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Abstract 

Effective population size (𝑁𝑒) is an important statistic in conservation science and in the 

broader topics of evolutionary genetics. 𝑁𝑒 is often used to quantify the rate of 

evolutionary events such as losses in genetic diversity. Estimating and interpreting such 

quantity can however be challenging. Chapter 2 focuses on the change in allele 

frequency between two or more time points due to genetic drift. A new likelihood-based 

estimator 𝑁𝐵̂ for contemporary 𝑁𝑒 estimation is proposed by adopting a hidden Markov 

algorithm and continuous approximations. 𝑁𝐵̂ is found to be several-fold faster than the 

existing methods without sacrificing accuracy. It also relaxes the upper bound of 𝑁𝑒 to 

several million and which is currently limited to about 50000 due to computing 

limitations. Chapter 3 extends 𝑁𝐵̂ to handle multialleleic loci through using Dirichlet-

multinomial distributions. An R package is also provided and available for download. 

Chapter 4 explores the signatures of linkage disequilibrium (LD) between a pair of loci 

induced by genetic drift as a function of recombination rate and historical population 

sizes. 𝐸[𝑟2] can be expressed as the weighted sum of the probability of coalescent at 

different time points of which information about 𝑁𝑒  is contained. This relationship is 

verified by computer simulation and then applied to historical 𝑁𝑒 estimation as 

illustrated in an example of Anopheles coluzzii population. A new likelihood-based 

routine Constrained ML is suggested in chapter 5 to estimate haplotype frequencies and 

𝑟2 from genotypes under Hardy-Weinberg Equilibrium. It is shown to be identical to 

existing EM algorithm under normal conditions but far less sensitive to initial 

conditions. A new “unbiased” sample size correction is also proposed to estimate 𝑟2. To 

summarise, this work pushes the 𝑁𝑒 estimation to its current boundary and more 

importantly provides suitable tools to analyse the ever-growing datasets.  
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Chapter 1: Introduction 

Introduction 

Population genetics is the study of the four major evolutionary processes: mutation, 

migration, natural selection, and genetic drift. The effects of these forces can act rather 

differently, as some create genetic variation while the others reduce it. Mutation is said 

to be the ultimate source of genetic variation, since brand new alleles can arise purely 

by chance (Hartl and Clark, 1997). Gene flow or migration brings new alleles to a focal 

population, and is often purposely introduced for conservation or stock enhancement 

(Kitakado et al., 2006). Genetic drift is induced by the random reunion of gametes 

during reproduction and which in the long term can drives an allele to either fixation or 

extinction, and hence reduces genetic variation. Some alleles or genotypes can promote 

(hinder) their chance of survival and eventually increase (decrease) their number of 

copies over time. This is how natural selection affects the genetic contents of a 

population. There exist some other genetic processes, such as recombination, which 

creates new haplotypes from a pair of homologous chromosome during meiosis. These 

evolutionary forces, acting together with external factors, shape the genetic 

compositions over space and time. From a probabilistic point of view, one can predict 

the change in allele frequency, the correlation between loci, or the probability of 

occurrence of a certain event, given the form and magnitude of these evolutionary 

forces. A statistician, in contrast, tries to infer the evolutionary mechanisms behind the 

empirical observations. Explicitly, the inferences are commonly made via parameter 

estimation and hypothesis testing. In the real world we seldom know exactly how these 

evolutionary events interact with one another; what we have is mere a collection of 

samples from the entire, unknown population. Population geneticists have been trying 

to understand the processes by setting up simplified models, and the models are often 

associated with parameters. Certain parameters are of key importance, such as the 

effective population size, migration rate, mutation rate, recombination frequency, and 

many more. We may never precisely understand how the evolutionary “black-box” 

works, but at least we can shed some light on the characteristics of the population 

through examining the parameters.  

 

Demography, effective population size, and estimation 

While the main focus of this work is on the estimation of effective population size from 

genetic data, it is essential to explore the bigger picture of population demographic 

estimation. The estimation of demography includes the detection of population 

structure, gene flow, genetic variation within and between populations, change in 

population size over time, and many more. For example, information on Hardy-

Weinberg and linkage equilibrium can help determine the number of populations in the 

genetic samples, and this is implemented through the computer program STRUCTURE 

(Pritchard et al., 2000) or by principle component analysis. 𝐹𝑆𝑇 is a classical statistic to 
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quantify the degree of population differentiation using the genetic markers in two or 

more populations (Wright, 1931). Beyond 𝐹𝑆𝑇 , there are other recent developments to 

estimate migration among patches, such as MIGRATE (Beerli and Felsenstein, 2001), 

and Bayesian non-equilibrium method by Wilson and Rannala (2003). Some of these 

methods may also provide estimates on genetic diversity which indirectly helps infer 

population sizes. Lastly, the effective population size of a targeted population can be 

inferred. Clearly estimating demographic histories is not a single-step process but a 

series of analyses. Some examples of inferring human population histories can be found 

in Stoneking and Krause (2011), and Gravel et al. (2011).  

 

Fisher (1930) and Wright (1931) studied independently the change in allele frequency 

over time under the “idealised” assumptions of random mating and non-overlapping 

generations, while little was known for the real populations which evolve in a far more 

complex manner. To bridge between the two cases the concept of effective population 

size (𝑁𝑒) was thus introduced. Generally speaking it has more than one definition 

depending on the type of processes it is referring to. The variance effective population 

size is defined as the size of an ideal population that has the same rate of genetic drift as 

the observed population (Fisher, 1930; Wright, 1931), making use of the fact that the 

conditional variance of the change in allele frequency 𝑝 is 
𝑝(1−𝑝)

2𝑁𝑒
 for successive 

generation. In other words, the variance 𝑁𝑒 can be deduced by assessing empirically the 

change in allele frequency over time, of which the details will be discussed in chapter 2 

and chapter 3. The inbreeding effective population size is closely related to the 

probability that two randomly chosen haplotypes that are identical by descent (IBD), 

which is 1/2𝑁𝑒. Therefore the inbreeding 𝑁𝑒 is defined as of the size of an idealised 

population that shares the same probability of IBD as the observed population. In 

chapter 4, we will build a statistical model to connect IBD and linkage disequilibrium 

(LD) and ultimately the underlying 𝑁𝑒 . There are also some other definitions to 𝑁𝑒 , such 

as eigenvalue 𝑁𝑒 or coalescent 𝑁𝑒 , to cater for other scenarios. Although in some cases 

the different types of 𝑁𝑒 have the same value, there is no guarantee of their equivalence, 

particular with changing demography (Husemann et al., 2016).  

 

Other ecological or demographic factors may affect the value of 𝑁𝑒 in a population. For 

non-constant population sizes, the 𝑁𝑒 is the harmonic mean of the fluctuating sizes, and 

thus is heavily influenced by smaller values (i.e. bottlenecks). Populations that have 

gone through a severe bottleneck may take a long time to recover from the loss in 

variation (Kliman et al., 2008). 𝑁𝑒 attains its maximum when the number of breeding 

males and females are the same. Any departure from the 50:50 sex ratio will increase 

the chance of IBD and therefore cause a reduction in 𝑁𝑒 . The variation in reproductive 

success among individuals may also lower the value of 𝑁𝑒 , which agrees with the idea in 

conservation biology that reducing the variation in reproduction is a way to prevent 
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losses by genetic drift (Rice, 2004). Population fragmentation with limited migration 

among populations may increase the global 𝑁𝑒 which may seem rather counter intuitive. 

The opposite effect of population fragmentation is that each subdivided population is 

smaller on its own, and therefore more sensitive to demographic or environmental 

stochasticity and losses (Charlesworth, 2009).  

 

𝑁𝑒 is a key measure in conservation science as it has to be maintained above a certain 

level for the wellbeing of a population. A threshold of 𝑁𝑒 = 500 can usually balance 

between mutation and the loss of additive variation, while 𝑁𝑒 of 5000 is required to 

avoid mutation meltdown caused by the accumulation of deleterious mutations (Waples, 

personal communication). A recent program to control human malaria in African 

countries involves the engineering of homing endonuclease gene (HEG) into Anopheles 

mosquito populations (Burt, 2003). The recent 𝑁𝑒 of the natural populations (and the 

associated spatial structures) will influence heavily the effectiveness of the spread of 

the HEG, and ultimately determine whether the mosquito populations could be 

eliminated or suppressed (North et al., 2013). Not only does 𝑁𝑒 provide vital 

information on the design of the technology, it also serves as an indicator to assess the 

efficacy of the program as a significant reduction in 𝑁𝑒 is expected during the post 

intervention period. Another usage of 𝑁𝑒 is to model the probability of resistance 

arising by mutation. All the above applications require accurate 𝑁𝑒 estimates.  

 

As 𝑁𝑒 fluctuates over the course of history it is necessary to associate a time period 

which the 𝑁𝑒 is referring to. Throughout this work, we define the term “contemporary 

𝑁𝑒” as the 𝑁𝑒 of one to several generations ago, depending on the methods and 

assumptions adapted by the estimates. We also introduce “historical 𝑁𝑒” which spans a 

longer period of hundreds or thousands generations. Estimating such quantities can be 

difficult despite its importance in evolutionary genetics. The methods to estimate 𝑁𝑒 

from samples can mainly be classified into direct and indirect methods. The former 

assesses directly the individuals of the focal population by counting or tagging which is 

out of the consideration of this study. This work focuses on the indirect method which, 

as its name implies, does not study the demographics but makes use of the genetic 

information to infer the underlying 𝑁𝑒 .  

 

Although the consequences of genetic drift have been widely studied since its 

formulation by Wright and Fisher in the 1930s, the estimation of 𝑁𝑒 did not begin until 

the 1980s when genetic samples became available. A number of estimators using 

genetic markers have been developed to estimate both contemporary and historical 𝑁𝑒 

under various scenarios. For estimating contemporary 𝑁𝑒 , Heterozygote Excess is a 

method based on the skewed sex ratio when the number of breeders is small, leading to 



12 
 

an excess in the number heterozygotes (Pudovkin et al., 1996; Balloux, 2004). Sibship 

assignment method is a novel method to infer 𝑁𝑒 through identifying siblings and 

relatedness from samples (Wang and Santure, 2009). Linkage disequilibrium (LD) 

induced by genetic drift between a pair of loci contains information about 𝑁𝑒 as the 

variance of LD is a function of 𝑁𝑒 and recombination rate. Geneticists have been mainly 

using unlinked loci to infer 𝑁𝑒 (Hill, 1981; England et al., 2006; Tallmon et al., 2008; 

Waples and Do, 2008). There are some other methods which require two or more 

temporally-spaced samples to estimate the contemporary 𝑁𝑒 . One effect of genetic drift 

is the reduction of heterozygosity over time due to inbreeding within a finite population, 

with rate of decrease inversely proportionally to 𝑁𝑒  (Harris and Allendorf, 1989). 

Another common method, the family of 𝐹-statistics, estimates 𝑁𝑒 through the change in 

allele frequencies due to drift over time (Nei and Tajima, 1981; Pollak, 1983; Waples, 

1989; Jorde and Ryman, 2007). The rationale behind this method is that the magnitude 

of drift, measured by the variance of the change in allele frequencies, is inversely 

proportional to 𝑁𝑒 . Other methods also explore the exact or approximate distribution of 

allele frequencies under genetic drift to construct likelihood-based estimators, such as 

those by Williamson and Slatkin (1999), Anderson et al. (2000), Wang (2001), and 

Berthier et al. (2002). All these methods, were summarised by notable review papers, 

including Luikart et al. (2010) and Wang (2016).  

 

Traditionally the estimation of historical 𝑁𝑒 relies on nucleotide diversity (Thuillet et al., 

2005; Lynch and Conery, 2003) or the average number of nucleotide differences 

between two sequences (Nei and Li, 1979). The recent developments of historical 𝑁𝑒 

estimation are mostly coalescent-based, as the rate of coalescence between a pair of 

homologous sequence is inversely proportional to 𝑁𝑒 . Strimmer and Pybus (2001) 

explored how changing 𝑁𝑒 has shaped the DNA sequences using the method of moments 

with skyline plots, while Drummond et al. (2005) developed a Bayesian framework 

using similar information. The pairwise sequentially Markovian coalescent (PSMC) 

model is also an emerging algorithm to outline the historical 𝑁𝑒 through looking at the 

time since the most recent common ancestor from only one diploid individual (Li and 

Durbin, 2011). Gutenkunst et al. (2009) studied the joint allele frequency spectrum 

(AFS) from multiple populations and provided estimates of demographic events and 

population sizes. Generally speaking, these methods assess the population size of over 

thousands (or often millions) of years ago. For a more recent time frame, the LD signal 

of both tightly and loosely linked loci can help inferring 𝑁𝑒 of a few to hundreds of 

generations ago, as demonstrated by Hayes et al. (2003), Tenesa et al. (2007), and Park 

(2012).  

 

While this chapter aims to provide an overview of 𝑁𝑒 estimation and its applications in 

ecology and evolution, the mathematical details are intentionally omitted. All relevant 
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methods and concepts will be introduced in the literature review at the beginning of 

each chapter. The field of 𝑁𝑒 estimation has been advancing rapidly with new 

estimators available from time to time. This work aims to study quantitatively the effect 

of genetic drift with finite 𝑁𝑒 and to develop new estimators to fill in the cases when 

existing methods fail to perform. In chapter 2 and 3, we study the statistical 

distributions of the change in allele frequencies over time and propose a new 

likelihood-based estimator for 𝑁𝑒 . LD arises from genetic drift and its relationship with 

historical 𝑁𝑒 and recombination rate will be quantified in chapter 4. Finally, chapter 5 

explores the estimation of LD and haplotype frequencies from genotypes which is of 

immediate importance to 𝑁𝑒 estimation.  
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Chapter 2: Estimating Contemporary 𝑵𝒆 from temporally spaced samples 

Chapter Abstract 

The effective population size 𝑁𝑒 is a key parameter in population genetics and 

evolutionary biology, as it quantifies the expected distribution of changes in allele 

frequency due to drift. Several methods for 𝑁𝑒 estimation have been described, and the 

most direct of which uses allele frequencies measured at two or more time points. A 

new likelihood-based estimator 𝑁𝐵̂ for contemporary effective population size using 

temporal data is developed in this paper. The existing likelihood methods are 

computationally intensive and unable to handle the case when the underlying 𝑁𝑒 is 

large. This chapter tries to work around this problem by using a hidden Markov 

algorithm and applying continuous approximations to allele frequencies and transition 

probabilities. Extensive simulations are run to evaluate the performance of the 

proposed estimator 𝑁𝐵̂, and the results show that it is more accurate and has lower 

variance than the previous methods. The new estimator also reduces the computational 

time by at least 1000-fold and relaxes the upper bound of 𝑁𝑒 to several million, hence 

allowing the estimation of larger 𝑁𝑒 . Lastly, we demonstrate how this algorithm can 

cope with non-constant 𝑁𝑒 scenarios and be used as a likelihood-ratio test to test for the 

equality of 𝑁𝑒 throughout the sampling horizon.  

 

Published version 

A significant portion of chapter 2 (this chapter) and chapter 3, including text, equations, 

figures, and computing results, was published in Hui, T-Y. J. and Burt, A. (2015) 

Estimating Effective Population Size from Temporally Spaced Sample with a Novel, 

Efficient Maximum-Likelihood Algorithm. Genetics, 200, pp. 285-293.  

 

Background 

As explained in Chapter 1, 𝑁𝑒 plays a crucial role in evolutionary genetics as it quantifies 

the rate of evolution, and this is exactly the reason why precise estimation of 𝑁𝑒 has 

always been an interest among population geneticists. The family of the temporal 

methods, as it name implies, takes genetic samples from a targeted population at two or 

more time points and measures the temporal change in allele frequency. In fact, the 

temporal method is by far the most widely used and evaluated method in estimating 

contemporary 𝑁𝑒 (Waples and Do, 2008; Luikart et al., 2010). The key assumption is 

that if genetic drift is the only source of genetic variation (while neglecting other forces 

such as selection, mutation and migration), then the magnitude of the drift, measured in 

the variance of the change in allele frequency over time, is solely determined by 𝑁𝑒 . 

Conversely, by studying the observed temporal change in allele frequency, it may 

provide information about the underlying 𝑁𝑒 which governs the whole process.  
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The Wright-Fisher (WF) model may be the most suitable model to help establish the 

relation between 𝑁𝑒 and genetic drift. The WF model assumes that during reproduction, 

the parental generation produces a gamete pool of infinite size, with gametic frequency 

determined by the relative counts of alleles in the parental generation. In the next 

generation with a constant 𝑁𝑒 , the allelic configuration of the offspring is formed by 

randomly choosing 2𝑁𝑒 gametes from the gamete pool (of infinite size, equivalent to 

sampling with replacement). For a locus with two alleles, this process can be well 

represented by a binomial distribution. Let 𝑝0 be the allele frequency of a particular 

locus at the current generation, the allele frequency in the next generation, 𝑝1, has the 

probability mass function (p.m.f.):  

𝑝1~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2𝑁𝑒 , 𝑝0)/2𝑁𝑒 

           [2.1] 

where 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2𝑁𝑒 , 𝑝0) denotes a binomial p.m.f. with size 2𝑁𝑒 and probability of 

success 𝑝0. It is clear that the expected allele frequency does not change over time, but 

the variance increases with the number of generation.  

𝐸[𝑝1|𝑝0] = 𝑝0 

𝑉𝑎𝑟[𝑝1|𝑝0] =
𝑝0(1 − 𝑝0)

2𝑁𝑒
 

           [2.2] 

One can repeat the binomial sampling procedure and calculate the (conditional) 

variance of the allele frequency for 𝑡 generations ahead, conditioning on 𝑝0:  

𝑉𝑎𝑟[𝑝𝑡|𝑝0] = 𝑝0(1 − 𝑝0)[1 − (1 −
1

2𝑁𝑒
)
𝑡

] 

           [2.3] 

While the expected allele frequency does not change over time, it can be seen that the 

variance of allele frequency increases as long as the locus remains polymorphic. The 

same result can also be found in Waples (1989).  

 

Alternatively, the effective population size of the population size 𝑁𝑒 , the allele count on 

a particular locus can be any non-negative integers up to 2𝑁𝑒 . Hence, if we let ℎ and 𝑘 be 

the allele counts on a particular locus at generation 𝑡 and 𝑡 + 1, then there are 

(2𝑁𝑒 + 1) × (2𝑁𝑒 + 1) pairs  of possible combination of ℎ and 𝑘 in total. A WF matrix is 

a special matrix encompassing all the probabilities from having ℎ alleles in the parental 
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generation to having 𝑘 alleles in the next generation. The elements of the matrix, 𝑚{ℎ, 𝑘}, 

can be calculated via the formula below:  

𝑚{ℎ, 𝑘}

=  Pr (ℎ𝑎𝑣𝑖𝑛𝑔 𝑘 𝑎𝑙𝑙𝑒𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛| ℎ𝑎𝑣𝑖𝑛𝑔 ℎ 𝑎𝑙𝑙𝑒𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑟𝑒𝑛𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 

= (
2𝑁𝑒

𝑘
) (

ℎ

2𝑁𝑒
)
𝑘

(
2𝑁𝑒 − 𝑘

2𝑁𝑒
)

2𝑁𝑒−𝑘

 

           [2.4] 

In theory, by studying the variance of genetic drift across time and multiple loci, it is 

possible to infer the only parameter of interest 𝑁𝑒 . The true allele frequency 𝑝0 (or 𝑝𝑡) 

however cannot be observed directly unless every individuals are sampled; It can only 

be represented by a subset of the entire population which induces another layer of 

uncertainty. The process can be visualised in a model shown in figure 2.1. The true 

allele frequency at time 0 and 𝑡, 𝑝0 and 𝑝𝑡, are unobserved and realised through the 

observed allele frequency 𝑥 and 𝑦 . The horizontal arrow represents the drift process as 

the usual WF model, with sampling events represented in the vertical arrows.  

𝑝0 → 𝑝𝑡

↓ ↓
𝑥 𝑦

 

Figure 2.1 A graphical model representing the temporal change in allele frequencies. The true allele 

frequency at time 𝑡, 𝑝𝑡 , is determined by the Wright-Fisher model and the true initial allele frequency, 𝑝0, 

at time 0. These two quantities are however unobserved and can only be realised by the sampled allele 

frequencies 𝑥 and 𝑦.  

