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Abstract
Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride

when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchro-

tron X-ray tomography and X-ray powder diffraction have allowed measurement and identi-

fication of the arising corrosion products and the rates of corrosion. The oxidation rates of

the uranium metal and uranium hydride were slower than empirically derived rates previ-

ously reported for each reactant in an anoxic water system, but without encapsulation in

grout. This was attributed to the grout acting as a physical barrier limiting the access of oxi-

dising species to the uranium surface. Uranium hydride was observed to persist throughout

the 10 month storage period and industrial consequences of this observed persistence are

discussed.

Introduction
Metallic uranium is strongly reactive in the presence of oxidising species. In open air at room
temperature it will rapidly form a surface film of hyper stoichiometric UO2+x which, over lon-
ger periods, will progressively thicken and form higher oxides at its surface such as U3O8 and
UO3 [1,2]. The initial corrosion layer is found to provide an effective physical barrier which
limits the rate of ongoing oxidation, slowing it substantially. The relatively large atomic size of
uranium in comparison to oxygen dictates that its lattice diffusion in the oxide is very limited
and accordingly this controls the way in which new oxide is formed [3]. It is well established
that new oxide is formed at the base of the existing layer, meaning that oxidising species must
pass through the existing oxide layer in order for this to occur [4,5]. Resultantly, the observed
steady-state corrosion rates for uranium in air and oxygen are relatively slow.
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In water or water vapour, the observed rates of uranium corrosion are observed to be nota-
bly faster and the stoichiometry of the arising oxide also remains closer to a pure UO2 [6,7].

U4þ þ 2OH� ! UO2 þ 2Hþ ð1Þ

2Hþ þ 2e� ! H2 ð2Þ

2U þ 3H2 ! 2UH3 ð3Þ

And/or

2U þ 6Hþ ! 2UH3 ð4Þ

Just as for aqueous corrosion of any other metal, the arising by-product of the water-ura-
nium reaction is hydrogen (Eq 1). If a sufficient concentration of hydrogen accumulates then
the corrosion of uranium may switch, whereby the hydrogen released as gas (Eq 2) permeates
the oxide barrier, reacting directly with the metal to form uranium hydride (UH3)(Eq 3). UH3

formation may also be considered as an integral step of the U + H2O reaction (Eq 4), however
the exact mechanism of the U + H2O reaction is still highly debated in the literature [4,6–8].
This product is recognised for its pyrophoric properties and has been attributed to a number of
previously documented thermal excursions at nuclear waste facilities [1,9]. Consequently, its
potential presence and persistence in any nuclear storage scenario is regarded as highly unde-
sirable because it presents an additional risk factor for the safe management of the waste.

The pyrophoricity of UH3 arises from its vigorous and strongly exothermic reaction with
oxygen (in air) to form UO2 [10]. Accordingly, this observed reactivity has led to the assump-
tion that the hydride, due to its extreme reactivity in air, cannot persist for any significant
period in a storage environment at ambient temperatures; wet or dry.

If this assumption is correct then the long term safety risk posed by hydride is significantly
decreased as its existence is both transient and brief. For sites like Sellafield in the UK, where
substantial quantities of uranium are stored in a range of different environments this is poten-
tially important. Most notably, the redundant legacy ponds and silo facilities at Sellafield, made
up of the pile fuel storage pond, pile fuel cladding silo, first generation Magnox storage pond
and Magnox Swarf storage silo, all contain uranium in varying quantities in different states and
stages of corrosion and are about to undergo decommissioning involving material retrieval and
repackaging [11].

As the planned start for decommissioning draws closer, there is a requirement to provide an
experimental verification of whether uranium hydride, formed in a waste storage environment,
can persist for any significant period.

