with respect to the global nodal variables. In the modeling of composite structures, the first-order shear deformable laminated plate theory is adopted in the local element formulation, where both the thickness deformation and the normal stress in the direction of the shell thickness are ignored, and an assumed strain method is employed to alleviate the membrane and shear locking phenomena. Several examples involving composite plates and shells with large displacements and large rotations are presented to testify to the reliability and convergence of the present formulation.
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1. Introduction

Composite materials have been widely used in industry due to their appealing characteristics of high strength and stiffness to weight ratios, excellent resistance to corrosion, low thermal expansion, excellent damage tolerance and superior fatigue response characteristics, and the flexibility to tailor to different structural needs, plus the evolution of their technology. 1-3 Composite structures are generally orthotropic in nature, often show unique response even under simple loading conditions and geometric configurations, and thus present challenging technical problems in their modeling. 2,4-11
Computational theories for the modeling of composite shells can be categorized as: (1) classical laminated plate theory; 12-14 (2) first-order shear deformation laminated plate theory; 9,15-20 (3) higher-order shear deformation laminated plate theories; 2,21-25 (4) layer-wise theories2,26 and (5) Zig-Zag theories.27-30 The number of unknown variables employed in the first three theories are independent from the number of constitutive layers, thus they belong to equivalent single-layer theories.27 These theories have been widely used in solving composite structure problems. 

Based on classical laminate plate theories, Hwang & Park12 presented a four-node quadrilateral plate bending element with one electrical degree of freedom; Suleman & Venkayya13 presented a four-node quadrilateral shell elements formulation for a composite plate with laminated piezoelectric layers. Based on a refined plate theory having strong similarity with the classical plate theory, Thai & Choi14 developed a four-node quadrilateral plate element accounting for shear deformation effect and all couplings from the material anisotropy for laminated composite plates. 

Within the frameworks of first-order shear-deformation laminated theories, Kim et al.9 presented a four-node co-rotational composite shell element combining an enhanced assumed strain in the membrane strains and assumed natural strains in the shear strains; Auricchio & Sacco15 obtained a four-node finite element for the analysis of laminated composite plates through a mixed-enhanced approach; Chun et al.16 proposed a four-node laminated shell element with drilling degrees of freedom, where assumed stress and enhanced strain techniques are adopted to prevent locking problems; Daghia et al.17 developed a quadrilateral four-node finite element from a hybrid stress formulation involving compatible displacements and element-wise equilibrated stress resultants as primary variables; Vu-Quoc and his coworkers18-20 developed a class of geometrically-exact multilayer shell formulation that can account for large deformation and large overall motion. 
Using higher-order shear deformation theories, Balah & Al-Ghamedy2 proposed a four-node iso-parametric laminated shell element based on a cubic displacement field over the shell thickness. Using Reddy’s third order theory for composite plates and the discrete Kirchhoff technique, Kulkarni & Kapuria23 developed a four-node quadrilateral element with seven degrees of freedom per node. To investigate the large deflection behavior of composite plates, Singh et al.24 developed a four-node rectangular finite element based on a higher-order theory allowing parabolic variation of transverse shear strains with zero value at the top and bottom surface of the plate. Lo SH et al.25 proposed a four-node quadrilateral plate element based on the global-local higher order theory to study laminated composite plates subject to a variation in temperature and moisture concentrations, where a displacement function satisfying C0 continuity is constructed by using the refined element method, and the discrete Kirchhoff quadrilateral thin plate element DKQ is employed for satisfying the requirement of C1 continuity. 

Basar et al.26 developed a four-node iso-parametric shell elements by coupling the single layer theory with a multi-layer concept to deal with complex through-thickness stress distributions in composite laminates. By assuming a zig-zag variation of displacement field through the thickness and using the first-order shear-deformation theory in each layer, Brank & Carrera30 developed a 4-node isoparametric element. 