 

There have been some established methods to estimate 𝑁𝑒 under the model shown in 

figure 2.1. They can be classified into two categories: 𝐹-statistics and the methods of 

maximum likelihood (ML). The 𝐹-statistics are moment-based estimators which 

measure mainly the second moment (the variance) of the change in allele frequency 

over time. The rationale is similar to equation 2.3 but with sampling error being taken 

in to consideration. Several versions of the 𝐹-statistics were proposed in the course of 

the development. Krimbas and Tsakas (1971) first suggested the following version of 𝐹-

statistic:  

𝐹𝑎̂ =
1

𝑎
∑

(𝑥𝑖 − 𝑦𝑖)
2

𝑥𝑖(1 − 𝑥𝑖)

𝑎

𝑖=1

 

           [2.5] 

with 𝑥𝑖  and 𝑦𝑖 being the initial and final allele frequency of the 𝑖𝑡ℎ locus, and 𝑎 being the 

total number of independent loci sampled. The formula is intuitive as the numerator is 

the squared change in allele frequency, and is standardised by heterozygosity in the 
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denominator. The expression can be problematic because 𝐹𝑎  is infinitely large if any of 

the 𝑥𝑖  is zero. Nei and Tajima (1981) provided a solution for this issue, namely 𝐹𝑐:  

𝐹𝑐̂ =
1

𝑎
∑

(𝑥𝑖 − 𝑦𝑖)
2

𝑧𝑖 − 𝑥𝑖𝑦𝑖

𝑎

𝑖=1

 

           [2.6] 

where 𝑧𝑖 is the average of 𝑥𝑖  and 𝑦𝑖. Pollak (1983) also provided an alternative version 

of the 𝐹-statistic, 𝐹𝑘:  

𝐹𝑘̂ =
1

𝑎 − 1
∑

(𝑥𝑖 − 𝑦𝑖)
2

𝑧𝑖

𝑎

𝑖=1

 

           [2.7] 

If samples are taken before reproduction and not replaced (destructive sampling plan), 

the approximate point estimate of the effective population size is given by the following:  

𝑁𝑒̂ =
𝑡

2 [𝐹̂ −
1

2𝑆0
−

1
2𝑆𝑡

]
 

           [2.8] 

in which the two samples are taken 𝑡 generations apart with initial and final sample 

sizes 𝑆0 and 𝑆𝑡 (Waples, 1989). More recently Jorde and Ryman (2007) revised the 𝐹-

statistic by using the unbiased estimator 𝐹𝑠:  

𝐹𝑠̂ =
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑎
𝑖=1

∑ 𝑧𝑖(1 − 𝑧𝑖)
𝑎
𝑖=1

 

           [2.9] 

The form of 𝐹𝑠 differs from the previous 𝐹-statistics that the numerator and the 

denominator are summed separately.  

 

While the 𝐹-statistics explores only the first two moments (i.e. the mean and variance) 

of the change in allele frequency due to genetic drift, the ML method, in contrast, makes 

use of the whole distributional information and thus is more informative than the 𝐹-

statistics. Williamson and Slatkin (1999) first developed the ML framework for the 

estimation of 𝑁𝑒 using the temporal change in allele frequency. The basic model remains 

the same as shown in figure 2.1, but ML method provides more rigorous definitions to 

the processes. The full-likelihood model proposed by Williamson and Slatkin (1999) 

assumes samples are taken from the focal population with replacement. Therefore the 
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sampling allele count, given the underlying allele frequency at the 0𝑡ℎ  and 𝑡𝑡ℎ  

generation, is a binomial random variable:  

𝑓(𝑥𝑖|𝑝𝑖) =
2𝑛!

𝑥𝑖!(2𝑛−𝑥𝑖)!
𝑝𝑖

𝑥𝑖(1 − 𝑝𝑖)
2𝑛−𝑥𝑖 , 𝑓𝑜𝑟 𝑖 = 0, 𝑡    

           [2.10] 

where 𝑓() usually denotes a probability mass (or density) function. The remaining 

process, the change in allele frequency due to genetic drift, can be modelled by the 

Wright-Fisher matrix as described above. The transition probability, 𝑓(𝑝𝑡|𝑝0, 𝑁𝑒) can be 

obtained directly from the elements of the Wright-Fisher matrix 𝑀, raised to the power 

𝑡. By definition, the likelihood function is the joint probability mass function of our 

observations 𝑝0 and 𝑝𝑡, which can be computed by  marginalising the underlying 

(unobserved) true allele frequencies 𝑝0 and 𝑝𝑡:  

𝐿(𝑁𝑒) = 𝑓(𝑥0, 𝑥𝑡|𝑁𝑒) = ∑ 𝑓(𝑥0|𝑝0)𝑓(𝑥𝑡|𝑝𝑡)𝑓(𝑝𝑡|𝑝0, 𝑁𝑒)𝑓(𝑝0|𝑁𝑒)

𝑝0,𝑝𝑡

 

           [2.11] 

The overall likelihood function can be obtained by aggregating the allele counts across 

multiple independent loci. The remaining challenge is to find a value of 𝑁𝑒 such that the 

above likelihood function is maximised.  

 

For a more general case with three or more temporal samples, the process can be 

expressed in a Hidden-Markov model (HMM), with the underlying allele frequencies 

{𝑝0, 𝑝1, … , 𝑝𝑡} and observed allele counts {𝑥0, 𝑥1, … , 𝑥𝑡}, as shown in figure 2.2. Thus the 

general form of the likelihood model becomes:   

𝐿(𝑁𝑒) = 𝑓(𝑥0, 𝑥1, … , 𝑥𝑡|𝑁𝑒)

= ∑ 𝑓(𝑥0|𝑝0)𝑓(𝑥1|𝑝0)…𝑓(𝑥𝑡|𝑝𝑡)

𝑝0,𝑝1,…,𝑝𝑡

× 𝑓(𝑝𝑡|𝑝𝑡−1, 𝑁𝑒)…𝑓(𝑝1|𝑝0|𝑁𝑒)𝑓(𝑝0|𝑁𝑒) 

           [2.12] 

with the number of summations equals the number of temporal samples obtained. The 

𝑁𝑒 and time between successive samples can be different to allow flexible sampling 

schemes.  
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𝑝0 → 𝑝1 → 𝑝2 → … → 𝑝𝑡−1 → 𝑝𝑡

↓  ↓  ↓   ↓  ↓ 
𝑥0 𝑥1 𝑥2 … 𝑥𝑡−1 𝑥𝑡

 

Figure 2.2 A hidden Markov model representing the structure of the process, similar to that of Figure 1. 

𝑝0, … , 𝑝𝑡  is the sequence of true allele frequencies propagating over time according to the Wright-Fisher 

model but they are unobserved. 𝑥0, … , 𝑥𝑡  are the realisations.  

 

The full-likelihood model by William and Slatkin (1999) laid the foundation of ML 

method in estimating contemporary 𝑁𝑒 , but was regarded as of little practicality despite 

its mathematical elegance, primarily because of computational burden. Wang (2001) 

tried to offset the computational effect by reducing the number of elements considered 

within the Wright-Fisher matrix 𝑀. Wang argued that the diagonal elements of 𝑀 

contribute the most to the transition probability 𝑓(𝑝𝑡|𝑝0, 𝑁𝑒), and the far off-diagonal 

elements are almost insignificant to its value. Therefore a threshold is set up to treat 

those insignificant transition probabilities as zero such that the number of elements 

considered in 𝑀 (and also the number of elements to be summed in the double 

summation in equation 2.11) is much reduced. This simplification reduces both the 

memory size and computing time required in the software MLNE written by the same 

author in Fortran.  

 

There have been several subsequent studies on the related topic since the development 

of the full likelihood model. Anderson et al. (2000) proposed a Monte-Carlo approach to 

evaluate the likelihood function for multiallelic loci. It can be seen from equation 2.11 

that the marginalisation of the nuisance parameters 𝑝0 and 𝑝𝑡 requires intensive 

computation, and this process is almost infeasible for multiallelic loci, in which 𝑝0 and 

𝑝𝑡 become vectors of frequencies of multiple alleles. For instance, the dimension of 𝑝0 

(or 𝑝𝑡) will be 𝑘 − 1 if there are 𝑘 different alleles in a locus. The Monte-Carlo approach 

helps approximate the likelihood function by exhaustive sampling of the nuisance 𝑝0 

and 𝑝𝑡. Wang (2001) proposed the method of pseudo-likelihood to again approximate 

the joint distribution of multiallelic locus. Wang converted a 𝑘-allele locus into 𝑘 

biallelic “loci”, each of them having one of the 𝑘 alleles while pooling the rest as the 

alternative alleles. Wang claimed that the product of the likelihood from these 𝑘 

imaginative “loci” (with an appropriate scaling factor) can be a good approximation of 

the full likelihood. Berthier et al. (2002) proposed a likelihood-based approach to 

estimate 𝑁𝑒 from temporal samples using coalescence, a simplified version of the WF 

model. This coalescent- or genealogical-based method was said to provide similar 

answers to that of Anderson et al. (2000) while being more efficient. Wang and 

Whitlock (2003) relaxed the assumption of no migration and provided a method to 

jointly estimate 𝑁𝑒 and migration rate between two populations.  
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Current limitation 

The existing methods to estimate 𝑁𝑒 from temporal data are far from perfect despite the 

continuous effort made by fellow geneticists. It is a general understanding that the 𝐹-

statistics performs less satisfactory than the ML methods because of the following 

reasons: First, 𝐹-statistics are moment-based estimators, which consider only the first 

two moments of the change in allele frequency, while the ML makes use of the full 

distributional information and should be more accurate. Second, it has been shown that 

the 𝐹-statistics suffer from huge bias when the minor allele frequency is small (Waples, 

1989; Wang, 2001). This is because the moments tend to be distorted with the presence 

of rare alleles. Third, unlike the ML methods, the 𝐹-statistics do not have any proper 

ways to handle three or more temporal samples, which makes continuous assessment of 

population size infeasible. On the other hand, 𝐹-statistics requires much less 

computational effort compared to the ML method, making them attractive to scientists 

who do not have much computing power and exposure.  

 

The existing ML methods have other kinds of issues despite its apparent superiority. 

One common drawback of the ML estimators is that they only work for a relative 

restricted range of 𝑁𝑒 . Table 2.1 summaries the maximum true 𝑁𝑒 examined in different 

studies. It can be seen that the ML models were mostly examined within a narrow range 

of true 𝑁𝑒 from about 50 to 100. The behaviour of ML methods outside this range was 

not widely examined, and, in fact, whether the existing ML methods can handle such 

scenarios remains questionable.  

 

Consider the full-likelihood model proposed by Williamson and Slatkin (1999), the 

Wright-Fisher matrix 𝑀 is of the dimension of (2𝑁𝑒 + 1) × (2𝑁𝑒 + 1). Clearly a 

computational issue arises here. For a moderately large 𝑁𝑒 , say 10000, the dimension of 

the transition matrix becomes 20,0012 (which is ~400 million), and this is the number 

of transition probabilities that needs to be calculated to fill in the matrix 𝑀, and also the 

number of terms needs to be summed to calculate the likelihood value for each locus. 

Furthermore if the two samples were taken from 𝑡 generations apart, the Wright-Fisher 

matrix 𝑀, now of gigantic size, has to be multiplied itself by 𝑡 times to get the transition 

probabilities for 𝑡 generations ahead. Matrix multiplication of such a size may not be 

feasible, even with the advance of computing power.  
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Table 2.1 Maximum 𝑵𝒆 used in different studies  

Author(s) Method Maximum Ne used in the study 
Nei & Tajima (1981) Fc 100 
Waples (1989) Fk 500 
Jorde & Ryman (2007) Fs 500 
Williamson & Slatkin (1999) Full-likelihood 50 
Berthier et al. (2002) Coalescence-based 

ML 
50 

Wang (2003) MLNE 100 
These authors used simulations in their studies to verify their methods. This table displays the maximum 

𝑁𝑒  used by the authors in their simulation.  

 

Although Wang (2001) reduced the number of elements considered in 𝑀 to only a few 

percent of its original size, the software MLNE is still unable to handle large 𝑁𝑒 

scenarios.  For instance, MLNE will stop the calculation when 𝑁𝑒 exceeds ~38000 on a 

workstation, equipped with 16GB of RAM. This upper working ceiling also applies to the 

calculation of the upper confidence interval, making the practical range of 𝑁𝑒  even 

smaller. The time required to maximise the likelihood is often too long that it is almost 

impractical to use. Therefore, there is a need to develop a new ML based estimator 

which solves the existing problems. The new estimator should be (1) computationally 

compact, (2) able to work with a wide range of 𝑁𝑒 , and (3) share the same degree of 

accuracy as other ML estimators.  

 

Proposed method: 𝑁𝐵̂ 

The rest of this chapter will introduce a novel ML estimator, 𝑁𝐵̂, which provides 

solutions to the problems above and aims to replace the current temporal methods 

when the underlying population size is moderately large (a few hundred and above). 

The model can be visualised by the same Hidden-Markov model as shown in figure 2.1 

or figure 2.2, depending on the number of temporal samples taken.  Similar to the 

existing temporal methods, 𝑁𝐵̂ assumes an isolated population with non-overlapping 

generations, and a constant 𝑁𝑒 over time. Other genetic forces, such as selection and 

mutation, are insignificant relative to genetic drift (Nei and Tajima, 1981; Waples, 1989; 

Williamson and Slatkin, 1999; Wang, 2001).  

 

For the two-sample scenario, the likelihood function is the joint density of the observed 

allele counts at two distinct time points 𝑥0 and 𝑥𝑡, given the underlying parameter 𝑁𝑒:  

𝐿(𝑁𝑒) = 𝑓(𝑥𝑡, 𝑥0|𝑁𝑒) = 𝑓(𝑥𝑡|𝑥0, 𝑁𝑒)𝑓(𝑥0)  

           [2.13] 
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This is the simplest form of the likelihood function. The initial observed allele count 𝑥0 

has no relationship with 𝑁𝑒 , therefore 𝑓(𝑥0) is in fact a constant and can be safely 

omitted. The likelihood function can be rewritten as follows:  

𝐿(𝑁𝑒) ∝ 𝑓(𝑥𝑡|𝑥0, 𝑁𝑒)   

           [2.14] 

Taking into account the unobserved nuisance parameters (the unobserved 𝑝0 and 𝑝𝑡), 

the likelihood function becomes  

𝐿(𝑁𝑒) ∝ 𝑓(𝑥𝑡|𝑥0, 𝑁𝑒) 

= ∫ ∫ 𝑓(𝑥𝑡|𝑝𝑡)𝑓(𝑝𝑡|𝑝0, 𝑁𝑒)𝑓(𝑝0|𝑥0)𝑑𝑝𝑡𝑑𝑝0

1

0

1

0

 

           [2.15] 

Equation 2.15 is the continuous analogy of the full-likelihood model in equation 2.11, 

with summations being replaced by integrals. The terms of this likelihood function have 

the same meaning as in equation 2.11: that 𝑓(𝑥𝑡|𝑝𝑡) is the sampling allele counts at 

generation 𝑡, 𝑓(𝑝𝑡|𝑝0, 𝑁𝑒) is the transition probability that plays the same role as the 

Wright-Fisher matrix in the full likelihood model, and the last term 𝑓(𝑝0|𝑥0) is the 

distribution of the initial allele frequency conditioning on the initial observation. The 

integrals are to sum over (or to marginalise out) all possible values of the underlying 

true allele frequencies.  

 

The starting allele frequency is unknown in general We may assume 𝑝0 is uniformly 

distributed (equivalent to 𝑏𝑒𝑡𝑎(1,1), where 𝑏𝑒𝑡𝑎() is a beta distribution) before any 

observations are taken, because it brings no additional parameters to the system 

(Williamson and Slatkin, 1999). In the full-likelihood model, the observed allele count 

follows a binomial distribution with a total sample size of 2𝑛 alleles and probability of 

success 𝑝0. Conversely, one can ask about the conditional distribution of 𝑝0 after 𝑥0 is 

observed. By Bayes’ rule:  

𝑓(𝑝0|𝑥0) =
𝑓(𝑥0|𝑝0)𝑓(𝑝0)

∫ 𝑓(𝑥0|𝑝0)𝑓(𝑝0)𝑑𝑝0
1
0

≈ 𝑏𝑒𝑡𝑎(𝑥0 + 1, 2𝑛 − 𝑥0 + 1)   

           [2.16] 

The integral in the denominator is nothing more than a normalising constant. In fact 

𝑓(𝑝0|𝑥0) plays the same role as 𝑓(𝑥0|𝑝0)𝑓(𝑝0|𝑁𝑒) in the full likelihood in equation 2.11. 

Next, for the transition probability 𝑓(𝑝𝑡|𝑝0, 𝑁𝑒), a continuous distribution is used to 

model this change in allele frequency in place of the discrete Wright-Fisher matrix in the 

full-likelihood model. The probability density of 𝑝𝑡 given 𝑝0 under genetic drift is  
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𝑓(𝑝𝑡|𝑝0, 𝑁𝑒) ≈ 𝑏𝑒𝑡𝑎(𝛿𝑝0, 𝛿(1 − 𝑝0))    

           [2.17] 

where 𝛿 is called the “drift parameter” that controls the amount of drift:  

𝛿 =
(1−

1

2𝑁𝑒
)
𝑡

1−(1−
1

2𝑁𝑒
)
𝑡    

           [2.18] 

The drift parameter, as an analogy of the discrete Wright-Fisher model, is a function of 

𝑁𝑒 and the sampling interval 𝑡. For the special case of 𝑡 = 1, 𝛿 reduces to 2𝑁𝑒 − 1. It was 

inspired from the continuous model of genetic drift by Kimura (1955) for sufficiently 

large 𝑁𝑒 , and is a popular method to model the change in allele frequency due to genetic 

drift (Kitakado et al., 2006; Song et al., 2006).  

 

After formulating the sampling event 𝑓(𝑝0|𝑥0) and the transition probability 

𝑓(𝑝𝑡|𝑝0, 𝑁𝑒), the integral with respect to 𝑝0 in the likelihood function (equation 2.15) 

can be calculated in advance. The likelihood function can be rewritten as follows:  

𝐿(𝑁𝑒) ∝ ∫ 𝑓(𝑥𝑡|𝑝𝑡) [∫ 𝑓(𝑝𝑡|𝑝0, 𝑁𝑒)𝑓(𝑝0|𝑥0)𝑑𝑝0
0

1
] 𝑑𝑝𝑡

1

0
  

           [2.19] 

The integral inside the square bracket forms a hierarchical process that 𝑝0 is distributed 

as beta given the initial observation 𝑥0, and 𝑝𝑡 follows another beta distribution 

conditioning on 𝑝0. While an exact solution may not exist for this type of hierarchical 

distribution, here we propose to use another beta distribution to approximate the 

integral. The hyper-parameters 𝛼’ and 𝛽’ (the term “hyper-parameters” is used here to 

avoid confusion with our parameter of interest: 𝑁𝑒) in this new beta distribution can be 

obtained by matching the first two moments:  

∫ 𝑓(𝑝𝑡|𝑝0, 𝑁𝑒)𝑓(
1

0
𝑝0|𝑥0)𝑑𝑝0 ≈ 𝑏𝑒𝑡𝑎(𝛼′ =

𝛿(𝑥0+1)

2𝑛+2+𝛿
, 𝛽′ =

𝛿(2𝑛−𝑥0+1)

2𝑛+2+𝛿
)  

           [2.20] 

The goodness of fit of this approximation is examined in Appendix 1.  

 

The final piece of the likelihood function is 𝑓(𝑥𝑡|𝑝𝑡), which is the sampling allele count 

given the underlying true allele frequency at generation t. Again if samples are taken 

with replacement, then it can be modelled by a binomial distribution, the likelihood 

function becomes 
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𝐿(𝑁𝑒) ∝ 𝑓(𝑥𝑡|𝑥0) = ∫ 𝑓(𝑥𝑡|𝑝𝑡)𝑓(𝑝𝑡|𝑥0, 𝑁𝑒)𝑑𝑝𝑡

1

0

 

= ∫
2𝑛!

𝑥𝑡! (2𝑛 − 𝑥𝑡)!
𝑝𝑡

𝑥𝑡(1 − 𝑝𝑡)
2𝑛−𝑥𝑡

1

0

1

𝐵(𝛼′, 𝛽′)
𝑝𝑡

𝛼′−1(1 − 𝑝𝑡)
𝛽′−1𝑑𝑝𝑡 

=
2𝑛!

𝑥𝑡! (2𝑛 − 𝑥𝑡)!

1

𝐵(𝛼′, 𝛽′)
∫ 𝑝𝑡

𝑥𝑡+𝛼′−1(1 − 𝑝𝑡)
2𝑛−𝑥𝑡+𝛽′−1

1

0

𝑑𝑝𝑡 

=
2𝑛!

𝑥𝑡! (2𝑛 − 𝑥𝑡)!