The current work addresses this challenge by providing a time resolved observation of ura-
nium hydride deliberately formed on grout encapsulated uranium and stored in water for a
period of up to 10 months. Previous studies regarding the persistence of uranium hydride in
anoxic distilled water [7,12], have observed that for masses of UH3 powder below 25g UH3 can
persist for over 2 weeks. Above this mass, the UH3 reaction with water, described by the equation:

UH3ðsÞ þ 2H2OðlÞ ! UO2ðsÞ þ 7
2H2ðgÞ ð5Þ

.

is reported to be sufficiently heat generating to initiate a near immediate pyrophoric (auto-igni-
tion) reaction. However, in the same study it was determined that in small quantities Eq 5 only
partially completes. At 25°C, the reaction was described as initially rapid which then significantly
slowed, such that after 2 weeks only 15–20% of the UH3 had reacted [7]. In the same study,
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conditions of 100% relative humidity and 100°C exhibited the same initial rapid reaction and
decrease in reaction rate; however, after 40–50 hours, the evolution of hydrogen appeared to
cease after 83% conversion of UH3 to UO2. Complete reaction was then only observed after a
reduction in water vapour pressure [7]. The reaction can therefore be described as para-linear,
much like the U + H2O reaction, and dependent on temperature, sample mass and oxide
thickness.

The system investigated here was selected to mimic submersed grouted waste in which ura-
nium metal is an intrinsic reactive component carried over from the imperfect decladding pro-
cess of Magnox fuel cans. Using 5 mm3 samples of uranium in grout we have used synchrotron
x-rays to provide direct in situ observation of the hydride growths using diffraction and tomog-
raphy to determine UH3 location, volume and persistence at the micro scale. This experiment
is viewed as a precursor for consideration of the potential impact and implications on bulk
stored material. The sample used in the following experiment has previously been examined
and analysed in [13]. This previous article demonstrated the profound use of synchrotron x-
rays to examine uranium encapsulated in grout without the need for breaking the grout con-
finement. Furthermore, it discusses the effect of grout on uranium hydride formation, deter-
mining that even with grout present, hydride growth was undeterred and in some instances,
the grout encouraged hydride growth in isolated spots. This behaviour is an important precur-
sory observation for the present article.

