Microkinetic Mechanisms for Partial Oxidation of Methane over Platinum and Rhodium Supporting Information

P. Kraus and R. P. Lindstedt *

Table of contents:

- 1. Table S1
 Page S2

 Table containing activation barriers for pathways on Rh, with values obtained using DFT by

 Filot et al. [40], and UBI–QEP as part of the framework.
- CHEM.INP File: jp7b02397_si_003.txt supplied as chem.txt The updated gas phase mechanism of Lindstedt and Waldheim [55], as applied, in CHEMKIN format.
- 3. TRAN.DAT File: jp7b02397_si_004.txt supplied as tran.txt Transport database for the gas phase mechanism.
- 4. THERM.DAT File: jp7b02397_si_005.txt supplied as therm.txt Thermochemistry for the gas phase mechanism.
- 5. RH-VTST.INP File: jp7b02397_si_006.txt supplied as Rh-VTST.txt Heterogeneous VTST mechanism for Rh, including thermochemistry.
- RH-HYBRID.INP File: jp7b02397_si_007.txt supplied as Rh-hybrid.txt Heterogeneous "hybrid" mechanism, including barriers of Filot et al. for Rh, including thermochemistry.
- 7. RH-35+5+4.JSON File: jp7b02397_si_008.txt supplied as Rh-35+5+4.txt Species data used to create the VTST mechanism for Rh in JSON format.

E-mail: p.lindstedt@imperial.ac.uk

^{*}To whom correspondence should be addressed

Table S1: Comparison of activation barriers of Filot et al. [40] with the UBI–QEP determinations for the "hybrid" and VTST mechanisms for Rh. Values in kJ/mol.

Reaction	Filot et al.	UBI–QEP
$C_2H_6(s)_2 \rightarrow H(s) + CH_2CH_3(s)$	34	8
$\mathrm{H(s)}+\mathrm{CH_2CH_3(s)}\rightarrow\mathrm{C_2H_6(s)_2}$	91	49
$CH_2CH_3(s) + 2 (s) \rightarrow H(s) + C_2H_4(s)_2$	65	0
$H(s) + C_2H_4(s)_2 \rightarrow CH_2CH_3(s) + 2 (s)$	58	96
$H(s) + C_2H_4(s) \rightarrow CH_2CH_3(s) + (s)$	58	91
$CH_2CH_3(s)+(s)\rightarrowH(s)+C_2H_4(s)$	65	0
$C_2H_4(s) + (s) \rightarrow H(s) + CHCH_2(s)$	35	27
$H(s) + CHCH_2(s) \rightarrow C_2H_4(s) + (s)$	66	36
$C_2H_4(s) + 3 (s) \rightarrow CHCH_2(s)_3 + H(s)$	35	27
$CHCH_2(s)_3 + H(s) \rightarrow C_2H_4(s) + 3 (s)$	66	37
$C_2H_4(s)_2 \rightarrow H(s) + CHCH_2(s)$	35	31
$H(s) + CHCH_2(s) \rightarrow C_2H_4(s)_2$	66	33
$\mathrm{H(s)} + \mathrm{CHCH}_3(\mathrm{s})_2 \ \rightarrow \ \mathrm{CH}_2\mathrm{CH}_3(\mathrm{s}) + 2 \ (\mathrm{s})$	71	58
$CH_2CH_3(s) + 2 \ (s) \ \rightarrow \ H(s) + CHCH_3(s)_2$	30	49
$CHCH_3(s)_2 + 2 \ (s) \ \rightarrow \ CHCH_2(s)_3 + H(s)$	92	0
$\mathrm{CHCH}_2(s)_3+\mathrm{H}(s)\rightarrow\mathrm{CHCH}_3(s)_2+2~(s)$	89	110
$CHCH_3(s)_2 + 2 \ (s) \ \rightarrow \ H(s) + CCH_3(s)_3$	53	19
$\mathrm{H(s)} + \mathrm{CCH}_3(\mathrm{s})_3 \rightarrow \mathrm{CHCH}_3(\mathrm{s})_2 + 2 \ (\mathrm{s})$	102	115
$\mathrm{CHCH}_3(\mathrm{s})_2 \rightarrow \mathrm{CHCH}_2(\mathrm{s}) + \mathrm{H}(\mathrm{s})$	92	0
$CHCH_2(s) + H(s) \rightarrow CHCH_3(s)_2$	89	109
$CHCH_2(s) + 2 (s) \rightarrow CCH_2(s)_2 + H(s)$	18	0
$CCH_2(s)_2 + H(s) \rightarrow CHCH_2(s) + 2 (s)$	111	135
$CHCH_2(s) + 3 (s) \rightarrow C_2H_2(s)_3 + H(s)$	35	0