𝐵(𝑥𝑡 + 𝛼′, 2𝑛 − 𝑥𝑡 + 𝛽′)

𝐵(𝛼′, 𝛽′)
 

           [2.21] 

where 𝐵() is a beta function. This integral has a closed-form solution with 𝑓(𝑝𝑡|𝑥0, 𝑁𝑒) 

being a beta distribution and the binomial sampling of 𝑓(𝑥𝑡|𝑝𝑡). The resultant 

probability mass function is a beta-binomial distribution with three hyper-parameters: 

2𝑛, 𝛼’ and 𝛽’. It can be seen from equation 2.20 and 2.21 that the integrals (which play 

the same role as the summations in the full-likelihood model) can be evaluated 

separately with either an approximate or a closed-form solution, yielding a much 

simplified likelihood. The relationship between the two temporal samples 𝑥0 and 𝑥𝑡 is 

now firmly established through this beta-binomial distribution. For many unlinked loci, 

the joint likelihood is just the product of each of the individual likelihood. The remaining 

challenge is to maximise the likelihood function with respect to 𝑁𝑒 . We define 𝑁𝐵̂ as the 

value of 𝑁𝑒 at which the likelihood function attains its maximum, and hence 𝑁𝐵̂ is the 

maximum-likelihood estimator of the parameter 𝑁𝑒 .  

 

Just as the full likelihood model, 𝑁𝐵̂ can be extended to handle more than two sampling 

events as illustrated in figure 2.2. Without loss of generality, it is assumed that samples 

are taken from successive generations, producing a sequence of observed allele counts 

{𝑥0, 𝑥1, … , 𝑥𝑡}. Similar to equation 2.15, the likelihood function is the joint density of the 

observations:  

𝐿(𝑁𝑒) = 𝑓(𝑥𝑡, 𝑥𝑡−1, … , 𝑥1, 𝑥0|𝑁𝑒)  

           [2.22] 

Let 𝑋𝑖 = (𝑥0, 𝑥1, … , 𝑥𝑖) be all the observations up to the 𝑖𝑡ℎ generaion,  

𝐿(𝑁𝑒) = 𝑓 (𝑥𝑡|𝑋𝑡−1) 𝑓 (𝑥𝑡−1|𝑋𝑡−2)…𝑓 (𝑥1|𝑋0 ) 𝑓(𝑥0)  

           [2.23] 

This expression is generally preferred as it illustrates the dependency among successive 

observations. Again 𝑓(𝑥0) plays no role in the estimation of 𝑁𝑒 and can be safely 

neglected. By using the same argument as in the two-sample case, that each 𝑓 (𝑥𝑖|𝑋𝑖−1) 
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is a beta-binomial distribution, the hyper-parameters within each beta-binomial 

distribution are functions of 𝛿 and the preceding observations. The calculation of the 

hyper-parameters can be generalised by the following set of four recurring equations:  

𝛼(𝑖)
′ =

𝛿𝛼(𝑖−1)

1 + 𝛼(𝑖−1) + 𝛽(𝑖−1) + 𝛿
 

𝛽(𝑖)
′ =

𝛿𝛽(𝑖−1)

1 + 𝛼(𝑖−1) + 𝛽(𝑖−1) + 𝛿
 

𝛼(𝑖) = 𝑥𝑖 + 𝛼(𝑖)
′  

𝛽(𝑖) = 2𝑛 − 𝑥𝑖 + 𝛽(𝑖)
′    

with initial values:  

𝛼(0) = 𝑥0 + 1 

𝛽(0) = 2𝑛 − 𝑥0 + 1     

           [2.24] 

where 𝑖 runs from 1, 2, … , 𝑡. As a result, each of 𝑥𝑖  given all previous observations 

approximately follows a beta-binomial distribution with parameters 

𝑓(𝑥𝑖|𝑋𝑖−1)~𝑏𝑒𝑡𝑎 − 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2𝑛, 𝑎(𝑖)
′ , 𝛽(𝑖)

′ )   

           [2.25] 

Moreover, the underlying allele frequency given all observations up to 𝑖 approximately 

follows a beta distribution:  

𝑓 (𝑝𝑖|𝑋𝑖)~𝑏𝑒𝑡𝑎(𝛼(𝑖), 𝛽(𝑖))   

           [2.26] 

The likelihood function is the product of multiple beta-binomial distributions. Since all 

the observed allele counts are known, the only remaining parameter in the system is 𝑁𝑒 . 

Therefore the MLE can be obtained by choosing a value of 𝑁𝑒 = 𝑁𝐵̂ that maximises the 

likelihood function.  

 

Computer simulation 1: accuracy 

The first objective of the simulation study was to compare the performance of the 

proposed 𝑁𝐵̂ estimator with the existing methods. The MLNE routine (Wang and 

Whitlock, 2003) and the 𝐹𝑐  statistics (Nei and Tajima, 1981; Waples, 1989) were used as 

benchmarks. In each iteration, 500 independent biallelic loci were simulated forward in 

time with known 𝑁𝑒 across 𝑡 generations according to the Wright-Fisher model, and 

samples were then taken with replacement with a sample size of 𝑛 diploid individuals 
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(a total of 2𝑛 alleles), as described in equation 2.10. The initial allele frequencies were 

drawn from a uniform distribution. The three methods were then applied to produce 

three estimates. For 𝑁𝐵̂, the likelihood function was constructed using either equation 

2.15 or 2.23 depending on the number of sampling events, and the likelihood function 

was maximised numerically. The lower and upper bounds for searching for the maxima 

were taken to be 50 and 107 respectively. For MLNE the upper bounds for 𝑁𝑒 was 

restricted to be 38,000 because of computing limitations. 𝐹𝑐  estimates were calculated 

within the MLNE package. The asymptotic 95% confidence interval (CI) for MLNE and 

𝑁𝐵̂ were also worked out by finding the range of 𝑁𝑒  in which the log-likelihood dropped 

by 2 units from its maximum value. The whole simulation was repeated 1000 times for 

each parameter setting, and was conducted in R (R Core Team, 2013).  

 

Table 2.2 Simulation results 

True 
𝑁𝑒 

𝑛 Metho
d 

Mean(SD) 2.5% 97.5% Mean CI 
width 

Coverag
e 

Two samples (sample at 𝑡 = 0, 8) 
1000 100 𝐹𝑐  1059.7(253.5) 699.8 1657.8 - - 
  MLNE 1080.7(260.7) 711.3 1695.4 1283.3 960 
  𝑁𝐵̂ 1033.2(247.3) 684.1 1604.8 1195.5 956 

5000 500 𝐹𝑐  5272.4(1164.5) 3534.1 8056.8 - - 
  MLNE 5276.7(1166.7) 3539.9 8083.9 6046.3 970 
  𝑁𝐵̂ 5217.1(1149.6) 3501.6 7958.1 5957.4 967 

Three samples (sample at 𝑡 = 0, 4, 8) 
1000 100 𝐹𝑐  1107.8(638.8) 661.8 2050.7 - - 
  MLNE 1076.6(243.9) 734.9 1704.6 1134.2 957 
  𝑁𝐵̂ 1030.9(226.8) 709.4 1605.4 1054.0 960 

5000 500 𝐹𝑐  5567.7(2038.2) 3165.9 10708 - - 
  MLNE 5254.0(1153.4) 3530.2 8198.1 5427.4 950 
  𝑁𝐵̂ 5202.0(1138.5) 3495.9 8008.4 5352.2 953 
For each parameter setting, 1000 replicate populations were simulated and all three methods are used to 

estimate 𝑁𝑒 . The true 𝑁𝑒 , sample size per generation and number of temporal samples are shown above. 

500 unlinked loci are used in each run and the initial allele frequencies are sampled from the uniform 

distribution. The mean, standard deviation, 2.5% and 97.5 percentile of the 1000 runs are reported. For 

MLNE and 𝑁𝐵̂ , the mean width of 95% confidence interval (CI) is also computed. The last column shows 

the number of CI (out of 1000 simulations) that covers the true value 𝑁𝑒 .  

 

Summary statistics for the three estimators are shown in table 2.2. The true 𝑁𝑒 was 

chosen to be 1000 or 5000. Sample sizes (per generation) were fixed to be 10% of the 

underlying 𝑁𝑒 . Table 2 shows that all three methods slightly overestimated 𝑁𝑒 , while 𝑁𝐵̂ 

had the smallest bias in all cases investigated. In the two-sample scenario there was 

little difference among the three methods, however, 𝑁𝐵̂ consistently had the smallest 

variance and bias. For three samples, the differences of the three methods became more 
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pronounced that the likelihood methods (MLNE and 𝑁𝐵̂) outperformed their moment-

based counterpart in terms of having smaller standard deviation and bias. The standard 

deviation of 𝐹𝑐  was often twice that of the likelihood estimates. This result is consistent 

with the idea that the likelihood methods are capable of combining data from more than 

two samples. Within the likelihood family, the mean width of the 95% CI was also 

calculated. The CI using 𝑁𝐵̂ is slightly narrower than MLNE given the same significance 

level, with similar coverage. In short, all the examined scenarios suggested that 𝑁𝐵̂ was 

superior to the MLNE and 𝐹𝑐  estimator.  

 

A second set of simulations examined the bias and consistency of the newly developed 

𝑁𝐵̂ for a range of 𝑁𝑒 values. As the central assumption of the method is that 𝑁𝑒 is 

sufficiently large for a continuous approximation, it is interesting to investigate the 

performance of the 𝑁𝐵̂ estimator over a broad range of 𝑁𝑒 . A plot of the bias against true 

𝑁𝑒 is found in Figure 2.3, with the true 𝑁𝑒 ranging from 50 to one million. For the 

smaller values of Ne, 𝑁𝐵̂ slightly underestimated the population size by less than 2%, 

while for 𝑁𝑒 = 500 and onwards 𝑁𝐵̂ was slightly biased upwards by no more than 2%. 

This graph supports that 𝑁𝐵̂ is unbiased from true 𝑁𝑒 as small as 50. Thus, the new 

estimator provides an inferential statistic that is not available through prior methods.  

 

Figure 2.3 Plot of bias of 𝑁𝐵̂  against true 𝑁𝑒 . The bias (solid line) is quantified as the percentage difference 

relative to the true 𝑁𝑒 . Sample size was 10% of the true 𝑁𝑒  with 1000 loci. Two samples were taken 10 

generations apart. The bias approaches 0 (red dotted line) if the estimator is unbiased.  
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Computer simulation 2: computational effort 

With the use of the beta and binomial distributions in modelling genetic drift and 

sampling events, closed-form solutions for the integrals in equation 2.16 and 2.19 are 

obtained. As a result, the likelihood function is greatly simplified and no longer involves 

summations over all the nuisance parameters as in the full likelihood model. The 

comparison of the computation time between MLNE and 𝑁𝐵̂ is shown in figure 2.4. In 

MLNE, the number of elements in the transition matrix expands with 𝑁𝑒 , therefore 

increasing the computing time (Williamson and Slatkin 1999; Wang, 2001). For 𝑁𝐵̂, 

continuous approximation is used and the structure of the transition probabilities is 

largely the same for all 𝑁𝑒 , hence the computing time does not go up with 𝑁𝑒 . For both 

MLNE and 𝑁𝐵̂, computing time increases with the number of loci used in a similar 

fashion, but 𝑁𝐵̂ remains several thousand times faster than MLNE. The speed advantage 

of 𝑁𝐵̂ also becomes more distinct with increasing sampling interval because no matrix 

multiplication is required as in MLNE. It is reminded that the two methods are not 

coded in the same programming language (Fortran for MLNE and R for 𝑁𝐵̂) and the 

result should not be considered as a direct comparison between the two algorithms. R is 

a script language which is typically slower than a compiled language like Fortran. This 

study is therefore likely to underestimate the speed advantage of 𝑁𝐵̂ over MLNE. To 

summarise, 𝑁𝐵̂ can speed up estimation by a factor of 1000 to 10,000 for large 𝑁𝑒 

without sacrificing accuracy.  
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Figure 2.4 Comparison of computational effort (in seconds) between MLNE and 𝑁𝐵̂ . Figure 2.4A shows the 

computational time against true 𝑁𝑒 . 𝑁𝑒  of 50,000 was not run for MLNE because this exceeds the limits of 

the software. Figure 2.4B shows the computational time against number of loci used in each iteration. 

Figure 2.4C plots the computing time against sampling interval.  

 

Computer simulation 3: non-constant 𝑁𝑒 and Likelihood-Ratio tests 

In situation where there are three or more samples over time, we can consider the 

possibility that 𝑁𝑒 is different in each sampling interval. This can be done through 

modifying equation 2.24 to allow non-constant 𝛿. It is also feasible to use the same 

approach to fit a dynamic model to the data, similar to the example by Wang (2001) of 

fitting an exponential growth model. In general, a likelihood-ratio test (LRT) can be 

performed to compare models and hypotheses. The test statistic is twice the difference 

in the log-likelihood values under the null and alternative hypothesis, and follows 

asymptotically a chi-squared distribution with degrees of freedom equal to the 

difference in the number of parameters between the two models.  

 

Consider three temporal samples taken at 𝑡 = 0, 4 and 8, and we would like to test if 𝑁𝑒 

is constant throughout the sampling period. This can be done by setting up the 

following hypotheses: 𝐻0: 𝑁𝑒 is constant, versus 𝐻1: There are two distinct 𝑁𝑒’s for the 

period between 𝑡 = 0 and 𝑡 = 4, and between 𝑡 = 4 and 𝑡 = 8. We can fit two models 

representing the two hypothesises to the data, one with a single 𝑁𝑒 , the other with two 

different 𝑁𝑒 ’s. Under the null hypothesis (i.e. given 𝐻0 is true), the test statistic 

asymptotically follows a chi-squared distribution with 1 degree of freedom. This can be 

verified by simulating 5000 replicates as shown in Figure 2.5.  
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The statistical power of the test can be exemplified by setting up a specific alternative 

hypothesis. For example, if the underlying population drops from 10,000 in 𝑡 = 0, 4 to 

1000 in 𝑡 = 4, 8, then the power of the test is the probability of rejecting the null 

hypothesis. There are several parameters controlling the power, one of which is the 

sample size, 𝑛 (Figure 2.6). In the particular example shown, a sample size of 𝑛 = 100 is 

required in order to attain a power of 80%.  

 

Figure 2.5 (left) Histogram of the likelihood-ratio test statistic under 𝐻0 for 5000 simulations. Three 

temporal samples were drawn in each replicate. The red line represents the theoretical density of a chi-

squared distribution with one degree of freedom.  

Figure 2.6 (right) Statistical power against sample size. A specific 𝐻1 was chosen as described in the text, 

with 1000 independent loci.  

 

Discussion 

In theory, the full-likelihood model (Williamson and Slatkin 1999) for estimating 𝑁𝑒 

from temporal samples should be the most accurate but far from practical because of 

computational limitations. MLNE by Wang (2001), as a derivation of the full-likelihood 

model, intentionally omits some of the smaller transition probabilities to enhance 

computational feasibility. The 𝑁𝐵̂  estimator is also an approximation to the full-

likelihood, but makes use of the continuous approximation to simplify the calculations. 

Previous studies by Williamson and Slatkin (1999) and Wang (2001) showed that the 

maximum likelihood methods are more accurate and precise than the F-statistics, and 

this paper further confirms that 𝑁𝐵̂ is no exception. The comparison between MLNE and 

𝑁𝐵̂ showed that 𝑁𝐵̂ is a better choice in moderately-large 𝑁𝑒 scenario. In our examined 

cases  𝑁𝐵̂ produces a smaller variance and narrower confidence interval than MLNE, 

yielding a more precise estimate of 𝑁𝑒 . The bias of 𝑁𝐵̂ is also negligible for a wide range 

of 𝑁𝑒 from 50 to several million.  
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Relaxing the upper limit of 𝑁𝑒 is perhaps the most important feature of 𝑁𝐵̂. Since the 

dimension of the Wright-Fisher transition matrix is determined by 𝑁𝑒 , MLNE stops the 

calculation when 𝑁𝑒  exceeds a certain value. The current threshold on a typical 

workstation is around 38,000 while the user manual from MLNE is suggesting 50,000. 

This upper bound also applies to the calculation of the upper confidence interval, 

making the practical range of true 𝑁𝑒 even smaller. Sometimes MLNE fails to provide a 

finite upper confidence limit due to this issue hence makes the results uninterpretable. 

𝑁𝐵̂ relaxes this bound to over several million without causing computational issues. As a 

result, precise estimation of contemporary 𝑁𝑒 can be applied to more species, especially 

for those with larger 𝑁𝑒 such as invertebrates. Another distinct advantage is the 

computing speed, which is increased by a factor of 1000 or more in most scenarios. 

Most calculations in 𝑁𝐵̂  are completed within seconds. Field biologists may not 

appreciate this improvement as most of their time is spent on data collection, however, 

with the anticipated advance in sequencing technology, large amount of loci can be 

sequenced at a time with low cost. The ability of existing software to handle such a 

dataset will be questionable. Furthermore with the increasing popularity of the use of 

computer simulation in population genetics (such as 𝑚𝑠 by Hudson (2002)), in which 

the computing time is multiplied by the number of repeated simulations, 𝑁𝐵̂ provides an 

efficient algorithm to help scientists evaluate their simulations rapidly and accurately.  

 

As discussed above, 𝑁𝐵̂ is designed for moderately-large populations and this explains 

why our simulations focused in these scenarios. Although we showed that 𝑁𝐵̂ is 

unbiased even for small values of 𝑁𝑒 , the full-likelihood method is preferred for 

extremely small 𝑁𝑒 problem (when 𝑁𝑒 is less than fifty). In determining sample size, it 

has to be viewed relative to the true 𝑁𝑒 of the population. It is shown in our simulations 

that sampling 10% of the individuals is able to estimate 𝑁𝑒 accurately, with the use of 

about independent 500 loci. Interested readers can refer to Waples (1989) and Wang 

(2001) for more details about the effect of sampling effort on temporal methods.  

 

There have been some discussions on the use of beta distribution to model genetic drift 

(equation 2.17). With our choice of 𝛿 as stated in equation 2.18, the first two moments 

match the theoretical moments given by equation 2.2 and 2.3, and also Waples (1989). 

It is worth noticing that the temporal method focuses on the allele frequency change 

within a relatively short period of time of only a few to a dozen generations, in which 

beta is capable of approximating the drift.  

 



34 
 

Excluding rare alleles is not unusual in population genetics studies. For instance, LDNE 

(Waples and Do, 2008), a computer program to estimate contemporary 𝑁𝑒 using linkage 

disequilibrium information, imposes several cut-offs for rare alleles. Wang (2001) 

showed that the moment-based 𝐹-statistics induces bias with rare alleles, while the 

likelihood methods are less sensitive to small allele frequency as they make us of the full 

distributional information of the Wright-Fisher model. The goodness-of-fit of the 

approximation used in 𝑁𝐵̂ was examined empirically in the Appendix 1, the results 

shows that the approximation is indistinguishable from the true continuous model 

when frequent alleles are used, and it still holds when the observed allele frequency is 

down to about 0.05. In a further simulation (not shown here) with skewed initial allele 

frequencies sampled from 𝑏𝑒𝑡𝑎(1,9), 𝑁𝐵̂ remains unbiased with As a result we suggest 

that in most cases it is safe to include alleles with observed minor allele frequency 

larger than 5%, and the cut-off of 5% should be a conservative one.  

 

In the review by Luikart et al. (2010) they emphasised the desirability of developing 

new methods that are able to distinguish between moderate and large 𝑁𝑒 , and that 

future development of 𝑁𝑒 estimators should allow for the possibility of genotyping 

many loci. The methods developed here allow for expansion in these two directions, 

both for estimating effective population sizes and for testing for significant differences 

(or trends) in population sizes from temporally spaced samples.  
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Chapter 3: R package for implementing 𝑵𝑩̂ 

Chapter Abstract 

This chapter can be viewed as the implementation of the novel likelihood-based 

estimator 𝑁𝐵̂ for the estimation of contemporary N_e from the temporal change in allele 

frequencies. A computer package 𝑁𝐵, written in R programming language, was 

subsequently developed to calculate 𝑁𝐵̂ described in the previous chapter. The input 

format largely follows the existing MLNE to allow users to switch between the two 

programs with the minimal effort. It is also capable of handling multiallelic loci by using 

Dirichlet-multinomial distribution to approximate genetic drift. The package is now 

available to the public on the Comprehensive R Archive Network (CRAN).  