Materials and Methods
AMagnox sourced uranium coupon was mechanically polished using sequentially finer grades
of abrasive SiC-paper down to a p2500 SiC grit finish and then a sample 20 x 0.5 x 0.5 mm in
size was cut. The sample size was selected to allow sufficient x-ray transmission for analysis.
The sample was treated in 5 M HNO3 for 3 hours prior to grout-encapsulation to remove the
surface oxide, then subsequently rinsed with water and cleaned for five minutes in an ultra-
sonic bath with ultrapure acetone and then methanol. After this procedure the sample had visi-
bly tarnished, demonstrative of the formation of a thin oxide layer on the sample surface. This
oxide was left to grow in air for a further 15 minutes prior to encapsulation to ensure that the
oxide had reached the linear rate stage of growth and a complete coherent oxide had been
formed, thereby ensuring that all subsequent reactions with the metal had to occur via this
interface [6]. The sample was then encapsulated and cured for 3 days in a moist atmosphere
using a 3:1 grout mixture of Blast Furnace Slag (BFS) and Ordinary Portland Cement (OPC)
and prepared with 0.4 w/c. Further curing was allowed for a week in laboratory atmospheric
conditions. Subsequently, the sample was degassed under vacuum (5 x 10-9 bar) in a gas rig for
8 hours at 80°C and then heated for a further 16 hours at 170°C to dry the grout before being
exposed to a fixed volume of H2 at 0.6 bar, conditions expected to form a pure β-UH3. After a
recorded H2 pressure drop equivalent to 0.012 mmol H2 uptake, (~3.5% of the total uranium
mass transformed to uranium hydride), the reaction was halted by evacuating all H2 from the
system and cooled under vacuum. The sample was then analysed on the Joint Engineering,
Environmental and Processing beam line (I12), Diamond Light Source Limited, UK at this ini-
tial stage and then twice more after submersion in the same 40 ml of de-ionised water for 3 and
then 10 months respectively, in a semi-sealed environment. X-ray tomography (XRT) and X-
ray Powder diffraction (XRPD) were used to respectively image the sample corrosion and
crystallographically identify the UH3 corrosion products at each consecutive stage. To abide
with safety rules during transportation of samples, before each excursion to Diamond Light
Source, the sample was heated to 60°C overnight under vacuum to remove excess surface and
pore water. This treatment step was expected to cause a brief acceleration in the uranium and
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UH3 corrosion rates. For the first two tomography examinations, the high resolution PCO
pco.4000 imaging detector with its Module 4 camera was used with the monochromatic beam
to obtain the best resolution possible (1 pixel = 0.98 x 0.98 μm). Due to an upgrade on the I12
beam line, a new high speed imaging detector, a Vision Research Phantom v7.3, was used for
the 10 month examination, which had a slightly reduced resolution of 1 pixel = 1.3 x 1.3 μm
with the Module 4 camera. It must also be noted that during this particular beam time, Dia-
mond Light Source had a reduced beam current of 136 mA, approximately half of that used in
the two previous examinations, and hence the quality of the tomography was slightly reduced.
Avizo was used to produce 3D visualisations of the tomography. For the purpose of data reduc-
tion, calibration of the detector and x-ray beam energy was determined from diffraction pat-
terns of a cerium dioxide (CeO2) standard (NIST—Standard Reference Material 674b)
recorded at multiple detector positions [14]. For the initial examination of the sample, the
XRPD x-ray energy (114.08 keV) was lower than chosen for XRT (115.97 keV) as for this
experiment the resolutions of the diffraction peaks were better at this lower energy, and the
XRT tomographs were clearer at the higher energy. However, due to the ongoing development
of the beam line the same conditions were not possible to replicate for later examinations, and
hence energies of 113.32 and 115.23 keV were used for both measurements for the 3 and 10
month analysis respectively. 2D XRPD data were recorded using a flat panel Pixium RF4343
(Thales) in high resolution mode (2880 x 2881 pixels). This detector has a pixel size of 148 x
148μm and beam size of ~340 x 340 μm

Results
XRPD results of the three sample examination periods are displayed in Fig 1. Due to time con-
straints, it was only possible to perform two line scans across the width of sample (0.5 mm) at
different heights for each examination. Furthermore, the line scans were not performed at the
exact same positions for each examination owing to difficulties in exactly repositioning the
sample. Therefore it would be unrealistic to compare the ratios of oxide to hydride and hence
growth of the respective corrosion products in this case, as these line scans would not represent
the bulk of the sample. Nevertheless, Fig 1 clearly indicates that β-uranium hydride (UH3) is
present on the surface of grout encapsulated uranium. A peak ascribed to UC reflects the high
impurity content of Magnox uranium [15,16].

Fig 2 displays 3D visualisations of the uranium sample before and after 3 and 10 months
submersion in water (a more thorough description of the sample before water submersion can
be found in [13]). The encasing grout has been purposefully removed from the reconstructions
for ease of uranium analysis. As the pre water submersion tomography (Fig 2(a) and 2(d)) was
performed above the uranium K absorption edge, image quality was affected by enhanced
absorption of the uranium. Consequently, the greyscale representing the uranium metal over-
lapped that of the corrosion products in some places and measurements extracted from this
data set were only taken when the contrast between the uranium and corrosion products was
deemed satisfactory. This issue was resolved in the latter two inspections by performing tomog-
raphy below the uranium K absorption edge.