In this paper, a four-node co-rotational quadrilateral composite shell element is presented, its local formulation is based on the first-order shear deformable laminated plate theory. Different from other co-rotational finite element formulations, the proposed co-rotational element formulation employs vectorial rotational variables, and all nodal variables are additive in an incremental nonlinear solution procedure, resulting symmetric element tangent stiffness matrices in both the local and global coordinate systems, making it efficient in solving dynamic problems.31-32 The versatile vectorial rotational variables had also been employed in a 4-node co-rotational flat quadrilateral shell element with hierarchic freedoms,33 two co-rotational beam element formulations,34-35 and co-rotational triangular and quadrilateral shell element formulations.36-39 To overcome locking problems, the assumed membrane strains and transverse shear strains in the present 4-node co-rotational quadrilateral shell element are interpolated respectively by using ANS methods.40-41
The outline of the paper is arranged as follows. Section 2 presents the co-rotational framework defined for the four-node quadrilateral composite shell element, and describes the element kinematics. Section 3 includes the local element response and the assumed strain procedure used to alleviate the locking problems. Section 4 presents the transformation matrix between the local and global systems, and the element formulations in global coordinate system. In Section 5, several elastic composite plate/shell problems are solved to demonstrate the reliability and convergence of the proposed four-node co-rotational quadrilateral composite shell element formulation. Some concluding remarks are drawn in Section 6.
2. Co-rotational framework and kinematics of the element
The global coordinate system O-X-Y-Z and the local coordinate system o-x-y-z of the element are presented in Fig. 1. The local coordinate system is a co-rotational framework, and rotates rigidly with the element, but does not deform with the element. The initial triad vectors (
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) of the local co-rotational system are defined by the two bisectors of the diagonal vectors generated from the four corner nodes of the element and their cross product, and determined by:33 
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where c130 and c240 are respectively the corresponding normalized unit vectors of the element diagonal vectors (
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The element diagonal vectors 
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where  
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 is the global co-ordinates of Node i in the initial configuration, which is indicated by the second subscript “0”.
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Fig. 1. Definition of the co-rotational framework

(Note: The vectors t3, r2 and r20 are associated with the local coordinate system o-x-y-z, whereas the vectors d3, p20, p2, v130, v13, v240, v24, ex0, ey0, ez0, ex, ey and ez are associated with the global coordinate system O-X-Y-Z.)

Similarly, the triad vectors (ex, ey, ez) of the local coordinate system in the deformed configuration is defined by
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where c13 and c14 are the corresponding normalized unit vectors of v13 and v14, and are calculated, respectively, from
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with the element diagonal vectors v13 and v14 in the deformed configuration defined as
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where 
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 is the translational displacement vector of Node 
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 in the global coordinate system, with 
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In the global system, the element has 20 degrees of freedom:
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where (Ui, Vi, Wi) are global nodal translational freedoms and (
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) are the two smallest global components of the nodal normal vector 
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 used as rotational degrees of freedom.33

In the local coordinate system, the element also has 20 degrees of freedom:
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where, 
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The relationships between the local nodal variables and the global nodal variables are given by
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where the matrices R, Rh0, Rh are defined respectively as follows, 
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representing a vector oriented from Node 1 to Node i.

In transforming the global nodal displacements to local nodal displacements according to (9a), the initial local reference system (oriented by ex0, ey0 and ez0 in the initial configuration) is first rotated about Node 1 to the same orientation of the current reference system (oriented by ex, ey and ez in the rigidly rotated configuration and the deformed configuration), though the center of rotation is actually unimportant, and the local translations excluding rigid body rotation are measured from the initially rotated configuration, as illustrated in Fig. 1.

With the two smallest global components of the normal vector 
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 used as vectorial rotational degrees of freedom at Node i, the remaining component is obtained from:
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where 
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Bilinear Lagrangian interpolation functions are adopted to describe the geometry and the displacement field of the quadrilateral shell element, leading to an isoparametric formulation:
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where 
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The global components of the initial normal vector at Node i of the element are obtained from the cross-product of the mid-surface tangent lines corresponding to independent variation in the two natural coordinates:
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where
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with 
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 representing the global co-ordinates of Node j.