 

Introduction 

Chapter 2 discussed the limitations and drawbacks of the existing temporal methods to 

estimate contemporary 𝑁𝑒 . A new estimator, 𝑁𝐵̂, was then developed by adapting the 

continuous approximation to the Wright-Fisher matrix and using beta-binomial 

distributions. 𝑁𝐵̂ was shown to outperform the 𝐹-statistics in terms of accuracy and the 

flexibility towards sampling regimes. It is also as accurate as the popular likelihood-

based method MLNE (Wang, 2001) but with far less computational burden. Not only 

does 𝑁𝐵̂ extend the current 𝑁𝑒 estimation to a wider range of species (especially with 

large 𝑁𝑒), but also allows the use of huge amount of loci and samples to provide rapid 

and precise estimates. With the increasing popularity of computer simulation (such as 

Monte Carlo or whole-genome simulation), 𝑁𝐵̂’s efficient algorithm helps expand the 

scale of the simulation to cope with more complex scenarios. This chapter introduces an 

R package, 𝑁𝐵, to implement the calculation of 𝑁𝐵̂, such that most geneticists can 

appreciate it without much programming effort.  

 

Design 

The package 𝑁𝐵 was written in R (R Core team, 2013), a popular computing language 

among Statistics and Biological science. R is available on most operating systems 

including Windows, Mac, and Linux, allowing us to reach almost all potential audience. 

Once R is installed, the coding will be exactly the same regardless the operating system, 

and hence only copy of 𝑁𝐵 is required for distribution. This ensures the contents are 

consistent and the results are reproducible across platforms.  

 

𝑁𝐵 itself is a standalone package and does not depend on other preceding packages. 

Codes or functions maintained by other authors may be updated or removed without 
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notice, making the contents intractable. If any function on which 𝑁𝐵 relies on has 

changed then it could have devastating effect on 𝑁𝐵. While the calculation of 𝑁𝐵̂ spans 

over a dozen of equations as shown in chapter 2, the package streamlined the structure 

of 𝑁𝐵 down to only 4 visible functions.  The input file containing the number of alleles 

has a format similar to that of the popular MLNE (Wang, 2001), which allows users to 

switch between or cross validate the two programs with the minimal effort.  

 

𝑁𝐵 is uploaded on the Comprehensive R Archive Network (CRAN), the centralised site 

for R distributions, packages, and documentations. All packages must have passed a 

series of tests and debugging before becoming available to the public. As part of the 

regulation, 𝑁𝐵 comes with a technical manual, which can be found in the URL below, to 

guide users through the package with examples.   

 

The use of multiallelic loci 

One of the key components in the derivation of 𝑁𝐵̂ in chapter 2 is the use of a beta-

binomial distribution to model the sampled allele counts under genetic drift. The NB 

package extends the similar idea to multiallelic case when there are more than two 

variants in one locus. Dirichlet distribution, the multivariate analogy of the beta 

distribution, is commonly used to model the change in frequencies of multiple alleles 

from the same locus due to genetic drift (Kitakado et al., 2006). Similarly in the 

sampling process, the alleles are assumed to be chosen from a pool of gametes with 

replacement and hence can be represented by a multinomial distribution, which is again 

the multivariate version of binomial sampling. The final argument is to use the 

compound probability distribution, the Dirichlet-multinomial distribution, to model the 

sampled allele counts under genetic drift and thus the likelihood function.  

 

Some simulations (not shown here) were conducted to verify the claim for multiple 

alleles and the results successfully demonstrated 𝑁𝐵’s ability to handle multiallelic loci 

under standard conditions (i.e. not too extreme allele frequencies). As a result, the 

Dirichlet-multinomial method is adopted in this package for multialleleic loci. In fact, 

the sample dataset attached in the package is computer-simulated dataset containing 50 

multiallelic with 4 alleles on each locus. In this example 𝑁𝐵 is able to provide an 𝑁𝑒 

estimate of about 1241 (CI=594-6376) which covers the true 𝑁𝑒 = 1000. Another 

feature of NB is that every locus can have a different number of alleles as long as they 

are clearly specified in the input arguments.  
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The support of multiallelic loci is further investigated by analysing a real dataset 

published by Cuveliers et al. (2011) on the 𝑁𝑒 of North Sea sole. Six temporal samples 

spanning across >10 generations were collected between year 1957 and 2007 with 

sample size of around 135 to 220 individuals per generation. Some 11 microsatellite 

markers were genotyped, with number of alleles ranging from 13 to 39. The 𝑁𝑒 estimate 

from 𝑁𝐵 for the entire sampling horizon is 2512 with finite 95% confidence limits of 

1661 and 4365. The published estimates can be in table 2 from the same paper 

(Cuveliers et al., 2011, p. 3561). In particular, the estimate from MLNE by Wang (2001) 

was reported to be 2169 (CI=1221-5744), while the estimate from the 𝐹-statistic was 

2247 (CI=1127-8370). It is found that all three point estimates are comparable and 

their confidence limits mostly overlap with each other, indicating a high degree of 

consistency among the three temporal methods. The point estimate from 𝑁𝐵 is slightly 

above those obtained by MLNE and 𝐹-statistic, but is the one with the narrowest 

confidence interval. Moreover, 𝑁𝐵 showed a significant reduction in computing time; it 

is about 600 times faster than MLNE for this particular dataset.  

 

Latest version 

The most updated version of 𝑁𝐵 is version 0.9 and has uploaded onto the CRAN at the 

following URL:  

https://cran.r-project.org/web/packages/NB/index.html 

 

It is available to the general public under GNU General Public Licence (GPL) version 2 or 

above. There is also a technical manual which can be found on the link above.   
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Chapter 4: Linkage Disequilibrium and the Estimation of Historical 𝑵𝒆 

Chapter Abstract 

By combining the LD information from tightly and loosely linked loci, it is possible to 

outline the 𝑁𝑒 of a population over its historical past. The details behind the inference 

remain confusing in many aspects, for instance, little is known about the analytical form 

of the expectation of LD apart from constant or linearly-changing population size. In 

some studies, the 𝑁𝑒 inferred from LD often come without a proper time scale, leading 

to uninterpretable results. This paper works on the mathematical details of LD and 

shows that the 𝐸[𝑟2] can be expressed as a weighted sum of the probability of 

coalescence between two randomly chosen haplotypes, in which information about the 

historical 𝑁𝑒 is contained. This provides an alternative formula to calculate the expected 

LD under any population dynamics, and directly relates to the inference of historical 𝑁𝑒 . 

The results given in this paper also fit into other existing theories, such as the 

equilibrium value of 𝐸[𝑟2], and the average time to coalescent under constant 𝑁𝑒 

scenario. The potential impact of this work is demonstrated through a worked example 

on the estimation of historical 𝑁𝑒 of Anopheles coluzzii in a West African country.  

 

Background 

Linkage disequilibrium (LD) is an important statistic in population genetics. Not only 

does it measure the non-random association among loci, but it also links with many 

evolutionary forces such as genetic drift, selection, migration and mutation. Therefore it 

is popular for geneticists to study LD patterns so as to infer these underlying 

evolutionary processes. For a closed population with a finite population size undergoing 

random mating, the LD signal arises mainly from genetic drift (Hill, 1981; Wang, 2005). 

This study, in particular, investigates how the observed LD relates to genetic drift and 

ultimately infers the historical 𝑁𝑒 governing the process.  

 

Detecting LD 

Consider a two-locus, two-allele system, and let 𝐴 and 𝑎 be the two alleles on the first 

locus, and 𝐵 and 𝑏 on another locus. There are and only are four allelic combinations: 

𝐴𝐵, 𝐴𝑏, 𝑎𝐵, and 𝑎𝑏. The combinations can easily be represented by a two-by-two 

contingency table as shown in table 4.1:  
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Table 4.1 Haplotype frequency table 

 𝐵 𝑏 

𝐴 𝑝𝐴𝐵 𝑝𝐴𝑏 

𝑎 𝑝𝑎𝐵 𝑝𝑎𝑏 

Haplotype table of a two-locus, two-allele system. 𝑝𝐴𝐵 , 𝑝𝐴𝑏 , 𝑝𝑎𝐵 , and 𝑝𝑎𝑏 are the frequencies of the four 

haplotype combinations  𝐴𝐵, 𝐴𝑏, 𝑎𝐵, and 𝑎𝑏.  

 

Let 𝑝𝐴𝐵, 𝑝𝐴𝑏, 𝑝𝑎𝐵, and 𝑝𝑎𝑏 be the frequencies for the four haplotype combinations which 

add up to one. We further denote 𝑝 = 𝑝𝐴𝐵 + 𝑝𝐴𝑏 and 𝑞 = 𝑝𝐴𝐵 + 𝑝𝑎𝐵 as the marginal 

allele frequency for allele 𝐴 and allele 𝐵 respectively. The coefficient of linkage 

disequilibrium 𝐷 is defined as:  

𝐷 = 𝑝𝐴𝐵 − 𝑝𝑞 

           [4.1] 

The implication is as follows: If the two loci A and B are independent, that the choice of 

alleles in locus 𝐴 provides no extra information on the choice of alleles in locus 𝐵, then 

the proportion of having the haplotype 𝐴𝐵 should be very close to the product of the 

two marginal frequencies, and the value of 𝐷 should be roughly zero. This is also the 

null assumption behind the χ2 test for independence of a contingency table. In contrast, 

a large or small 𝐷 value suggests a strong association between the two loci. It also has 

an alternative form which can be directly calculated from the haplotype frequencies:  

𝐷 = 𝑝𝐴𝐵𝑝𝑎𝑏 − 𝑝𝐴𝑏𝑝𝑎𝐵 

           [4.2] 

It is observed that 𝐷 may not always be the best statistic to describe the association 

between two loci as its range of possible values depends heavily on the two marginal 

allele frequencies. For instance, the upper bound for 𝐷 is:  

𝐷 ≤ min (𝑝(1 − 𝑞), (1 − 𝑝)𝑞) 

           [4.3] 

and the range of 𝐷 is the widest when both marginal allele frequencies are around 0.5. 

For this reason, Lewontin (1964) suggested an adjusted version of 𝐷, called 𝐷’, which 

divides 𝐷 by its absolute maximum possible value such that the lower and upper bound 

of 𝐷’ are always −1 and +1. Another common measure of LD is 𝑟, the correlation 

coefficient of loci:  
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𝑟 =
𝐷

√𝑝(1 − 𝑝)𝑞(1 − 𝑞)
 

            [4.4] 

which is also bounded between −1 and +1. It is noted that the range of 𝑟 remains 

affected by the marginal frequencies but is far less sensitive than that of 𝐷. The 

correlation coefficient 𝑟 is usually preferred as it is defined as the same way as the 𝜙 

correlation coefficient between two binary variables. We will see later why 𝑟 is often 

overlooked by the squared correlation coefficient 𝑟2, which the latter term plays a 

crucial role in 𝑁𝑒 estimation.  

𝑟2 =
𝐷2

𝑝(1 − 𝑝)𝑞(1 − 𝑞)
 

           [4.5] 

As in many problems in population genetics, it is unfortunate that the true gametic 

frequencies or the true LD (in the measurement of 𝐷, 𝐷’ or 𝑟2) can only be inferred 

through genetic samples which contain sampling error. The estimation procedure can 

be quite complex when only genotypes (rather than haplotypes) are observed. While 

this chapter aims to provide the theoretical expectation of true LD in the face of genetic 

drift, the estimation of LD from genetic samples is equally important and will be 

covered in the next chapter (chapter 6).  

 

LD and genetic drift 

While different measures of LD and their formulation have just been discussed, it is 

crucial to understand how LD responds to evolutionary forces such as genetic drift. 

Qualitatively speaking, when a population persists for long enough that the founder 

effects can be ignored, the expected value of the underlying correlation 𝐸[𝑟] = 0. In 

other words, the initial linkage has been be broken down by recombination in the 

course of the population history. The variance of linkage, measured in 𝑉𝑎𝑟[𝑟] = 𝐸[𝑟2], is 

however non-zero due to random sampling of gametes (Hill, 1981; Russell and Fewster, 

2009). The theoretical bases of 𝐸[𝑟2] due to drift in finite populations have previously 

been studied by several authors (Hill and Robertson, 1968; Sved, 1971; Hill, 1981). Hill 

and Robertson (1968) first calculated a moment-generating matrix for various 

moments regarding to their gametic frequencies. The moment-generating matrix 

“generates” the theoretical statistical moments forward in time in the face of drift and 

recombination. The three moments considered by Hill and Robertson (1968) are 

𝐸[𝑝(1 − 𝑝)𝑞(1 − 𝑝)], 𝐸[𝐷(1 − 2𝑝)(1 − 2𝑞)], and 𝐸[𝐷2], and if they are presented in the 

form of a column vector, 𝑦𝑡, with the subscript 𝑡 indicating the values at time 𝑡, then the 

values of these moments in the next generation 𝑡 + 1 can be computed recursively by 

the following equation:  
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𝑦𝑡 = (

𝐸[𝑝(1 − 𝑝)𝑞(1 − 𝑞)]

𝐸[𝐷(1 − 2𝑝)(1 − 2𝑞)]

𝐸[𝐷2]

)

𝑡

 

𝑦𝑡+1

=
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𝑦𝑡   

= 𝑀𝑦𝑡 

           [4.6] 

where 𝑐 is the recombination rate and 𝑁𝑒 is the effective population size. It is noticed 

that the moment-generating matrix is time independent, that the moment-generating 

matrix for 𝑡 generations ahead is simply 𝑀𝑡 . Hill and Robertson (1968) further 

investigated the properties of 𝑀 but only for the special case of completely linked loci 

(i.e. 𝑐 = 0), while for other values of 𝑐, the moments have to be computed numerically. 

The matrix 𝑀 seems irrelevant to our parameter of interest 𝐸[𝑟2], one can however use 

the first and third element of the column vector 𝑦 to approximate it:  

𝐸[𝑟2] ≈ 𝜎𝑑
2 =

𝐸[𝐷2]

𝐸[𝑝(1 − 𝑝)𝑞(1 − 𝑞)]
 

           [4.7] 

The formula shows that the 𝐸[𝑟2], in the form of the expectation of ratios, can be 

approximated by 𝜎𝑑
2, the ratio of expectations, such that the numerator and the 

denominator can be obtained separately from the moment-generating matrix. The 

approximation was widely adopted in subsequent studies, such as Weir and Hill (1980) 

and Hill (1981), and was said to perform well for loosely linked or unlinked loci (Sved 

et al., 2013). For an isolated population with constant 𝑁𝑒 , the approximated 𝐸[𝑟2] (or 𝜎𝐷
2) 

will converge to an equilibrium value over time. Hill (1981) suggested the following 

expression for the equilibrium value of 𝐸[𝑟2]:  

𝐸[𝑟2] ≈ 𝜎𝑑
2 =

𝑐2 + (1 − 𝑐)2

2𝑁𝑒𝑐(2 − 𝑐)
 

           [4.8] 

It is noteworthy that the denominator is unbounded for small values of 𝑁𝑒𝑐; hence it 

should be replaced by 1 + 2𝑁𝑒𝑐(2 − 𝑐) when 𝑁𝑒𝑐 ≤ 1. There are also some other 
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derivations, such as the genealogy interpretation of LD (Weir and Hill, 1986; McVean, 

2002):  

𝐸[𝑟2] ≈ 𝜎𝑑
2 =

10 + 𝜌

22 + 13𝜌 + 𝜌2
 

           [4.9] 

where 𝜌 = 4𝑁𝑒𝑐 is the population recombination parameter.  

 

Sved and Feldman (1973) took a different approach to establish the equilibrium value 

of 𝐸[𝑟2] through the concept of identical by descent (IBD). Let 𝑄𝑡 be the probability that 

two randomly chosen haplotypes from a population are IBD at time 𝑡. For a population 

with 2𝑁𝑒 haplotypes, the chance that two randomly chosen haplotypes are IBD is 1/2𝑁𝑒, 

and the change that they are not is 1 − 1/2𝑁𝑒. Therefore the probability of IBD in the 

next generation, denoted by 𝑄𝑡+1, equals 1/2𝑁𝑒 arose from the IBD sampling, plus 

1 − 1/2𝑁𝑒 that of the existing 𝑄𝑡, multiplied by (1 − 𝑐)2, the probability that there is no 

crossover on both parents is:  

𝑄𝑡+1 =
1

2𝑁𝑒
+ (1 −

1

2𝑁𝑒
) (1 − 𝑐)2𝑄𝑡 

           [4.10] 

Sved (1971) also derived that 𝐸[𝑟2] is actually 𝑄, that both linkage and IBD approaches 

are describing the same phenomenon but from two different perspectives. The 

recurrence relation of 𝐸[𝑟2] can therefore be established by replacing the 𝑄’s with 𝐸[𝑟2] 

in equation 4.10 above. The equilibrium value for this recurrence equation can be 

solved by setting 𝐸[𝑟𝑡
2] = 𝐸[𝑟𝑡+1

2 ] = 𝐸[𝑟2], as derived by Sved and Feldman (1973):  

𝐸[𝑟2] =
1

1 + 4𝑁𝑒𝑐 − 2𝑐 − 2𝑁𝑒𝑐2 + 𝑐2
=

1

1 + 𝑐(2 − 𝑐)(2𝑁𝑒 − 1)
 

           [4.11] 

For small values of 𝑐 the expression can be further simplified into 

𝐸[𝑟2] =
1

1 + 4𝑁𝑒𝑐
 

           [4.12] 

which yields perhaps the most popular equation for the asymptotic value of 𝐸[𝑟2] (Sved, 

1971; Hayes et al. 2003; Tenesa et al., 2007).  

 



44 
 

Estimating 𝑁𝑒 from LD, the current practice 

Early LD studies focused on the relationship among these genetic quantities rather than 

for the purpose of parameter estimation. From equation 4.8, 𝐸[𝑟2] reduces to 1/3𝑁𝑒 if 

only unlinked loci are considered (by substituting 𝑐 = 0.5). This expression has been 

the central idea of contemporary 𝑁𝑒 estimation for several decades, since Hill (1981) 

first attempted to estimate 𝑁𝑒 from unlinked loci for a real dataset of Drosophila 

melanogaster. The performance was unsatisfactory as one of the two 𝑁𝑒 estimates was 

negative, implying an infinitely large population size. The method had been long 

forgotten due to the lack of practicality but was picked up again in recent years as the 

quality and quantity of data has improved rapidly. England et al. (2006) found that the 

LD signal suffers from bias when sample size is limited. Waples and Do (2008) wrote a 

computer program LDNE to estimate 𝑁𝑒 from unlinked loci, with empirical correction 

imposed to reduce bias and sampling error taken into consideration. In fact, LD has 

become one of the most popular one-sample methods to estimate contemporary 𝑁𝑒 , 

alongside the temporal methods which require two or more samples (Luikart et al., 

2010).  

 

A pair of linked loci contains more information on 𝑁𝑒 if its recombination rate is known 

(Hill, 1981). Since the LD from a pair of tighter linked loci requires a longer time to 

reach its equilibrium, it contains information about the past demography over a longer 

period (Wang, 2005). By combining loci with different recombination rates it is possible 

to sketch the shape of population dynamics in the past. For instance, the discrepancy 

between the 𝑁𝑒’s implied from loosely and tightly linked loci may be a result of a 

bottleneck, expanding or diminishing in population size, or a mixture of these events. 

Hayes et al. (2003) derived that if 𝑁𝑒 changes linearly over time in the past, then 𝑁𝑒 can 

be estimated through the 𝐸[𝑟2] value with recombination rate 𝑐 using the relation 

stated in equation 4.12, and is estimating the population of 1/(2𝑐) generations ago. By 

way of illustration, a pair of unlinked loci provides information about the 𝑁𝑒 of 

1/(2 × 0.5) = 1 generation ago, which brings us back to the case of contemporary 𝑁𝑒 

estimation. Several studies were conducted based on this method to infer the 

population histories of human (Hayes et al., 2003; Tenesa et al., 2007) and other species 

(Barbato et al., 2015). Park (2012) implemented a hybrid method by combining Hardy-

Weinberg equilibrium and LD information to provide an approximate picture of 𝑁𝑒 

under different recombination rates.  

 

Despite all these efforts, there are still many unanswered questions concerning the 

estimation of historical 𝑁𝑒 from LD. For instance, very little is known about the 

analytical form of 𝐸[𝑟2] apart from constant or linearly-changing 𝑁𝑒 . The mathematical 

background of estimating historical 𝑁𝑒 from LD is rather loose at the moment and a 

sophisticated estimation method is still lacking. In some studies, authors presented 𝑁𝑒 
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estimates but without an associated time scale, leading to an unclear interpretation. The 

1/(2𝑐) timeframe applied in many studies may not be appropriate as it was found to be 

inconsistent with computer simulations (Park, 2012). This chapter aims to study the 

statistical properties of LD from a new perspective which also complements the existing 

studies. By providing a better understanding among these genetic quantities, we wish to 

contribute to the estimation of historical 𝑁𝑒 .  