As identified in [13], on first inspection, two morphologies of corrosion products were iden-
tified on the sample at each stage: i) deep pits in the metal filled with blisters of less dense cor-
rosion product that was flaky and porous at the surface, characteristic of UH3 (Fig 2(a)–2(c);
and ii) an enveloping layer blanketing the remaining surface of the metal attributed to surface
oxide; UO2. The dimensions of 12 identified pits were determined and the average thicknesses
of the sites were ~85 μm, with diameters as large as ~340 μm (Table A in S1 Table). Over the
10 month period submersed in water, no significant changes in the overall corrosion layer
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could be identified; however, measurements of the corrosion layer suggest a volume increase of
4.5% average ±3% between analysis at 3 and 10 months (Table B in S1 Table). Using Avizo
software, the total volume of corrosion products calculated after 3 months was ~0.242 mm3

(34.2% of total sample volume measured) and, over the following 7 month period, the corro-
sion products increased to 0.282 mm3 (38.7% of total sample volume measured). A volume
increase would be expected from the corrosion of uranium to either UO2 or UH3, as these cor-
rosion products are almost half the density of the metal [17]. Further measurements of the
oxide layer at 70 random locations on all three tomography reconstructions away from hydride
blisters revealed an average oxide thickness of 10.1, 12.8 and 13.9 μm for the as-formed, 3 and
10 month reconstructions respectively indicating a 2.7 and 1.1 μm growth on the surface of the
uranium between each time period (Table C in S1 Table). However, the average oxide thickness
for each time period had a range of +/- ~11 μm, demonstrating the significant inhomogeneity
of the oxide layer. These measurements were made exclusively from the ubiquitous layer cover-
ing the surface of the metal, as the slight density difference (and therefore tomograph greyscale)
between the UH3 and UO2 was not sufficiently distinct to differentiate between the two corro-
sion products at the hydride sites (e.g. in Fig 3(d)). Considering the expected corrosion prod-
ucts of water exposure to uranium (Eq 1), and the measurements obtained from tomography,
the extra 4% gain in corrosion products directly determined from our measurements is

Fig 1. XRPD results of hydrided uranium, encapsulated in cement after 0, 3 and 10month submersion in de-ionised water. The data was normalised
to the first UO2 peak, as this was considered the least strained constituent of the sample. Intensities of peaks at each time period vary due to imperfect beam
line set up at each occasion. All unlabelled peaks are ascribed to uranium.

doi:10.1371/journal.pone.0132284.g001
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therefore most reliably ascribed to UO2 growth, perhaps with limited UH3 growth owing to the
disputed mechanism of the U + H2O reaction (Eq 4), although no morphological evidence was
observed for additional UH3 formation. This is supported by the plated morphology of the cor-
rosion surface exhibited in Fig 2(e), Fig 3(e) and 3(f), an indicative feature of surface oxide for-
mation which starts to exhibit spallation at thicknesses>2 μm, due to in-plane compressional
stresses generated during formation.

Fig 3 shows a sequence of tomography slices of the same position for each time period, and
showing that despite a growing corrosion layer, some corrosion product identified as hydride
on the basis of blister like morphology (labelled 1 and 2 on Fig 3(f)), exhibited some migration
into a large pore within the grout. Fractures parallel to the metal surface were also revealed
within hydride blisters, highlighting the friable nature of the material (e.g. hydride site 2 in Fig
3(f)). Fragility was not observed in hydride blister sites tightly bound to the encasing grout.

Discussion
The results obtained from this experiment provide strong evidence that β-hydride artificially
formed on grout encapsulated uranium will persist during storage in water for a period of 10

Fig 2. Three dimensional representations of the uranium sample encapsulated in cement over the 10
month period. Images (a) to (c) display what is left of the uranium inner core after initial hydriding (a) to 10
month submersion in water (c). Images (d) to (f) show the corresponding corrosion layers associated with
each time period (0 to 10 months).

doi:10.1371/journal.pone.0132284.g002
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months at room temperature. This observation is consistent with previous studies which have
used more indirect means of demonstrating the persistence of uranium hydride in distilled
water, as reviewed by Haschke (1995), Baker et al., (1966) and Newton et al., (1949) [7,12,18].
The results also confirm that under the conditions studied uranium hydride is less susceptible
to rapid and continued oxidation (and perhaps pyphoricity) in a grouted system than in air.