To minimize the discontinuity between the slopes of adjacent elements at Node 
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, the mean value of the normal vectors from the surrounding elements is adopted:
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The Green-Lagrange strains specialized for the shallow shell42 are used. For convenience, the in-plane strain vector 
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 is split into two parts, 
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where 
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 is the transverse shear strain vector, 
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the distance of the material point from the cross-section centroid, h the thickness of the element, and 
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3. Element formulation in the local coordinate system
3.1 Conforming element formulation
The total potential energy of the 4-node quadrilateral composite shell element is calculated from
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where V is the volume of the element, We the work done by external forces fext, and Dc the material elastic matrix of the composite shell.

By enforcing the stationarity condition to the potential energy of the element
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the internal force vector 
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 is obtained by
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where 
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 with respect to local nodal variables.

By differentiating the internal force vector with respect to local nodal variables, the tangent stiffness matrix of the 4-node quadrilateral composite shell element is determined as
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In Eq.(22), the first term is symmetric. Due to the commutativity of local nodal variables in calculating the second derivatives 
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of the membrane strains with respect to these local nodal variables, the second term is also symmetric. As a result, we have a symmetric element tangent stiffness matrix kT. Eqs.(21) and (22) are the conforming element formulations in the local coordinate system. 

After an analytical integration through the thickness of the composite shell element, Eqs.(21) and (22) can be rewritten as
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where Deq1, Deq2 , and Deq3 are equivalent elastic matrices given by
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with 
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z

 being the dimensionless coordinate of the interface between Layer i-1 and Layer i relative to the mid-surface
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Dci is the elastic matrix of Layer i lamina
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where Ti is the transformation matrix between the strains in the material coordinate system of the ith layer lamina and the local coordinate system of element, and Ci the material stiffness matrix in the material coordinate system.
A composite shell made of orthotropic fibre-reinforced material is identified with a layered structure with the reinforcement fibres in each lamina parallel to the shell mid-surface. Assuming that the transverse material properties are isotropic and the normal vector of the shell mid-surface is inextensible, then the constitutive matrix Ci is given as follows
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where
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m

and
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m

are the Poisson’s ratios, E1 and E2 the elastic moduli, G12, G23 and G31 the shear moduli of materials.21,43

The transformation matrix Ti of stress and strain vectors between the material coordinate system and the local coordinate system of element can be calculated as follows
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where 
[image: image120.wmf]i

f

 is the ply orientation angle measured between the reinforcement fiber of Layer i lamina and the local coordinate system of element. 

3.2 Strategies for overcoming locking problems
Equations (23) and (24) represent the conforming element formulation for the 4-node quadrilateral composite shell element in the local coordinate system. In solving thin shell problems, membrane and shear locking phenomena could lead to deterioration in the computational efficiency and accuracy of the conforming element. Therefore, to improve the performance of the quadrilateral element, the membrane and out-of-plane shear strains are replaced respectively with corresponding assumed strains ,40-41 accordingly, the modified element formulations are given as:
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where the assumed membrane strains inside the element are interpolated by conforming membrane strains at five tying points of A,B,C,D and O(see Fig. 2), i.e.,
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and the assumed shear strains are calculated as
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The first and the second derivatives of assumed membrane strains and shear strains with respect to local nodal variables in Eqs.(30) and (31) are also interpolated by the first and the second derivatives of the corresponding conforming membrane strains and shear strains with respect to local nodal variables at these tying points.
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Fig. 2. Positions of five tying points for assumed strains 

After introducing the assumed strains, the resulting local element tangent stiffness matrix (see Eq. (31)) is still symmetric.
4. Transformation of local to global response

The global nodal forces 
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f

of the 4-node quadrilateral composite shell element can be obtained as a transformation of the local nodal forces according to:
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where 
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 is a 
[image: image135.wmf]20

20

´

 transformation matrix consisting of first derivative of local with respect to global nodal variables, which can be readily determined from (9a) and (9c).