 

Theory 

Sved (1971) and Sved and Feldman (1973) derived the recurrence equation (equation 

4.9) and the equilibrium value for 𝐸[𝑟2] for a finite population based on the idea of IBD. 

The change of 𝐸[𝑟2] over time may not be of our utmost interest for the reason that 

geneticists often only have LD data collected at a single time point. Instead, it is more 

interesting to explore how the most recent 𝑟2 responses to all previous changes in 𝑁𝑒 . 

Here 𝑄 is defined as the same as above, and two haplotypes can only be IBD when there 

has been no recombination since their coalescence at 𝑇 generations ago. The probability 

𝑄 can thus be expressed in terms of 𝑇 and recombination rate 𝑐:  

𝑄 = (1 − 𝑐)2𝑇 

           [4.13] 

We define 𝑇 = 0, 1, 2, 3, … be the number of generations counting backward in time with 

𝑇 = 0 being the generation immediately before the sampling event took place. It is 

reminded that 𝑇 here is a random variable with an associated probability mass function 

𝑝(𝑡) = Pr (𝑇 = 𝑡) having the following definition:  

𝑝(0) = Pr(𝑐𝑜𝑎𝑙𝑒𝑠𝑐𝑒𝑛𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 0) =
1

2𝑁(0)
 

𝑝(𝑘) = Pr(𝑁𝑜 𝑐𝑜𝑎𝑙𝑒𝑠𝑐𝑒𝑛𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 𝑘 − 1) × Pr(𝐶𝑜𝑎𝑙𝑒𝑠𝑐𝑒𝑛𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑘) 

= ∏(1 −
1

2𝑁(𝑖)
)

1

2𝑁(𝑘)

𝑘−1

𝑖=0

 

           [4.14] 

for positive integers 𝑘 and 𝑁(𝑖) is the effective population size at the 𝑖𝑡ℎ generation ago. 

It is obvious that 𝑝(𝑡) contains information about the population size up to 𝑡 

generations ago and no information before that. The 𝐸[𝑟2] is thus the expectation of the 

transformed random variable (1 − 𝑐)2𝑇:  

𝐸[𝑟2|𝑐] = 𝐸[𝑄] = 𝐸[(1 − 𝑐)2𝑇] = ∑(1 − 𝑐)2𝑡𝑝(𝑡)

∞

𝑡=0

 

           [4.15] 
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Sometimes 𝐸[𝑟2] is written as 𝐸[𝑟2|𝑐] throughout this chapter in order to emphasise 

that 𝐸[𝑟2] is a function of recombination rate 𝑐. For constant population size 𝑁𝑒 , 𝑇 

follows a geometric distribution with the probability of “success” (or in the case, the 

probability of coalescence) 1/(2𝑁𝑒). The probability mass function is thus:  

𝑝(𝑡) = Pr(𝑇 = 𝑡) = (1 −
1

2𝑁𝑒
)
𝑡

(
1

2𝑁𝑒
) 

           [4.16] 

for 𝑡 = 0, 1, 2, …. And under this special case 𝐸[𝑟2] becomes a sum to infinity of a 

geometric series:  

𝐸[𝑟2|𝑐] = ∑(1 − 𝑐)2𝑡𝑝(𝑡)

∞

𝑡=0

 

= ∑(1 − 𝑐)2𝑡 (1 −
1

2𝑁𝑒
)
𝑡

(
1

2𝑁𝑒
)

∞

𝑡=0

 

= (
1

2𝑁𝑒
)∑[(1 − 𝑐)2 (1 −

1

2𝑁𝑒
)]

𝑡∞

𝑡=0

 

=
1

2𝑁𝑒 [1 − (1 − 𝑐)2 (1 −
1

2𝑁𝑒
)]

 

=
1

1 + 𝑐(2 − 𝑐)(2𝑁𝑒 − 1)
 

           [4.17] 

The same expression for the equilibrium value of 𝐸[𝑟2] (Sved and Feldman, 1973) has 

just been derived using the newly proposed formula based on the rate of coalescence.  

 

Sometimes it is a convention to present 𝑝(𝑡) in continuous form because of 

mathematical convenience or generalisation. We may also further simplify (1 − 𝑐)2𝑇 

into 𝑒−2𝑐𝑇 for some small values of 𝑐, as shown in Hayes et al. (2003). As a result, if a 

continuously-changing population dynamics is assumed, the expectation of 𝑟2 given a 

particular value of 𝑐 can be calculated via the following integral:  

𝐸[𝑟2|𝑐] = 𝐸[𝑄] = 𝐸[𝑒−2𝑐𝑇] = ∫ 𝑝(𝑡)𝑒−2𝑐𝑡𝑑𝑡
∞

0

 

           [4.18] 

which is a continuous analogy of equation 4.15. This equation follows Hayes et al. (2003) 

on the derivation of the expected value of chromosome segment homozygosity (CSH), a 
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multi-locus measure of LD. Under the constant population size scenario, 𝑝(𝑡) follows an 

exponential distribution with rate parameter 1/(2𝑁𝑒), and 𝐸[𝑟2] can be calculated as 

follows:  

𝐸[𝑟2] = ∫ 𝑝(𝑡)𝑒−2𝑐𝑡𝑑𝑡
∞

0

 

= ∫ (
1

2𝑁𝑒
𝑒

−
𝑡

2𝑁𝑒)𝑒−2𝑐𝑡𝑑𝑡
∞

0

 

=
1

2𝑁𝑒
(

1

1
2𝑁𝑒

+ 2𝑐
) 

=
1

1 + 4𝑁𝑒𝑐
 

           [4.19] 

The result is again the same as of equation 4.12. The equality of these results are, of 

course, not coincidence but rather two different descriptions to the same phenomenon. 

While the recurrence equation relates the current 𝐸[𝑟2] with its preceding values, 

equation 4.18 provides a direct computation to connect 𝐸[𝑟2] with the entire population 

history.  

 

The importance of equation 4.18 may not have been obvious to previous authors. As 

𝑝(𝑡) is a probability density function, 𝐸[𝑟2] = 𝐸[𝑒−2𝑐𝑇] can be viewed as the moment 

generation function of the random variable 𝑇. Statistical moments of 𝑇, such as the 

mean and variance of the time to coalescence can thus be directly obtained from the 

derivatives of 𝐸[𝑟2] (with respect to −2𝑐) evaluated at zero. If we revisit the constant 

𝑁𝑒 scenario:  

𝐸[𝑇] =
𝑑

𝑑(−2𝑐)
(

1

1 + 4𝑁𝑐
)|

(−2𝑐)=0
= 2𝑁𝑒 

𝐸[𝑇2] =
𝑑2

𝑑(−2𝑐)2
(

1

1 + 4𝑁𝑐
)|

(−2𝑐)=0
= 8𝑁𝑒

2 

           [4.20] 

Thus 𝑉𝑎𝑟(𝑇) = 𝐸[𝑇2] − 𝐸[𝑇]2 = 4𝑁𝑒
2. The same results can also be found in other 

classical coalescence studies (Hudson, 1990).  
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Random 𝑁𝑒 simulation 

The following simulation study was conducted to confirm empirically the relationship 

among historical 𝑁𝑒 , recombination rate 𝑐, and 𝑟2. First, 100000 pairs of biallelic loci 

with a known 𝑐 and constant 𝑁𝑒 were simulated forwards in time according to the 

Wright-Fisher model until the 𝑟2 approximately reached equilibrium. After this “burn-in” 

period, the 𝑁𝑒 for each pair of loci of the next 50 generations were drawn randomly 

according to a discrete uniform distribution such that each pair of loci had its own 

population profile. The 𝑝(𝑡) of the most recent 50 generations were thus calculated 

using the equation 4.13. The final value of 𝑟2 for all 100000 pairs were recorded, and 

then regressed against the 𝑝(𝑡). The whole procedure was repeated with different 

values of 𝑐. If the proposed model is true, then the regressed coefficients should follow 

(1 − 𝑐)2𝑡 as described in equation 4.15. The simulation was conducted in R (R core team, 

2013).  

 

The regressed coefficients from the regression analysis are plotted in figure 4.1. It is a 

3D plot as the regressed coefficients are plotted against recombination rate 𝑐 and 𝑡 in 

generations backward in time. Plot of the surface of (1 − 𝑐)2𝑡 is also shown in figure 4.2 

for comparison. The plot of the coefficients is not smooth due to the stochastic nature of 

the regression estimates. The goodness-of-fit between the empirical and theoretical 

regressed coefficients may not be obvious in the 3D plots, two cross sections at 𝑐 = 0.2 

and 𝑐 = 0.5 are plotted in figure 4.3 as examples. It can be seen that the regressed 

coefficients follow very closely to our expectation of (1 − 𝑐)2𝑡. Not only does this result 

confirm our mathematical derivation in equation 4.14 but also leads to several key 

findings. First, for a given recombination rate, 𝐸[𝑟2] can be viewed as a weighted sum of 

the 𝑝(𝑡)’s in the past, with weights equal the regressed coefficients, and thus contains 

information about the historical 𝑁𝑒 . Second, the weights decay monotonically over time, 

that 𝐸[𝑟2] is always influenced more by the recent 𝑁𝑒 than those in the distant past. 

Third, the weights between a pair of loosely linked loci decrease more rapidly backward 

in time, indicating that the pair has a shorter memory effect on the demographic history. 

Consider a pair of unlinked loci (𝑐 = 0.5) as an example, the decay of the empirical 

weights is rather fast that the population sizes beyond the fourth generation have 

almost no impact on the current 𝐸[𝑟2]. Because of the same argument, our result 

concurs with the idea that tighter linked loci can be used to estimate 𝑁𝑒 over a longer 

period of time in the past, while unlinked loci with shorter memory are more suitable 

for the estimation of contemporary 𝑁𝑒 .  
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Figure 4.1 (left) 3D plot of the regression coefficients (weights) as a function of time (number of 

generations ago) and recombination rate. The vertical axis is the regressed weights, and the time is 

plotted from 0 to 50 generations ago. The third axis is the recombination rate, with smaller 𝑐 pointing into 

the paper.  

Figure 4.2 (right) 3D plot of (1 − 𝑐)2𝑡 , plotted in the same scale as figure 4.1 for comparison.  

 

 

Figure 4.3 Cross sectional plots of the regression coefficients, extracted from figure 4.1, at the 

recombination rate of 𝑐 = 0.5 (left) and 𝑐 = 0.2 (right). The red solid line represents the expected 

(1 − 𝑐)2𝑡.  

 

Example 1: Population bottleneck detection 

We simulated a recent population bottleneck scenario to examine whether LD can help 

detect such a population event. A historical 𝑁𝑒 = 2000 was established until 𝑡 = 20 
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generations ago. Between 𝑡 = 20 and 𝑡 = 10, 𝑁𝑒 crashed to 500 and then recovered to 

2000 afterwards. The resultant LD curve was recorded and then used retrieve the 𝑁𝑒 

estimates for these three time intervals by the method of lease squares. The above 

simulation was repeated by 500 times and the summary can be found in table 4.2. 

Simulation was conducted using GENOME (Liang et al., 2007) with sample size of 69 

diploid individuals, and 𝑁𝑒 estimates were calculated in R (R core team, 2013).  

 

Table 4.2 Median of 𝑵𝒆 estimates from the population bottleneck simulation 

Time period (generations ago) True 𝑁𝑒 Median of 500 estimates 
0-10 2000 1797.4 
10-20 500 430.5 
>20 2000 1636.7 
Results from the population bottleneck simulation. Settings are described in the text. Median 𝑁𝑒  of 500 

replicates at various time periods are displayed.  

 

The median of the 𝑁𝑒 estimates of the three time periods from 500 independent 

simulations are displayed in table 1. Although all 𝑁𝑒  estimates for the three periods 

were slightly downwardly biased, the median 𝑁𝑒 estimate during the bottleneck period 

(i.e. 10-20 generations ago) was the smallest, while the pre- and post- bottleneck 𝑁𝑒 

were significantly larger. Besides, 410 (82%) out of 500 simulations had successfully 

observed a population bottleneck pattern, that the 𝑁𝑒 estimate first dropped between 

10-20 generations ago and then bounced back.  

 

Example 2: Estimating historical population size for Anopheles coluzzii 

A sample of 69 Anopheles coluzzii (one of the malaria-transmitting mosquito species in 

sub-Saharan Africa) was collected and sequenced by The Anopheles gambiae 1000 

Genomes Consortium (Ag1000G). Autosomes on chromosome 3L and 3R were included 

because little inversion or recombination hotspots were found on these chromosome 

arms. Three subsets from each chromosome arm were drawn according to the minor 

allele frequency (MAF): with 1) MAF greater than 0.4, 2) MAF between 0.3 and 0.4, and 

3) MAF between 0.2 and 0.3. Despite being partitioned into six subsets, there remain at 

least 15000 loci in each subset to compute pairwise 𝑟2. All pairwise 𝑟2 were computed 

from the genotypes using the Burrow’s procedure. The details of the Burrow’s 

procedure can be found in Cockerham and Weir (1977) or Appendix 2 of this work. 

Physical distances were then converted to recombination rate via Haldane mapping 

function (Haldane, 1919). The recombination frequency used in the analysis was 

5 × 10−8 between neighbouring base pairs. This value is based on several published 

findings on the mutation and recombination frequency of Anopheles and Drosophila, 

ranging from 1.1 × 10−9 (Tamura et al., 2004), 3.5 × 10−9  (Keightley et al., 2009) to 
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8.4 × 10−9  (Haag-Liautard et al., 2007). The recombination was said to be 10 times 

more frequent than mutation under the natural expectation (Pombi et al., 2006; 

O’Loughlin et al., 2016), and therefore a recombination frequency of 5 × 10−8 is an 

appropriate choice. Recombination rates were then binned at per 0.001 interval and the 

average 𝑟2 per bin was recorded. The observed 𝑟2 curves from the six subsets can be 

found in figure 4.4.  
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Figure 4.4 The observed 𝑟2 curves of 69 Anopheles coluzzii mosquitoes before sample size adjustment. 

Six subsets were sampled according to the chromosome arms and minor allele frequencies. The 

calculation is described in text.  



53 
 

 

It should be reminded that the six empirical 𝑟2 curves (figure 4.4) are plotted before 

sample size correction. The 𝑟2 is higher for smaller recombination rate on all six curves 

due to the stronger linkage between neighbouring sites. All six curves show a similar 

pattern of LD decay from 𝑐 = 0.001 to 𝑐 = 0.005 and then level off for larger 𝑐 values. It 

is worth pointing out that the 𝑟2 for unlinked loci is more or less the same for all six 

replicates at about 0.015. An 11-step population model was then fitted to each subset 

with 11 𝑁𝑒’s between 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 generations ago and onwards. 

It was achieved by minimising the squared distance between the two curves across all 

recombination rates. The idea is to find the 𝑁𝑒’s during these time intervals such that 

they produce the closest LD curve to our observed one.  

 

Figure 4.5 The historical 𝑁𝑒  estimates from the six empirical LD curves. The horizontal axis is the number 

of generations backward in time.  

 

The 𝑁𝑒 estimates of the six subsets are shown in figure 4.5. The consensus is that they 

all experienced a recent population decrease from the order of 104 or 105 to the most 

recent 𝑁𝑒 at around 700, which is the smallest of all times. All six curves show a similar 

pattern that the estimated 𝑁𝑒 settled at around 32 generations ago and beyond. In 

particular, there is a good level of agreement among the 𝑁𝑒 estimated from these six 

subsets, especially for the most recent 𝑁𝑒 , demonstrating the consistency of the method.  
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Discussion 

The random 𝑁𝑒 simulation is perhaps the first study of its kind to investigate 

quantitatively how 𝐸[𝑟2] responses to the fluctuating 𝑁𝑒 and recombination rates. The 

simulation shows empirically that 𝐸[𝑟2] can be viewed as the weighted sum of the 

probability of coalescence 𝑝(𝑡), with weights follow (1 − 𝑐)2𝑡 or approximately 

𝑒𝑥𝑝(−2𝑐𝑡). The finding agrees with our proposed mathematical model based on the 

properties of the random variable 𝑇 (equation 4.15 and 4.18), and the existing idea that 

tighter linked loci can help infer 𝑁𝑒 further in the past. Although unlinked loci have 

commonly been used to estimate the 𝑁𝑒 at the most recent generation, they are also 

found to contain information about 𝑁𝑒 of a few generations ago. Therefore a strong and 

recent fluctuation in population size may affect the contemporary 𝑁𝑒 estimates.  

 

Prior to this study, 𝐸[𝑟2] under changing population size was mainly evaluated through 

the recurrence relationship. This paper provides an alternative formula to equate 𝐸[𝑟2] 

with probability of coalescence 𝑝(𝑡). This relationship is thought to be more practical 

because one can calculate the 𝐸[𝑟2] curve given a demographic history without 

involving recursive calculations. It is also more direct to 𝑁𝑒 estimation as usually genetic 

samples were taken at one single time point. The proposed formula for 𝐸[𝑟2] simplifies 

the current calculation and seamlessly provides theoretical evidence to some existing 

theories about 𝐸[𝑟2] in finite populations, such as the mean and variance time to 

coalescence, and the equilibrium value of 𝐸[𝑟2] under constant 𝑁𝑒 scenario. We may 

further consider 𝐸[𝑟2] = 𝐸[𝑒−2𝑐𝑇] as the moment generating function of the time to 

coalescence. In other words, obtaining the LD curve is, in theory, equivalent to knowing 

the full distributional information about the random variable 𝑇, and hence reflecting 

information about the population sizes in the historical past.  

 

The immediate impact of this finding is to explore the possibility of estimating 𝑁𝑒 from 

LD signal. Previous studies had successfully demonstrated how contemporary 𝑁𝑒 can be 

estimated from unlinked loci (England et al., 2006; Waples, 2006; Waples and Do, 2008). 

The estimation of historical 𝑁𝑒 is however more controversial despite all the efforts 

made by other fellow geneticists. Up to this moment it remains unclear about the time 

periods are these historical 𝑁𝑒 estimates referring, and quoting an estimate without 

providing an associated time frame seems uninterpretable. Park (2012) plotted 𝑁𝑒 

estimates against 𝑐 but did not investigate further on how these estimates can be 

transformed onto the time domain. Hayes et al. (2003) suggested that if 𝑁𝑒 changes 

linearly over time, then a pair of loci with recombination rate 𝑐 is estimating the 𝑁𝑒 of 

1/(2𝑐) generations ago. In other words, the 𝑟2 value obtained under a particular value 

of 𝑐 was thought to be responsible for the estimation of the 𝑁𝑒 at a specific time interval. 

Many studies have been following the claim to infer historical 𝑁𝑒 from LD curves, such 

as those by Hayes et al. (2003), Tenesa et al. (2007), and Barbato et al. (2015). The 
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assumption of linear changing 𝑁𝑒 is usually invalid as natural populations evolve in a 

complex manner, and nearly all the 𝑁𝑒 curves estimated by this method are far from 

linear despite being assumed so (for example, figure 1 in Barbato et al. (2015)). This 

study relaxed the assumption of linearly changing 𝑁𝑒 to allow the computation of 𝐸[𝑟2] 

under almost all population dynamics. This study further clarifies that the 𝐸[𝑟2] on 

different recombination rates are dependent among each other, that 𝐸[𝑟2] contains 

information on all the historical population sizes in the past, with different weights, not 

just for 1/(2𝑐) generations ago. Park (2012) also argued that the 1/(2𝑐) time frame 

used in previous studies seems inappropriate as it does not match with author’s 

simulation. Because of the same reason, we do not recommend plotting 𝑁𝑒 estimates 

against 𝑐, as there is no clear one-to-one relationship between the two axes. 

 

While some other methods, such as PSMC, focus on demographic histories further 

backward in time of about tens of thousands of generations ago (Li and Durbin, 2011), 

the example of population bottleneck detection suggests that LD also contains 

information about a more recent time frame with high resolution. This example further 

suggests the use of a mixture of linked loci can provide a more detailed inference, 

including the pre- and post- bottleneck 𝑁𝑒 as well as the severity of the bottleneck, 

which has not been previously achieved with only unlinked loci (Antao et al., 2011).  