Oxidation of U metal
Fig 4 provides a comparison of the uranium oxidation rates measured here (assuming linear
rate kinetics and equal oxide growth rates across the surface of the metal) against those pro-
vided empirically by Delegard and Schmidt (2009) [19] for the U + H2O(l) reaction at tempera-
tures 10–350°C, Ritchie (1981) [20], for the U + H2O(l) + O2 reaction from 25–100°C and
Haschke (1995) [6] for the U + O2(g) regime up to 200°C. The rate equations were
log10(60000R) = 9.9752-(3564.8/T), log10(60000R) = 9.466-(3836/T) and lnR = 6.192-(8077/T)
for each environment respectively, where T is temperature in Kelvin and the rate (R) = gU/
cm2.min [6,19,20].

In the first week after grout encapsulation, it was expected, based on the previous investiga-
tion in [13], that the uranium would initially corrode following the U + H2O(g) reaction, form-
ing a product of stoichiometric UO2.00 (labelled as U + grout in Fig 4). However, during
subsequent artificial UH3 formation, oxidation rates were expected to have briefly accelerated
as the sample was heated prior to and during hydride formation. The sample was again heated
(under vacuum) before each further synchrotron examination which may have further tam-
pered the oxidation rates, again by briefly accelerating corrosion. However, on submersion in
water at 25°C, oxide growth rates derived from the previously observed differences in oxide
thicknesses between time periods (2.7 and 1.1 μm growth) show an appreciable reduction in
oxidation rate from the pure unrestricted U + H2O(l) regime. This observation was not attrib-
uted to an increase in oxygen levels as the rate equations may suggest. This is because grout
mixtures provide an effective barrier against water diffusion and also BFS typically creates
highly reducing conditions and hence oxygen will be rapidly scavenged prior to reaching the
uranium [21]. To confirm this, an additional sample prepared exactly as the featured sample

Fig 3. Cross sections at the same position of the uranium encapsulated in grout over time. Images (a)
to (c) are accurate representations of the uranium (blue) and surrounding corrosion products (red, orange and
green) perpendicular to the length of the sample. Images (d) to (f) are radiographs corresponding to the
above representations, but with the additional surrounding grout.

doi:10.1371/journal.pone.0132284.g003
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but excluding the hydriding procedure (i.e. no heating or exposure to hydrogen) was sub-
mersed in de-ionised water for ~12 months and the water was periodically measured for its oxi-
dising potential. The Eh (reduction potential) was measured as -100 mV, indicating that a
reducing environment was present within the grout (likely lower than -100 mV). In a stagnant
reducing water environment, diffusion is the only transport method for oxidising species and,
consequently, it is proposed that the lower than expected oxidation rates determined for the
uranium metal were due to the dense structure of the grout, physically limiting the access of
the diffusing oxidising species to reach the surface of the metal. This would explain the range
in oxide thickness observed across the uranium surface (+/-11 μm), which would have resulted
from different diffusion rates achieved through the grout at different points across the surface
of the metal. BFS grout mixtures matching the formulation used here, have been chosen pur-
posefully for their low gas and liquid permeability in the nuclear waste industry [22].

Oxidation of UH3

Considering the influence exerted by the grout on uranium metal oxidation, it would be
expected that the same influence would exist for the oxidation of UH3 in grout. Diffusion of
the oxidising species to the UH3 is limited by the dense structure of the grout, which subse-
quently would also prevent diffusion of the outgoing corrosion products for both the uranium

Fig 4. A comparison of the measured oxidation rates (R) to the empirically derivedmodels for the U + 2H2O(l)! UO2 + 2H2, U + 2H2O(l) + O2(g)! UO2