For convenience, the local nodal variables and the global nodal variables are rewritten as
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where 
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(i=1,2,3,4) represents the two local vectorial rotational variables at Node i in the local coordinate system, and 
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 (i=1,2,3,4) denotes the two global vectorial rotational components. Accordingly, the transformation matrix is expressed as:
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where the sub-matrices of 
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 are the same as those in [39].
The element tangent stiffness matrix 
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 in the global coordinate system can now be obtained as follows:
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with 
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where the various second derivatives in Eq. (42) are the same as those in [39]. Considering Eqs. (41) and (42), and the symmetry of the local tangent stiffness matrix kT, it is clear that the global tangent stiffness matrix is also symmetric.
5. Numerical examples

In this newly developed 4-node co-rotational quadrilateral composite shell element (identified below as the A4QC element), we employ assumed membrane strains and assumed shear strains using an ANS method36-37 to alleviate membrane and shear locking problems. To demonstrate the reliability of the A4QC element, a series of laminated plate/shell problems, some of which involving finite/large rotations, are solved using the present A4QC element, with comparisons made against the results from other researchers. 9,43-47 The reliability and convergence of this new A4QC element are checked systematically. Four Gauss points over the element domain are adopted in numerical integration for all examples.

5.1. A simply supported laminated strip
Consider a simply supported asymmetric laminate strip (0o/90o) (where, one lamina is at 0 degrees, followed by one lamina at 90 degrees, the “0o” direction is along the span direction of the laminated strip, and the “90o” direction is along its width direction) with geometry parameters and material properties given in Table 1 and Table 2, respectively. The composite strip is subjected to uniformly distributed load as shown in Fig. 3. 
Table 1. Geometry parameters of the laminated strip
	Length
	Width
	Thickness

	a=9.0 in
	b=1.5 in
	h=0.04 in


Table 2. Material properties of the laminated strip
	Young’s moduli
	Shear moduli
	Poisson’s ratio

	E1=2.0×107psi  E2=1.4×106psi
	G12=G13=G23=7.0×105psi
	μ=0.3
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Fig. 3. A simply supported laminated strip subject to uniformly distributed load
For symmetry reason, a quarter of the plate is modeled with 6×1, 12×2 and 24×4 A4QC elements, respectively. The load-deflection curves at mid-span of the strip are depicted in Fig. 4. For comparison, the results from Kreja & Schmidt using 9 LRT56 elements (isoparametric eight-node Serendipity-type shell elements with reduced integration),43 Basar et al. using 32×1 RT7-IAS4 elements (4-node isoparametric assumed strain elements) 44 and Kim et al. using 9 EAS-ANS elements (non-linear 4-node shell element based on the EAS and ANS methods) 9 are also presented in this Figure. The results from 12×2 and 24×4 A4QC elements agree well with those from Kreja & Schmidt, 43 Basar et al. 44 and Kim et al. 9
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Fig. 4. Load-deflection curve at mid-span of the composite strip
To demonstrate the reliability and convergence of the A4QC element, the results obtained by using respectively 6×1, 12×2, 24×4 and 48×8 A4QC elements (also named as AM+AS element below) are compared against those obtained by the corresponding 4-node co-rotational quadrilateral composite shell elements using respectively conforming membrane strains and conforming shear strains (CM+CS), assumed membrane strains and conforming shear strains (AM+CS), conforming membrane strains and assumed shear strains(CM+AS), and those from Kreja & Schmidt, 43 Basar et al. 44 and Kim et al. 9 (see Table 3). 
Table 3. Normalized central deflection w/h at mid-span of the composite strip under p=5psi

	Element type
	Normalized central deflection w/h

	
	6×1
	12×2
	24×4
	48×8

	CM+CS
	7.8906 (-90.85%)
	27.8568 (-67.69%)
	61.1615 (-29.07%)
	78.8524 (-8.55%)

	AM+CS
	7.8906 (-90.85%)
	27.8569 (-67.69%)
	61.1618 (-29.07%)
	78.8530 (-8.55%)

	CM+AS
	87.8266 (1.85%)
	86.3860 (0.18%)
	86.2556 (0.03%)
	86.2273 (0.00%)

	AM+AS (A4QC)
	87.5071 (1.48%)
	86.3781 (0.17%)
	 86.2570 (0.03%)
	86.2286 (--)

	LRT56 43
	86.5269(0.35%)

	RT7-IAS4 44
	86.5672(0.39%)

	EAS-ANS 9
	86.2843(0.06%)


Note: “6×1”, “12×2”, “24×4” and “48×8” denote the element meshes employed; Values in the parentheses are the relative errors between the simulation results and the solution obtained using fine mesh of 48×8 A4QC (AM+AS) elements.