Table S1: Comparison of activation barriers of Filot et al. [40] with the UBI–QEP determinations for the "hybrid" and VTST mechanisms for Rh. Values in kJ/mol.

Reaction	Filot et al.	UBI–QEP
$C_2H_2(s)_3 + H(s) \rightarrow CHCH_2(s) + 3 (s)$	101	106
$\mathrm{CCH}_3(s)_3+(s)\rightarrow\mathrm{C}(s)_3+\mathrm{CH}_3(s)$	144	2
$C(s)_3 + CH_3(s) \rightarrow CCH_3(s)_3 + (s)$	119	56
$\operatorname{CCH}_2(s)_2 + \operatorname{H}(s) \rightarrow \operatorname{CCH}_3(s)_3$	80	162
$CCH_3(s)_3 \rightarrow CCH_2(s)_2 + H(s)$	40	0
$CCH_2(s)_2 \rightarrow H(s) + CCH(s)$	75	77
$H(s) + CCH(s) \rightarrow CCH_2(s)_2$	44	17
$\operatorname{CCH}_2(s)_3 + \operatorname{H}(s) \rightarrow \operatorname{CHCH}_2(s)_3 + (s)$	111	315
$\mathrm{CHCH}_2(s)_3 + (s) \rightarrow \mathrm{CCH}_2(s)_3 + \mathrm{H}(s)$	18	0
$\operatorname{CCH}_2(s)_3 + \operatorname{H}(s) \rightarrow \operatorname{CCH}_3(s)_3 + (s)$	80	342
$\mathrm{CCH}_3(s)_3+(s)\rightarrow\mathrm{CCH}_2(s)_3+\mathrm{H}(s)$	40	0
$H(s) + C_2H_2(s)_3 \rightarrow CHCH_2(s)_3 + (s)$	101	106
$CHCH_2(s)_3 + (s) \rightarrow H(s) + C_2H_2(s)_3$	35	0
$H(s) + CCH(s) + (s) \rightarrow CCH_2(s)_3$	75	0
$CCH_2(s)_3 \rightarrow H(s) + CCH(s) + (s)$	44	230
$CCH(s) + H(s) + (s) \rightarrow C_2H_2(s)_3$	160	0
$C_2H_2(s)_3 \rightarrow CCH(s) + H(s) + (s)$	102	85
$CCH(s) + 5 (s) \rightarrow C(s)_3 + CH(s)_3$	93	85
$C(s)_3 + CH(s)_3 \rightarrow CCH(s) + 5 (s)$	103	89
$CH_3(s) + H(s) \rightarrow CH_4 + 2 (s)$	50	19
$CH_4 + 2 (s) \rightarrow CH_3(s) + H(s)$	36	20
$CH_3(s) + O(s) \rightarrow CH_3O(s) + (s)$	199	0
$CH_3O(s) + (s) \rightarrow CH_3(s) + O(s)$	112	77

Table S1: Comparison of activation barriers of Filot et al. [40] with the UBI–QEP determinations for the "hybrid" and VTST mechanisms for Rh. Values in kJ/mol.