+ 2H2O and U + O2(g)!UO2 systems provided by Delegard and Schmidt, Ritchie and Haschke respectively [5,12,19]. Results collected from the initial
investigation [13] are also presented; Bare U (i.e. no grout) and U + grout (i.e. after 1 week encapsulated in grout).

doi:10.1371/journal.pone.0132284.g004
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and UH3 oxidation too, i.e. generated hydrogen would be locally confined at the uranium-
grout interface (Eqs 1–5). For every mole of UO2 that is created by UH3 oxidation, 3.5 moles of
H2 would also be released (Eq 5). Therefore, if hydrogen diffusion away from the UH3 is slow
and hydrogen can accumulate to sufficient pressures then conditions favourable to further
UH3 formation develop over prolonged periods of time. No evidence for hydride growths are
observed here, but the transition between UH3 and UO2 would not be marked by a volume dif-
ference due to the similarities in density and therefore it is possible that both reactions could be
occurring simultaneously or in cycles; however, is more likely that the original hydrides
remained unreacted.

Using an average UH3 blister diameter of 210 μmmeasured from 12 well defined hydride
sites and approximating the volume of a hydride site to that of a sphere, the volume of UH3

expected to transform to UO2 over the entire 10 months may be calculated using the rate at
25°C provided by Haschke (1995) for the UH3 + H2O reaction: 1.6 x 10-9 gU/cm2min[12].
Assuming the UH3 formed here had a similar surface area to that used in Haschke’s experi-
ments (0.5 m2/g of UH3 powder), over a 10 month period only 0.57% of the UH3 would have
been expected to react, equating to a covering oxide thickness of ~0.8 μm for each individual
hydride site [7]. If the oxidation behaviour of UH3 is dependent on its surface area or surface
to bulk ratio (as it is for the uranium hydriding reaction [23,24]) then the rate of oxidation is
expected to be even slower than predicted here, as powdered UH3 would retain a higher surface
area than UH3 still adhered to the metal. Nevertheless, this calculated oxide thickness is smaller
than the resolution of the tomography scans, but the plated morphology indicative of UO2 is
exhibited after 3 months (Fig 2(e)), suggesting a thicker oxide is present. However, it is
expected that an oxide layer was present prior to hydride formation that remained between the
grout and UH3 interface, which may have only started fracturing or spalling after 3 months fol-
lowing some further oxide growth. During the original grout setting period, a water saturated
grout environment provides an abundance of negatively charged mineral sorption surfaces for
aqueous uranyl, (produced by oxide dissolution when in contact with the fresh initially oxidis-
ing water), to become adhered to [19]. Hydrides forming a layer beneath a pre-existing oxide
confined by grout may have subsequently been protected from rapid and significant continued
oxidation. Oxidation of UH3 in grout would therefore be expected to have a reduced rate in
comparison to the predicted rate demonstrated by Haschke [12]. Furthermore, due to the
incomplete oxidation of UH3 by water (Eq 5) under the constant reaction conditions observed
by Baker (1966), Haschke (1995) predicted the formation of an oxide-hydride with a stoichi-
ometry of UO1.2H0.6 [7,12]. This product was detected at temperatures of 100–150°C and
expected to form at 25°C; however, none was observed in the current experiment which further
corroborates a reduced reaction rate for UH3 encapsulated in grout [12,25].

Loss of corrosion products into grout
Tomographic reconstructions of the sample over time indicate an increase in corrosion prod-
uct volume, which was attributed to additional uranium oxide formation over time. However,
cross sections of the sample display some apparent loss of corrosion product into the surround-
ing pore volume (Fig 3). Grout pore waters are renowned for containing strong complexing
ligands and previous studies have shown that uranyl cations readily complex with phosphates
[26], sulphates [27], hydroxides [27][28] and carbonates [27]. However, for this to occur, the
pore water must be oxidising to transform U3+ (UH3) or U

4+ (UO2) to its higher solubility U
6+

uranyl form of (UO2
2+) [29]. As stated previously, the grout pore water was measured as reduc-

ing and hence any significant dissolution of the uranium is improbable. This ‘break up’ was
therefore attributed to vibrations during transportation which consequently damaged the
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sample, despite care being taken not to cause any significant disturbance. Nevertheless, this
observation highlights the importance of correctly sealing uranium containing wastes in the
grout, else a tendency for corrosion product particulates to form sludge may occur [12].