It is shown that employing assumed shear strain can alleviate locking problems in CM+AS and AM+AS elements effectively, while employing assumed membrane strain has little effect on the computational accuracy of these elements, thus, shear locking exists in the corresponding CM+CS and AM+CS elements, and membrane locking can be ignored in CM+CS and CM+AS elements. 

5.2. Clamped laminated shallow arch
A circular laminated shallow arch subjected to a point load at the center is clamped at its two ends as shown in Fig. 5. Its geometry parameters are presented in Table 4. The arch is made of a two layer (0o/90o) (where, the “0o” direction is along the circumferential direction of the shallow arch, and the “90o” direction is along its width direction) laminated composite, with each layer having the same thickness 1 in. The material properties are given as Table 5. 
[image: image147.png]



Fig. 5. Clamped laminated shallow arch subject to a central point load
Table 4. Geometry parameters of the laminated shallow arch
	Radius
	Width
	Thickness
	Subtending angle

	R=100 in
	b=1 in
	h=2 in
	2β=1.414


Table 5. Material properties of the laminated shallow arch
	Young’s moduli
	Shear moduli
	Poisson’s ratio

	E1=2.5×107psi  E2=1.0×106psi
	G12=5.0×105psi  G13=5.0×105psi  G23=2.0×105psi
	μ=0.3


Due to symmetry, only half of the arch is modeled using 10×1, 20×1 and 30×1 A4QC elements, respectively. The load-deflection curves at the central point of the arch are reported in Fig. 6. For comparison purpose, the results from Kreja & Schmidt using 5 LRT56 elements (isoparametric eight-node Serendipity-type shell elements with reduced integration)43 are also reported in this figure. 
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Fig. 6. Load-deflection curves at mid-span of the laminated shallow arch (0o/90o)
To demonstrate the reliability, computational accuracy and convergence of the present A4QC element, deflections at the center of the laminated shallow arch (0o/90o) subject to a point load p=10000lb obtained respectively from 10×1, 20×1 and 30×1 A4QC elements, and 5 LRT56 elements43 are presented in Table 6.
Table 6. Deflection at mid-span of the laminated shallow arch (0o/90o) under 10000lb

	Element type
	Deflection (in)

	
	10×1
	20×1
	30×1

	A4QC
	40.5499(0.38%)
	40.4198(0.06%)
	40.3951(--)

	LRT56 43
	40.8265(1.07%)


Note: Values in the parentheses are the relative errors with respect to the results obtained using fine mesh of 30×1 A4QC elements.
5.3. Hinged laminated cylindrical shells
We consider a laminated composite shell subjected to a point load at the center point; the shell is simply supported along its two straight edges and free along its other two curved edges (Fig. 7). The geometry parameters of the shell are listed in Table 7. The lamination consists of 48 layers, arranged in the manner of (0o6/90o6/0o6/90o6)s (where, “0o6/90o6/…” means that 6 laminas at 0 degrees, followed by 6 laminas at 90 degrees, etc.; the “0o” direction is along the circumferential direction of the cylinder, and the “90o” direction is along the axis of the cylinder; the subscript “s” represents that 48 laminas are arranged symmetrically with respect to the mid-surface of the composite shell). The material properties are given in Table 8.
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Fig. 7. Hinged laminated cylindrical shell subject to a point load
Table 7. Geometry parameters of the laminated cylindrical shell
	Radius
	Length
	Thickness
	Subtending angle

	R = 2540 mm
	2L = 508 mm
	h = 6.35 mm
	2β = 0.2 rad


Table 8. Material properties of the laminated cylindrical shell
	Young’s moduli
	Shear moduli
	Poisson’s ratio