 

The example of Anopheles coluzzii demonstrated the method’s reliability to estimate 

historical 𝑁𝑒 . The 𝑁𝑒 curves inferred from the six replicates are comparable among each 

other with high consistency. The most recent 𝑁𝑒 , it was estimated to be around 700 for 

all six replicates. The same result can be obtained by LDNe (Waples and Do, 2008) or 

equation 4.8 using only unlinked loci. They show a similar population signature with a 

long term 𝑁𝑒 between 104 and 105. This example also shows the increasing difficulty in 

estimating 𝑁𝑒 further backward in time, and one of the challenges arises intrinsically 

from the problem itself. Considering equation 4.15 and 4.18 the computation of 𝐸[𝑟2] 

from any given 𝑝(𝑡) is straight forward via a summation or an integral. The inverse of 

the problem (i.e. to find a 𝑝(𝑡) which yields the observed LD curve) is however non-

trivial. This operation is known as inversed transform and has been studied in other 

fields of science. It is often described as “ill-conditioned” problem due to the collinearity 

among 𝑟2 under different 𝑐 values and the instability of the inverse of an integral 

equation (Kwok and Barthez; 1989). The empirical LD curve may deviate from the 

theoretical expectation because of sampling error, which means a slight deviation in the 

observed value may cause unwanted impacts on the 𝑁𝑒 estimates. Besides, mutation 

may also play an important role in 𝑁𝑒 estimation, as in classical model the nucleotide 

diversity is the product of mutation rate and 𝑁𝑒 . The observed 𝐸[𝑟2] may be lowered by 

the presence of mutation as described by Hill (1975) and Tenesa et al. (2007). Mutation 

is often used to determine the rate of recombination as adopted in our worked example 
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and preceding studies (Pombi et al., 2006; O’Loughlin et al., 2016). As a result, using an 

inappropriate mutation or recombination rate may lead to biased interpretations (Li 

and Durban, 2011). Another possible explanation to the decreasing trend in 𝑁𝑒 (Figure 

4.5) is the confounding effect by the presence of population structure. Nielsen and 

Beaumont (2009) commented that the same sharp bottleneck pattern in Figure 4.5 can 

also be obtained if some sampled individuals are immigrants from the neighbouring 

demes, rather than solely by the reduction in population size. Mazet et al. (2016) 

studied the effect of migration on historical 𝑁𝑒 estimates with PSMC, and suggested that 

the effect of population structure and demographic changes should be jointly 

considered. A potential follow-up action is to investigate the LD-recombination pattern 

in the face of migration, as little is known about it currently apart from unlinked loci 

(Waples and England, 2011).  

 

To conclude, this chapter studied the statistical properties of the expected LD under 

continuously changing population sizes. Complement to the existing recurrence relation, 

this chapter derived analytically that the current 𝐸[𝑟2] can be expressed as a weighted 

sum of the probability of coalescence 𝑝(𝑡) between two randomly selected haplotypes, 

thus contains information about historical 𝑁𝑒 . The paper also reveals how 𝑁𝑒 ’s at 

different time points are reflected on the LD curve which previous studies might have 

misinterpreted it. The population bottleneck simulation and empirical example of 

Anopheles coluzzii suggest that LD can be a powerful resource for historical 𝑁𝑒 

estimation. With the increasing popularity of using LD in genetic studies, this finding 

will contribute to many applications in demographic estimation. In short, this study 

provides new insights to the relation between LD and historical 𝑁𝑒 in both practical and 

theoretical aspect, and more importantly encourages the future developments of 

historical 𝑁𝑒 estimation.  
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Chapter 5: Estimating haplotype frequencies from genotypes under Hardy-

Weinberg Equilibrium 

Chapter Abstract 

Chapter 4 discovered that Linkage Disequilibrium (LD), quantified by 𝐸[𝑟2], can be 

expressed in terms of the probability of coalescence 𝑝(𝑡) and recombination rate 𝑐. 

While 𝐸[𝑟2] cannot be observed without measuring error, this chapter aims to provide 

quantitative details on the estimation of LD from genetic samples which is equally 

important. A new likelihood-based routine “Constrained ML” is proposed to estimate 𝑟2 

and haplotype frequencies from genotypes under Hardy-Weinberg equilibrium (HWE). 

Constrained ML is shown to be more accurate than the popular Burrows’ method under 

HWE with a smaller variance. Constrained ML is also in favour of the existing likelihood 

methods, such as CubeX and the EM algorithm, by providing better convergence and 

clearer interpretation. We also provide new formulae to compensate the effect of 

sampling error in estimating 𝑟2 for both phased and unphased diploid data. The new 

sample size corrections are unbiased in most cases and should be preferred.  

 

Introduction 

The importance of Linkage Disequilibrium (LD) in evolutionary genetics was discussed 

thoroughly in the previous chapters. The term LD is often called the “gametic phase” 

linkage disequilibrium, which specifically refers the non-random association between a 

pair of loci on haplotype level. For diploids individuals, however, it is impossible to infer 

LD (or haplotype frequencies) from genotypes when the gametic phase is unknown. 

Consider a pair of biallelic loci, there are 10 distinct pairings of haplotypes in total but 

only 9 of them are observable as genotypes. With both positions being heterozygotes, 

the actual haplotype configuration on the two loci can be either AB/ab or Ab/aB (Table 

5.1). There are several established methods to estimate LD (in the measurement of 𝑟2 

or 𝐷) or haplotype frequencies from genotypes. Hill (1974) constructed the likelihood 

framework to estimate haplotype frequencies (and then 𝑟2) from genotypes under the 

assumption of Hardy-Weinberg equilibrium (HWE). While maximising such likelihood 

can be mathematically challenging, even with moderate number of loci and alleles, it 

was generalised later on by the Expectation-Maximisation (EM) algorithm (Dempster et 

al., 1977; Excoffier and Slatkin, 1995). EM algorithm was adapted by many applications 

such as Haploview (Barrett et al., 2005) for LD estimation. CubeX (Gaunt et al., 2007) is 

computer program providing a “partial” analytical solution to the same Hill (1974) 

likelihood function, offering quick and direct inference on 𝑟2. The Burrows’ composite 

index is another common method to estimate gametic LD from unphased genotypes 

(Weir and Cockerham, 1979). It was developed by Dr Peter Burrows (hence the name) 

but remains unpublished. Compared to the likelihood-based methods, which include the 

above EM algorithm and CubeX, Burrows’ composite index does not assume HWE and is 
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relatively simple to compute with no optimisation involved. It is part of contemporary 

effective population size (𝑁𝑒) estimation as it is adapted in the software LDNe (Waples 

and Do, 2008). On the down side, it was found to suffer from severe upward bias when 

sample size is limited (England et al., 2006), with empirical correction being the only 

way to compensate the undesired effect (Waples, 2006). Above all, the effect of 

sampling error induces bias to LD estimates, regardless of the estimating procedure 

(Weir and Hill, 1980; Hill, 1981; Waples, 2006; Sved et al., 2013).  

 

Table 5.1 Observed genotypes table 

 𝐵𝐵 𝐵𝑏 𝑏𝑏 

𝐴𝐴 𝑛1 𝑛2 𝑛3 

𝐴𝑎 𝑛4 𝑛5 𝑛6 

𝑎𝑎 𝑛7 𝑛8 𝑛9 

The genotype table showing the 9 genotypes in a two-locus, two-allele system. Each cell represents the 

number of observations of that particular genotype combination. The counts 𝑛1, 𝑛2, … , 𝑛9 add up to the 

total sample size 𝑛.  

 

The study aims to re-visit the estimation of 𝑟2 and haplotype frequencies under the 

assumption of HWE, and then construct a novel likelihood-based routine called 

“Constrained ML” to estimate haplotype frequencies from unphased genotypes. The 

proposed estimator will be robust, mathematically well-defined and less ambiguous 

compared to the existing likelihood methods. We will then evaluate the performance 

between the likelihood-based methods and the Burrows’ method in 𝑟2 estimation under 

HWE which has never been conducted to our best knowledge. We will also study the 

sample size correction for 𝑟2, for both phased and unphased genotypes. Regarding this 

issue, we intentionally distinguish the observed LD 𝐸[𝑟𝑜𝑏𝑠
2 ] from the true LD 𝐸[𝑟𝑡𝑟𝑢𝑒

2 ] 

throughout this paper. Here we define 𝐸[𝑟𝑜𝑏𝑠
2 ] as the LD computed directly from the 

samples which contains both sampling error and signal, while 𝐸[𝑟𝑡𝑟𝑢𝑒
2 ] is the LD after 

corrected for sampling error which mostly accounts for evolutionary events.  

 

Phased diploids 

There is little discussion about the estimation of LD from phased diploids samples 

despite being relatively straight forward. Consider the case of two biallelic loci, where 

the first locus carries alleles 𝐴 and a, and the second locus carries alleles 𝐵 and 𝑏. We 

also let 𝑝𝐴𝐵, 𝑝𝐴𝑏, 𝑝𝑎𝐵, 𝑝𝑎𝑏 be the true gametic (or haplotype) frequencies of the four 
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types of gametes containing the combination 𝐴𝐵, 𝐴𝑏, 𝑎𝐵 and 𝑎𝑏 which add up to unity. 

Statistically speaking, under the assumption of HWE or random reunion of gametes, the 

observed haplotype counts follow a multinomial distribution with size 2𝑛 and 

probability equals the true haplotype frequencies. Let 𝑝𝐴𝐵̃, 𝑝𝐴𝑏̃ , 𝑝𝑎𝐵̃, 𝑝𝑎𝑏̃ be the observed 

haplotype frequencies, and it is clear that the observed haplotype frequencies are the 

maximum likelihood estimators (MLE) of the true frequencies under multinomial 

sampling. We also let  𝑟𝑝ℎ𝑎𝑠𝑒𝑑
2  be the LD computed directly using the observed 

frequencies:  

𝑟𝑝ℎ𝑎𝑠𝑒𝑑
2 =

(𝑝𝐴𝐵̃𝑝𝑎𝑏̃ − 𝑝𝐴𝑏̃𝑝𝑎𝐵̃)2

𝑝𝐴̃ (1 − 𝑝𝐴̃)𝑝𝐵̃(1 − 𝑝𝐵̃ )
 

           [5.1] 

where 𝑝𝐴̃ = 𝑝𝐴𝐵̃ + 𝑝𝐴𝑏̃ and 𝑝𝐵̃ = 𝑝𝐴𝐵̃ + 𝑝𝑎𝐵̃ are the observed marginal allele frequencies 

at the two loci. The invariant principle of MLE guarantees that  𝑟𝑝ℎ𝑎𝑠𝑒𝑑
2  is also the MLE of 

𝑟2. The 𝐸[𝑟𝑜𝑏𝑠
2 ] can be estimated by averaging the 𝑟𝑝ℎ𝑎𝑠𝑒𝑑

2  across all pairwise 

comparisons:  

𝑟𝑝ℎ𝑎𝑠𝑒𝑑
2̅̅ ̅̅ ̅̅ ̅̅ ̅ =

1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠
∑𝑟𝑝ℎ𝑎𝑠𝑒𝑑

2 ≈ 𝐸[𝑟𝑜𝑏𝑠
2 ] 

           [5.2] 

The next step is to explore the relationship between 𝐸[𝑟𝑜𝑏𝑠
2 ] and 𝐸[𝑟𝑡𝑟𝑢𝑒

2 ] under the use 

of phased genetic data. Sved (1971) showed the expected change in 𝐸[𝑟2] due to genetic 

drift over successive generation is  

𝐸[𝑟𝑡+1
2 ] =

1

2𝑁𝑒
+ (1 −

1

2𝑁𝑒
) (1 − 𝑐)2𝐸[𝑟𝑡

2] 

           [5.3] 

with 𝑐 being the recombination rate between a pair of loci. This is seemingly irrelevant 

to sampling, but we may consider the sampling process as undergoing another 

generation of genetic drift with population size of 2𝑛 with complete linkage (𝑐 = 0) 

under HWE. The relationship between these two quantities becomes:  

𝐸[𝑟𝑜𝑏𝑠
2 ] =

1

2𝑛
+ (1 −

1

2𝑛
)𝐸[𝑟𝑡𝑟𝑢𝑒

2 ] 

           [5.4] 

Consequently, the true LD can be inferred from the samples:  
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𝐸[𝑟𝑡𝑟𝑢𝑒
2̂ ] =

𝑟𝑝ℎ𝑎𝑠𝑒𝑑
2̅̅ ̅̅ ̅̅ ̅̅ ̅  −

1
2𝑛

1 −
1
2𝑛

 

           [5.5] 

The “hat” above the true LD denotes it is an implied (or estimated) value from the 

observation. Equation 5.4 shows the observed LD can be partitioned into two parts, the 

constant part 1/2𝑛 and the true LD (1 − 1/2𝑛). For small sample size, most of the 

observed LD value is contributed by the constant 1/2𝑛, while little is left to account for 

the true LD. In contrast, when samples are plentiful, the term 1/2𝑛 is almost 

insignificant and the observed LD asymptotically approaches the actual LD 𝐸[𝑟𝑡𝑟𝑢𝑒
2 ]. This 

concludes the sample size adjustment for phased diploids.  

 

Maximum likelihood estimation for unphased genotypes under HWE 

We discussed previously the challenges to estimate LD from unphased genotypes. With 

the same two-locus two-allele system, the expected frequencies of the nine genotypes 

under HWE are functions of the underlying haplotype frequencies 𝑝𝐴𝐵, 𝑝𝐴𝑏, 𝑝𝑎𝐵, 𝑝𝑎𝑏 ,as 

shown in table 5.2 (Hill, 1974):  

 

Table 5.2 Expected genotype frequencies under HWE 

 𝐵𝐵 𝐵𝑏 𝑏𝑏 

𝐴𝐴 𝑓1 = 𝑝𝐴𝐵
2  𝑓2 = 2𝑝𝐴𝐵𝑝𝐴𝑏 𝑓3 = 𝑝𝐴𝑏

2  

𝐴𝑎 𝑓4 = 2𝑝𝐴𝐵𝑝𝑎𝐵 𝑓5
= 2(𝑝𝐴𝐵𝑝𝑎𝑏 + 𝑝𝐴𝑏 𝑝𝑎𝐵) 

𝑓6 = 𝑝𝐴𝑏𝑝𝑎𝑏 

𝑎𝑎 𝑓7 = 𝑝𝑎𝐵
2  𝑓8 = 2𝑝𝑎𝐵𝑝𝑎𝑏 𝑓9 = 𝑝𝑎𝑏

2  

The expected frequency of each genotype under HWE. All the expected frequencies 𝑓1, 𝑓2, … , 𝑓9 add up to 

one.  

 

The sampling of genotypes follows a multinomial distribution with size 𝑛 diploids and 

probabilities equal the expected frequencies of each cell as in table 5.2. The log-

likelihood of the haplotype frequencies is thus the probability mass function of all our 

observed genotypes (Hill, 1974):  

𝑙(𝑝𝐴𝐵, 𝑝𝐴𝑏 , 𝑝𝑎𝐵, 𝑝𝑎𝑏) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + ∑𝑛𝑖log (𝑓𝑖)

9

𝑖=1
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           [5.6] 

It can be slightly simplified by setting 𝑏1 = 2𝑛1 + 𝑛2 + 𝑛4, 𝑏2 = 𝑛2 + 2𝑛3 + 𝑛6, 

𝑏3 = 𝑛4 + 2𝑛7 + 𝑛8, and 𝑏4 = 𝑛6 + 𝑛8 + 2𝑛9:  

𝑙(𝑝𝐴𝐵, 𝑝𝐴𝑏 , 𝑝𝑎𝐵, 𝑝𝑎𝑏)

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑏1 log(𝑝𝐴𝐵) + 𝑏2 log(𝑝𝐴𝑏) + 𝑏3 log(𝑝𝑎𝐵) + 𝑏4 log(𝑝𝑎𝑏)

+ 𝑛5log (𝑝𝐴𝐵𝑝𝑎𝑏 + 𝑝𝐴𝑏𝑝𝑎𝐵) 

           [5.7] 

This expression is preferred as the four haplotype frequencies are explicitly shown. One 

must notice that one of the four haplotype frequencies is redundant as they must sum to 

one. Without loss of generality, let us express 𝑝𝑎𝑏 in terms of the other three frequencies:  

𝑝𝑎𝑏 = 1 − 𝑝𝐴𝐵 − 𝑝𝐴𝑏 − 𝑝𝑎𝐵 

           [5.8] 

The remaining question is to find a set of haplotype frequencies, 𝑝̂ = {𝑝𝐴𝐵̂, 𝑝𝐴𝑏̂ , 𝑝𝑎𝐵̂, 𝑝𝑎𝑏̂} 

such that the log-likelihood function (equation 5.6 or 5.7) is maximised, but it can be 

numerically difficult in practice. First, it is a high dimensional optimisation problem 

with three moving parameters and usually comes without an analytical solution. Second, 

there is no guarantee on the shape of the log-likelihood surface as it may not be smooth 

or unimodal (Excoffier and Slatkin, 1995). Third, there are restrictions on the range of 

the true haplotype frequencies and sometimes the result is “biologically infeasible”, say, 

a negative haplotype frequency (Gaunt et al., 2007).  

 

One approach to maximise the likelihood is to calculate, possibly by hand, the first 

derivatives of the log-likelihood function with respect to the three haplotype 

frequencies and set them to zero. With three equations and three unknowns it is 

mathematically possible to solve for the roots. The equations were unfortunately found 

to be non-linear; it is in fact a cubic equation on one of the three haplotype frequencies 

(Hill, 1974). With at least one real root, CubeX (Gaunt et al., 2007) tried to solve 

analytically for the exact solutions but not without ambiguities. In some cases there can 

be more than one “biologically possible” set of root which creates confusion. It is also 

reminded that being a root of the Hill (1974) cubic equation is only a necessary 

condition but insufficient for maximising the likelihood function; other conditions, such 

as the second derivatives or the boundary values, should also be examined thoroughly. 

The EM algorithm is another method commonly used to numerically maximise a 

function with the presence of missing information (in this case, the actual phasing of the 

double heterozygotes). It is an iterative algorithm involving two steps: E step and M 

step (Dempster et al., 1977). The calculations of various methods, including EM and 

CubeX, are described in Appendix 2.  
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A new routine: Constrained ML 

Here we would like to propose another method, called “Constrained ML”, to maximise 

the same Hill (1974) likelihood (as in equation 5.6) as in the EM algorithm or CubeX. As 

its name suggests, Constrained ML imposes a number of constraints on the possible 

range of parameters (i.e. the haplotype frequencies) during the maximisation. Here we 

must emphasise that more constraints should be applied when maximising the log-

likelihood function, apart from the one stated in equation 5.8. To be precise, all the three 

haplotype frequencies should be bounded between 0 and 1. Mathematically speaking, 

these constraints are:  

𝑝𝐴𝐵 ≥ 0 

𝑝𝐴𝐵 ≤ 1 

𝑝𝑎𝐵 ≥ 0 

𝑝𝑎𝐵 ≤ 1 

𝑝𝐴𝑏 ≥ 0 

𝑝𝐴𝑏 ≤ 1 

           [5.9] 

One extra constraint is required to limit the range of the sum of the frequencies:  

𝑝𝐴𝐵 + 𝑝𝐴𝑏 + 𝑝𝑎𝐵 ≤ 1 

           [5.10] 

These seven constraints should all be considered as the same time as the likelihood 

function is being maximised. These inequalities look cumbersome, but one can visualise 

the constraints in figure 5.1. The feasible region of 𝑝𝐴𝐵, 𝑝𝐴𝑏, and 𝑝𝑎𝑏 is bounded by a 

tetrahedron (or a simplex) with vertices (1,0,0), (0,1,0), (0,0,1), and (0,0,0) (figure 1). 

Constrained ML aims to find a set of haplotype frequencies 𝑝̂ = {𝑝𝐴𝐵̂, 𝑝𝐴𝑏̂ , 𝑝𝑎𝐵̂, 𝑝𝑎𝑏̂} 

within the tetrahedron such that the log-likelihood function is maximised.  
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Figure 5.1 The range of “biologically feasible” haplotype frequencies 𝑝𝐴𝐵 , 𝑝𝐴𝑏 , 𝑝𝑎𝐵  is bounded by a 

tetrahedron with vertices (1,0,0), (0,1,0), (0,0,1), and (0,0,0).  