Implications for the nuclear industry
It is recognised that the initial hydride formation conditions used in this investigation were not
typical for hydride formation in some ambient pond storage conditions. For example, here the
XRPD data indicates β-UH3 as the dominant phase of uranium hydride, which is expected
from reaction temperatures above 100°C [30]. Conversely, the majority of encapsulated ura-
nium in legacy pond storage is typically below 80°C and, correspondingly, increasing propor-
tions of α-UH3 would be expected if hydride formation did occur. Little literature has been
published on α-UH3 and the oxidation reaction behaviour is not known. Thus experiments
using β-UH3 as a surrogate for α-UH3 are the closest insight to α-UH3 reaction behaviour so
far. However, comparative data for plutonium hydrides prepared slowly at temperatures below
100°C showed a significantly less stable and finer hydride powder than formed at higher tem-
peratures [30,31]. The corrosion of uranium is often used as a surrogate for plutonium, for
example in Dinh et al., 2011 [32]. Consequently, hydride produced in most pond stored
nuclear waste may, in fact, be more reactive than predicted herein. As a result, α-UH3 oxida-
tion may occur at a greater rate in water, minimising the total residual volume of α-UH3 avail-
able for subsequent oxidation should air exposure occur later during the lifetime management
of the waste.

There are a few instances, however, where conditions conducive to β-UH3 formation may
occur, such as in submersed silos where temperatures are higher and sludge can accumulate.
Oxidant diffusion pathways in silos are at least 100 times that of the sample tested here, and
therefore diffusion from oxygenated water would be further limited and anoxic conditions
would expectedly prevail for longer at the uranium surface, potentially enabling persistence of
UH3 over much longer periods if undisturbed. If UH3 is present in bulk quantities (>25 g)
within grout, which is expected to form over long periods of storage and previously observed
behaviour of UH3 encapsulated in grout [13], oxidation is expected to initially be faster [10,15].
If the grout was intact, limited diffusion to and from the metal would allow large quantities of
UH3 to persist. However, in reality the volume expansion caused by UH3 and UO2 formation
would expectedly cause the encasing grout to fracture and disintegrate over time, providing
pathways for water (anoxic or oxic) to access the UH3 and begin a slow controlled oxidation.
The protective oxide layer forming on the surface of the UH3 blisters may then dampen the
oxidation reaction when exposed to air, even if the inner core of the blister still persists.

It should also be noted that grouted intermediate level waste drums containing uranium,
whilst initially formed under saturated conditions, are stored nominally dry. This dictates that
water corrosion of encapsulated uranium will only occur for a period of perhaps close to that
studied here. However, eventual emplacement in a geological disposal facility will see re-estab-
lishment of water corrosion once more.

The next logical step for ongoing research is to understand the location and abundance of
the UH3 and UO2 within the grout system. Neutron tomography or secondary ion mass spec-
trometry would provide further understanding of the UH3 oxidation rates in the current sam-
ple, which will be used to produce rates for larger wet storage systems.

Conclusions
The present work has demonstrated that laboratory made β-UH3 will persist on grout encapsu-
lated uranium submersed in a semi sealed volume of water for periods up to 10 months. X-ray
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diffraction data indicated β-UH3 and UO2 peaks were present after 3 and 10 months submer-
sion in water. X-ray tomography allowed comparisons of uranium and uranium hydride oxida-
tion rates to determine that the conditions within the grout were likely an anoxic H2O system.
In addition, it was identified that oxidation was limited by the encasing grout body. This was
identified as a legitimate cause for the current and future persistence of hydride in grout.
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