	E1 = 150.0Gpa   E2 = 10.0GPa
	G12 = G13 = 6.0Gpa     G23=4.0GPa
	μ12=μ23=μ13=0.25


Due to symmetry, only a quarter of the laminated cylindrical shell (Fig. 7) is analyzed with discretizations using 12×12 and 24×24 A4QC elements, respectively. The load-displacement curves at Points A are given in Fig. 8. For comparison, the results from Gal & Levy45 using 10×10×2 flat triangular shell elements (with 6 degrees of freedom per node) built from the linear membrane constant strain triangle and the DKT flat triangular plate element, and Argyris et al.46 using 8×8 TRIC flat triangular shell elements (based on the natural mode finite element method) are also reported in this figure.
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Fig. 8. Laminated cylindrical shell (06/906/06/906)s: Load-deflection curves at Point A

To illuminate the reliability, computational accuracy and convergence of the present A4QC element, deflections at Point A and B of the laminated cylindrical shell (06/906/06/906)s subject to a point load P=15KN obtained respectively from 12×12 and 24×24 A4QC elements, and Gal & Levy45 are presented in Table 9.

Table 9. Deflections at Points A and B of the laminated cylindrical shell under P=15KN

	Element type
	Deflection at Points A
	Deflection at Points B

	
	12×12
	24×24
	12×12
	24×24

	A4QC
	30.2874(-0.32%)
	30.3839(--)
	24.0514(-0.48%)
	24.1678(--)

	Gal & Levy45
	30.1349(-0.82%)
	--


Note: Values in the parentheses are the relative errors with respect to the results obtained using fine mesh of 24×24 A4QC elements.
We also analyze two other laminated shells with 12 layers, arranged as (0o4/90o4/0o4) and (90o4/0o4/90o4) (where, the “0o” direction is along the circumferential direction of the cylinder, and the “90o” direction is along the axis of the cylinder), respectively. The material properties are given in Table 10. Here we use meshes with 12×12 and 24×24 A4QC elements, respectively. 
Table 10. Material properties of the laminated cylindrical shell
	Young’s moduli
	Shear moduli
	Poisson’s ratio

	E1=3.3×109Pa    E2=E3=1.1×109Pa
	G12=G13=G23= 6.6×108Pa
	μ12=μ23=μ13=0.25


The load-displacement curves at Points A and B of the laminated cylindrical shell (0o4/90o4/0o4) are presented respectively in Figs. 9 and 10. The results agree well with those from Gal & Levy using 10×10×2 flat triangular shell elements built from the linear membrane constant strain triangle and the DKT flat triangular plate element.45
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Fig. 9. Laminated cylindrical shell (04/904/04): Load-deflection curves at Point A
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Fig. 10. Laminated cylindrical shell (04/904/04): Load-deflection curves at Point B

To illuminate the reliability, computational accuracy and convergence of the present A4QC element, deflections at Point A and B of the laminated cylindrical shell (0o4/90o4/0o4) subject to a point load P=0.8KN obtained respectively from 12×12 and 24×24 A4QC elements, and Gal & Levy45 are presented in Table 11.

Table 11. Deflections of the Laminated cylindrical shell (04/904/04) under P=0.8KN

	Element type
	Deflection at Points A
	Deflection at Points B

	
	12×12
	24×24
	12×12
	24×24

	A4QC
	31.9654(-0.36%)
	32.0797(--)
	25.3021(-0.25%)
	25.3663(--)

	Gal & Levy 45
	32.2471(0.52%)
	25.4530(0.34%)


Note: Values in the parentheses are the relative errors with respect to the results obtained using fine mesh of 24×24 A4QC elements.
The load-displacement curves at Points A and B of the laminated cylindrical shell (90o4/0o4/90o4) are presented respectively in Figs. 11 and 12. The results agree well with those from Gal & Levy using 10×10×2 flat triangular shell elements built from the linear membrane constant strain triangle and the DKT flat triangular plate element.45
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Fig. 11. Laminated cylindrical shell (904/04/904): Load-deflection curves at Point A
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Fig. 12. Laminated cylindrical shell (904/04/904): Load-deflection curves at Point B