Reaction	Filot et al.	UBI–QEP
$CH_3(s) + OH(s) \rightarrow CH_3OH(s) + (s)$	173	0
$\mathrm{CH}_3\mathrm{OH}(s)+(s)\rightarrow\mathrm{CH}_3(s)+\mathrm{OH}(s)$	94	148
$CH_2(s)_2 + H(s) \rightarrow CH_3(s) + 2 (s)$	33	57
${\rm CH}_3({\rm s})+2~({\rm s})\rightarrow{\rm CH}_2({\rm s})_2+{\rm H}({\rm s})$	15	47
$CH_2(s)_2 + OH(s) \rightarrow CH_2OH(s) + 2 (s)$	118	0
$\mathrm{CH_2OH}(s)+2~(s)\rightarrow\mathrm{CH_2}(s)_2+\mathrm{OH}(s)$	57	102
$H(s) + CH(s)_3 \rightarrow CH_2(s)_2 + 2 (s)$	78	112
$CH_2(s)_2 + 2 \ (s) \rightarrow H(s) + CH(s)_3$	23	33
$H(s) + C(s)_3 \rightarrow CH(s)_3 + (s)$	80	260
$CH(s)_3 + (s) \rightarrow H(s) + C(s)_3$	91	0
$C(s)_3 + O(s) \rightarrow CO(s)_2 + 2 (s)$	92	60
$CO(s)_2 + 2 \ (s) \rightarrow C(s)_3 + O(s)$	173	214
$CO(s)_2 + O(s) \rightarrow CO_2(s)_2 + (s)$	80	79
$\mathrm{CO}_2(\mathrm{s})_2 + (\mathrm{s}) \rightarrow \mathrm{CO}(\mathrm{s})_2 + \mathrm{O}(\mathrm{s})$	136	30
$CH_3O(s) + H(s) \rightarrow CH_3OH(s) + (s)$	60	96
$\rm CH_3OH(s)+(s)\rightarrow\rm CH_3O(s)+\rm H(s)$	55	53
$CH_3O(s) + (s) \rightarrow H(s) + CH_2O(s)$	72	0
$H(s) + CH_2O(s) \rightarrow CH_3O(s) + (s)$	146	218
$CH_2OH(s) + H(s) \rightarrow CH_3OH(s) + (s)$	183	0
$CH_3OH(s) + (s) \rightarrow CH_2OH(s) + H(s)$	147	89
$\mathrm{CH_2OH}(s)+2~(s)\rightarrow\mathrm{CHOH}(s)_2+\mathrm{H}(s)$	15	2
$\mathrm{CHOH}(s)_2 + \mathrm{H}(s) \rightarrow \mathrm{CH}_2\mathrm{OH}(s) + 2 \ (s)$	63	61
$CH_2OH(s) + (s) \rightarrow H(s) + CH_2O(s)$	69	0

Table S1: Comparison of activation barriers of Filot et al. [40] with the UBI–QEP determinations for the "hybrid" and VTST mechanisms for Rh. Values in kJ/mol.

Reaction	Filot et al.	UBI–QEP
$H(s) + CH_2O(s) \rightarrow CH_2OH(s) + (s)$	112	302
$CH_2O(s) + (s) \rightarrow H(s) + CHO(s)$	14	129
$H(s) + CHO(s) \rightarrow CH_2O(s) + (s)$	69	0
$\mathrm{CHOH}(s)_2+2~(s)\rightarrow\mathrm{COH}(s)_3+\mathrm{H}(s)$	50	0
$COH(s)_3 + H(s) \rightarrow CHOH(s)_2 + 2 (s)$	109	178
$CHOH(s)_2 \rightarrow CHO(s) + H(s)$	109	0
$CHO(s) + H(s) \rightarrow CHOH(s)_2$	159	141
$\mathrm{CHO}(s)+2~(s)\rightarrow\mathrm{H}(s)+\mathrm{CO}(s)_2$	17	0
$H(s) + CO(s)_2 \rightarrow CHO(s) + 2 (s)$	120	244
$\rm COH(s)_3 \rightarrow \rm CO(s)_2 + \rm H(s)$	68	0
$CO(s)_2 + H(s) \rightarrow COH(s)_3$	161	183
$O(s) + H_2O(s) \rightarrow OH(s) + OH(s)$	53	155
$OH(s) + OH(s) \rightarrow O(s) + H_2O(s)$	53	0
$H(s) + O(s) \rightarrow OH(s) + (s)$	156	185
$OH(s) + (s) \rightarrow H(s) + O(s)$	142	5
$H(s) + OH(s) \rightarrow H_2O(s) + (s)$	108	60
$H_2O(s) + (s) \rightarrow H(s) + OH(s)$	77	85