 

The analytical solution for this question has not been worked out because of its 

complexity. A set of conditions called the Karush-Kuhn-Tucker (KKT) conditions have to 

be met in order to fully describe the optimisation (Boyd and Vandenberghe, 2004). The 

idea of KKT is very similar to Lagrange multipliers but for inequality constraints. The 

number of parameters thus expands from 3 to 10 (3 haplotype frequencies plus 7 

constraints) which the calculations in most cases are intractable. Luckily there are 

several tools to maximise the log-likelihood function under these constraints in R (R 

core team, 2013). constrOptim() is a build-in function to incorporate multiple linear 

inequality constraints, and is usually performed under gradient-free Nelder-Mead 

algorithm (Nelder and Mead, 1965). To go a step further, one can transform the 

haplotype frequencies into another set of coordinates {𝑢, 𝑣, 𝑤} via the following 

transformation:  

𝑢 = 𝑝𝐴𝐵 + 𝑝𝐴𝑏 + 𝑝𝑎𝐵 

𝑣 =
𝑝𝐴𝐵 + 𝑝𝐴𝑏

𝑝𝐴𝐵 + 𝑝𝐴𝑏 + 𝑝𝑎𝐵
 

𝑤 =
𝑝𝐴𝐵

𝑝𝐴𝐵 + 𝑝𝐴𝑏
 

           [5.11] 



66 
 

The advantage of the transformation is that the feasible region of {𝑢, 𝑣, 𝑤} becomes a 

unit cube. We can now perform the maximisation with respect to 𝑢, 𝑣, 𝑤 (and transform 

back to haplotype frequencies afterwards) within a well-studied region of a unit cube 

rather than in an irregular shape of a tetrahedron. More routines are available for this 

type of box-like constraints, for example, the memory efficient L-BFGS-B routine (Byrd 

et al., 1995) in optim(), or PORT routine (Gay, 1990; Nash, 2014) in nlminb(). These 

routines will all be tested in the computer simulation later in the chapter.  

 

For each pair of loci, the LD (denoted as 𝑟𝐶𝑀𝐿
2 ) can be computed in the usual way using 

the estimated haplotype frequencies:  

𝑟𝐶𝑀𝐿
2 =

(𝑝𝐴𝐵̂𝑝𝑎𝑏̂ − 𝑝𝑎𝐵̂𝑝𝐴𝑏̂)
2

𝑝𝐴̂(1 − 𝑝𝐴̂)𝑝𝐵̂(1 − 𝑝𝐵̂)
  

           [5.12] 

where 𝑝𝐴̂ = 𝑝𝐴𝐵̂ + 𝑝𝐴𝑏̂ and 𝑝𝐵̂ = 𝑝𝐴𝐵̂ + 𝑝𝑎𝐵̂ are the two estimated marginal frequencies. 

The quantity 𝐸[𝑟𝑜𝑏𝑠
2 ] can be estimated by averaging all the LD computed using the 

estimated gametic frequencies from Constrained ML:  

𝑟𝐶𝑀𝐿
2̅̅ ̅̅ ̅̅ =

1

𝑎𝑙𝑙 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠
∑𝑟𝐶𝑀𝐿

2 ≈ 𝐸[𝑟𝑜𝑏𝑠
2 ] 

           [5.13] 

Lastly, similar to the phased loci, the true LD 𝐸[𝑟𝑡𝑟𝑢𝑒
2 ] due to evolutionary events can be 

inferred from 𝐸[𝑟𝑜𝑏𝑠
2 ] after correcting for sample size, as described in the calculation of 

Burrows’ method in Appendix 2. Traditionally population geneticists have been using 

“Weir-Hill correction” with the following relationship:  

𝐸[𝑟𝑜𝑏𝑠
2 ] = 𝐸[𝑟𝑡𝑟𝑢𝑒

2 ] +
1

𝑛
 

           [5.14] 

This chapter further suggests the following expectation, as to in line with the phased 

case:  

𝐸[𝑟𝑜𝑏𝑠
2 ] =

1

𝑛
+ (1 −

1

𝑛
) 𝐸[𝑟𝑡𝑟𝑢𝑒

2 ] 

           [5.15] 

We call it the “new correction”. Finally, the true LD can be inferred from genetic samples 

via Constrained ML:  
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𝐸[𝑟𝑡𝑟𝑢𝑒
2̂ ] = (𝑟𝐶𝑀𝐿

2̅̅ ̅̅ ̅̅ −
1

𝑛
)/(1 −

1

𝑛
) 

           [5.16] 

Computer simulation 1: The convergence of likelihood-based methods 

It is known that the EM algorithm is sensitive to initial conditions, as some of those will 

converge to local maximums rather than the global one (Excoffier and Slatkin, 1995). 

Similarly for Constrained ML, the effect of initial conditions relies heavily on the 

numerical routine on which the likelihood is maximised. Here a simulation was run to 

examine the effect of initial conditions on each method. First, the true haplotype 

frequencies were drawn randomly from 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(1,1,1,1) distribution and the counts 

for each haplotype were subsequently sampled according to a fixed sample size of 20 

diploid individuals. Second, for each set of haplotype counts, 100 different initial 

conditions chosen from 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(1,1,1,1) were passed to the two methods: EM and 

Constrained ML. The maximised log-likelihood values for each of the 100 initial 

conditions were recorded. Third, the whole process was repeated for 10000 times. The 

following metrics were recorded: 1) the number of cases (out of 10000) of non-unique 

convergence, and 2) within these cases, the proportion of initial conditions (out of 100) 

when the method had converged to the lower likelihood values.  

 

Constrained ML was also maximised numerically by the three routines mentioned 

above: Nelder-Mead in constrOptim(), L-BFGS-B with box constraints in optim(), 

and PORT routine from nlminb(). All these methods are readily available within base 

R (R core team, 2013). A simplified version of the EM algorithm was also written for 

using biallelic loci only, after consulting Excoffier and Slatkin (1995) and Rogers and 

Huff (2009). The relative tolerance for all methods, including EM, was set to be about 

1 × 10−8. In other words, it is considered to be the “peak” when the log-likelihood value 

cannot be increased further by a factor of 1 × 10−8. The results of this simulation study 

are displayed in table 5.3.  

 

Table 5.3 Simulation results 

Method Number of non-unique 
convergence 

Average non-convergence 
rate 

EM 538/10000 41.23/100 
Constrained ML + Nelder-Mead 3437/10000 26.59/100 
Constrained ML + L-BFGS-B 89/10000 23.97/100 
Constrained ML + PORT 94/10000 22.31/100 
The comparison between methods for different initial conditions. 10000 simulations with 100 initial 

conditions each were applied to each method. Parameters and sampling procedure are descried in text. 

The number of non-unique convergence refers to the cases when a particular genotype produces more 
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than one solution for different initial conditions. This includes both the convergence to lower likelihood 

values and failed maximisation. The average non-convergence rate is the proportion of initial conditions 

that has converged to a lower likelihood values when this occurs.  

 

Table 5.3 summarises the effect of initial condition on the estimation methods. It can be 

seen that Constrained ML with Nelder-Mead has the worst performance as it converges 

to local points in at least 3400 out of 1000 simulations. The EM has about 538 such 

cases, while L-BFGS-B and PORT algorithm has the least number of non-unique 

solutions. It appears the latter two methods are far less sensitive to initial conditions 

than the others. The second column shows the average proportion of initial conditions 

that have converged to anything other than the global maxima, given a non-unique 

convergence. The product of the two columns roughly reflects the chance of failing to 

maximise the likelihood. For instance, if an initial condition is randomly assigned to an 

arbitrary genotype using L-BFGS-B routine, there is about 89/10000 × 23.97/100 ≈

 0.002133 of chance that the result is not the global maximum. This is about 10 times 

smaller than that from EM of about 0.02218. In short, the new Constrained ML, with a 

good choice of the optimisation routine like L-BFGS-B or PORT, is able to provide robust 

estimates of 𝑟2.  

 

Computer simulation 2: Estimating LD with the Burrows’ method and Constrained ML 

Another simulation was run to compare the ability in estimating LD between 

Constrained ML routine and the existing Burrows’ method. The simulation was 

conducted in the following manner: 𝑛 diploid individuals with unknown phase were 

sampled randomly from a set of known haplotype frequencies. Genotypes across these 

𝑛 individuals were recorded to compute the genotype table. The observed 𝑟2 was then 

estimated from the genotype table by two methods: the Burrows’ and Constrained ML. 

The simulation was repeated for 20000 times for each value of 𝑛. The process was 

repeated for different values of sample size 𝑛, where in this case, 

𝑛 = 10, 20, 50, 100, 200, 500, 1000, and the means and variances were recorded. Weir-

Hill and the new expectation will be applied both methods to correct for the effect of 

sample size. The whole simulation, including Constrained ML and the Burrows’ method, 

were all conducted in R (R core team, 2013).  

 

The simulation was further repeated for four different sets of underlying haplotype 

frequencies to represent the cases of linkage equilibrium and disequilibrium, and also 

balanced and skewed allele frequencies. The result of this simulation is shown in figure 

5.2 to 5.4. The average 𝑟2 (after adjusted for sample size) from the Burrows’ method 

and Constrained ML are plotted against sample size 𝑛. Furthermore, the plots of bias 

and variance of the methods can also be found in figure 5.3 and 5.4 respectively. Several 
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interesting results can be found in these graphs. First, for larger 𝑛 (>=100), there is 

very little difference between the Burrows’ method and Constrained ML, and between 

Weir-Hill and the new correction. The mean of all combinations are almost identical 

with virtually no bias. In terms of variance, Constrained ML performs slightly better 

than the Burrows’ under linkage disequilibrium, whereas the variance is 

indistinguishable under linkage equilibrium. Second, the differences among these 

methods and corrections become more distinctive when sample size moves towards the 

smaller end. For small 𝑛, the Burrows’ method experiences a severe upward bias in all 

examined cases, regardless the correction method applied (figure 5.3). Constrained ML 

also experiences a slight bias for small 𝑛 but far less severe as the Burrows’. Finally, the 

variance of Constrained ML is always smaller than that of the Burrows’ (figure 5.4).  

 

This simulation also serves another purpose to compare the two sample size 

corrections. Clearly the new correction with Constrained ML (and also other likelihood-

based methods) is almost unbiased throughout all examined cases. It performs 

particularly well under linkage disequilibrium, that the new correction provides a much 

smaller bias than Weir-Hill’s. It is noticed that the Weir-Hill correction remains very 

useful with the Burrows’, as the new correction does not work with Burrows’ at all.  
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Figure 5.2 Plots of implied 𝑟2 against number of diploids sampled. The average of 20000 replicates from 

Constrained ML and the Burrows’ method are represented by black crosses and green triangles 

respectively. The Weir-Hill correction (equation 5.14) and new correction (equation 5.15) are used for 

sample size correction. The true haplotype frequencies are (A) 𝑝 = (0.25, 0.25, 0.25, 0.25), (B) 

𝑝 = (0.4, 0.1, 0.1, 0.4), (C) 𝑝 = (0.21, 0.49, 0.09, 0.21), and (D) 𝑝 = (0.1, 0.6, 0.2, 0.1).  
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Figure 5.3 The plots of squared bias. The settings are the same as figure 5.2.  
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Figure 5.4 The empirical variance plots of Burrows’ and Constrained ML.  
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Discussion 

The likelihood-based methods 

The likelihood-based methods, including the EM algorithm, CubeX, and Constrained ML, 

are all maximising the same Hill (1974) log-likelihood function but with various 

computational techniques. CubeX calculates the analytical solution by solving the Hill 

(1974) cubic equation; EM provides an iterative algorithm to search for the “peak” of 

the likelihood surface; while Constrained ML imposes constraints on the range of 

haplotype frequencies at the same time as the likelihood function is being maximised. It 

is therefore expected these methods to behave similarly under normal conditions. The 

numerical results from Constrained ML against CubeX and EM (but not shown here) are 

compared, and they are the identical up three decimal places when sample size is 100 

diploid individuals. In the cases when CubeX produces two solutions, Constrained ML 

always converges to the result with a higher likelihood value. These estimators 

experience various forms of difficulties when the conditions deviate from normal. The 

departure of HWE may lead to biased estimates of haplotype frequencies and 𝑟2, as 

pointed out by Excoffier and Slatkin (1995). Gaunt et al. (2007) explained when sample 

size is small and alleles are rare, in which the assumption of HWE is often violated, 

CubeX will return two or more sets of roots which are all real and biologically feasible. 

Another possible explanation of having more than one solution is one root being a local 

point while another one being the global maximum. This is exactly the case when a 

stationary point with zero gradient does not guarantee a global maximum. Appendix 3 

shows a worked example with two solutions in CubeX, and demonstrates how 

Constrained ML handles the same case with only one solution.  

 

Meanwhile, EM algorithm suffers from some other computation issues when sample 

size is very limited. For instance, when some of the haplotype frequencies are estimated 

to be zero in any intermediate steps, the computation halts as division by zero is not 

permitted. The flat likelihood surface under such scenario makes optimisation slow and 

difficult. The EM algorithm is also known to be sensitive to initial conditions, as some 

starting points will reach local maximums rather than the global one. This can be 

particularly seen in the convergence test conducted earlier in this chapter. It is always 

advised to try multiple starting haplotype frequencies with EM to ensure the 

convergence to the global maximum (Excoffier and Slatkin, 1995). Constrained ML, like 

all other numerical maximisation, is also prone to the choice of initial conditions. 

Maximising within a tetrahedron is definitely undesirable as shown in the simulation 

study with up to 34% of non-unique convergence. This perhaps explains why previous 

authors have tried so hard to work around the problem with alternative computational 

techniques. This work recommends the transformation of haplotype frequencies into a 

unit cube such that the maximisation is well-studied and much simplified. The above 

simulation demonstrated that the POST and L-BFGS-B routine are good candidates to 
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maximise the log-likelihood function, and they are the least sensitive to initial 

conditions among all the methods compared.  

 

Comparison between the Burrows’ and Constrained ML 

This simulation was perhaps the first direct comparison between the Burrows’ method 

and the likelihood-based methods (represented by Constrained ML) in estimating LD 

from genotypes under HWE. For larger sample size (>=100), there is little difference 

between the two methods as they are mostly unbiased and share the same degree of 

accuracy. The discrepancies between them become obvious when sample size is down 

to 50 and below, that the Burrows’ suffers from a systematic upward bias in all tested 

cases. This finding is in line with the investigation made by England et al. (2006). 

Constrained ML also experiences some degree of bias for small 𝑛, but the magnitude is 

far less than that of the Burrows’. The direction of the bias also differs when the pair of 

loci is under linkage equilibrium and disequilibrium, which could potentially even out 

each other when using a mixture of loci in real data sets. Bias can also be dealt with by 

imposing empirical correction as in Waples (2006) despite the lack of mathematical 

reasoning. The variance of Constrained ML is smaller than the Burrows’ method, 

especially in small sample size and linkage disequilibrium, leading to a more precise LD 

estimation. For instance, when only 10 individuals are sampled, the variance of 

Constrained ML is only about half of that of the Burrows’. This demonstrates a better 

use of information by Constrained ML method under small sample scenario.  

 

We must emphasise that the likelihood-based methods require the assumption of HWE 

while the Burrows’ does not. With this intrinsic difference between the two methods, 

the above simulation aims to assess their performance under HWE, and the results 

should not be extrapolated to non-HWE cases. We encourage any further investigations 

under non-random mating scenario, or to study their performance as a function of 

inbreeding coefficient.  

 

The new sample size correction 

Weir-Hill correction (equation 5.14) has been the standardised way to handle the 

discrepancy between the sample and the true LD, while this work suggests another 

formula (equation 5.15) for unphased genotypes.   

 

The second simulation provides empirical evidence on the performance of the two 

corrections. With the use of the likelihood-based methods, the new correction is 

unbiased in most cases, regardless the degree of linkage and marginal allele frequencies. 
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Its advantage over the traditional Weir-Hill correction can be seen particularly when a 

pair of loci is under strong linkage disequilibrium, in which Weir-Hill often overly 

corrects for sample size. It is not difficult to imagine to benefits brought by the new 

correction, especially for tightly-linked loci or populations with small 𝑁𝑒 , where the true 

𝑟2 tends to be large. Therefore it is advised to apply the new sample size correction 

when using likelihood-based methods.   

 

There is a slight trade-off between unbiasedness and the variance of the estimator. 

Some readers may have already anticipated that the new correction is in fact the Weir-

Hill correction multiplied by a factor of 
𝑛

𝑛−1
. The new correction thus will increase the 

variance by a smaller factor of (
𝑛

𝑛−1
)
2

 from Weir-Hill’s. This can be better understood by 

analogy with the estimation of sample variance, where we divide the sum of squares by 

𝑛 − 1 rather than by 𝑛 for losing one degree of freedom. Sometimes the unbiased one is 

preferred despite having a larger variance. In this particular case, we believe the 

inflated variance is negligible after considering the amount of loci available in whole-

genome sequencing data.  

 

Phasing the data 

The estimation of LD from phased data is relatively straight forward compared to the 

unphased case. The sampling process can be regarded as undergoing one more 

generation of drift of size 2𝑛 under complete linkage. Hence one can use the recurrence 

relationship in equation 5.18 to infer the true LD from the observed LD. It is worth 

noticing that the constant term that accounts for sampling is 1/2𝑛 for phased data, 

while it is 1/𝑛 for unphased data (equation 5.13). This further implies that more 

information about the true 𝐸[𝑟𝑡𝑟𝑢𝑒
2 ] is available by phasing the data, and the effect is 

roughly equivalent to have doubled the sample size. This will be particularly useful with 

unlinked loci or large 𝑁𝑒 , that 𝐸[𝑟𝑡𝑟𝑢𝑒
2 ] is often overwhelmed by the sampling issue. This 

provides a general guideline on whether to phase the data or to increase the sample size.  

 

The pitfall case 

There is one special case that none of the methods work is when all the observed 

genotypes are double heterozygotes. Under such unlikely scenario, 𝑛5 is the only non-

zero entry in the entire genotype table (table 5.2). There are two equally likely solutions 

when the log-likelihood is maximised: that the gametes can either be half 𝐴𝐴 and half 𝑎𝑏, 

or half 𝐴𝑏 and half 𝑎𝐵, referring to perfect positive or negative correlation. CubeX, on 

the other hand, suggests a third solution with all four haplotype frequencies being 0.25. 

This solution is however ruled out by Constrained ML because of its lower log-
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likelihood value. The Burrows’ method also suggests 𝑟∆
2 = 0 which refers to the third 

result of CubeX. The recommendation is to remove such pair of loci to avoid confusion.  

 

Potential impact on 𝑵𝒆 estimation 

It is unfortunate that likelihood-based methods for estimating LD from genotypes have 

not been widely used in 𝑁𝑒 estimation despite its high accuracy and precise definition. 

This is perhaps due to the difficulties in maximising the log-likelihood and the mysteries 

of having more than one solution. One the theoretical aspect, this chapter describes all 

the sufficient conditions to estimate haplotype frequencies which have often been 

neglected by previous authors. The mathematical details of haplotype frequency 

estimation have never been revealed in such detailed manner.  Practically speaking, this 

chapter suggests new sample size corrections which are unbiased in most cases. We 

also proposed a novel routine, the Constrained ML, to maximise the same Hill (1974) 

likelihood function as in the EM algorithm and CubeX. The results are shown to be 

identical to the existing methods under normal conditions. Furthermore with an 

appropriate choice of the maximisation routine, Constrained ML is proven to be far less 

sensitive to initial conditions which can greatly reduce the number of false convergence. 

There is a potential to generalise Constrained ML to multiallelic case through the 

transformation from a higher order simplex to a hypercube (Hankin, 2010). As there 

exist many applications requiring the computation of LD from genotype data, such as 

Haploview (Barrett et al., 2005), Constrained ML has a high prospect to work alongside 

the EM algorithm to provide reliable 𝑟2and haplotype frequency estimates with less 

chance of falling into local maximums., especially at smaller sample sizes.   

 

The comparison between Constrained ML and the Burrows’ 𝑟∆
2 shows the former has a 

lower variance and bias under HWE, especially for small sample size 𝑛. In some cases, 

the variance of the Burrows’ method can be twice as large as that of Constrained ML’s. 