Deflections at Point A and B of the laminated cylindrical shell (90o4/0o4/90o4) subject to a point load P=0.3KN obtained respectively from 12×12 and 24×24 A4QC elements, and Gal & Levy 45 are presented in Table 12 to demonstrate the reliability, computational accuracy and convergence of the present A4QC element.
Table 12. Deflection of the Laminated cylindrical shell (904/04/904) under P=0.3KN

	Element type
	Deflection at Points A
	Deflection at Points B

	
	12×12
	24×24
	12×12
	24×24

	A4QC
	29.2159(-0.077%)
	29.2383(--)
	25.9695(-2.045%)
	26.5116(--)

	Gal & Levy 45
	29.3117(0.251%)
	26.0876(-1.599%)


Note: Values in the parentheses are the relative errors with respect to the results obtained using fine mesh of 24×24 A4QC elements.
5.4. Stretched laminated cylinder under point load
Consider a laminated cylinder (90o/0o) (where, the “0o” direction is along the axis of the cylinder, and the “90o” direction is along its circumferential direction) subjected to two opposite point loads (Fig. 13), its geometry parameters and material properties are given in Table 13 and Table 14, respectively.
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Fig. 13. Stretched laminated cylinder under point load
Table 13. Geometry parameters of the laminated cylinder
	Radius
	Length
	Thickness

	R=4.953
	2L=10.35
	h=0.094


Table 14. Material properties of the laminated cylinder
	Young’s moduli
	Shear moduli
	Poisson’s ratio

	E1=3.05×107Pa   E2= E3=1.05×107Pa
	G12=G13=G23= 4.0×106Pa
	μ12=μ23=μ13=0.3125


Due to symmetry, only one octant of the cylinder is modeled using meshes with 32×16 and 48×24 A4QC elements, respectively. The load-displacement curves at Point A of the cylinder are presented in Fig. 14. The results show good agreement with those obtained by Kreja and Schmidt 43 using 24×15 LRT56 elements (isoparametric eight-node Serendipity-type shell elements with reduced integration). 
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Fig. 14. Laminated cylinder (90o/0o): Load-deflection curve at Points A
Deflections at Point A, B and C of the laminated cylinder subject to a point load P=4×104KN obtained respectively from 32×16 and 48×24 A4QC elements, and Kreja and Schmidt 43 are presented in Table 15 to illuminate the reliability, computational accuracy and convergence of the present A4QC element.
Table 15. Deflections at Points A, B and C of the laminated cylinder under P=4×104lb

	Element type
	Deflections (in)

	
	Point A
	Point B
	Point C

	A4QC-32×16
	2.6951(0.11%)
	4.4358(0.32%)
	3.1565(-0.72%)

	A4QC-48×24
	2.6922(--)
	4.4218(--)
	3.1795(--)

	LRT56 43
	2.6623(-1.11%)
	4.3766(-1.02%)
	3.2597(2.52%)


Note: Values in the parentheses are the relative errors with respect to the results obtained using fine mesh of 48×24 A4QC elements.
The (0o/90o) arrangement of the laminated cylinder is then used, while employing the same A4QC element meshes, to obtain the load-deflection curves at Points A shown in Fig. 15, with good agreement with Kreja and Schmidt 43 using 24×15 LRT56 elements (isoparametric eight-node Serendipity-type shell elements with reduced integration).
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Fig. 15. Laminated cylinder (0o/90o): Load-deflection curve at Points A
Deflections at Point A, B and C of the laminated cylinder subject to a point load P=4×104KN obtained respectively from 32×16 and 48×24 A4QC elements, and Kreja and Schmidt 43 are presented in Table 16.
Table 16. Deflections at Points A, B and C of the Laminated cylinder under P=4×104lb

	
	Point A
	Point B
	Point C

	A4QC-32×16
	2.6751(0.28%)
	4.4140(0.51%)
	3.1984(-1.05%)

	A4QC-48×24
	2.6677 (--)
	4.3915(--)
	3.2322(--)

	LRT56
	2.7013(1.26%)
	4.4546(1.44%)
	3.1818(-1.56%)


Note: Values in the parentheses are the relative errors with respect to the results obtained using fine mesh of 48×24 A4QC elements.
5.5. Clamped laminated cylindrical shell under point load
A deep laminated cylindrical shell (0o/90o/90o/0o) (where, the “0o” direction is along the axis of the cylindrical shell, and the “90o” direction is along its circumferential direction) is clamped along its two straight edges (Fig. 16), and subjected to a point load at the center point. The geometry parameters and material properties of the cylindrical shell are given in Table 17 and Table 18, respectively.
[image: image158.png]



Fig. 16. Clamped laminated cylindrical shell subject to a point load

Table 17. Geometry parameters of the laminated cylindrical shell
	Radius
	Length
	Thickness
	Subtending angle

	R = 12 in
	2L = 11 in
	h = 0.04 in
	2β=1.0


Table 18. Material properties of the laminated cylindrical shell
	Young’s moduli
	Shear moduli
	Poisson’s ratio

	E1=2.046×107psi 

E2=4.092×106psi
	G12=G13=2.53704×106psi
G23=1.26852×106psi
	μ12=μ23=μ13=0.313


Due to symmetry, a quarter of the laminated cylindrical shell is modeled using 12×12 and 24×24 A4QC element meshes, respectively. The load-deflection curves at the center point of the laminated shell are given in Fig. 17. For comparison, the results from Kreja 47 using 4×4 LRT56 elements (isoparametric eight-node Serendipity-type shell elements with reduced integration) and Kim et al.9 using 6×6 EAS-ANS elements (non-linear 4-node shell element based on the EAS and ANS methods) are also presented in this figure.
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Fig. 17. Load-deflection curves at the center point of the laminated cylindrical shell
Deflections at Point A of the laminated cylindrical shell subject to a point load P=160lb obtained by using respectively 12×12, 24×24 and 48×48 A4QC elements (also named as AM+AS element below) are compared against those obtained by the corresponding 4-node co-rotational quadrilateral composite shell elements using respectively conforming membrane strains and conforming shear strains (CM+CS), assumed membrane strains and conforming shear strains (AM+CS), conforming membrane strains and assumed shear strains(CM+AS), and those from Kreja 47 and Kim et al.9 (see Table 19). It is shown that serious locking phenomena exist in the CM+CS, AM+CS elements, and employing assumed shear strain can alleviate locking problems in CM+AS and AM+AS (A4QC) elements effectively, while employing assumed membrane strain has little effect on the computational accuracy of the AM+CS element.

Table 19.  Deflections at Point A of the laminated cylindrical shell under P=160lb

	Element type
	Deflection at the center point of the laminated cylindrical shell

	
	12×12
	24×24
	48×48

	CM+CS
	0.0223(-99.14%)
	0.0735(-97.16%)
	0.2734(-89.43%)

	AM+CS
	0.0220(-99.15%)
	0.0734(-97.16%)
	0.2745(-89.39%)

	CM+AS
	2.5903(0.12%)
	2.5882(0.04%)
	2.5873(0.01%)

	AM+AS (A4QC)
	2.5915(0.17%)
	2.5882(0.04%)
	2.5871(--)

	LRT56
	2.6005(0.52%)

	EAS-ANS
	2.6015(0.56%)


Note: Values in the parentheses are the relative errors with respect to the results obtained using fine mesh of 48×48 A4QC elements.
6. Conclusions
A 4-node co-rotational quadrilateral composite shell element is presented in this paper. The present line of formulation differs from other co-rotational formulations, as it employs vectorial rotational variables, thus, all nodal variables are additive in an incremental solution procedure, and the element tangent stiffness matrices in both the local and global coordinate systems are symmetric, leading to computational efficiency and economy in computer storage, and advantages in solving dynamic problems. Due to the adopted co-rotational framework, the proposed 4-node quadrilateral composite shell element can be employed to solve large displacement and large rotation problems. By using an assumed strain method, the locking phenomena are alleviated effectively in the present composite shell element, and its reliability and convergence are illustrated with a number of examples of composite shells undergoing moderate/large displacements and rotations.
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