Together with the new sample size correction which is mostly unbiased, Constrained 

ML could potentially be a solution to replace Burrows’ under such scenarios, resulting 

in a better estimate of contemporary 𝑁𝑒 with narrower confidence limits.  
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Chapter 6: Future 

The future of 𝑁𝑒 estimation 

A recent review paper by Gilbert and Whitlock (2015) evaluated most of the existing 

contemporary 𝑁𝑒 estimators. Two of the methods, the temporal change in allele 

frequency implemented by MLNe (Wang and Whitlock, 2003), and the LD method as in 

LDNe (Waples and Do, 2008), were particularly marked by the authors as 

“recommended” in bold characters because of their rigorous reasoning and high 

accuracy. Unsurprisingly, these two methods were also found to be the most cited ones, 

which somehow demonstrated the efficiency of the market’s opinion. Prior to this study, 

the maximum likelihood estimation of 𝑁𝑒 from the temporal change in allele frequency 

was limited to only small 𝑁𝑒 due to computational difficulties. A new estimator 𝑁𝐵̂ 

proposed in chapter 2 streamlines the existing calculation by replacing the discrete 

Wright-Fisher model with continuous distributions, extending the upper limit of 𝑁𝑒 to 

several million and beyond without sacrificing accuracy. The several-folded increase in 

computing speed allows us to analyse even larger datasets with millions of SNPs and 

more complex sampling regimes, which have not been thoroughly examined before. The 

efficient algorithm also promotes repeated simulations in population genetics, alongside 

whole genome simulators such as ms (Hudson, 2002), GENOME (Liang et al., 2006), or 

the efficient msprime simulator (Kelleher et al., 2016). The results from chapter 5 may 

also have significant impacts on improving the estimation of 𝑁𝑒 from LD signal. New 

sample size corrections for estimating 𝑟2 are worked out for both phased and unphased 

data, which are found to be unbiased and robust in most cases. Constrained ML 

provides a novel approach to maximise the likelihood function for the estimation 

haplotype frequencies and LD. While being numerically identical to CubeX (Gaunt et al., 

2007) and the EM algorithm (Excoffier and Slatkin, 1995), Constrained ML stands out 

from the existing routines with better convergence and clearer interpretation. A direct 

comparison between the Burrows’ method and likelihood-based methods is made in the 

same chapter, and the result shows the likelihood-based method has a smaller variance 

and bias under Hardy-Weinberg equilibrium. It is foreseeable that an extended version 

of LDNe can easily be produced by combining these findings, resulting in more precise 

contemporary 𝑁𝑒 estimates. The potential impact is profound that almost all studies 

involving 𝑁𝑒  and LD estimation will be benefited. For species with large 𝑁𝑒 , such as 

invertebrates, a precise estimation is finally available using temporal samples. On the 

other side of the spectrum, where species are endangered and struggling for their 

survival, using Constrained ML can estimate LD accurately even for small sample size, 

leading to better monitoring of the species. In short, whether or not it is a coincident, 

this study has improved the two most popular (and perhaps the best) methods for 

estimating contemporary 𝑁𝑒 .  
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Compared to contemporary 𝑁𝑒 , the theory behind the estimation of historical 𝑁𝑒 is more 

debatable. Our knowledge towards historical 𝑁𝑒 , LD and recombination is brought to 

another level as investigated in chapter 4. The random 𝑁𝑒 simulation demonstrates 

empirically the current 𝐸[𝑟2] can be expressed as the weighted sum (or an integral in 

continuous form) of the probability of coalescent between two randomly chosen 

haplotypes, of which information about historical 𝑁𝑒 is contained. Consequently, the 

most recent 𝐸[𝑟2], not just for constant or linearly-changing 𝑁𝑒 but for any population 

histories, can be calculated without involving the recurrence equation. The actual 

relationship is found to be rather complex that there is no one-to-one correspondence 

between 𝐸[𝑟2] and historical 𝑁𝑒 , which some previous studies might have 

oversimplified it. Nonetheless, the principle was supported by the worked example of 

Anopheles coluzzii population and a simulation on the detection of population 

bottleneck. While the cost of whole genome sequencing is more affordable than ever, 

and calculating LD is becoming a standard practice in most genome-wide studies, this 

result is likely to be the centre of any further developments of historical 𝑁𝑒 estimation 

from LD signal.  

 

Although this work has driven the estimation of 𝑁𝑒  to its current limit, many 

neighbouring topics remain untouched as commented by several review papers 

(Luikart et al., 2010; Gilbert and Whitlock, 2015; Wang, 2016). For instance, the spatial 

scale of which the 𝑁𝑒 estimate is referring to remains unclear. The fixation index 𝐹𝑠𝑡  has 

been used in detecting population differentiation for many decades (Holsinger et al., 

2009), but provides little information on the time scale of the gene flow. Wang and 

Whitlock (2003) applied the temporal method to two populations, allowing the joint 

estimation of 𝑁𝑒 and migration rates. The method, however, does not further extent to 

scenarios with more than two populations. The same paper also showed that the 

estimated 𝑁𝑒 is more likely to be the local 𝑁𝑒 when two temporal samples are taken 

within a shorter period of time, and it gradually approaches the global 𝑁𝑒 when the 

sampling horizon spans over a longer period. The definition of local and global 𝑁𝑒 , and 

the transition between the two remain unclear, and certainly require further 

investigation. We are unsure about what types of arithmetic operations are permitted 

on these local and global 𝑁𝑒 estimates, and how they can be compared. It is worth 

mentioning the PSMC method (Li and Durbin, 2011) which plays a prominent role in 

historical 𝑁𝑒 estimation. One of its unique features is that only one diploid sample is 

required for the analysis. PSMC and the LD method discussed in chapter 4 shall not be 

seen as direct competitors in terms of historical 𝑁𝑒  estimation because they work on 

two different time scales. The former provides 𝑁𝑒 estimates for a more distant time 

period of about hundreds of thousands generations ago, while LD is shown to provide 

information about 𝑁𝑒 of a relative recent time horizon even from the generation before 

the sampling took place. It is therefore not surprising that the two methods often 

produce very different population signatures, and in fact the performance of the two 
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methods can hardly be compared. While the two methods both use information about 

the coalescence time, the integration of the two methods is definitely worth exploring.  

 

While the estimation of 𝑁𝑒 remains an open question despite all recent developments, 

the bigger picture of demographic estimation seems to be even challenging. Gutenkunst 

et al. (2009) tried to infer the demographic histories from multiple populations using 

multidimensional SNPs data. The method (𝜕𝑎𝜕𝑖) applies diffusion model to compute the 

joint allele frequency distribution across populations with migration and mutation 

being taken into account. Users should be reminded that it applies to a more ancient 

timeframe with little information about the recent history. The existence of population 

structure will distort the historical 𝑁𝑒 estimates, as discussed in chapter 4 and in other 

studies (Nielsen and Beaumont, 2009; Mazet et al., 2016). Although these investigations 

did not directly question the correctness of the published historical 𝑁𝑒 estimates, there 

is a strong desire to understand how population size fluctuation can be separated from 

population structure. Mazet et al. (2016) paved the way to develop statistical tools to 

differentiate the two processes, but the proposed models are quite primitive at the 

moment for actual use.  

 

A common challenge of demographic estimation is the huge number of parameters 

involved. Besides the 𝑘 population sizes for the 𝑘 subdivided populations, there are also 

𝑘(𝑘 − 1)/2 migration rates that need to be estimated from samples. It is obvious that 

the high dimensionality hinders the use of the classical approaches such as maximum 

likelihood estimation. On the positive side, there is a great incentive to explore 

alternative techniques to work around the problem. Markov Chain Monte Carlo (MCMC) 

can be used to compute the joint likelihood surface, or the joint posterior distribution 

under Bayesian context. Hidden Markov models can be helpful in dealing with the effect 

of sampling. The emerging Approximate Bayesian Computation (ABC) also helps 

sampling exhaustively from the posterior distribution without obtaining the full 

conditional distributions. It is seen as an excellent alternative to classical likelihood or 

Bayesian approach when the form of the likelihood functions is implicit or too 

complicated to be evaluated, and this happens to problems in population genetics all the 

time. It is worth mentioning that the ABC approach has already been applied to estimate 

𝑁𝑒 such as ONeSAMP (Tallmon et al., 2008). On the downside, the mathematical details 

behind this “likelihood-free” method, such as the theoretical guarantees and 

convergence, are less studied compared to the other established methods. While the 

intuition of ABC is to find the parameters from repeated simulations which produce the 

closest summary statistics to the observed dataset, choosing the “correct” summary 

statistics can be a challenge as sufficient statistics are not always available.  
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The subject of population genetics as a whole is ever changing, and the amount of data 

expands dramatically every day. We have reached the era when data is plentiful, but 

sometimes too much to be analysed. Taking the Anopheles gambiae 1000 Genomes 

(Ag1000G) project data as an example, the variant call format (VCF) file, consisting the 

whole genome information of 150 mosquitoes sampled from Burkina Faso, is about 

100GB. While the project currently works on 8 different countries, with a total of 765 

mosquitoes sampled and sequenced, the aggregated file size is likely to be quadrupled 

of that of Burkina Faso’s data. It is essential to explore efficient and robust algorithms to 

handle the vast inflow of information. Some operations, such as calculating allele 

frequencies or moving window analysis, can be performed simultaneously across 

multiple loci. Independent trials in Monte Carlo simulations can also be run in parallel. 

Using multicore CPU can easily speed up these types of computations, while message 

passing interface (MPI) can help distributing or sharing information among PCs, 

providing a systematic way to scale up the computation (Wang, 2016). A more recent 

and promising development is the use of general-purpose graphics processing unit 

(GPGPU). Traditionally graphics processing units (GPU) were for visual graphics only, 

but nowadays GPU can be programmed for scientific calculation. In fact, the number of 

floating point operations per second (FLOPS) of GPU has exceeded CPU for more than a 

decade but without receiving much attention (Sanders and Kandrot, 2010). The 

architecture of a modern day GPU consists of thousands of “mini” cores which can 

execute an instruction simultaneously. It also has a dedicated memory such that it itself 

is almost a standalone computing unit. It is anticipated that bringing GPU into 

population genetics can speed up the computation by orders of magnitude, if not 

revolutionise our current practice on genetic data analysis.  
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Appendix 1: The goodness-of-fit of equation 2.20 

Since the approximation stated in equation 2.20 is one of the several key ideas in this 

paper to speed up the current estimation of 𝑁𝑒 , it is essential to evaluate how well the 

approximation is. Here is the equation 2.20 in the main text:  

∫ 𝑓(𝑝𝑡|𝑝0, 𝑁𝑒)𝑓(
1

0
𝑝0|𝑥0)𝑑𝑝0 ≈ 𝐵𝑒𝑡𝑎(𝛼′ =

𝛿(𝑥0+1)

2𝑛+2+𝛿
, 𝛽′ =

𝛿(2𝑛−𝑥0+1)

2𝑛+2+𝛿
)   

The left hand side of the equation is considered as a hierarchical relationship, that 𝑝𝑡 

follows a beta distribution given a value of 𝑝0, while 𝑝0 itself is also distributed as beta 

conditioning on the initial observed count 𝑥0 (which is a fixed number). Two sources of 

randomness are involved and the integral sums over all possible values of the 

intermediate 𝑝0. Unfortunately, this kind of integration seldom has an analytical 

solution. In this paper we suggest that the integral can be well approximated by another 

beta distribution, as suggested in equation 2.20.  

 

We examined how close the approximation is to the actual integral. Two values of 𝑁𝑒 

were studied: 1000 and 5000, with 8 generations between two samples are taken. 

Sample sizes were set to 10% of the true 𝑁𝑒 . Under these settings, both low allele 

frequency (0.1) and even allele frequency (0.5) scenarios were tested. Plots of the result 

can be found below in figure appendix 1.  

 

From the plots we can see that the two lines representing the two methods overlap with 

each other and are visually indistinguishable. This indicates that in moderately-large 𝑁𝑒 

the use of a beta distribution is a good approximation to the integral. Furthermore, the 

approximation holds for a wide range of allele frequencies, including the cases where 

rare alleles are used.  
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Figure appendix 1.1 The plots of the conditional density 𝑝𝑡|𝑥0 where 𝑁𝑒  was set to be 1000 (first row) and 

5000 (second row). Sample size was 10% of the true 𝑁𝑒  per generation. Two samples were drawn with 

sampling interval of 8 generations. The first column represents the cases when frequent alleles were used 

(allele frequency ~0.5), and the second column represents the cases when rare alleles were used (allele 

frequency ~0.05). The conditional density were calculated from two methods: numerical integration 

(black solid line) and by approximation (red dotted line).  
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Appendix 2: The mathematical details of 𝒓𝟐 or haplotype frequency 

estimators described in chapter 5 

The Burrows’ composite index 

Although the calculation of the Burrows’ composite index has been discussed in many 

texts, such as Weir (1996), it is worthwhile to revisit the key components of the method 

for completeness. Consider a two allele and two locus system, with alleles 𝐴 and 𝑎 on 

the first locus, and 𝐵 and 𝑏 on the second locus, the counts of the combination of 

genotypes can be represented in a 3-by-3 genotype table as shown in table 5.1 in the 

main text in chapter 5. For instance, 𝑛1 represents the counts of having 𝐴𝐴 homozygote 

at the first locus and 𝐵𝐵 homozygote at the second locus. To compute the Burrows’ 

composite index, we first define 𝑛𝐴𝐵   

𝑛𝐴𝐵 = 2𝑛1 + 𝑛2 + 𝑛4 +
1

2
𝑛5 

and ∆𝐴𝐵̂ 

∆𝐴𝐵̂=
𝑛

𝑛 − 1
[
1

𝑛
𝑛𝐴𝐵 − 2𝑝𝐴̃𝑝𝐵̃] 

where 𝑝𝐴̃ and 𝑝𝐵̃ are the two observed marginal allele frequencies of allele 𝐴 and 𝐵 

respectively, and 𝑛 is the total number of diploid individuals sampled. Clearly ∆𝐴𝐵̂ is an 

estimator of 𝐷, the linkage disequilibrium measure. Similar to the case of 𝐷, ∆𝐴𝐵̂ can be 

adjusted for the marginal allele frequencies to estimate the standardised correlation 

coefficient 𝑟2:  

𝑟∆
2 =

∆𝐴𝐵̂
2

[𝑝𝐴̃(1 − 𝑝𝐴̃) + (ℎ𝐴 − 𝑝𝐴̃
2)][𝑝𝐵̃(1 − 𝑝𝐵̃) + (ℎ𝐵 − 𝑝𝐵̃

2)]
 

where ℎ𝐴 (ℎ𝐵) is the observed frequency of 𝐴𝐴 (𝐵𝐵) homozygotes which can be directly 

obtained the genotype table. The observed LD, 𝐸[𝑟𝑜𝑏𝑠
2 ], can be estimated by averaging 

the 𝑟∆
2 from all the comparisons:  

𝑟∆
2̅̅ ̅ =

1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠
∑𝑟∆

2 ≈ 𝐸[𝑟𝑜𝑏𝑠
2 ] 

Finally, as suggested by several authors, the relationship between the true LD 𝐸[𝑟𝑡𝑟𝑢𝑒
2 ] 

and the observed one 𝐸[𝑟𝑜𝑏𝑠
2 ] is given below (Weir and Hill, 1980; Hill, 1981; Waples, 

2006): 

𝐸[𝑟𝑜𝑏𝑠
2 ] = 𝐸[𝑟𝑡𝑟𝑢𝑒

2 ] +
1

𝑛
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We call the expression above the “Weir-Hill expectation” throughout this work. Thus the 

true LD can now be estimated by subtracting 1/𝑛 from the average Burrows’ composite 

index:  

𝐸[𝑟𝑡𝑟𝑢𝑒
2  ]̂ = 𝑟∆

2̅̅ ̅ −
1

𝑛
 

This completes the calculation of the Burrows’ composite index from genotype tables.  

 

The calculation of the EM algorithm 

The Expectation-Maximisation (EM) algorithm was generalised by Excoffier and Slatkin 

(1995) to maximise the log-likelihood function given by Hill (1974). The same log-

likelihood function can also be found in equation 5.6 in the main text. It is commonly 

used to maximise a function with the presence of missing information (in this case, 

actual phasing of the double heterozygotes). The procedure of the EM algorithm is as 

follows: first, we start by assigning arbitrarily the initial values of the four haplotype 

frequencies 𝑝𝐴𝐵
0 , 𝑝𝐴𝑏

0 , 𝑝𝑎𝐵
0 , 𝑝𝑎𝑏

0 . Then, given the initial condition and our observed 

genotype counts, we can calculate the expected number (E step) of the complete data, 

that is, the expected phased haplotype counts 𝑛𝐴𝐵
0 , 𝑛𝐴𝑏

0 , 𝑛𝑎𝐵
0 , 𝑛𝑎𝑏

0 . For instance, the 

conditional expectation of 𝑛𝐴𝐵
0  is:  

𝑛𝐴𝐵
0 = 2𝑛1 + 𝑛2 + 𝑛4 + 𝑛5

𝑝𝐴𝐵
0 𝑝𝑎𝑏

0

𝑝𝐴𝐵
0 𝑝𝑎𝑏

0 + 𝑝𝐴𝑏
0 𝑝𝑎𝐵

0  

where 𝑛1, … , 𝑛9 are the observed genotype counts from the genotype table (table 1 in 

the main text). In the M step, we can maximise the haplotype frequencies given the 

expected complete data from the E step (just as in the phased case) and set them to the 

parameter values in the next iteration:  

𝑝𝐴𝐵
1 = 𝑛𝐴𝐵

0 /2𝑛 

and similarly for 𝑝𝐴𝑏
1 , 𝑝𝑎𝐵

1 , 𝑝𝑎𝑏
1 . By repeating the E and M steps, each time with the 

updated parameters and complete data, the set of haplotype frequencies will gradually 

converge to the values at which the log-likelihood function is maximised.  

 

Interested readers can consult Excoffier and Slatkin (1995) for further details.  

 

CubeX 

Calculating the first derivative can help maximise a log-likelihood function as points 

with zero slopes can be good candidates. CubeX (Gaunt et al., 2007) tried to work on the 
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derivatives of the Hill (1974) log-likelihood function with respect to the three haplotype 

frequencies. When the three derivatives are set to zero, they become three 

simultaneous equations with three unknowns (the haplotype frequencies) as described 

in the main text. It is mathematically possible to solve for the unknowns but is a rather 

tedious exercise. It was found to be non-linear and could be reduced into a cubic 

equation on one of the haplotype frequencies (Hill, 1974). For instances, 𝑝𝐴𝐵̂, the 

maximum likelihood estimator of 𝑝𝐴𝐵, satisfies the following equation:  

𝑐3𝑝𝐴𝐵̂
3 + 𝑐2𝑝𝐴𝐵̂

2 + 𝑐1𝑝𝐴𝐵̂ + 𝑐0 = 0 

The coefficients 𝑐3, 𝑐2, 𝑐1, 𝑐0 are functions of the observed genotype counts (Hill, 1974). 

The ideal scenario will be having one “biologically feasible” root of 𝑝𝐴𝐵̂, and then the 

other haplotype frequency estimators can be solved subsequently. Under some 

circumstances, however, there can be more than one real root of 𝑝𝐴𝐵̂, ending up with 

two or even three sets of distinct haplotype frequencies.  
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Appendix 3: A worked example from CubeX 

Table appendix 3.1 shows a particular set of genotypes that yields more than one 

solution in CubeX. The same set of genotypes can also be found in Gaunt et al. (2007).  

 

Table appendix 3.1 A numerical example 

 𝐵𝐵 𝐵𝑏 𝑏𝑏 

𝐴𝐴 1 10 22 

𝐴𝑎 0 10 14 

𝑎𝑎 0 0 3 

The genotype table showing the counts 9 genotypes for this particular example.  

 

CubeX provides a web-based program to estimate haplotype frequencies and LD from 

genotypes. The inputs required are simply the counts of the 9 genotypes, and in this 

example, the counts of the genotypes are displayed in table 1. The haplotype 

frequencies are estimated almost instantly and the screen shot of the result page can be 

found in figure 1. Summary statistics, such as the HWE test statistic, different measures 

of LD, and the estimated marginal allele frequencies of the two loci, are also displayed in 

this result page. It can be seen that there are two biologically possible solutions: 

𝛽 = (0.1667, 0.5833, 0.0167, 0.2333) and 𝛾 = (0.1933, 0.5667, 0, 0.25). Although it says 

“𝛽 is the most likely solution”, CubeX provides no further details on why it is the case, or 

on what basis it thinks 𝛽 is more likely than the alternative solution 𝛾.  

 

The same set of genotypes is passed to Constrained ML which is written in the format of 

an R function. By considering the 8 constraints while maximising the log-likelihood 

function, only one unique solution is provided, as shown in figure appendix 3.1 below, 

with an associated log-likelihood value. It is can be seen that the solution is actually 𝛽 

(up to four decimal places), one of the two solutions provided by CubeX. Here we also 

examined the effect of starting frequencies, of which the default value is 0.25 for four 

haplotypes. The results are also shown in figure appendix 3.2, that the estimates all 

converge to the same maxima regardless the starting frequencies, demonstrating the 

robustness of the method.  
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We can further evaluate the log-likelihood value of 𝛾 given by CubeX. For instance, if we 

put 𝛾 into the log-likelihood function, the associated log-likelihood value is -11.001. 

Clearly 𝛽 has a larger log-likelihood value and thus should be the result.  

 

 

Figure appendix 3.1 The screenshot of the result page by CubeX web-based interface.  
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Figure appendix 3.2 The screenshot of the outputs from Constrained ML. 

 


